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MASS AT ZERO AND SMALL-STRIKE IMPLIED VOLATILITY EXPANSION

IN THE SABR MODEL

ARCHIL GULISASHVILI, BLANKA HORVATH, AND ANTOINE JACQUIER

Abstract. We study the probability mass at the origin in the SABR stochastic volatility model,
and derive several tractable expressions for it, in particular when time becomes small or large.
In the uncorrelated case, tedious saddlepoint expansions allow for (semi) closed-form asymp-
totic formulae. As an application–the original motivation for this paper–we derive small-strike
expansions for the implied volatility when the maturity becomes short or large. These formulae,
by definition arbitrage-free, allow us to quantify the impact of the mass at zero on currently
used implied volatility expansions. In particular we discuss how much those expansions become
erroneous.

1. Introduction

The stochastic alpha, beta, rho (SABR) model introduced by Hagan, Kumar, Lesniewski and
Woodward in [25, 27] is now a key ingredient–and has become an industry standard–on interest
rates markets [3, 4, 6, 34]. It is defined by the pair of coupled stochastic differential equations

(1.1)
dXt = YtX

β
t dWt, X0 = x0 > 0,

dYt = νYtdZt, Y0 = y0 > 0,
d〈Z,W 〉t = ρdt,

where ν > 0, ρ ∈ (−1, 1), β ∈ (0, 1), and W and Z are two correlated Brownian motions living on a
given filtered probability space (Ω,F , (Ft)t≥0,P). Its popularity arose from a tractable asymptotic
expansion of the implied volatility (derived in [25]), and from its ability to capture the observed
volatility smile; calibration therefore being made easier using the aforementioned expansion. In
today’s low interest rate and high volatility environment, the implied volatility obtained by this
very expansion can however yield a negative density function for the process X in (1.1), therefore
exhibiting arbitrage.

There exist several refinements to this asymptotic formula: in [41] Ob lój fine tunes the leading
order, and Paulot [42] provides a second-order term. In certain parameter regimes the exact
density has been derived for the absolutely continuous part (on (0,∞)) of the distribution of X :
in the uncorrelated case ρ = 0, formulae have been obtained in [5, 16, 29] by applying time-change
techniques, and the correlated case can be seen as an approximation of the uncorrelated case
(see for example [4, 5] using a projection to a mimicking model). However, it seems that these
refinements have not fully resolved the arbitrage issue near the origin. This problem of negative
density in low interest-rate environments has been directly addressed by Hagan et. al [26], Balland
and Tran [6], and Andreasen and Huge [3], who propose modifications of the original SABR model
or of the base model for the implied volatility expansion. The original asymptotic formula typically
loses accuracy for long-dated derivatives, when the CEV exponent (the parameter β) is close to
zero, or when the volatility of volatility ν is large. The parameter β determines the backbone and
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governs the dynamics of the smile, and small values are usually chosen when the asymptotic formula
fails, namely on markets where the forward rate is close to zero and for long-dated options [6, 25].
It therefore comes as no surprise that the Hagan formula–which is an asymptotic expansion for
small values of ν2T –breaks down in such a setting.

Approximations of the implied volatility in terms of asymptotic expansions are available, not
only for small and large maturities, but also for extreme strikes. Roger Lee’s celebrated Moment
Formula [35] relates the behaviour of the implied volatility IT (K) for small strikes K to the price
of a Put option on X . This model-independent result was subsequently refined by Benaim and
Friz [8] and Gulisashvili [24]. In [12, 22] De Marco et. al. and Gulisashvili independently showed
that when the underlying distribution has an atom at zero (which is often the case in the SABR
model), the small-strike behaviour of the implied volatility is solely determined by this mass,
irrespective of the distribution of the process on (0,∞). In order to understand the small-strike
behaviour of the SABR smile, we study the probability P(XT = 0)–and provide tractable formulae
and asymptotic approximations thereof–that the forward price (1.1) lies at the origin. Since much
of the popularity of the SABR model is due to the tractability of its asymptotic formula, it is
indeed desirable to preserve the latter when the mass at zero is present.

The paper is organised as follows: in Section 2 we derive explicit formulae for the mass at zero
P(XT = 0) in the SABR model for finite time as well as for large times in the uncorrelated case.
Under this assumption, it is possible to decompose the distribution into a CEV component and an
independent stochastic time change. Such time change techniques have been applied to the SABR
model in the uncorrelated case in [5, 11, 16, 29] to determine the exact distribution of the absolutely
continuous part of the distribution. Therefore, our formulae complement these by providing the
singular part of the distribution (see [28, 45] for more details about time change techniques in
stochastic volatility models). In Section 2.2 Section 2.3, we derive asymptotic expansions of the
atom at the origin in the short time and long time cases.

In Section 3 we study a drift extended version of (1.1), which we refer to as the Brownian
motion on the SABR plane (see (3.1)), and study its dynamics under different configurations of
the SABR parameters. Of particular interest are the zero correlation case, which we relate to
Section 2, and the case β = 0 (and general ρ), which is prevalently chosen on markets when the
current asymptotic formula breaks down. Besides, when β = 0, the original SABR dynamics (1.1)
coincide with those of the Brownian motion on the SABR plane, and we propose several space
transformations to translate the properties of one parameter configuration to another, thus deriving
an explicit formula for the mass at zero for large times when β = 0 in the correlated case.

In Section 4, we use the results of the previous sections to determine the left wing of the SABR
implied volatility. Using the formulae provided in [12, 22], we highlight the fact that some of the
widely used expansions exhibit arbitrage in the left wing, and we propose a way to regularise them
in this arbitrageable region.

Preliminaries and Notations: the process X in (1.1) is a martingale [33, Remark 2]. If we
consider X on the state space [0,∞), then the origin, which can be attained, has to be absorbing
(see [31, Chapter III, Lemma 3.6]). For a given real-valued stochastic process X (with continuous
paths) and a real number z, we define by τXz := inf{t ≥ 0 : Xt = z} the first hitting time of X at

level z. For convenience, we shall use the (now fairly standard) notation ρ :=
√

1 − ρ2. For two
functions f and g, we shall write f(z) ∼ g(z) as z tends to zero whenever lim

z→0
f(z)/g(z) = 1.

2. Mass at zero in the uncorrelated SABR model

2.1. The decomposition formula for the mass. In the case where the correlation coefficient ρ
is null, the mass at the origin can be computed semi-explicitly. Conditioning on the path of the

volatility process Y , the resulting process X̂ satisfies the CEV stochastic differential equation

dX̂t = ŶtX̂
β
t dWt, X̂0 = x0,

where Ŷ is a deterministic time-dependent volatility coefficient, and represents, for fixed ω ∈ Ω,

a realisation of the paths of Y . Consider now the simple CEV equation dX̃t = X̃β
t dWt starting
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from x0, and set

Ĝt :=
X̂

2(1−β)
t

(1 − β)2
and G̃t :=

X̃
2(1−β)
t

(1 − β)2
.

Then Ĝt = Z∫
t
0
Ŷ 2
s ds, where Z is a Bessel process satisfying the SDE [29, Subsection 1.1]

dZt =
1 − 2β

1 − β
dt+ 2

√
|Zt|dWt, Z0 =

x
2(1−β)
0

(1 − β)2
.

By Itô’s formula, the process G̃ solves the same SDE, so that Z = G̃, and therefore X̂t = X̃∫ t
0
Ŷ 2
s ds,

for all t ≥ 0. It follows that X can be obtained from X̃ using the stochastic time change

(2.1) t 7→
∫ t

0

Y 2
s ds,

namely Xt = X̃∫
t
0
Y 2
s ds. Since this time change process is independent of X̃ , one can decompose

the mass at zero of the SABR model into the mass of the CEV component at zero and the density
of the time change:

(2.2) P (Xt = 0) =

∫ ∞

0

P

(
X̃r = 0

)
P

(∫ t

0

Y 2
s ds ∈ dr

)
dr,

where the mass at zero in the CEV model is given by (see [12] or [32])

(2.3) P

(
X̃r = 0

)
= 1 − Γ

(
1

2(1 − β)
,
x
2(1−β)
0

2r(β − 1)2

)
,

with Γ, the normalised lower incomplete Gamma function Γ(v, z) ≡ Γ(v)−1
∫ z
0
uv−1e−udu.

Remark 2.1. If β ∈ [1/2, 1) in (1.1), the origin is naturally absorbing, and the mass at zero is
given by (2.3). When β ∈ [0, 1/2), the solution to (1.1) is not unique, and a boundary condition at
the origin has to be imposed. Should one consider the origin to be reflecting, the transition density
would then become norm preserving, and no mass at the origin would be present. However, it is
easy to see that there is an arbitrage opportunity if the origin is reflecting. Formula (2.3) carries
over to the case β ∈ [0, 1/2) when the origin is assumed to be absorbing, which we shall always
consider from now on. This is of course in line with [31, Chapter III, Lemma 3.6], mentioned
above, which states that the origin has to be absorbing for a non-negative supermartingale.

Since for each s ≥ 0, Ys is lognormally distributed, we can write

(2.4) P

(∫ t

0

Y 2
s ds ∈ dr

)
= P

(∫ t

0

e2νZ
(−ν/2)
s ds ∈ dr̃

)
,

where r̃ := r/y20 and Z
(−ν/2)
s := Zs − 1

2νs. In [10, Formula 1.10.4, page 264], the density of the
above functional is given by (see also Section 2.4.3 below for details)

(2.5) P

(∫ t

0

e2νZ
(−ν/2)
s ds ∈ dr̃

)
=

21/4
√
ν

r̃3/4
exp

(
−ν

2t

8
− 1

4ν2r̃

)
m2ν2t

(
−3

4
,

1

4ν2r̃

)
dr̃,

where the function m is defined as ([10, page 645]):
(2.6)

my(µ, z) ≡ 8z3/2Γ(µ+ 3
2 )e

π2

4y

π
√

2πy

∫ ∞

0

e−z cosh(2u)−
1
yu

2

M

(
−µ, 3

2
, 2z sinh(u)2

)
sinh(2u) sin

(
πu

y

)
du,

and where the Kummer function M reads

(2.7) M(a, b, x) ≡ 1 +

∞∑

k=1

a(a+ 1) . . . (a+ k − 1)xk

b(b+ 1) . . . (b+ k − 1)k!
.
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2.2. Small-time asymptotics. We now study the behaviour of the mass at zero P (Xt = 0) as
time becomes small. The main challenge is to provide a short-time asymptotic formula for the
density of the time change process, for which standard expansion techniques are not applicable.
The additive functional arising from the density of an integral over the exponential of Brownian
motion often appears in the pricing of Asian options and is of interest on its own. This density is
notoriously difficult to evaluate in small time, due to a highly oscillating factor connected to the
Hartman-Watson distribution [36, 37] and [23, Section 4.6]. These numerical issues are discussed
in [7], and Gerhold [19] used saddlepoint methods to provide short-time estimates. Because of the
time change and the complexity of the Kummer function (in the integrand), small-time asymptotics
of the mass at zero cannot be estimated directly. Instead, we use an inverse Laplace transform
approach, inspired by [19], to provide small-time asymptotic estimates for the density of the time
change. In Section 2.4 below, we provide several alternative representations for this density, and
relate them to the existing literature. We recall the mapping y = 2ν2t, and we shall alternate
between the two notations without ambiguity in order to simplify some formulations.

Remark 2.2. Let ω := 1/y. The function m has the form

mω(·) = cω

∫ ∞

0

e−u
2ωfω(u)du,

for some cω and fω. One might be tempted to use a standard Laplace method here to determine
the asymptotic behaviour as ω tends to infinity. However, at the saddlepoint u∗ = 0, attained at
the left boundary of the integration domain, all the derivatives of the function fω–appearing as
coefficients of the expansion–are null, and hence the method does not apply.

We now formulate one of the main results of the paper, which characterises the small-time
asymptotic behaviour of the mass at zero in the uncorrelated SABR model. For every r, y > 0,
let uy denote the largest (positive) solution to the equation

(2.8) 2µ− 1 + 4uy + 2 log(z/2)
√
u−√

u log(u) = 0,

with z :=
y20

4ν2r . Clearly, uy depends on r, but we shall omit this dependence in the notation. Set

(2.9) My :=
log(uy)

16u
3/2
y

− α

8u
3/2
y

+
1 − 2µ

8u2y
.

Theorem 2.3. As t tends to zero, the following asymptotic formula holds for the mass of the
atom at zero in the uncorrelated SABR model:

P (Xt = 0) ∼ y
3/2
0 e5/4

27/4
√
νπ

exp

(
−ν

2t

8

)∫ ∞

0

exp

{
log(uy)

2

(
µ− 1

2

)
− uyy +

√
uy

}
g(r)√
My

dr,

where

g(r) ≡ P

(
X̃r = 0

) 1

r5/4
exp

(
− y20

4ν2r

)
.

Theorem 2.3 follows from (2.2) and the following assertion.

Proposition 2.4. As y (equivalently t) tends to zero, we have (recall that y = 2ν2t)

P

(∫ t

0

Y 2
s ds ∈ dr

)
∼ y

3/2
0 e5/4

r5/427/4
√
νπ

exp

(
− y

16
− y20

4ν2r

)
exp

[
log(uy)

2

(
µ− 1

2

)
− uyy +

√
uy

]
dr√
My

.

The technical part of the proof relies on the following proposition, proved in Appendix A.1.

Proposition 2.5. As y tends to zero, the function my in (2.6) satisfies

my(µ, z) ∼ e
1
2−µ

√
z

2π
exp

[
log(uy)

2

(
µ− 1

2

)
− uyy +

√
uy

]√
π

My
.
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Remark 2.6. The proof of the proposition uses saddlepoint analysis. The saddlepoint uy is the
solution to the equation (2.8), but does not admit a closed-form expression; however, as seen in
the proof, it is possible to expand it as y tends to zero to obtain

my(µ, z) =

√
z| log(y)|
2
√
π

exp

{
− log(y)2

4y
+

| log(y)|
2y

+

(
1

2
− µ

)[
1 − log

( | log(y)|
2y

)]}

×
[
y−3/2 + O

(
y3/2

)]
,

but numerical computations show that this estimate is not very accurate.

2.3. Large-time asymptotics. We now concentrate on the large-time behaviour of the mass at
zero in the uncorrelated SABR model. From [10, Formula 1.8.4, page 612], the formula

P

(∫ ∞

0

exp
(

2νZ(−ν/2)
s

)
ds ∈ dr̃

)
=
r̃−3/2

ν
√

2π
exp

(
− 1

2ν2r̃

)
dr̃

holds, so that the decomposition (2.2) together with (2.4) implies that the mass at zero reads
(recall that r̃ = r/y20)

P∞ := lim
t↑∞

P(Xt = 0) =
y0

ν
√

2π

∫ ∞

0

[
1 − Γ

(
1

2(1 − β)
,
x
2(1−β)
0

2r(β − 1)2

)]
r−3/2 exp

(
− y20

2ν2r

)
dr

= 1 − y0

ν
√

2π

∫ ∞

0

Γ

(
1

2(1 − β)
,
x
2(1−β)
0

2r(β − 1)2

)
r−3/2 exp

(
− y20

2ν2r

)
dr.(2.10)

In the case where β = 0(= ρ), the SABR model (1.1) reduces to a Brownian motion on the
hyperbolic plane (up to a deterministic time change, see Section 3.1), and a simple computation
shows that (2.10) simplifies to

P∞|β=0 = 1 − 2

π
atan

(
νx0
y0

)
.

When β 6= 0, the integral in (2.10) does not have a closed-form expression. Expanding the
exponential factor for small y0, we can however write, for any n ∈ N, the nth-order approximation

P
(n)
∞ :=

∫ ∞

0

[
1 − Γ

(
1

2(1 − β)
,
x
2(1−β)
0

2r(β − 1)2

)]
y0

νr3/2
√

2π

n∑

k=0

1

k!

(
− y20

2ν2r

)k
dr

=

n∑

k=0

y2k+1
0

k!ν
√

2π

(
− 1

2ν2

)k ∫ ∞

0

[
1 − Γ

(
1

2(1 − β)
,
x
2(1−β)
0

2r(β − 1)2

)]
r−(k+3/2)dr

=
2y0(1 − β)

Γ
(

1
2(1−β)

)
ν
√
πx1−β0

n∑

k=0

(−1)k

k!

(
y20(β − 1)2

ν2x
2(1−β)
0

)k Γ
(
k + 1 + β

2−2β

)

(1 + 2k)
.

Note in particular that

P
(0)
∞ =

2Γ
(

1 + β
2−2β

)

Γ
(

1
2−2β

) y0(1 − β)

ν
√
πx1−β0

.

When r tends to infinity, the integrand clearly converges to zero fast enough. Using the properties
of Gamma functions in [1, Chapter 6], the asymptotic behaviour

1 − Γ

(
a,

1

r

)
∼ r1−a exp(−1/r)

Γ(a)

holds as r tends to zero, ensuring that the integral is well defined for all n ∈ N. Theorem 2.7

below shows how well (and when) the sequence P
(n)
∞ approximates the mass at zero P∞. Using

the Taylor formula with Lagrange’s form of the remainder, we obtain

exp

(
− y20

2ν2r

)
=

n∑

k=0

(−1)k
1

n!

(
y20

2ν2r

)k
+

(−1)n+1

(n+ 1)!
e−θ

(
y20

2ν2r

)n+1

,
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for some θ ∈ (0, y20/(2ν
2r)). Therefore,

(2.11)

∣∣∣∣∣exp

{
− y20

2ν2r

}
−

n∑

k=0

(−1)k
1

n!

(
y20

2ν2r

)k∣∣∣∣∣ ≤
1

(n+ 1)!

(
y20

2ν2r

)n+1

.

For any n ≥ 0, set

(2.12) bn :=
2y0(1 − β)

Γ
(

1
2(1−β)

)
ν
√
πx1−β0

(
y20(β − 1)2

ν2x
2(1−β)
0

)n Γ
(
n+ 1 + β

2−2β

)

n!(1 + 2n)
,

so that from (2.11), (2.12), and the definitions of P∞ and P
(n)
∞ , it follows that

(2.13) P
(n)
∞ =

n∑

k=0

(−1)kbk, n ≥ 0,

and

(2.14)
∣∣∣P∞ − P

(n)
∞

∣∣∣ ≤ bn+1, n ≥ 0.

Theorem 2.7. The following statements hold for the sequence P
(n) in (2.13):

(i) If y20(β − 1)2 > ν2x
2(1−β)
0 , or y20(β − 1)2 = ν2x

2(1−β)
0 and 2

3 ≤ β < 1, then the se-

quence (P
(n)
∞ )n≥0 diverges, and hence cannot be an approximation to the mass at zero P∞;

(ii) If y20(β − 1)2 < ν2x
2(1−β)
0 , or y20(β − 1)2 = ν2x

2(1−β)
0 and 0 ≤ β < 2

3 then,

(2.15) P∞ = P
(n)
∞ + O

(
n−1+ β

2−2β exp

(
−n log

(
ν2x

2(1−β)
0

y20(β − 1)2

)))
, as n tends to infinity.

Proof. From (2.12), Stirling’s formula for the Gamma function yields

(2.16) bk ∼ y0(1 − β)

Γ
(

1
2(1−β)

)
ν
√
πx1−β0

k−1+ β
2−2β

(
y20(β − 1)2

ν2x
2(1−β)
0

)k
,

as k tends to infinity. From (2.13), if the conditions of Theorem 2.7(i) hold, then the general term

of the series
∑∞

k=0(−1)kbk does not tend to zero, and hence the sequence (P
(n)
∞ )n≥0 diverges. On

the other hand, if the conditions of Theorem 2.7(ii) hold, then (2.14) and (2.16) imply (2.15),
which completes the proof of Theorem 2.7. �

Remark 2.8. For practical purposes, depending on whether the conditions for convergence of

the sequence (P
(n)
∞ )n≥0 in Theorem 2.7, it may or may not be useful to use directly the integral

form (2.10). Consider the following values: (y0, ν, β, x0) = (0.1, 1.0, 0.2, 0.2), for which convergence
is ensured. The exact mass at zero in this case is P∞ = 20.833%. Using Theorem 2.7, the table

below computes the error using the sequence (P
(n)
∞ )n≥0:

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

|P− P
(n)
∞ | 6.43E-3 3.41E-4 2.13E-05 1.43E-06 1.01E-07 7.29E-09

Computation time (in seconds) 6.8E-05 8.6E-05 1.3E-4 1.9E-4 2.2E-4 2.6E-4

and the table below computes the integral (2.10) using the Python scipy toolpack for quadra-
ture; the integral is truncated at some arbitrary value R > 0:

R = 20 R = 40 R = 60 R = 80 R = 100 R = 120
Absolute error 2.33E-4 1.07E-4 6.77E-05 4.90E-05 3.81E-05 3.11E-05

Computation time (in seconds) 7.6E-3 7.9E-3 8.9E-3 9.2E-3 9.6E-3 9.9E-3
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2.3.1. Large-time numerics. We provide below some numerics of the large-time mass at zero de-
rived in (2.10). In particular, we observe the influence of the parameter β (Figure 1) as well as that
of the starting point x0 (Figure 1) of the uncorrelated SDE (1.1). As β tends to one (from below),
the mass at zero is diminishing, even for arbitrarily small values of x0. Likewise, as the initial
value x0 increases, the mass at the origin decreases even for β = 0. We shall further comment on
the importance of the mass at the origin in financial modelling in Section 4 below.

Figure 1. Influence of β on the large-time mass at zero in the uncorrelated
SABR model with (y0, ν) = (0.015, 0.6) (left) and (y0, ν) = (0.1, 1) (right).

Figure 2. Influence of the initial value x0 on the large-time mass at zero with
(y0, ν) = (0.015, 0.6) (left) and (y0, ν) = (0.1, 1) (right).

2.4. Representations of the density of the integrated variance. We are interested here

in computing tractable expressions for the density of the random variable
∫ t
0 Y

2
s ds in the SABR

model (1.1). In order to set the notations, consider the following drifted version of the latter:

(2.17)
dXt = YtX

β
t dWt, X0 = x0 ∈ R,

dYt =

(
µ+

1

2

)
Ytdt+ YtdZt, Y0 = y0 > 0,

for some µ ∈ R, and we shall, unless otherwise stated, assume that y0 = 1. Let further Y(µ)

denote the integrated variance process

(2.18) Y
(µ)
t :=

∫ t

0

Y 2
s ds = y0

∫ t

0

e2Z
(µ)
s ds,

where we recall that Z
(µ)
s := Zs + µs. Finally, for any t ≥ 0, we shall denote by ϕ

(µ)
t and λ

(µ)
t

the probability density functions, on (0,∞), of the random variables Y
(µ)
t and 1/(2Y

(µ)
t ). We

first start with a ‘toy’ version, for which computations are simpler, before extending them to the
standard case.
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2.4.1. The ‘toy’ SABR model.

Definition 2.9. The ‘toy’ SABR model is the unique strong solution to (2.17) with µ = 0, y0 = 1.

Define the function Ψ : (0,∞) × R → R by

(2.19) Ψ(t, w) ≡ 1√
(1 + 2w)t

exp

(
−
(
log
[
(
√

2w)1/2 + (
√

2w + 1)1/2
])2

2t

)
.

The next lemma derives an expression for the density ϕ
(0)
t of the random variable Y

(0)
t .

Lemma 2.10. For all t, x, R > 0,

ϕ
(0)
t

(
1

x

)
=
x3/2

2iπ

∫ R+i∞

R−i∞
Ψ(t, z)exzdz =

x3/2

2π
eRx

∫ ∞

−∞
Ψ(t, R+ is)eixsds.

Proof. Recall Bougerol’s identity [23, Equation 4.9]: let Z and Z⊥ be two independent Brownian
motions and let Y(0) be the process defined in (2.18). Then sinh(Zt) and Z⊥

Y
(0)
t

have the same law

for each t ≥ 0. It follows that, for any z ∈ R,

1√
2πt(1 + z2)

exp

(
− (arcsinh(z))2

2t

)
=

1√
2π

∫ ∞

0

y−1/2 exp

(
− z2

2y

)
ϕ
(0)
t (y)dy

=

∫ ∞

0

u−3/2ϕ
(0)
t

(
1

u

)
exp

(
−z

2u

2

)
du,

with the substitution y = u−1. Next, using w = 1
2z

2 and the identity arcsinh(a) = log(
√
a +√

a+ 1), we obtain, for all t > 0 and w ∈ C+,

(2.20)

∫ ∞

0

u−3/2ϕ
(0)
t

(
1

u

)
e−wudu = Ψ(t, w),

where the function Ψ is defined in (2.19). The lemma then follows from applying the Mellin inverse
formula to the Laplace transform (2.20). Note that, from (2.19), the function Ψ(t, ·) clearly admits
an analytic extension to C+ for every t > 0. Therefore, we can extend formula (2.20) to C+, where
we use the principal branches of the functions w 7→ √

w and w 7→ log(x). �

2.4.2. Density of the integrated variance. We now return to the standard SABR model defined
in (1.1), and we let ν = 1 and y0 = 1 for computational simplicity. This then corresponds to (2.18)

with µ = −1/2, and the corresponding time change is now Y
(−1/2)
t . The following theorem gives

a representation formula for its density (recall that the function Ψ is given by (2.19)).

Theorem 2.11. For all t > 0, x > 0, and R > 0,

ϕ
(− 1

2 )
t (x) =

(2t)
−1/4

e−t/8

2πΓ(1/4)x2
exp

( −1

2tx2

)∫ ∞

1





exp
(

1
2tx2u − R

x
√
u

)

u1/4(u − 1)3/4

∫

R

Ψ(t, R+ is) exp

(
is

x
√
u

)
ds



du.

The theorem follows directly, by the Mellin inversion of the Laplace transform, from Lemma 2.13
below. Before stating the lemma, though, we need to recall the notion of a fractional integral:

Definition 2.12. Let α ≥ 0 and f be a non-negative Lebesgue measurable function on (0,∞).
Then the fractional integral of order α of the function f is defined, for all σ > 0, as

Jαf(σ) :=
1

Γ(α)

∫ ∞

σ

(τ − σ)α−1f(τ)dτ.

Lemma 2.13. For all ξ > 0, t > 0,
∫ ∞

0

u−9/4ϕ
(−1/2)
t

(
1

u

)
e−ξudu =

e−t/8

(1 + 2ξ)1/4
J3/4Ψ(t, ·)(ξ).
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Proof of Lemma 2.13. Dufresne’s recurrence formula (see [14] or [23, Section 5.4.5]) allows us to
relate the volatility densities for different drifts in the volatility equation in the SABR model;
applying [23, Formula (5.92)] with r = −1/4, µ = −1/2 and s = −w < 0, we obtain

(2.21) et/8
∫ ∞

0

λ(−1/2)(x)

x1/4
e−wxdx = (1 + w)−1/4

∫ ∞

0

λ
(0)
t (x)

x1/4
e−wxdx.

Clearly, λ
(−1/2)
t (x) ≡ 1

2x2ϕ
(−1/2)
t

(
1
2x

)
and λ

(0)
t (x) ≡ 1

2x2ϕ
(0)
t

(
1
2x

)
, so that (2.21) reads

et/8
∫ ∞

0

ϕ
(−1/2)
t

(
1
2x

)

x9/4
e−wxdx = (1 + w)−1/4

∫ ∞

0

ϕ
(0)
t

(
1
2x

)

x9/4
e−wxdx.

Substituting 2x = u and ξ = w/2, we obtain

(2.22) et/8
∫ ∞

0

ϕ
(−1/2)
t (1/u)

u9/4
e−ξudu = (1 + 2ξ)−1/4

∫ ∞

0

ϕ
(0)
t (1/u)

u9/4
e−ξudu.

We now simplify the integral on the right-hand side of (2.22), using (2.20) and (2.19). Let Lf(w) ≡∫∞
0 f(u)e−wudu on (0,+∞) denote the Laplace transform of the function f . The formula

Jα (Lf) (w) =

∫ ∞

0

u−αf(u)e−wudu,

valid for any ω > 0, is immediate from Definition 2.12, so that (2.20) yields

(2.23)

∫ ∞

0

ϕ
(0)
t (1/u)

u9/4
e−ξudu =

∫ ∞

0

u−3/4u−3/2ϕ
(0)
t

(
1

u

)
e−ξudu = J3/4 (Ψ(t, ·)) (ξ),

with Ψ defined in (2.19), and the lemma follows from (2.22) and (2.23). �

Remark 2.14. Theorem 2.11 can also be proved in the following way: Dufresne’s recurrence
formula [23, Theorem 5.25] with r = −1/4 and β = 0 yields

(2.24) ϕ
(−1/2)
t (

√
y) =

(2t)
−1/4

e−t/8

Γ(1/4)y
exp

(
− 1

2ty

)∫ ∞

y

√
τ

(τ − y)3/4
exp

(
1

2tτ

)
ϕ
(0)
t

(√
τ
)

dτ.

Furthermore, Lemma 2.10 implies

ϕ
(0)
t

(√
τ
)

=
exp (−R/√τ)

2πτ3/4

∫ ∞

−∞
Ψ(t, R+ is) exp

(
is√
τ

)
ds,

so that, taking this and (2.24) into account, we obtain

ϕ
(−1/2)
t (

√
y) =

(2t)−1/4

2πΓ(1/4)y
exp

(
− t

8
− 1

2ty

)

∫ ∞

y

τ−1/4

(τ − y)3/4
exp

(
1

2tτ
− R√

τ

)
dτ

∫

R

Ψ(t, R+ is) exp

(
is√
τ

)
ds.

The change of variables τ = yu implies

ϕ
(−1/2)
t (

√
y) =

e−t/8 exp
(
− 1

2ty

)

2π(2t)1/4Γ(1/4)y

∫ ∞

1

exp
(

1
2tyu − R√

yu

)

u1/4(u− y)3/4
du

∫

R

Ψ(t, R+ is) exp

(
is√
yu

)
ds,

and the theorem then follows from the mapping
√
y 7→ x.

Remark 2.15. If Lemma 2.10 holds also for R = 0, then the formula simplifies to

ϕ
(−1/2)
t (x) =

(2t)−1/4e−t/8

2πΓ(1/4)x2
exp

(
− 1

2tx2

)∫ ∞

1

(
exp

(
1

2tx2u

)

u1/4(u− 1)3/4

∫

R

Ψ(t, is) exp

(
is

x
√
u

)
ds

)
du.
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2.4.3. Justification of the Borodin-Salminen formula for ϕ
(−1/2)
t via Dufresne’s formula. Using

some results of [14], and assuming for simplicity that y0 = 1, we provide a justification for the

representation (2.5) for the density ϕ
(µ)
t of Y

(µ)
t , for any µ ∈ R:

Proposition 2.16. The representation (2.5) holds.

Proof. Recall that λ
(µ)
t denotes the density of 1/(2Y

(µ)
t ). Therefore ϕ

(µ)
t clearly satisfies

(2.25) ϕ
(µ)
t (x) =

1

2x2
λ
(µ)
t

(
1

2x

)
, for all x > 0.

Dufresne [14, Theorem 4.2] showed that λ
(µ)
t admits the following closed-form representation:

(2.26) λ
(µ)
t (x) = exp

(
−µ

2t

2

)
p
(µ)
t (x),

where

p
(µ)
t (x) ≡ 2−µx−

µ+1
2

∫

R

e−x cosh2(y)q(y, t) cos
[π

2

(y
t
− µ

)]
Hµ

(√
x sinh(y)

)
dy,

Hµ is the Hermite function of order µ, and q(y, t) ≡ 1
π
√
2t

exp
(
π2

8t −
y2

2t

)
cosh(y). When µ 6=

−2,−4, . . ., Dufresne [14, Equation (4.13)] proved the following equivalent formulation:
(2.27)

p
(µ)
t (x) =

2Γ(1 + µ/2)

Γ(3/2)x−µ/2

∫ ∞

0

e−x cosh2(y)q(y, t) sinh(y) sin
(πy

2t

)
M

(
1 − µ

2
,

3

2
;x sinh2(y)

)
dy,

where M is the confluent hypergeometric function (Kummer function), also denoted by 1F1. We
shall call this formula ‘Dufresne’s formula’. Since Γ(3/2) =

√
π/2, the formulae (2.25), (2.26)),

and (2.27)) with µ = −1/2, yield, after simplifications,

ϕ
(−1/2)
t (x) =

21/4Γ(3/4)

π3/2t1/2
x−9/4 exp

(
π2

8t
− t

8
− 1

2x

)

∫ ∞

0

exp

(
−y

2

2t

)
sinh(y) cosh(y) sin

(πy
2t

)
M

(
3

4
,

3

2
;− sinh2(y)

2x

)
dy.(2.28)

From [1, Formula 13.1.27], the identity M(a, b; z) = ezM(b− a, b,−z) holds, and hence

M

(
3

4
,

3

2
;− sinh2(y)

2x

)
= exp

(
− sinh2(y)

2x

)
M

(
3

4
,

3

2
;

sinh2(y)

2x

)

= e1/(4x) exp

(
−cosh(2y)

4x

)
M

(
3

4
,

3

2
;

sinh2(y)

2x

)
,

so that (2.28) simplifies to

ϕ
(−1/2)
t (x) =

21/4Γ(3/4)

π3/2
√
t

exp

(
π2

8t
− t

8
− 1

4x

)
x−9/4

∫ ∞

0

exp

(
−cosh(2y)

4x

)
exp

(
−y

2

2t

)
sinh(y) cosh(y) sin

(πy
2t

)
M

(
3

4
,

3

2
;

sinh2(y)

2x

)
dy,

which yields (2.5)-(2.6) with µ = −3/4. �

2.4.4. Alternative representation of the SABR-density and Yor’s formula. We now provide an

alternative representation for the quantity P

(∫ t
0

e2νZ
(−ν/2)
s ds ∈ dr̃

)
appearing in (2.5) in terms of

the modified Bessel function of the second kind K (see [1, Section 9.6]). This representation is
derived from the results obtained by Yor in [47] (see also [36]), and we use here the formulation
given in [23, Section 4.7].
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Proposition 2.17. For all t > 0 and y > 0,

ϕ
(−1/2)
t (y) =

y20
2π3/2ν3

t−
1
2 y−2 exp

(
π2

2ν2t
− ν2t

8
− y20

2ν2y

)

×
∫ ∞

0

sinh(u)
√

cosh(u)e
y20

4ν2y
cosh(u)2

K1/4

(
y20

4ν2y
cosh(u)2

)
exp

(
− u2

2ν2t

)
sin
( πu
ν2t

)
du.

Proof. An explicit formula for the joint density µt of the random variables

Y
(−1/2)
t =

∫ t

0

Y 2
s ds and Yt = y0 exp

(
νZ

(−ν/2)
t

)

can be found in [23, Formula (4.84)]. It follows from this formula that

µt(y, z) =
y
3/2
0 exp

(
− ν2t

8 + π2

2ν2t −
y20+z

2

2ν2y

)

√
2ztπ3/2ν3y2

∫ ∞

0

exp

(
− u2

2ν2t
− y0z

ν2y
cosh(u)

)
sinh(u) sin

( πu
ν2t

)
du.

Integrating out the variable z, we get the following expression for the density ϕ
(−1/2)
t of Y

(−1/2)
t :

ϕ
(−1/2)
t (y) =

y
3/2
0 exp

(
− ν2t

8 + π2

2ν2t −
y20

2ν2y

)

√
2tπ

3
2 ν3y2

∫ ∞

0

exp

(
− u2

2ν2t

)
sin
( πu
ν2t

)
sinh(u)du

×
∫ ∞

0

exp

(
− z2

2ν2y
− y0z

ν2y
cosh(u)

)
dz√
z
.(2.29)

We call (2.29) ‘Yor’s formula’, and we now simplify the last integral, which we denote J . Clearly,

J = 2

∫ ∞

0

exp

(
− 1

2ν2y
x4 − y0 cosh(u)

ν2y
x2
)

dx.

Applying the formula [20, 3.323 (3)])
∫ ∞

0

exp
(
−β2x4 − 2γ2x2

)
dx = 2−3/2 γ

β
exp

(
γ4

2β2

)
K1/4

(
γ4

2β2

)
,

which holds for all β and γ with | argβ| < π
4 and | arg γ| < π

4 , with β = 1/(ν
√

2y) and γ =√
y0 cosh(u)/(ν

√
2y), we obtain

J =

√
y0 cosh(u)

2
exp

(
y20

4ν2y
cosh(u)2

)
K1/4

(
y20

4ν2y
cosh(u)2

)
,

and the proposition follows from this and (2.29). �

It is also possible to represent the density ϕ
(−1/2)
t of Y

(−1/2)
t by an integral formula using the

Kummer function of the second kind U [1, Section 13, Equation 13.1.3]:

Lemma 2.18. For all t > 0 and y > 0,

ϕ
(−1/2)
t (y) =

y
5/2
0

25/4πν7/2
t−1/2y−9/4 exp

(
π2

2ν2t
− ν2t

8
− y20

2ν2y

)

×
∫ ∞

0

U

(
3

4
,

3

2
,
y20

2ν2y
cosh(u)2

)
sinh(u) cosh(u) exp

(
− u2

2ν2t

)
sin
( πu
ν2t

)
du.

Proof. Recall that [1, Equation 13.6.21]

U(a, 2a, x) =
1√
π

exp
(x

2

)
x

1
2−aKa− 1

2

(x
2

)
,

for all a > 0 x > 0. Therefore,

K1/4

(
y20

4ν2y
cosh(u)2

)
=

√
π exp

(
− y20

4ν2y
cosh(u)2

)[
y20

2ν2y
cosh(u)2

]1/4
U

(
3

4
,

3

2
,
y20

2ν2y
cosh(u)2

)
,

and the lemma follows from Proposition 2.17. �
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Remark 2.19. Dufresne’s formula (2.27) and Yor’s formula (2.29) yield different integral repre-

sentations for the density ϕ
(−1/2)
t . It is not obvious, however, to show directly that they are the

same, and we refer the reader to some hints in [36, Section 4.3].

3. Mass at zero for the correlated SABR model

The present section deals with the behaviour of the mass at zero in the correlated (ρ 6= 0)
SABR model, and in the associated model for the Brownian motion in the SABR plane. We shall
consider the following modified version of the SABR model:

(3.1)
dXt = YtX

β
t dWt +

β

2
Y 2
t X

2β−1
t dt, X0 = x0 > 0,

dYt = νYtdZt, Y0 = y0 > 0,
d〈Z,W 〉t = ρdt,

with ν > 0, ρ ∈ (−1, 1), β ∈ [0, 1). Note that the behaviour of the drift in the first stochastic
differential equation and its implications for the mass at zero of the modified model are significantly
different in the cases 0 < β < 1/2 and 1/2 < β < 1: in the former case the drift explodes when
the process X approaches zero, while it vanishes in the latter case. In the case β = 1/2, the drift
does not depend on the process X . The model in (3.1) is a modification of the SABR model which
characterises a Brownian motion in a suitably chosen Riemannian manifold with boundary (the
SABR plane [27, Subsection 3.2]), see Lemma 3.3 below. Of particular interest are two special
cases of (3.1): the uncorrelated case ρ = 0 and the β = 0 case. Computing the mass at zero
for (3.1) in the uncorrelated case sheds light on the influence of the drift, by a comparison with
the results obtained in Section 2. In the case β = 0, the drift in (3.1) vanishes, and the model
coincides with the original SABR model (1.1) with β = 0. In fact, according to [6] and [27], in
the prevalence of low interest rates, the choice β = 0 is essential. Note that up to a deterministic
time change, we can assume ν = 1, which we shall tacitly do without loss of generality from now
on if not stated otherwise.

3.1. SABR geometry and geometry preserving mappings. We first exhibit a set of map-
pings allowing to translate the properties of one SABR model to another. Let H = {x + iy : x ∈
R, y > 0} and H+ := {x+iy : (x, y) ∈ (0,∞)2}. (H, g) will denote the classical Poincaré plane with
its associated Riemannian metric [21, Section 3.9], and (S, g) the general SABR plane (generated
by (3.1)). As mentioned above, of particular interest are the two cases of the uncorrelated SABR
plane, denoted by (U, u), and of (S0, g0), the general SABR plane with β = 0. Note that only U

and S exhibit a drift. We also denote by S0
+ := S0 ∩ {x + iy : (x, y) ∈ (0,∞)2}. The following

tensors, h, g, g0 and u generate Riemannian metrics on their respective spaces:

h(x̃, ỹ) =
dx̃2

ỹ2
+

dỹ2

ỹ2
, (x̃, ỹ) ∈ R× (0,∞),(3.2)

g(x, y) =
dx2

ρ2y2x2β
− 2ρdxdy

ρ2y2xβ
+

dy2

ρ2y2
, (x, y) ∈ (0,∞)2,(3.3)

g0(x̂, ŷ) =
dx̂2

ρ2ŷ2
− 2ρdx̂dŷ

ρ2ŷ2
+

dŷ2

ρ2ŷ2
, (x̂, ŷ) ∈ R× (0,∞),(3.4)

u(x̄, ȳ) =
dx̄2

ȳ2x̄2β
+

dȳ2

ȳ2
(x̄, ȳ) ∈ (0,∞)2,(3.5)

and the following diagram summarises the different relations between the mappings and the spaces
(we also include the corresponding coordinate notations):
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(x̃,ỹ)

H

χ̄
**(x̂,ŷ)

S0

φ̃0

44

χ

��

(x̄,ȳ)

U

ϕ̃0

jj

(x,y)

S
φ̄0

FF

ϕ̂0

WW
φ̃0
0

OO

Regarding the mapping notations, subscripts are related to the correlation parameter (φ0 ‘an-
nihilates’ ρ), whereas superscripts 0 indicate that the map ‘annuls’ the parameter β; the map χ
reintroduces this parameter. The mappings between these spaces are defined as follows:

(3.6)

φ̃00 : S −→ H,

(x, y) 7−→ (x̃, ỹ) :=

(
x1−β

ρ(1 − β)
− ρy

ρ
, y

)
,

ϕ̂0 : S −→ S0,

(x, y) 7−→ (x̂, ŷ) :=

(
x1−β

1 − β
, y

)
,

φ̄0 : S −→ U,

(x, y) 7−→ (x̄, ȳ) =

(
(1 − β)

1
1−β

(
x1−β

ρ(1 − β)
− ρy

ρ

) 1
1−β

, y

)
, ρ ≤ 0,

φ̃0 : S0
+ −→ H,

(x̂, ŷ) 7−→ (x̃, ỹ) :=

(
x̂− ρŷ

ρ
, ŷ

)
,

χ : S0
+ −→ S,

(x̂, ŷ) 7−→ (x, y) :=
(

(1 − β)
1

1−β x̂
1

1−β , ŷ
)
,

χ̄ : H+ −→ U,

(x̃, ỹ) 7−→ (x̄, ȳ) :=
(

(1 − β)
1

1−β x̃
1

1−β , ỹ
)
,

ϕ̃0 : U −→ H+,

(x̄, ȳ) 7−→ (x̃, ỹ) :=

(
x̄1−β

1 − β
, ȳ

)
.

From now on, if not indicated otherwise, we restrict the domains of the above maps to the first
quadrant (0,∞)2, which–when considering compositions–impose restrictions on the parameters in
order to ensure that images also belong to this set (for example the restriction ρ ∈ (−1, 0] needs
to be imposed for the composition φ00 ◦χ). While the map φ0 can be extended to the whole upper
halfplane R× (0,∞), thus describing an asset with negative value, the maps ϕ0, φ00 and χ are in
general not meaningful there. They can be extended to x = 0 though, and are non-differentiable
there. The following theorem gathers the properties of all these maps:

Theorem 3.1. The diagram is commutative and all the mappings in (3.6) are local isometries on
their respective spaces:

• the maps ϕ̂0 and χ (resp. ϕ̃0 and χ̄) on (0,∞)2 are onto and inverse to one another;

• the compositions φ̄0 ◦ ϕ̃0 and ϕ̂0 ◦ φ̃0 coincide with φ̃00;

• it holds that χ ◦ φ̃00 = φ̃0 and φ̃00 ◦ χ̄ = φ̄0 and the latter is well defined for ρ ∈ (−1, 0];
• the map ϕ̂0 (resp. ϕ̃0) transforms Brownian motion on (S, g) (resp. (U, u)) into the SABR

model (1.1) with β = 0 (resp. ρ, β = 0), which in turn is transformed back to Brownian
motion on its original spaces by the map χ (resp. χ̄);

• the maps φ̄0 (resp. the extension of φ̃0) transforms Brownian motion on (S, g) (resp.
(S0, g0)) into its uncorrelated version on (U, u) (resp. (H, h)).
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Remark 3.2. The map φ̃00 was first considered in [27], where it was observed there that it is
a local isometry mapping Brownian motion on (S, g) to a Brownian motion on the hyperbolic
half-plane (H, h).

Proof. The first three items follows from simple computation; the remaining statements follow
from Lemmas (3.3),(3.5), (3.6) and (3.7) below. �

Lemma 3.3. The process (X,Y ) with dynamics (3.1) coincides in law with Brownian motion

on the manifold (S, g). We define the process (X̂, Ŷ ) pathwise by applying to (X,Y ) the space
transformation ϕ̂0 : S → S0, i.e. by setting

(3.7) (X̂t, Ŷt) :=

(
X1−β
t

1 − β
, Yt

)
, for all t ≥ 0.

Then (X̂, Ŷ ) is a SABR process with β = 0. Furthermore, the process (3.7) coincides in law with
Brownian motion on the manifold (S0, g0), to which we refer as the correlated hyperbolic plane.

Proof. The statement that (3.1) has the same law as Brownian motion on (S, g) is verified by
computing the infinitesimal generator of (3.1), which coincides with the Laplace-Beltrami opera-
tor 1

2∆g on a manifold with metric tensor g(x, y) (see (B.5) and (B.6) for more detail). The second
statement is straightforward from Itô’s formula, which transforms the system (3.1) into

(3.8)
dX̂t := ŶtdWt, X̂0 = x̂0 := x1−β0 /(1 − β),

dŶt = νŶtdZt, Ŷ0 = ŷ0,
d〈W,Z〉t = ρdt.

It is easy to see that (3.8) has SABR dynamics (1.1) with parameters β = 0, and ρ ∈ (−1, 1). The
generator of (3.8) coincides with the Laplace-Beltrami operator 1

2∆g0 of the respective manifold,
which yields the last statement. �

Remark 3.4. Since β ∈ [0, 1), we have

(3.9) P∞ = P(Xt = 0 for some t ∈ (0,∞)) = P(X̂t = 0 for some t ∈ (0,∞)).

Note that the map ϕ̂0 : S → S0 is applied in the proof of Theorem 3.9 below.

Lemma 3.5. φ̃0 : S0 → H is a global isometry and transforms the SABR model (1.1) with β = 0
into a Brownian motion on (H, h). Furthermore, the heat (or transition) kernel of the solution of
the system (3.8) is available in closed form:

1

ρ
Kh
φ0(x,y)

(s, φ0(x, y)), for s > 0, (x, y) ∈ S0,

where Kh
(x̃,ỹ)(s, ·) denotes the hyperbolic heat kernel at (x̃, ỹ) ∈ H, for which a closed-form expres-

sion as well as short- and large-time asymptotics are known (see [21, Equation (9.35)] and [27,
Appendix]).

Proof. The following shows that φ0 is in fact a global isometry: φ̃0 is onto and invertible on S0

and, for any (x, y) ∈ S0, its Jacobian

∇φ̃0(x, y) =

(
1/ρ −ρ/ρ
0 1

)
,

is independent of x and does not explode at x = 0. Furthermore, for any (x, y) ∈ S0,

(
φ̃∗0h

)
(x, y) =φ̃∗0

(
dx̃2 + dỹ2

ỹ2

)
=

1

y2

(
dx

ρ
− ρdy

ρ

)2

+
(dy)2

y2
= g0(x, y).

The last statement follows from Lemma B.5 together with det(∇φ̃0(·)) = 1/ρ 6= 0. One can easily
verify by Itô’s lemma that the dynamics (3.8) for general ρ ∈ (−1, 1) are transformed into (3.8)

for ρ = 0 under the map φ̃0. �
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Lemma 3.6. The map χ (resp. χ̄) is a local isometry between (S0
+, g

0) and (S, g) (resp. (H+, h)
and (U, u)) and transforms the Brownian motion on the hyperbolic plane (S0

+, g
0) (resp. (H+, h)),

whose dynamics are described by (3.8), into a Brownian motion on the general SABR plane (S, g)
(resp. (U, u)), satisfying (3.1).

Proof. For a local isometry between (S0
+, g

0) and (S, g) (resp. (H, h) and (U, u)), it holds that
for any (x̂, ŷ) ∈ S0 (resp.(x̃, ỹ) ∈ H) there exists a small open neighbourhood U(x̂,ŷ) ⊂ S0 (resp.
U(x̃,ỹ) ⊂ H), such that the map χ|U(x̂,ŷ)

(resp. χ̄|U(x̃,ỹ)
) is an isometry onto its image, in particular

it satisfies the pullback relation

(χ∗g) (x, y) = χ∗
(

dx2

ρx2βy2
+

2ρdxdy

ρxβy2
+

dy2

ρy2

)
=

dx̂2 + 2ρdx̂dŷ + dŷ2

ρŷ2
= g0(x̂, ŷ),

respectively, for zero correlation

(χ̄∗u) (x̄, ȳ) = χ̄∗
(

dx̄2

x̄2β ȳ2
+

dȳ2

ȳ2

)
=

dx̃2 + dỹ2

ỹ2
= h(x̃, ỹ).

For any (x̂, ŷ) ∈ S0 (resp. (x̃, ỹ) ∈ H), the Jacobians read

∇χ(x̂, ŷ) =

(
(1 − β)

β
1−β x̂

β
1−β 0

0 1

)
and ∇χ̄(x̃, ỹ) =

(
(1 − β)

β
1−β x̃

β
1−β 0

0 1

)
,

respectively, hence the local pullback property is clearly satisfied by χ (resp. χ̄). The last statement
follows by Itô’s lemma. �

We now verify that φ̄0 is a ‘geometry-preserving’ map from the general SABR plane (S, g) into
the uncorrelated SABR plane (U, u), which of course reduces to the identity map when ρ = 0, and

to φ̃0 when β = 0.

Lemma 3.7. For any ρ ∈ (−1, 0] and any (x, y) ∈ S, the space transformation φ̄0 : S −→ U

in (3.6) is a local isometry between (S, g) and (U, u).

Proof. The statement follows directly from the fact that the map φ̄0 and its partial derivatives

∂xx̄(x, y) =
x−β

ρ
(1 − β)

β
1−β

(
x1−β

ρ(1 − β)
− ρy

ρ

)β/(1−β)
,

∂yx̄(x, y) = −ρ
ρ

(1 − β)
β

1−β

(
x1−β

ρ(1 − β)
− ρy

ρ
C

)β/(1−β)
,

∂xȳ(x, y) = 0, ∂y ȳ(x, y) = 1,

(3.10)

satisfy the following system of differential equations implied by the local pullback property
(
φ̄∗0u

)
(x̄, ȳ) =

g(x, y), for any (x, y) ∈ S, (x̄, ȳ) ∈ U for the Riemannian metrics g and u:




(∂xx̄)2

x̄2β ȳ2
+

(∂xȳ)2

ȳ2
=

1

ρ2y2x2β
,

2(∂xx̄∂yx̄)

x̄2β ȳ2
+

2(∂xȳ∂y ȳ)

ȳ2
=

−2ρ

ρ2y2xβ
,

(∂yx̄)2

x̄2β ȳ2
+

(∂y ȳ)2

ȳ2
=

1

ρ2y2
.

�

As an application of Lemma 3.7 it may be possible to relate the absolutely continuous part of
the distribution of Brownian motion on the uncorrelated SABR plane (U, u) and that of Brownian
motion on the general SABR plane (S, g) via the relation (B.4) of the heat kernels [44]; this can
be performed following similar steps as in [27], but care is needed, as discussed below.
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Lemma 3.8. Let Kg and Ku denote the fundamental solutions (in terms of Lebesgue) of the heat
equations corresponding to the metrics g and u, then, for any z = (x, y) ∈ S,

(3.11) Kg
Z(s, z) =

(1 − β)
β

1−β

ρxβ

(
x1−β

ρ(1 − β)
− ρy

ρ

) β
1−β

Ku
φ̄0(z)

(s, φ00(z)).

When β = 1/2, the formulae simplify to φ̄0(x, y) ≡
(

1
(1−ρ)2

(
x−√

xρy + ρ2y2

4

)
, y
)
, and det(∇φ̄0(x, y)) =

(
1 − ρy

2
√
x

)
/(1 − ρ)2, for all (x, y) ∈ S.

Proof. The statement follows from Lemma B.5: the Radon-Nikodym derivatives are dz
dµg(z)

=

ρ2y2xβ and dz̄
dµu(z̄)

= ȳ2x̄β , with µg and µu the Riemannian volume elements on S and U (Defini-

tion B.2 in Appendix B), and the Jacobian of φ̄0 at z = (x, y) ∈ S is as in (3.10), so that

det
(
∇φ̄0(x, y)

)
=

(1 − β)
β

1−β

ρxβ

(
x1−β

ρ(1 − β)
− ρy

ρ

) β
1−β

.

�

Such a relation of heat kernels relies on the property B.1 of Laplace-Beltrami operators, which
is not meaningful for (B.5) at x = 0 for general β. Hence a statement relating the heat kernels
might not hold true in the vicinity of the origin. Although in the case of exploding Jacobians the
relation (B.4) of ‘kernels’ formally indicates that the map under consideration induces an atom,
it does not allow for an exact computation. Remark further, that non-differentiability issues at
x = 0 of the maps may induce a local time at this point, which we do not investigate further
for ϕ̂0, ϕ̃0, χ̄ and χ, as we imposed Dirichlet boundary conditions at x = 0. But they might be

of importance for the map φ̄0 introduced in (3.6) above and for the map φ̃00 considered in [27].
A statement similar to Lemma 3.8 below was made in [27] relating Kg to the hyperbolic heat

kernel Kh; in their analysis, the determinant was det(∇φ̃00(x, y)) ≡ x−β/ρ.

3.2. Application: Large-time behaviour of the mass. We now compute the large-time limit
of the mass at zero in the modified SABR model (3.1), with correlation:

(3.12) P∞ =: lim
t↑∞

P(Xt = 0).

The computation of the mass (Theorem 3.9 below) follows the works of Hobson [28] on time
changes. We apply such a technique to progress from the Brownian motion on the correlated
hyperbolic plane (3.8) to a correlated Brownian motion on the Euclidean plane. The joint dis-
tribution of hitting times of zero of two (correlated) Brownian motions without drift was first
established by Iyengar [30], and refined by Metzler [38] (see also [9] for further results on hitting
times of correlated Brownian motions). We also borrow some ideas from [13], where Hobson’s con-
struction for the normal SABR model [28, Example 5.2] is extended to (3.1) for general β ∈ [0, 1].
This indeed follows from the observation that stochastic time change methods, going back to
Volkonskii [46], can still be applied to the Brownian motion on the SABR plane. In order to
formulate our next statement, we introduce several auxiliary parameters (see [38]):

a1 :=
x1−β0

1 − β
, a2 :=

y0
ν
, r0 :=

√
a21 + a22 − 2ρa1a2

ρ2
,

α :=





π + arctan(−ρ/ρ), if ρ > 0,
π

2
, if ρ = 0,

arctan(−ρ/ρ), if ρ < 0,

θ0 :=





π + arctan(a2ρ/ρ), if a1 < ρa2,
π

2
, if a1 = ρa2,

arctan(a2ρ/ρ), if a1 > ρa2.
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Theorem 3.9. For the modified SABR model (3.1), the limit (3.12) of the mass at zero satisfies

P∞ =
∫∞
0 dt

∫ t
0 f(s, t)ds, where for any s < t,

f(s, t) =
π sin(α)

2α2(t− s)
√
s(t− s cos2(α))

exp

(
− r

2
0

2s

t− s cos(2α)

2t− s(1 + cos(2α))

)

×
∞∑

n=1

n sin

(
nπ(α− θ0)

α

)
Inπ

2α

(
r20
2s

t− s

2t− s(1 + cos(2α))

)
.

where Iz denotes the modified Bessel function of the first kind of order z (see [10, Page 638]).

Remark 3.10. Note that when β = 0, the model (3.1) exactly corresponds to the original SABR
mode (1.1) with β = 0. In Theorem 3.9 above, a1 is then equal to the starting point x0.

Proof. Recalling the process X̂ in (3.7), and the SDE (3.8), we wish to apply [28, Theorem 3.1]
to (3.8). Consider the system of SDEs

(3.13)

dX̃t = dW̃t, X̃0 = x̂0,

dỸt = νdZ̃t, Ỹ0 = y0,

d〈W̃ , Z̃〉t = ρdt,

where (W̃ , Z̃) is a two-dimensional standard Brownian motion. With the time-change process

τ(t) := inf

{
u ≥ 0 :

∫ u

0

Ỹ −2
s ds ≥ t

}
,(3.14)

Theorem 3.1 in [28] implies that

(3.15) X̂t = X̃τ(t) and Yt = Ỹτ(t),

for all t ≥ 0. In addition, the transformation (3.7) gives, for all t ≥ 0,

Xt =
(
x1−β0 + (1 − β)W̃τ(t)

)1/(1−β)
.

Let now ε denote the explosion time of (3.13), namely the first time that either X̃ or Ỹ hits zero.

It is also the first time that the process W̃ hits the level −x̂0 or that Z̃ hits −y0/ν. Set

Γt :=

∫ t

0

Ỹ −2
s ds and ζ := lim

t↑ζ
Γt.

The process Γ is strictly increasing and continuous, so that its inverse Γ−1 is well defined, and
clearly the time-change process (3.14) satisfies τ = Γ−1. Consider a new filtration G and two
processes W and Z defined, for each t ≥ 0, by Gt := Fτ(t),

Wt :=

∫ τ(t)

0

dW̃s

Ỹs
ds and Zt :=

∫ τ(t)

0

dZ̃s

Ỹs
ds.

Up to time ζ, W and Z are G-adapted Brownian motions, and the system (W,Z, X̂, Y ) is a weak

solution to (3.8). It is therefore clear that P

(
τ X̃0 ∈ ds, τ Ỹ0 ∈ dt

)
= P

(
τW̃−x̂0

∈ ds, τ Z̃−y0/ν ∈ dt
)
.

Moreover, it follows from [38, Equation 3.2] with ~µ = ~0, ~x0 = (x̂0, y0), and

σ =

(
ρ ρ
0 ν

)
,

that P

(
τ X̃0 ∈ ds, τ Ỹ0 ∈ dt

)
= f(s, t)dsdt, where the function f is defined in Theorem 3.9, so that

(3.16) P

(
τ X̃0 < τ Ỹ0

)
=

∫ ∞

0

dt

∫ t

0

f(s, t)ds.

Reversing the arguments presented in [13, 28], the probability P(τ X̃0 < τ Ỹ0 ) coincides with the

probability that the process X̂ hits zero over the time horizon [0,∞). Indeed, through (3.15), the

time change (3.14) converts the Brownian motion Ỹ into a geometric Brownian motion Y started
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at y0 > 0, so that the (a.s. finite) point τ Ỹ0 is mapped to τY0 = ∞. Therefore the time-changed

process X̃ over [0, τ Ỹ0 ) corresponds to X̂ considered over [0,∞) and, using (3.15), we obtain

P

(
τ X̃0 < τ Ỹ0

)
= P

(
τ X̂0 < τY0

)
= P

(
τ X̂0 <∞

)
= P

(
X̂t = 0, for some t ∈ (0,∞)

)
,

and Theorem 3.9 follows from (3.9) and (3.16). �

Remark 3.11. For the normal SABR model (β = 0) in (1.1), Hobson [28, Example 5.2] found
the following explicit formula for the price process X :

Xt =
ρ

ν

(
Ỹτ(t) − y0

)
+ ρ2Z̃τ(t), for all t ≥ 0,

where the process Ỹ and the Brownian motion Z̃ are the same as in (3.13), and τ is defined
in (3.14).

Remark 3.12. For β = 1, the SDEs of the SABR and the modified SABR models read

dXt = Xt (YtdWt) , X0 = x0, and dXt = Xt

(
YtdWt +

1

2
Y 2
t dt

)
, X0 = x0,

respectively, and, by the Doléans-Dade formula [43, Section IX-2], the solutions to these equations
are exponential functionals, and therefore do not exhibit mass at the origin.

Remark 3.13. In the uncorrelated case ρ = 0, the expressions in Theorem 3.9 simplify to α = π
2 ,

θ0 = arctan
(
a2
a1

)
, r0 =

√
a21 + a22, and

f(s, t) =
2

π(t− s)
√
st

exp

(
−r

2
0(t+ s)

4st

) ∞∑

n=1

n sin
(

2n
(π

2
− θ0

))
In

(
r20(t− s)

4st

)
.

4. Implied volatility and small-strike expansions

In this section, we show how the results above on the mass at zero in the SABR model can
be used to infer information about the corresponding implied volatility smile. We recall that the
implied volatility is simply the Black-Scholes volatility parameter that allows to match observed
(or computed) European option prices. It obviously depends on strikes and maturities, and we
refer the reader to [17] for more details. As noted on Page 16, one possible explanation for the
inaccuracies of the ‘classical’ implied volatility asymptotic expansion [27] in the vicinity of zero
lies in the breakdown of the commutativity of Laplace-Beltrami operators (cf. (B.1) and (B.4)),
which is used in their proof, when passing from the hyperbolic heat kernel to the heat kernel on
the general SABR plane. In the case where β = ρ = 0, the infinitesimal generator corresponding
to the SDE (1.1) is uniformly elliptic and the heat kernel is known. We plot below (Figure 4)
the implied volatility expansion derived in [41]–a slightly refined version of the one in [27]–and
highlights the fact that it can yield arbitrage. As explained in [18], the density of the log stock
price log(X) (or log forward rate) can be expressed directly in terms of the implied volatility
(see [18, Proof of Lemma 2.2]), and negative densities obviously yield arbitrage opportunities.

This anomaly can in principle be fixed if one accounts for the accumulation of mass at zero due
to the Dirichlet boundary condition. Let us recall a few (model-independent) results regarding
small-strike asymptotics of the implied volatility. For any strike K > 0 and maturity T > 0, let
us denote by IT (K) the implied volatility. In the presence of strictly positive mass at zero, the
small-strike tail of the implied volatility satisfies [35]:

(4.1) lim sup
K↓0

IT (K)√
| logK|

=

√
2

T
.

This behaviour was recently refined by de Marco et. al. and Gulisashvili independently [12, 22].
Assuming that there exists ε > 0 such that P(XT ≤ K) − P(XT = 0) = O(ε) as K tends to zero,
de Marco et al. [12] derive the following small-strike asymptotic formula:

(4.2) IT (K) =

√
2| logK|

T
+

N−1(mT )√
T

+
(N−1(mT ))2

2
√

2T | logK|
+ Φ(K),
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Figure 3. Density (right) of the log process log(X) obtained from the implied
volatility expansion [41] (left) with (ν, β, ρ, x0, y0, T ) = (0, 1, 0.6, 0.05, 0.5, 1.2).
The mass at zero, computed using (2.2) is equal to 4.5%.

where mT := P(XT = 0) is the mass at the origin, N the Gaussian cumulative distribution

function, and Φ : (−∞, 0) → R a function satisfying lim supK↓0
√

2T | logK||Φ(K)| ≤ 1. Gulisas-
hvili [22] obtained an alternative formulation (removing the assumption on the decay of the prob-
ability of XT near zero); however, since we only wish here to highlight the inaccuracy of Hagan’s
(or Ob lój’s) expansion in low-strike regimes, we omit a precise formulation of his result and refer
the interested reader to this paper for full details. In Figure 4 below, we visually quantify how
‘wrong’ Hagan’s expansion is for small strikes in the presence of a mass at the origin. We plot
the functions k ∈ R 7→ IT (ek

√
T/|k|) which, from (4.2) has to be bounded by

√
2 in order to

avoid arbitrage, and compare it to the first and second order of (4.2), using (2.10) to compute the
(large-time) mass at zero. We consider two parameter sets, one for which the large-time mass is
small, and the other which yields a large mass at the origin. As the mass becomes small, Hagan’s
(or Ob lój’s) approximation becomes more accurate. This holds in particular as the parameter β
gets close to one, as indicated in Section 2.3.1 above. In the limit as β = 1, the mass becomes
null, and Hagan’s expansion, as noted in the literature indeed becomes arbitrage free.

Figure 4. The black line marks the level
√

2. The parame-
ters are (ν, β, ρ, x0, y0, T ) = (0.3, 0, 0, 0.35, 0.05, 10) for the left plot, and
(ν, β, ρ, x0, y0, T ) = (0.6, 0.6, 0, 0.08, 0.015, 10) for the right graph. Ob lój’s im-
plied volatility expansion clearly violates this upper bound in both cases. The
large-time mass is equal to 28.3% for the left plot and 3.1% for the right one.
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Appendix A. Proofs of Section 2

A.1. Proof of Proposition 2.5. We adapt here Gerhold’s proof in [19] to our case, which is
based on an inverse Laplace transform approach. From [10, Page 645], the Laplace transform of
the function my has a closed-form representation, namely, whenever µ > −3/2 and z > 0,

my(µ, z) = L−1
u

(
Γ(µ+ 1

2 +
√
u)

Γ(1 + 2
√
u)

M−µ,√u(2z)

)
,

where the function M is related to the Kummer function M function via the identity

Mn,m(x) ≡ xm+1/2e−x/2M

(
m− n+

1

2
, 2m+ 1, x

)
.

Therefore, we can write, for some R ∈ R,

(A.1) my(µ, z) =
e−z

2iπ

∫ R+i∞

R−i∞
euy

Γ(µ+ 1
2 +

√
u)

Γ(1 + 2
√
u)

(2z)
1
2+

√
uM

(
µ+

1

2
+
√
u, 1 + 2

√
u, 2z

)
du.

Since we wish to determine the behaviour of my as y (equivalently, t) tends to zero, we need to
understand the limit of the integrand as u tends to infinity. The following asymptotic relations
hold uniformly in v, as v =

√
u tends to infinity:

(A.2) Γ(1 + v) =
√

2πe−vvv+1/2
[
1 + O(v−1)

]
and M

(
µ+

1

2
+ v, 1 + 2v, 2z

)
∼ ez.

The first one is standard [39, Section 3.5]. As for the second one, the representation (2.7) yields

M

(
1

2
+ v + µ, 1 + 2v, 2z

)
=

∞∑

k=0

γk
(2z)k

k!
,

where

γk :=
(µ+ v + 1

2 ) · · · (µ+ v + k − 1
2 )

(1 + 2v)(2 + 2v) · · · (k + 2v)
,

for k ≥ 0. Now, clearly |γk| ≤ 2−k and γk ∼ 2−k as v tends to infinity. Note furthermore that
from [1, Formula 13.6.3], we have

M

(
1

2
+ v + µ, 1 + 2v, 2z

)
≤ M

(
1

2
+ v, 1 + 2v, 2z

)
= Γ(1 + v)ez

(
1

2
z

)−v
Iv(z),

where again Iv denotes the modified Bessel function of the first kind [10, Page 638], so that,
using (A.2) and [19, Equation 9], we have, uniformly in v,

∣∣∣∣M
(

1

2
+ v + µ, 1 + 2v, 2z

)∣∣∣∣ ≤ Γ(1 + v)ez
(z

2

)−v
Iv(z) = ez

(
1 + O

(
v−1

))
.

Therefore the integrand in (A.1) reads, as u tends to infinity,

Φ(u, y, z) ≡ euy
Γ(µ+ 1

2 +
√
u)

Γ(1 + 2
√
u)

(2z)
1
2+

√
uM

(
µ+

1

2
+
√
u, 1 + 2

√
u, 2z

)

∼ ev
2y+v+zzv+

1
2 vµ−v−

1
2 2−v

= exp

[
v2y + αv +

(
µ− 1

2
− v

)
log(v) + z +

1

2
log(z)

]
=: exp

(
ψy(u) + z +

1

2
log(z)

)
.

where α := 1 + log(z) − log(2) ∈ R, and where the function ψy is defined by

(A.3) ψy(u) ≡ uy − 1

2

√
u log(u) + α

√
u+

1

2

(
µ− 1

2

)
log(u).

For y > 0 small enough, the saddlepoint equation ∂uψy(u) = 0, or

2µ− 1 + 4uy + 2(α− 1)
√
u−√

u log(u) = 0,
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(namely (2.8)) admits a solution uy > 0. This saddlepoint equation can be rewritten as

(A.4) y =
log(uy)

4
√
uy

+
1 − α

2
√
uy

− (µ− 1/2)

2uy
.

Remark A.1. Note that the saddlepoint equation also reads

y =
log(u0)

2
√

2u0
− ρ√

2u0
− 4µ− 2

4u0
,

where ρ := log(z/
√

2) and u0 := 2uy, which is reminiscent of that of [19]. In fact, the saddlepoint
equation above does not admit a unique solution; in order for the latter to be continuous (as a
function of y), one should take the largest solution.

Following [19], we can therefore deform the contour of integration in (A.1) around the saddle-
point uy to obtain, as y tends to zero:

(A.5) my(µ, z) =
e−z

2iπ

∫ R+i∞

R−i∞
Φ(u, y, z)du ∼

√
z

2iπ

∫ R+i∞

R−i∞
eψy(u)du ∼

√
z

2iπ

∫ uy+i∞

uy−i∞
eψy(u)du.

Let λ denote the real integration variable, so that u = uy + iλ. Around the saddlepoint (λ = 0),
we have the uniform Taylor series expansions:

√
u =

√
uy +

iλ

2
√
uy

+
λ2

8u
3/2
y

+ O
(

λ3

u
5/2
y

)
, log u = log uy +

iλ

uy
+

λ2

2u2y
+ O

(
λ3

u3y

)
,

√
u log u =

√
uy log uy +

(2 + log(uy))iλ

2
√
uy

+
log(uy)λ2

8u
3/2
y

+ O
(

(1 + log(uy))λ
3

u
5/2
y

)
,

so that

(A.6) ψy(u) = uyy +
√
uy

(
α− log(uy)

2

)
− log(uy)

4
+
µ log(uy)

2
−Myλ

2 + O
[
λ3(1 + log(uy))

u
5/2
y

]

where the coefficients in front of λ cancelled out from the saddlepoint equation, and where

My :=
log(uy)

16u
3/2
y

− α

8u
3/2
y

+
1 − 2µ

8u2y
,

as defined in Proposition 2.5. Note that by bootstrapping (see Section A.1.1 for details), the
expansion

(A.7) uy =
log(y)2

4y2

[
1 − 2 log log(1/y)

log(y)
+

log(z2)

log(y)
+ o

(
1

log(y)

)]

holds for the saddlepoint as y tends to zero, and implies

(A.8) My =
y3

log(y)2

[
1 + O

(
log | log(y)|

log(y)

)]
.

Now,

∫ h

−h
e−Myy

2

dy =
1√
2My

∫ h
√

2My

−h
√
2M

e−ω
2/2dω ∼ 1√

2My

∫

R

e−ω
2/2dω =

√
π

My
∼

√
π| log(y)|
y3/2

,
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and we can therefore write (A.5) as

my(µ, z) ∼
√
z

2iπ

∫ uy+ih

uy−ih

eψy(u)du

∼
√
z

2π
exp

[
uyy +

√
uy

(
α− log(uy)

2

)
− log(uy)

4
+
µ log(uy)

2

] ∫ h

−h
e−Myλ

2

dλ

∼
√
z

2π
exp

[
uyy +

√
uy

(
α− log(uy)

2

)
− log(uy)

4
+
µ log(uy)

2

] √
π| log(y)|
y3/2

=

√
z

2π
exp

[(
1

2
− µ

)
+

log(uy)

2

(
µ− 1

2

)
− uyy +

√
uy

] √
π| log(y)|
y3/2

=

√
z

2
√
π

exp

(
1

2
− µ

) | log(y)|
y3/2

u
1
2 (µ− 1

2 )
y exp

(
−uyy +

√
uy
)

=

√
z

2
√
π
| log(y)| exp

[
− log(y)2

4y
+

1

2

| log(y)|
y

+

(
1

2
− µ

)(
1 − 1

2
log

(
log(y)2

4y2

))](
1

y3/2
+ O

(
y3/2

))
,

(A.9)

where we used the saddlepoint equation (A.4) in the fourth line.
It now remains to prove that one can indeed neglect the tails of the integration domain, where

ℑ(u) = λ ≥ h. The analysis of this is similar to that of [19, Section 3], and we only outline here
the main arguments. First, specify a choice h := log(y)2/y3/2 of integration bounds accounting for

the main contribution to the integral
∫ uy+i∞
uy−i∞ exp(ψy(u))du, with ψy defined in (A.1) and where

uy denotes the saddlepoint in (A.4). By symmetry, it is clearly sufficient to consider only one

side of the tails, and we shall therefore focus on the positive one
∫ uy+i∞
uy+ih eψy(u)du. The analysis is

then split into looking at the inner tail h ≤ λ < elog(1/t)
2/4 and at the outer tail λ ≥ elog(1/t)

2/4.
Similarly to [19, Equation (10)], the estimate

∫ uy+i∞

uy+ih

eψy(u)du ∼ 2 exp

{
uyt+

1

8
log(y)2 − exp

(
log(y)2

8

)}

then prevails for the outer tail. Furthermore, for any real number B, [19, Lemma 1] remains valid
for the behaviour of the real part of

√
u log(u) + B

√
u with respect to |ℑ(u)|, which allows to

bound above the inner tail by the value of the integrand at λ = h of −Myλ
2|λ=h ∼ − 1

2 log(y)2

multiplied by the length of the integration path, which is of order elog(1/t)
2/4; the relative error is

therefore of order exp(− 1
4 log(y)2 + o(log(y)2)).

The final part of the error analysis in the expansion (A.9) follows from analogous estimates
to [19, Table 1], and the total (both tails) error resulting from the completion to Gaussian integral

2√
2My

∫ ∞

h
√
2M

exp

(
−1

2
ω2

)
dω ∼ 2√

2My

exp
(
− 1

2ω
2
)

ω

∣∣∣∣∣
ω=h

√
My

= exp

(
−1

2
log(t)2 + o(log(t))

)
.

The error O
(
λ3/u

5/2
y

)
from the local expansion (A.6) for ψy is of order

(A.10) O
(
log(y)2

√
y
)
,

which is immediate from bootstrapping (A.8), (A.7) for My and uy and from the choice of h

λ3

u
5/2
y

≤ C
log(uy)

u
3/2
y

1

uy

log(y)2

y3/2
∼ C log(y)2

√
y.

Hence the total relative error is dominated by the error (A.10) from the local expansion if My is
not expanded, and by the relative error (A.8) of My if one consider its bootstrapping expansion.
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A.1.1. Justification of the expansion for My. We define

M̃y :=
log(uy)

16u
3/2
y

− α

8u
3/2
y

.

The term 1−2µ
8u2

y
in the definition (2.9) of My is of higher order, therefore we can henceforth work

with the simpler expression M̃y in the bootstrapping expansion and the error analysis instead of
My. With α = ρ+ 1 − 1

2 log(2) and ũ ≡ uy/2, the approximation of the saddlepoint simplifies to

My =
log(uy)

16u
3/2
y

− α

8u
3/2
y

=
log(uy)

16u
3/2
y

− ρ+ 1

8u
3/2
y

+
log(2)

16u
3/2
y

=
1

4

(√
2 log(ũ)

16ũ3/2
−

√
2(ρ+ 1 − log(2))

8ũ3/2

)
.

Thus My is up to constants of the same form as [19, Equation (12)]. By bootstrapping,

My ∼ y3

log(y)2

[
1 + O

(
log | log(y)|

log(y)

)]
.

Indeed, the saddlepoint equation (2.8)

y =
log(2uy)

2
√

2(2uy)
− ρ√

2(2uy)
− 4µ− 2

4(2uy)

when setting c(u) ≡
(

log(
√
u)√

2
− ρ√

2
+ k

4
√
u

)
, ρ = log

(
z√
2

)
and k := 4µ − 2, and with u0 = 2uy

becomes
√
u0 ≡ y−1c(u0), where

log(
√
u0)√

2
=

log
(
c (u0) + log

(
1
y

))

√
2

.

Hence, bootstrapping as in [19] yields

u0 =
1

y2

(
log (1/y)√

2
+

log(c (u0))√
2

− ρ√
2

+
k

4
√
u0

)2

=
1

y2

((
log (1/y)√

2

)2

+ 2

(
log (1/y)√

2

)(
log(c (u0))√

2
− ρ√

2
+

k

4
√
u0

)
+

(
log(c (u0))√

2
− ρ√

2
+

k

4
√
u0

)2
)

=
(log (1/y))

2

2y2

[
1 +

(
2
√

2

log (1/y)

)(
log(c (u0))√

2
− ρ√

2
+

k

4
√
u0

)
+

2

(log (1/y))
2

(
log(c (u0))√

2
− ρ√

2
+

k

4
√
u0

)2
]
.

Now expanding around log(1/y)

log (c(u0))√
2

∼ log (log(1/y))√
2

− log(2)

2
√

2
+

log
(
c(u0) − ρ+ k

2
√
2u0

)

√
2 log(1/y)

,

and using the fact that both

− 2
√

2

log(y)


 k

4
√
u
−

log
(
c(u) − ρ+ k

2
√
2u0

)

√
2 log(y)


 and

2

log(y)2

(
log (c(u0)) − ρ√

2
+

k

4
√
u0

)2

are of order o (1/ log(y)), we obtain, by collecting terms,

2uy =
log(y)2

2y2

(
1 − 2 log(− log(y))

log(y)
+

2ρ+ log(2)

log(y)
+ o

(
1

log(y)

))
.

Similarly,

u
3/2
0 =

1

y3

[− log(y)√
2

+
log(c(u))√

2
− ρ√

2
+

k

4
√
u

]3
∼ − log(y)3

2
√

2y3

[
1 − log(− log(y))

log(y)
+

2ρ+ log(2)

2 log(y)
+ o

(
1

log(y)

)]3



24 ARCHIL GULISASHVILI, BLANKA HORVATH, AND ANTOINE JACQUIER

hence u
3/2
y ∼ (log(1/y))2

8y2 ; further,

log(u0) = −2 (log(y) − log(c (u))) ∼ −2 log(y)+2 log(− log(y))− log(2)−
2 log

(
c(u) − ρ+ k

2
√
2u

)

log(y)
,

so that, by bootstrapping we also recover the form of [19, Equation (13)], at ũ = 1
2uy:

My =
1

4

[√
2 log(ũ)

16ũ3/2
−

√
2(ρ+ 1 − log(2))

8ũ3/2

]
=

y3

2 log(y)2

[
1 + O

(
log(− log(y))

log(y)

)]
.

Appendix B. Reminder on the heat equation on manifolds

Proposition B.1. Let k ∈ N ∪ {∞} be an arbitrary integer, M1, M2 two Ck+2-manifolds and
φ : M2 → M1 a Ck+2-diffeomorphism which is an isometry between (M2, g2) and (M1, g1). The
Laplace-Beltrami operator ∆gi , i ∈ {1, 2} commutes with φ in the sense that the equation

∆g2(φ∗(f)) = φ∗(∆g1 (f))(B.1)

holds for any f ∈ Ck+2(M1).

Proof. A proof of this statement is given for example in [21, Lemma 3.27]. �

Definition B.2. Let (M, g) be a smooth Riemannian manifold and Z ∈M . The smooth function
pZ : (0,∞) ×M → R is a fundamental solution at Z of the heat equation on (M, g) if it satisfies
the following conditions:

(i) pZ solves the heat equation on (M, g): ∆gpZ = ∂tpZ , where ∆g denotes the Laplace-
Beltrami operator on (M, g);

(ii) limt↓0 pZ(t, ·) = δZ , where δZ denotes the Dirac measure at Z ∈M :

lim
t↓0

∫

M

pZ(t, z)f(z)µg(dz) = f(Z),

for all test functions f ∈ C∞
0 (M), where µg(dz) stands for the Riemannian volume element

at z ∈M .

The fundamental function pZ is said to be regular if furthermore pZ ≥ 0 and
∫
M
pZ(t, z)µg(dz) ≤ 1.

Proposition B.3. Let k ∈ N0 ∪ {∞}, φ : (M2, g2) −→ (M1, g1) a Ck+2-smooth isometry, and
pg1Z1

the fundamental solution at Z1 of the heat equation on (M1, g1). Furthermore, let Z2 ∈M2 be

such that φ(Z2) = Z1. Then the map (t, z) 7→ pg1φ(Z2)
(t, φ(z)) is the (unique) fundamental solution

at Z2 of the heat equation on (M2, g2).

Proof. Property (i) in Definition B.2 holds for the above map, which follows from Proposition B.1
and especially from (B.1). The operator ∆g2 acts only on the space variable z̃ ∈ M2 and not on

Z̃ ∈M2, so that

(B.2) ∆g2

(
pg1φ(Z2)

(t, φ(z))
)

= φ∗
(
∆g1(pg1Z2

(t, z))
)

= φ∗
(
∂

∂t
(pg1Z2

(t, z))

)
=

∂

∂t

(
pg1φ(Z2)

(t, φ(z))
)
,

where the first equality follows from (B.1). Property (ii) of Definition B.2 is a consequence of the

substitution rule. Let f̃ ∈ C∞
0 (M1) be a test function and f := φ∗f̃ . Set z̃ = φ(z) and Z̃ = φ(Z)

for any z, Z2 ∈M2. Given that φ is an isometry, so is φ−1 and the pullback (φ−1)∗µg2(d·) coincides
with the volume form on (M1, g1). Then

lim
t↓0

∫

M2

pg1φ(Z2)
(t, φ(z))f(z)µg2(dz) = lim

t↓0

∫

M2

pg1φ(Z2)
(t, φ(z))f̃(φ(z))µg2 (dz)

= lim
t↓0

∫

M1

pg1φ(Z2)
(t, z̃)f̃(z̃)

(
(φ−1)∗µg2

)
(dz̃)

= lim
t↓0

∫

M1

pg1φ(Z2)
(t, z̃)f̃(z̃)µg1 (dz̃) = f̃(φ(Z2)) = f(Z).

�
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Remark B.4. Note that the fundamental solutions in Proposition B.3 are denoted with respect
to the Riemannian volume form. In terms of integration with respect to the Lebesgue measure we
make a slight modification of the above statement.

Let the Riemannian volume form be given in orthogonal coordinates, and let Ku and Kg

denote the fundamental solutions (in terms of Lebesgue) of the heat equations corresponding to
the Riemannian metrics u and g in the sense that the Radon-Nikodym derivatives with respect to
the Lebesgue measure are already incorporated into the expression forKu andKg: if pgZ(s, z) (resp.
puZ(s, z)) denote the fundamental solutions as in Proposition B.3, then, for any test function f ,

∫

S
f(z)Kg

Z(s, z)dz =

∫

S
f(z)pgZ(s, z)

dz

µg(dz)
µg(dz) =

∫

S
f(z)pgZ(s, z)

µg(dz)√
det(g)

.

The following lemma follows directly from Proposition B.3.

Lemma B.5. Let Kg1 and Kg2 denote the fundamental solutions (in terms of Lebesgue) of the
heat equations corresponding to the metrics g1 and g2:




∂Kg1

∂s
=

1

2
∆g1K

g1 ,

Kg1
Z (0, z) = δ(z − Z),

and





∂Kg2

∂s
=

1

2
∆g2K

g2 ,

Kg2

Z̃
(0, z̃) = δ(z̃ − Z̃).

(B.3)

If φ is an isometry, then

Kg1
Z (s, z) = det(∇φ(Z)) Kg2

φ(Z)(s, φ(z)).(B.4)

The generators of the Brownian motions on (S, g) resp (U, u) (defined in Section 3.1) are defined
on their respective spaces with {x 6= 0} and {x̄ 6= 0} for β 6= 0 respectively and read

(B.5)
∆gf = y2

(
βx2β−1 ∂f

∂x
+ x2β

∂2f

∂x2
+ 2ρxβ

∂

∂x

∂f

∂y
+
∂2f

∂y2

)
, for any f ∈ Ck+2(S),

∆uf = ȳ2
(
βx̄2β−1 ∂f

∂x̄
+ x̄2β

∂2f

∂x̄2
+
∂2f

∂ȳ2

)
, for any f ∈ Ck+2(U),

while the infinitesimal generators of the original SABR model (1.1) are

(B.6)
Af = y2

(
x2β

∂2f

∂x2
+ 2ρxβ

∂

∂x

∂f

∂y
+
∂2f

∂ȳ2

)
, for any f ∈ Ck+2(S),

Aρ=0f = ȳ2
(
x̄2β

∂2f

∂x̄2
+
∂2f

∂ȳ2

)
, for any f ∈ Ck+2(U),

Note that for β = 0 the operators ∆g and A (resp. ∆u and Aρ=0) coincide.
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