Imperial College London | Programme Information | | | |-----------------------|----------------|--------------------------| | Programme Title | Programme Code | HECoS Code | | Advanced Computing | G5U0 | For Registry Use
Only | | Award | Length of Study Mode of Study Entry Point(s) | Mode of Study | Entry Doint(a) | Total Credits | | |----------------|--|---------------|------------------------|---------------|-----| | Awaiu | | ECTS | CATS | | | | MSc | 1 Calendar Year (12 months) | Full-time | Annually in
October | 90 | 180 | | PG Diploma | N/A | N/A | N/A | 60 | 120 | | PG Certificate | N/A | N/A | N/A | 30 | 60 | The PG Certificate and PG Diploma are exit awards and are not available for entry. All students must apply to and join the MSc. | Ownership | | | | | | |--|----------------------------|---|----------------------------|--|--| | Awarding Institution | Imperial College
London | Faculty Faculty of Engineer | | | | | Teaching Institution | Imperial College
London | Department Computing | | | | | Associateship | N/A | Main Location(s) of
Study | South Kensington
Campus | | | | External Reference | | | | | | | Relevant QAA Benchmark St
external reference points | atement(s) and/or other | QAA Subject Benchmark Statement: www.qaa.ac.uk/quality-code/subject-benchmark- statements/computing | | | | | FHEQ Level | | Level 7 – Master's | | | | | EHEA Level | | 2 nd Cycle | | | | | External Accreditor(s) (if ap | oplicable) | | | | | | External Accreditor 1: N/A | | | | | | | Accreditation received: | N/A | Accreditation renewal: | N/A | | | | Collaborative Provision | | | | | | | Collaborative partner | Collaboration type | Agreement effective Agreement expiry da | | | | | N/A | N/A | N/A | N/A | | | | Specification Details | | | | |--|--------------------|--|--| | Programme Lead | Dr Anandha Gopalan | | | | Student cohorts covered by specification | 2023-24 entry | | | | Date of introduction of programme | Pre 2000 | | | | Date of programme specification/revision | February 2023 | | | # **Programme Overview** The MSc in Advanced Computing is a well-established degree aimed at students who have a substantial background in computing, and who want to study advanced computing concepts and technologies in more depth. The degree enables graduates to develop and master skills in a broad range of advanced computing concepts and technologies. Participants are given liberty to tailor the programme to their own needs and interest whilst engaging in modules delivered by world-renowned subject experts. Modules range from blockchain to quantum computing, from formal program analysis to artificial intelligence and machine learning. It is expected that the modules build upon knowledge gained in a good first degree in computer science. The expectation of graduates is that this course enables them to have rewarding careers in computing or in a profession that has computing as a core component. About 50 students undertake the degree programme each year. The programme is taken over 12 months, full-time, with a single entry point per year in October. In the Autumn and Spring terms, timetable permiting, you will study modules from a very large range (approximately 20 per term) of taught electives. This high level of choice will allow you to extend and deepen your knowledge in the areas of computing that fit best with your individual background and interests. To further enhance the flexibility and research proximity of the programme, you will have the option of replacing one taught elective with the Independent Study Option (ISO) module. The ISO, which is only available on the MSc programme, involves individual study of an advanced topic selected by you, under the supervision of a member of staff, culminating in a written report and presentation. The remainder of the degree, from May to September, is devoted to a major individual project, resulting in a written dissertation and oral presentation. The Individual project selection allows you to meet with supervisors proposing the projects and then make an informed decision. The projects are proposed on our internal system and students can see them and accordingly select them before meeting the supervisors to discuss the projects with them. You will be taught by leading academic staff who are experts in their fields, and whose research has been recognised to be at the forefront of current advances in computer science. The teaching is also well-recognised to be informed by this research. The programme is delivered in the world-leading Department of Computing at Imperial College London. The Department has leading research groups in Programming Languages, Artificial Intelligence, Software Engineering, Data Science, Theory and Algorithms and Visual Computing. Many groups and members of our research staff are at the forefront of research in their respective fields: 56% of the research in the Department of Computing ranked at 4*, for "Quality that is world-leading in terms of originality, significance and rigour" in the last Research Excellence Framework exercise. The department has many collaborations with other faculties at Imperial, and leading international institutions, as well as with industry. We also house dedicated research centres, including the Dyson Robotics Lab, the Data Science Institute, the Centre for Integrative Systems Biology and Bioinformatics, the Hamlyn Centre for Medical Image Computing and Robotics, and more. You will be sent some pre-sessional material as necessary to help you get started. In terms of selecting the electives, you have the choice to attend the initial lectures before making your choice much later. Graduates of the MSc in Advanced Computing have gone on to work in leading companies such as Microsoft, Amazon, DeepMind, Facebook, Google, and Twitter; many have also progressed to PhD research at Imperial and elsewhere. A graduate of the department recently had his company valued at \$1 billion, and two other graduates sold their AI startup to Twitter for \$150 million. Throughout the year, leading companies visit the department to give presentations on the Applications of Computing in Industry. These are on a broad range of industrially-relevant topics including AI, Data Science, Programming Languages, Natural Language Processing and Software Engineering. We pride ourselves in presenting great opportunity to learn about the relevance and application of what you are studying, and speak directly with people working on industrial applications. We also have dedicated extracurricular tutorials and seminars on computing from guest speakers. Usually, software packages required to undertake this degree programme are accessible to all students through the department's laboratories and College's Software Hub. However, you may need to purchase personalised hardware/software tools to cater for your individual preferences and project(s). We use digital technology to bring further benefits to our education programmes, drawing from investments made and skills gained during the pandemic. We deliver our education as a useful blend of face-to-face and digital learning. This will also prepare our students well for a more hybrid work culture of the future. #### **Learning Outcomes** Upon successful completion of the programme you will have acquired the following abilities. # On achieving the PG Certificate: - 1. To translate abstract and mathematical concepts into computer-based solutions for practical problems; - 2. To effectively use state-of-the-art computing tools and techniques; - 3. To develop and test software solutions to computational problems using a variety of programming languages and paradigms. ### On achieving the PG Diploma, ILOs 1-3 above, and: - 4. To apply mathematical methods and scientific reasoning to novel computing-related problems; - 5. To design and engineer solutions to advanced computational problems using knowledge of multiple specialist areas of computer science and engineering; - 6. To plan and conduct a programme of original research and software development; - 7. To communicate effectively through technical oral presentations and written reports. # On achieving the MSc, ILOs 1-7 above, and: - 8. To develop computer-based systems in a manner that respects relevant legal, social, ethical and other professional practices; - 9. To adapt, integrate and transfer methods and skills between established fields and emerging trends in computing; - 10. To organise and successfully implement study of advanced research level information, from diverse sources, both within instructor-led and research-based educational settings; - 11. To devise and conduct practical experiments in order to push the boundaries of understanding in computer science and its application across disciplines. The Imperial Graduate Attributes are a set of core competencies which we expect students to achieve through completion of any Imperial College degree programme. The Graduate Attributes are available at: www.imperial.ac.uk/students/academic-support/graduate-attributes # Academic Requirement 1st class honours in a subject with a substantial computing component. This requirement ensures an ideal amount of preparedness to complete the MSc Non-academic Requirements N/A Higher requirement (PG) Please check for other Accepted English Qualifications Admissions Test/Interview N/A The programme's competency standards documents can be found at: www.imperial.ac.uk/computing/prospective-students/courses/competence/ # **Learning & Teaching Approach** #### Teaching You will be taught through a combination of interactive sessions, lectures, team-based learning, tutorials, computer laboratory sessions, guest lectures, and individual project meetings. Module lecturers employ a variety of these teaching methods, depending on the content of the module. A typical module might combine teaching in lectures with tutorial sessions supported by the lecturer and their tutorial assistants. Tutorial sessions can involve practical coding tasks (run in our extensive computer laboratories), written exercises, or discussion groups. #### Assessed coursework Most modules set assessed coursework. This is sometimes to be completed in groups, and sometimes individual. It may consist of practical coding tasks, or written exercises, or a combination of the two. The portion of a module's final grade which is determined by assessed coursework is normally 20% but can be up to 100%, depending on the assessment strategy employed. #### Individual project The degree includes a substantial individual research project, which runs from mid-May to mid-September. The research project can be conducted with academics in the Department of Computing, or within other departments at Imperial College. Some students also elect to do a research project in collaboration with industry, jointly supervised by an academic in the Department of Computing. The project is evaluated with a final report and presentation. #### Independent learning Students are expected to spend significant time on independent study outside of face-to-face contact time. This will typically include accessing resources online, reading journal articles and books, undertaking research in the library, reviewing lecture notes and watching lecture recordings, working on the individual project, working on coursework assignments and revising for exams. #### **Overall Workload** Your overall workload consists of face-to-face sessions and independent learning. While your actual contact hours may vary according to the elective modules you choose to study, the following gives an indication of how much time you will need to allocate to different activities at each level of the programme. At Imperial, each ECTS credit taken equates to an expected total study time of 25 hours. Therefore, the expected total study time is 2250 hours. Typically, you will spend in the order of 12.5% of your time on lectures, tutorials, and similar; and in the order of 87.5% of your time on independent study. # **Assessment Strategy** #### **Assessment Methods** You can expect a variety of different types of assessment methods. # Written assessment - Coursework exercises - Reports on practical coding - Short-form written answers - Essays - Written examinations - Report writing - Peer assessment reports # **Programming** - Programming coursework (for taught modules) - Programming examination #### **Oral assessment** Oral presentations Modules provide a range of formative activities to allow you to test and develop your understanding of the subject, and the ways you are expected to demonstrate the intended learning outcomes, before you complete the summative assessments that count towards your final mark. Formative activities include tutorial exercises, coding tasks, quizzes, and worked in-class problems supported by discussion. There is summative assessment during and/or at the end of each module. Summative assessments demonstrate that you have met the intended learning outcomes for each module and contribute towards your achievement of the programme learning outcomes, detailed above. #### Balance of assessment The percentages below are based on a typical pathway through the course and have been rounded to the nearest whole number. | Assessed coursework | 20% | |--------------------------------------|-----| | Examinations (practical and written) | 30% | | Individual project | 50% | # Academic Feedback Policy Feedback on formative exercises may be given in various forms. Automatic testing is commonly provided for programming exercises, both as files that you can run in a development environment and through the department's online pre-submission testing system. For both programming exercises and written problems, model solutions are commonly provided after the work is submitted. These can be used for self-assessment but will also be the subject of in-class group discussion. More individualised discussion is available during tutorial sessions and via online forums for each module. For summative work, the department operates in accordance with the College policy on academic feedback, and procedures are consistent across all taught Computing programmes. Feedback will normally be provided on coursework within two weeks of submission. This will be in the form of, for example: - 1. Marked-up coursework, laboratory exercises or tests - 2. Personal discussion - 3. Discussions in small-group tutorials - 4. Verbal presentation, e.g. during or after lectures - 5. Written class-wide summaries Feedback on exams is provided in two forms: (i) numerically, as individual interim marks subject to ratification (approval) by the Board of Examiners; and (ii) in written form, as non-individual summary feedback on individual questions. In July you will also receive feedback on which degree grade (Pass, Merit, Distinction) you are on track for. Further, selected examination questions are routinely set as formative and/or summative assessments in later years, with model answers provided. The College's Policy on Academic Feedback and guidance on issuing provisional marks to students is available at: www.imperial.ac.uk/about/governance/academic-governance/academic-policy/exams-and-assessment/ # Re-sit Policy One resit is allowed per module, usually on the next occasion that the module is examined. Determinations of results and mitigating circumstances will follow college policies and the academic regulations. The College's Policy on Re-sits is available at: www.imperial.ac.uk/student-records-and-data/for-current-students/undergraduate-and-taught-postgraduate/exams-assessments-and-regulations/ #### Mitigating Circumstances Policy The College's Policy on Mitigating Circumstances is available at: www.imperial.ac.uk/student-records-and-data/for-current-students/undergraduate-and-taught-postgraduate/exams-assessments-and-regulations/ #### Additional Programme Costs This section should outline any additional costs relevant to this programme which are not included in students' tuition fees. | Description | Mandatory/Optional | Approximate cost | |--|--------------------|------------------| | Personalised hardware/software tools to cater for individual preferences and project(s). | Optional | N/A | **Important notice**: The Programme Specifications are the result of a large curriculum and pedagogy reform implemented by the Department and supported by the Learning and Teaching Strategy of Imperial College London. The modules, structure and assessments presented in this Programme Specification are correct at time of publication but might change as a result of student and staff feedback and the introduction of new or innovative approaches to teaching and learning. You will be consulted and notified in a timely manner of any changes to this document. # **Programme Structure**¹ # **FHEQ Level 7** # Students study 9 electives plus the (core) individual project. | Code | Module Title | Core/
Compulsory/
Elective | Group | Term | Credits | |-----------|---|----------------------------------|-------|------|---------| | COMP70081 | MSc Advanced Computing Individual Project | Core | - | 3 | 45 | | COMP70004 | Advanced Computer Security | Elective | - | 1 | 5 | | COMP70005 | Complexity | Elective | - | 1 | 5 | | COMP70006 | Computational Finance | Elective | - | 1 | 5 | | COMP70015 | Mathematics for Machine Learning | Elective | - | 1 | 5 | | COMP70018 | Privacy Engineering | Elective | - | 1 | 5 | | COMP70020 | Program Analysis | Elective | - | 1 | 5 | | COMP70022 | Scalable Systems and Data | Elective | - | 1 | 5 | | COMP70023 | Scalable Software Verification | Elective | - | 1 | 5 | | COMP70028 | Reinforcement Learning | Elective | - | 1 | 5 | | COMP70074 | Prolog | Elective | - | 1 | 5 | | COMP70050 | Introduction to Machine Learning | Elective | - | 1 | 5 | | COMP70068 | Scheduling and Resource Allocation | Elective | - | 1 | 5 | | COMP70072 | Independent Study Option | Elective | - | 1 | 5 | | COMP70021 | Quantum Computing | Elective | - | 1 | 5 | | COMP70001 | Advanced Computer Graphics | Elective | - | 2 | 5 | | COMP70007 | Computational Optimisation | Elective | - | 2 | 5 | | COMP70009 | Cryptography Engineering | Elective | - | 2 | 5 | | COMP70010 | Deep Learning | Elective | - | 2 | 5 | | COMP70014 | Machine Learning for Imaging | Elective | - | 2 | 5 | | COMP70016 | Natural Language Processing | Elective | - | 2 | 5 | | COMP70017 | Principles of Distributed Ledgers | Elective | - | 2 | 5 | | COMP70019 | Probabilistic Inference | Elective | - | 2 | 5 | ¹ **Core** modules are those which serve a fundamental role within the curriculum, and for which achievement of the credits for that mod5ule is essential for the achievement of the target award. Core modules must therefore be taken and passed in order to achieve that named a5ward. **Compulsory** modules are those which are designated as necessary to be taken as part of the programme syllabus. Compulsory modules can be compensated. **Elective** modules are those which are in the same subject area as the field of study and are offered to students in order to offer an element of choice in the curriculum and from which students are able to select. Elective modules can be compensated. | COMP70024 | Software Reliability | Elective | ı | 2 | 5 | |--------------|---|----------|---|----|---| | COMP70025 | Software Engineering for Industry | Elective | - | 2 | 5 | | COMP70030 | Knowledge Representation | Elective | - | 2 | 5 | | COMP70031 | Modal Logic for Strategic Reasoning in Al | Elective | - | 2 | 5 | | COMP70067 | Robot Learning | Elective | - | 2 | 5 | | COMP70086 | Advanced Computer Architecture | Elective | - | 2 | 5 | | COMP70089 | Computer Vision | Elective | - | 1 | 5 | | COMP70090 | Graphics | Elective | - | 2 | 5 | | COMP70089 | Custom Computing | Elective | - | 2 | 5 | | COMP70071 | Distributed Algorithms | Elective | - | 2 | 5 | | COMP70082 | Network and Web Security | Elective | - | 2 | 5 | | COMP70075 | System Performance Engineering | Elective | - | 2 | 5 | | COMP70093 | Logic-Based Learning | Elective | - | 2 | 5 | | Credit Total | | | | 90 | | #### **Progression and Classification** # Award of a Postgraduate Certificate (PG Cert) To qualify for the award of a postgraduate certificate a student must have: 1. accumulated credit to the value of no fewer than 30 ECTS credits at Level 7 or above. # Award of a Postgraduate Diploma (PG Dip) To qualify for the award of a postgraduate diploma a student must have: - 1. accumulated credit to the value of no fewer than 60 ECTS credits at Level 7 or above; - 2. no more than 10 credits as a result of compensated passes. #### Award of a Postgraduate Degree To qualify for the award of a postgraduate degree a student must have: - 1. accumulated credit to the value of no fewer than 90 ECTS credits at level 7 or above; - 2. no more than 15 credits as a result of compensated passes; - met any specific requirements for an award as outlined in the approved programme specification for that award. # **Classification of Postgraduate Taught Awards** The College sets the class of Degree that may be awarded as follows: - Distinction: The student has achieved an overall weighted average of 70.00% or above across the programme. - Merit: the student has achieved an overall weighted average of above 60.00% but less than 70.00%. - Pass: the student has achieved an overall weighted average of 50.00% but less than 60.00%. - a) For a Master's, students must normally achieve a distinction (70.00%) mark in the dissertation or designated final major project (as designated in the programme specification) in order to be awarded a distinction. - b) For a Master's, students must normally achieve a minimum of a merit (60.00%) mark in the dissertation or designated final major project (as designated in the programme specification) in order to be awarded a merit. | Programme | Specific | Reau | lations | |-----------|----------|------|---------| | | | | | N/A # **Supporting Information** The Programme Handbook is available at: TBC The Module Handbook is available at: TBC The College's entry requirements for postgraduate programmes can be found at: www.imperial.ac.uk/study/apply/postgraduate-taught/entry-requirements/ The College's Quality & Enhancement Framework is available at: www.imperial.ac.uk/registry/proceduresandregulations/qualityassurance The College's Academic and Examination Regulations can be found at: www.imperial.ac.uk/about/governance/academic-governance/regulations Imperial College is an independent corporation whose legal status derives from a Royal Charter granted under Letters Patent in 1907. In 2007 a Supplemental Charter and Statutes was granted by HM Queen Elizabeth II. This Supplemental Charter, which came into force on the date of the College's Centenary, 8th July 2007, established the College as a University with the name and style of "The Imperial College of Science, Technology and Medicine". www.imperial.ac.uk/admin-services/secretariat/college-governance/charters/ Imperial College London is regulated by the Office for Students (OfS) www.officeforstudents.org.uk/advice-and-guidance/the-register/ This document provides a definitive record of the main features of the programme and the learning outcomes that a typical student may reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities provided. This programme specification is primarily intended as a reference point for prospective and current students, academic and support staff involved in delivering the programme and enabling student development and achievement, for its assessment by internal and external examiners, and in subsequent monitoring and review. | Modifications | | | | | |-------------------|---------------------------|------------|--------------------|--| | Description | Approved | Date | Paper
Reference | | | Curriculum Review | Programmes Committee/QAEC | 29/11/2022 | PC.2022.13 | |