Past Reading Groups Math Finance

Topic: Optimal Transportation in Finance

Location: Room 139, Huxley Building.
Date & Time: Wednesdays, 3pm - 4pm
Organisers: Daphne Liu and Patrick Roome

Term 1: Theory ([1], pp. 1-104)

DateSpeakerContent
9/10/2013 Patrick Roome Introduction and overview ([1], pp. 1-20)
16/10/2013 Daphne Liu Proof of the Kantorovich duality I ([1], pp. 21-25)
23/10/2013 Grzegorz Andruszkiewicz Proof of the Kantorovich duality II ([1], pp. 25-34)
30/10/2013 Geraldine Bouveret Duality-based proof of Brenier's theorem I ([1], pp. 47-66)
6/11/2013 Eric Schaanning Duality-based proof of Brenier's theorem II ([1], pp. 66-72)
13/11/2013 Sergey Badikov Optimal transport on the real line ([1], pp. 73-78)
20/11/2013 Ivo Mihaylov Cyclical monotonicity and Brenier's theorem III ([1], pp. 78-84)
27/11/2013 Francesco Patacchini Generalisations to other costs ([1], pp. 85-94, [3b], [3c])
4/12/2013 Hao Liu The distance case and properties of c-concave functions ([1], pp. 97-104, [3a], [3b])
11/12/2013 Problem Class Exercises: 1.11, 2.14, 2.21, 2.35, 2.41. (A few more on email)

Term 2: Finance applications ([4a],[4b],[4c],[4d])

DateSpeakerContent
22/01/2014 Patrick Roome Overview for term
29/01/2014 Sergey Badikov ([4a], pp. 1-6)
05/02/2014 Daphne Liu
([4a], pp. 7-17)
12/02/2014 Eric Schaanning ([4b], pp. 1-13)
19/02/2014
Sergey Badikov

([4b], pp. 13-29)
26/02/2014
Geraldine Bouveret 
([4c], pp. 1-9)
05/03/2014
Patrick Roome

([4c], pp. 9-18)
12/03/2014
Francesco Patacchini
([4d], pp. 1-5)
19/03/2014 Hao Liu 
([4d], pp. 5-10)
26/03/2014 Numerical Implementation Class  

References:

[1] C. Villani. Topics in Optimal Transportation. American Mathematical Society (2003).

[2] C. Villani. Optimal Transport, Old and New. Springer (2008).

[3] (a) Evans, (b) GangboMcCann96, (c) ExactSolutionsMcCannVideos.

[4] Finance applications: 

  • Kantorovich duality with martingale constraints: (a) BHP13.
  • Brenier's theorem with martingale constraints: (b) HT13BJ13.
  • Martingale optimal transport plans for specific products: At-the-money forward straddle [(c) HK13, HN08], Lookback option [GHT11HOST13].
  • Numerical methods: (d) PHL11.
  • Continuous-time versions of the problem: SD13TT13.
  • A constrained martingale optimal transport problem: PHL13.
  • Other material: Mini Courses, T13K13, MK13, BLS13.

[5] Background material:

(a) H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2011).

(b) R.T. Rockafellar. Convex Analysis . Princeton University Press (1970).

Topic: Stochastic Control

PLEASE NOTE: READING GROUP TAKES PLACE 3-4PM ON 25/02/2015

Location: Room 642, Huxley Building.
Date & Time: Wednesdays, 4pm - 5pm 
Organiser: Ivo Mihaylov and Sergey Badikov 

Autumn Term

DateSpeakerContent
15/10/2014 Ivo Mihaylov [1] Up to Chapter 3.2
22/10/2014 Eamon McMurray [1] Chapter 3.3 onwards
29/10/2014 Sergey Badikov [1] Chapter 7 - Martingale and Convex Duality methods
5/11/2014 Hao Liu [1] Chapter 4 - Viscosity solutions
12/11/2014 Simon Ellersgaard [1] Chapter 4 (4.4 onwards)
19/11/2014 Arman Khaledian [1] Chapter 6 BSDEs
26/11/2014 Ryan Wong [1] Chapter 6 BSDEs (second half)
3/12/2014 Pierre Blacque [1] Chapter 5 Optimal Stopping
10/12/2014 Spyros Kollias Liapis [2] (Ch. 3-5) Control in Partially observable systems  

Spring Term

DateSpeakerContent
28/01/2015 Sergey Badikov Uncertain Volatility Model, [3] Chapter 5.2 and Chapter 9
04/02/2015 Simon Ellersgaard Optimal Trade Execution, [4] and [5]
11/02/2015 Pierre Blacque On Viscosity Solutions of Path Dependent PDEs [6]
18/02/2015 Arman Khaledian Second Order BSDEs and Fully Nonlinear Parabolic PDEs [7]
25/02/2015 Ivo Mihaylov Second Order BSDEs and Fully Nonlinear Parabolic PDEs [7]
04/03/2015 Cancelled Cancelled due to Imperial-ETH workshop on Mathematical Finance (04.03.15-06.03.15)
11/03/2015 Fangwei Shi A large deviations approach to optimal long term investment [9]
18/03/2015 Andrea Granelli Normal approximation and Malliavin calculus
25/03/2015 Cancelled Cancelled  

References:

[1] H. Pham. Continuous-time Stochastic Control and Optimization with Financial Applications. Springer, volume 61 (2009).

[2] A Bain, D Crisan. Fundamentals of stochastic filtering. Springer, (2009).

[3] J. Guyon, P. Henry-Labordere. Nonlinear Option Pricing. Chapman and Hall/CRC, (2013).

[4] R. Almgren, N. Chriss. Optimal execution of portfolio transactions. Journal of Risk, (2000).

[5] A. Cartea, S. Jaimungal. Optimal execution with limit and market orders. Forthcoming: Quantitative Finance , (2014).

[6] I. Ekren et al. On Viscosity Solutions of Path Dependent PDEs. The Annals of Probability, Vol. 42, No. 1, pp. 204–236 (2014).

[7] P. Cheridito et al. Second Order Backward Stochastic Differential Equations and Fully Nonlinear Parabolic PDEs. Communications on Pure and Applied Mathematics, v.60 (2007).

[8] B. Bouchard et al. Discrete-time approximation of BSDEs and probabilistic schemes for fully nonlinear PDEs. Radon Series Comp. Appl. Math, v.8, pp. 1-34 (2009).

[9] H. Pham A large deviations approach to optimal long term investment. Finance and Stochastics, v.7, no.2, pp. 169-195 (2003).

Past Mathematical Finance PhD Days

Topic: Optimal Transportation in Finance

Location: Room 139, Huxley Building.
Date & Time: Wednesdays, 3pm - 4pm
Organisers: Daphne Liu and Patrick Roome

Term 1: Theory ([1], pp. 1-104)

DateSpeakerContent
9/10/2013 Patrick Roome Introduction and overview ([1], pp. 1-20)
16/10/2013 Daphne Liu Proof of the Kantorovich duality I ([1], pp. 21-25)
23/10/2013 Grzegorz Andruszkiewicz Proof of the Kantorovich duality II ([1], pp. 25-34)
30/10/2013 Geraldine Bouveret Duality-based proof of Brenier's theorem I ([1], pp. 47-66)
6/11/2013 Eric Schaanning Duality-based proof of Brenier's theorem II ([1], pp. 66-72)
13/11/2013 Sergey Badikov Optimal transport on the real line ([1], pp. 73-78)
20/11/2013 Ivo Mihaylov Cyclical monotonicity and Brenier's theorem III ([1], pp. 78-84)
27/11/2013 Francesco Patacchini Generalisations to other costs ([1], pp. 85-94, [3b], [3c])
4/12/2013 Hao Liu The distance case and properties of c-concave functions ([1], pp. 97-104, [3a], [3b])
11/12/2013 Problem Class Exercises: 1.11, 2.14, 2.21, 2.35, 2.41. (A few more on email)

Term 2: Finance applications ([4a],[4b],[4c],[4d])

DateSpeakerContent
22/01/2014 Patrick Roome Overview for term
29/01/2014 Sergey Badikov ([4a], pp. 1-6)
05/02/2014 Daphne Liu
([4a], pp. 7-17)
12/02/2014 Eric Schaanning ([4b], pp. 1-13)
19/02/2014
Sergey Badikov

([4b], pp. 13-29)
26/02/2014
Geraldine Bouveret 
([4c], pp. 1-9)
05/03/2014
Patrick Roome

([4c], pp. 9-18)
12/03/2014
Francesco Patacchini
([4d], pp. 1-5)
19/03/2014 Hao Liu 
([4d], pp. 5-10)
26/03/2014 Numerical Implementation Class  

References:

[1] C. Villani. Topics in Optimal Transportation. American Mathematical Society (2003).

[2] C. Villani. Optimal Transport, Old and New. Springer (2008).

[3] (a) Evans, (b) GangboMcCann96, (c) ExactSolutionsMcCannVideos.

[4] Finance applications: 

  • Kantorovich duality with martingale constraints: (a) BHP13.
  • Brenier's theorem with martingale constraints: (b) HT13BJ13.
  • Martingale optimal transport plans for specific products: At-the-money forward straddle [(c) HK13, HN08], Lookback option [GHT11HOST13].
  • Numerical methods: (d) PHL11.
  • Continuous-time versions of the problem: SD13TT13.
  • A constrained martingale optimal transport problem: PHL13.
  • Other material: Mini Courses, T13K13, MK13, BLS13.

[5] Background material:

(a) H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2011).

(b) R.T. Rockafellar. Convex Analysis . Princeton University Press (1970).

Topic: Stochastic Control

PLEASE NOTE: READING GROUP TAKES PLACE 3-4PM ON 25/02/2015

Location: Room 642, Huxley Building.
Date & Time: Wednesdays, 4pm - 5pm 
Organiser: Ivo Mihaylov and Sergey Badikov 

Autumn Term

DateSpeakerContent
15/10/2014 Ivo Mihaylov [1] Up to Chapter 3.2
22/10/2014 Eamon McMurray [1] Chapter 3.3 onwards
29/10/2014 Sergey Badikov [1] Chapter 7 - Martingale and Convex Duality methods
5/11/2014 Hao Liu [1] Chapter 4 - Viscosity solutions
12/11/2014 Simon Ellersgaard [1] Chapter 4 (4.4 onwards)
19/11/2014 Arman Khaledian [1] Chapter 6 BSDEs
26/11/2014 Ryan Wong [1] Chapter 6 BSDEs (second half)
3/12/2014 Pierre Blacque [1] Chapter 5 Optimal Stopping
10/12/2014 Spyros Kollias Liapis [2] (Ch. 3-5) Control in Partially observable systems  

Spring Term

DateSpeakerContent
28/01/2015 Sergey Badikov Uncertain Volatility Model, [3] Chapter 5.2 and Chapter 9
04/02/2015 Simon Ellersgaard Optimal Trade Execution, [4] and [5]
11/02/2015 Pierre Blacque On Viscosity Solutions of Path Dependent PDEs [6]
18/02/2015 Arman Khaledian Second Order BSDEs and Fully Nonlinear Parabolic PDEs [7]
25/02/2015 Ivo Mihaylov Second Order BSDEs and Fully Nonlinear Parabolic PDEs [7]
04/03/2015 Cancelled Cancelled due to Imperial-ETH workshop on Mathematical Finance (04.03.15-06.03.15)
11/03/2015 Fangwei Shi A large deviations approach to optimal long term investment [9]
18/03/2015 Andrea Granelli Normal approximation and Malliavin calculus
25/03/2015 Cancelled Cancelled  

References:

[1] H. Pham. Continuous-time Stochastic Control and Optimization with Financial Applications. Springer, volume 61 (2009).

[2] A Bain, D Crisan. Fundamentals of stochastic filtering. Springer, (2009).

[3] J. Guyon, P. Henry-Labordere. Nonlinear Option Pricing. Chapman and Hall/CRC, (2013).

[4] R. Almgren, N. Chriss. Optimal execution of portfolio transactions. Journal of Risk, (2000).

[5] A. Cartea, S. Jaimungal. Optimal execution with limit and market orders. Forthcoming: Quantitative Finance , (2014).

[6] I. Ekren et al. On Viscosity Solutions of Path Dependent PDEs. The Annals of Probability, Vol. 42, No. 1, pp. 204–236 (2014).

[7] P. Cheridito et al. Second Order Backward Stochastic Differential Equations and Fully Nonlinear Parabolic PDEs. Communications on Pure and Applied Mathematics, v.60 (2007).

[8] B. Bouchard et al. Discrete-time approximation of BSDEs and probabilistic schemes for fully nonlinear PDEs. Radon Series Comp. Appl. Math, v.8, pp. 1-34 (2009).

[9] H. Pham A large deviations approach to optimal long term investment. Finance and Stochastics, v.7, no.2, pp. 169-195 (2003).