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Abstract

We introduce a multivariate diffusion model that is able to price derivative securities
featuring multiple underlying assets. Each asset volatility smile is modeled according to
a density-mixture dynamical model while the same property holds for the multivariate
process of all assets, whose density is a mixture of multivariate basic densities. This allows
to reconcile single name and index/basket volatility smiles in a consistent framework. Our
approach could be dubbed a multidimensional local volatility approach with vector-state
dependent diffusion matrix. The model is quite tractable, leading to a complete market
and not requiring Fourier techniques for calibration and dependence measures, contrary
to multivariate stochastic volatility models such as Wishart. We prove existence and
uniqueness of solutions for the model stochastic differential equations, provide formulas
for a number of basket options, and analyze the dependence structure of the model
in detail by deriving a number of results on covariances, its copula function and rank
correlation measures and volatilities-assets correlations. A comparison with sampling
simply-correlated suitably discretized one-dimensional mixture dynamical paths is made,
both in terms of option pricing and of dependence, and first order expansion relationships
between the two models’ local covariances are derived. We also show existence of a
multivariate uncertain volatility model of which our multivariate local volatilities model
is a Markovian projection, highlighting that the projected model is smoother and avoids
a number of drawbacks of the uncertain volatility version. We also show a consistency
result where the Markovian projection of a geometric basket in the multivariate model is
a univariate mixture dynamics model. A few numerical examples on basket and spread
options pricing conclude the paper.
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1 Introduction

It has been known for a long time that the Black–Scholes geometric Brownian motion

model [5] does not price all European options quoted on a given market in a consistent

way. In fact, this model lies on the fundamental assumption that the asset price volatility is a

constant. In reality, the implied volatility, namely the volatility parameter that, when plugged

into the Black–Scholes formula, allows to reproduce the market price of an option, generally

shows a dependence on both the option maturity and strike. If there were no dependence on

strike one could extend the model in a straightforward fashion by allowing a deterministic

dependence of the underlying’s instantaneous volatility on time, so that the dynamics could

be represented by the following stochastic differential equation (SDE):

dSt = µStdt+ σtStdWt, (1.1)

σt being the deterministic instantaneous volatility referred to above. In that case, recon-

struction of the time dependence of σt would follow by considering that, if v(Ti) denotes the

implied volatility for options maturing at time Ti, then

v(Ti)
2Ti =

∫ Ti

0
σ2
sds. (1.2)

Implied volatility however does indeed show a strike dependence; in the common jargon,

this behavior is described with the term smile whenever volatility has a minimum around

the forward asset price level, or skew when low–strike implied volatilities are higher than

high–strike ones. In the following we will loosely speak of both effects as ”volatility smile”.

In recent years, many researches have tried to incorporate the smile effect into a consistent

theory. Several streams of investigation can be identified in a univariate setting. We do not

aim at completeness in the following review, but just present a few relevant examples.

A first approach is based on assuming an alternative explicit dynamics for the asset–price

process that by construction ensures the existence of volatility smiles or skews. Typically,

in this dynamics the diffusion coefficient of the asset price is a deterministic function of the

asset price itself and of time. This is referred to with the term “local volatility". Examples

include the CEV process proposed by Cox [16] and Cox and Ross [17]. A different example is

the displaced diffusion model by Rubinstein [46]. In general the alternative explicit dynamics

does not reproduce accurately enough the market volatility structures, since it is based on

quite stylized dynamics, with the mixture dynamics exception we will see in a moment.

A second approach is based on the assumption of a continuum of traded strikes [4]. This

was extended yielding an explicit expression for the Black–Scholes implied volatility as a

function of strike and maturity [19, 20, 21, 22]. This approach however needs a smooth

interpolation of option prices between consecutive traded strikes and maturities. Explicit

expressions for the risk–neutral stock price dynamics were also derived by minimizing the
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relative entropy to a prior distribution [1] and by assuming an analytical function describing

the volatility surface [14].

Another approach is an incomplete market approach, and includes stochastic volatility

models [33, 34, 47], jump–diffusion models [45] and more recently stochastic-local volatility

models [32] combining local and stochastic volatility.

A further approach consists of finding the risk–neutral distribution on a lattice model for

the underlying that leads to a best fit of the market option prices subject to a smoothness

criterion [13, 36]. This approach has the drawback of being entirely numerical.

A number of the above approaches is described for the foreign exchange market in Lipton

[41], see also Gatheral [26] who deals further with volatility surfaces parameterization. Recent

literature also focused on both short– and long–time asymptotics for volatility models: we

just cite [27] as a reference for small time asymptotics in local volatility models, and [25]

for large maturities asymptotics in the well known Heston stochastic volatility model, while

pointing out that the volatility asymptotics literature is much broader.

In general the problem of finding a risk–neutral distribution that consistently prices all

quoted options is largely undetermined. A possible solution is given by assuming a particular

parametric risk–neutral distribution dependent on several, possibly time–dependent, param-

eters and use the latter in conjunction with a calibration procedure to the market option

prices. In a number of papers, Brigo, Mercurio, Rapisarda and Sartorelli [7, 9, 10, 11, 12]

proposed a family of models that carry on dynamics leading to a parametric risk–neutral dis-

tribution flexible enough for practical purposes. It is relatively straightforward to postulate a

mixture distribution at a given point in time, but it is less so finding a stochastic process that

is consistent with such distribution and whose stochastic differential equation has a unique

strong solution. This is the approach adopted by the above papers. This family of models is

summarized for example in Musiela and Rutkowski [43], or Fengler [24], see also Gatheral [26].

Formally, this is part of the alternative explicit dynamics branch of models but is typically

much richer than the models listed above, leading to a practically exact fit of the volatility

smile while retaining analytical tractability.

The aim of this paper is to incorporate the effect of the volatility smile observed on

the market when pricing and hedging multiasset securities, while retaining sensible single–

asset volatility structures. A whole lot of such structured securities is nowadays offered to

institutional and retail investors, in the form of options on baskets of stocks/FX rates and on

combinations of forward interest rates such as e.g. European/Bermudan swaptions. In our

approach we remain within a lognormal-mixture local volatility model for the individual assets

composing the underlying of the option (be it a basket of stocks or a swap rate) that has proved

to be quite effective in accounting for the observed single–assets’ smiles, but we move one step

beyond the naïve “Brownian correlation" way to connect these univariate models when writing

the joint multi-asset dynamics. Indeed, given univariate local volatility (one dimensional
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diffusion-) models for each asset, a basic approach is introducing instantaneous correlations

across the Brownian shocks of each asset, leading to what we call the Simply Correlated

Mixture Dynamics (SCMD). For practical implementation, one would then discretise the one-

dimensional single–asset SDEs through, say, Euler or higher order numerical schemes [39],

feeding correlated instantaneous Brownian shocks into the scheme. In this paper we adopt

a different approach and we incorporate statistical dependence in a new scheme that enjoys

analytic multivariate densities and a fully analytic multivariate dynamics through a state

dependent non-diagonal diffusion matrix. In so doing we are able to sample a new manifold

of instantaneous covariance structures (and a new manifold of dynamics) which ensures full

compatibility with the individual volatility smiles and overcomes the difficult problems created

by the lack of closed form formulas for prices and sensitivities on multi-asset securities. We

call the resulting model Multi Variate Mixture Dynamics (MVMD) and prove existence and

uniqueness of the solution for its multivariate stochastic differential equation.

The traditional approach for pricing European–style derivatives on a basket of the multi-

dimensional underlying, in a SCMD type model, uses a Monte Carlo method that can be very

slow as it involves intensive time discretization, given that correlation can only be introduced

at local shocks level. With this paper we fill this substantial gap in option pricing and pro-

vide, with MVMD type models, a semi-analytic solution to the option pricing problem where

the price can be quickly and accurately evaluated, something that practitioners value greatly,

especially in the Risk Management analytics area. The level of tractability in MVMD for both

single assets and indices/baskets is much higher than with multivariate stochastic volatility

models such as Wishart models, for which we refer for example to [28, 18] and references

therein. This tractability extends to a lot of dependence measure calculations, as we shall see

shortly, which are fundamental in a multi-asset model. Furthermore, the MVMD model leads

to a complete market and hedging is much simpler. It is practically a tractable and flexible

multivariate local volatility model that has the potential to consistently calibrate univariate

and index volatility smiles through a rich but at the same time transparent parameterization

of the dynamics.

In multi-asset models the transparency on statistical dependence structures and their dy-

namics is fundamental. This is why we study and calculate in closed form instantaneous corre-

lations between assets, terminal correlations, average correlations, rank correlations, squared

volatility - assets correlations, and the whole copula function of the MVMD model. Such

explicit study and formulas are not available in SCMD or Wishart models. We also derive

an expansion of the local covariance in MVMD, showing that the first term in the expansion

coincides with the analogous term in SCMD. As a form of comparison between MVMD and

SCMD, we look at Kendall’s tau rank correlation measures across assets in detail, as implied

by the two different models when the same parameters are chosen.

We then introduce a Multivariate Uncertain Volatility Model (MUVM). We show that

the MVMD model is a Markovian projection of the MUVM. MUVM thus gives the same
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European option prices as MVMD and can be used instead of MVMD to price European

options also in the multivariate setting. MUVM features the same dependence structure as

the MVMD model. The related copula is a mixture of multivariate copulas that are each

a standardized multivariate normal distribution with an appropriate correlation matrix and

marginals. Despite these similarities, the MUVM model is less smooth and convincing than

the MVMD model. The fact that the uncertaintly of volatiltiy needs to be realized instantly

in a very near future is unrealistic and may lead to problems when hedging with the model

and when dealing with early exercise products, especially when exercise is considered near the

date of realization of the uncertain volatility. Hence while we show the Markovian projection

property as an interesting mathematical result, we recommend usage of MVMD rather than

MUVM for products where the two models produce different prices.

We further point out a result on correlation between assets and their instantaneous vari-

ances (squared volatilities) and covariances. A drawback of local volatility models is that they

cannot decorrelate assets and volatilities, since the latter are deterministic functions of the

assets themselves. However, as pointed out in [7] for the univariate case, in the MVMD model

we have complete decorrelation between assets and instantaneous covariances. While this is

surprising at first sight, given that all instantaneous covariances are deterministic functions of

the joint assets, it becomes more intuitive when thinking about the relationship with MUVM,

and is the best approximation MVMD can attain for its non-Markovian originator MUVM,

where instantaneous covariations and assets Brownian shocks are fully independent.

We further highlight a Markovian projection property for the basket dynamics implied by

MVMD. We consider the Markovian projection of the Geometric average basket dynamics

implied by MVMD on one dimensional diffusions. We find that the multivariate mixture

dynamics for the basket components induces a univariate lognormal mixture dynamics for

the basket, in a consistency result that can be used to price European basket options on the

geometric basket in fully closed form via a Black Scholes formula. As far as the geometric

average can be considered as a good proxy for the arithmetic one [38], the method could be

used for standard basket options, or at the very least serve as a control variate result for

the one-shot simulation needed to price an option on an arithmetic basket. In the context of

geometric baskets, no other similar consistency results are known for multivariate models.

We then introduce option pricing for basket options and spread options, deriving semi-

closed form formulas or one-shot simulation schemes for MVMD against multi-step Monte

Carlo simulation for SCMD with analogous parameters. In the final part of this work, in order

to develop a feel for the performance of our approach, we test it on a few cases, including

arithmetic and geometric averages (weighted) baskets and spread options. We compare the

prices generated by MVMD to those obtained by the SCMDmodel with analogous parameters,

and conclude that options prices may not reflect the difference in dependence structures

between the two models even for payoffs, such as spread options, that should depend heavily

on the model dependence structure.
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The paper is organised as follows. In Section 2, we present a brief review of the approach

to single–asset smile modeling that has been developed in [7, 9, 10, 11]. In Section 3, we

provide examples of typical securities that need a multivariate setting for proper pricing. Sec-

tion 4 considers the extension of the single–asset model to the multivariate framework with

a thorough discussion of the implications for the dynamics stemming from a naïve approach

(SCMD) and from ours (MVMD). In Section 5 we provide a number of results on the depen-

dence structure in the MVMD and SCMD models. In Section 6, we introduce a new model

that we call "Multivariate Uncertain Volatility Model" so that our model is a multivariate

Markovian projection of it. We also show a consistency result for the Markovian projection of

the geometric basket dynamics in the MVMD model, that turns out to be a univariate mix-

ture dynamics model. In Section 7 we explain how to price arithmetic, geometric and spread

basket options in MVMD and how this is much easier than with SCMD, deriving the relevant

formulas. In Section 8, we illustrate the results of pricing European option on a weighted

arithmetic average of the underlying assets with positive weights, European spread option

and European option on weighted geometric average in both MVMD and SCMD frameworks

and we compare the results. Conclusions and suggestions for future research are given in the

final section.

2 The Mixture Dynamics (MD) Model

For a maturity T > 0 denote by P (0, T ) the price at time 0 of the zero-coupon bond ma-

turing at T . Let (Ω,F ,P) be a probability space with a filtration (Ft)t∈[0,T ] that is P-complete

and satisfying the usual conditions. We assume the existence of a measure Q equivalent to P
called the risk–neutral or pricing measure, ensuring arbitrage freedom in the classical setup,

for example, of Harrison, Kreps and Pliska [30, 31]. At times, it will be convenient to use the

T–forward risk-adjusted measure QT rather than Q.

The MD model is based on the hypothesis that the dynamics of the asset underlying a

given option market takes the form

dS(t) = µ(t)S(t)dt+ ν(t, S(t))S(t)dW (t) (2.1)

under Q with initial value S0. Here, µ is a deterministic time function, W is a standard Q
Brownian motion and ν (the "local volatility") is a well behaved deterministic function. In

order to guarantee the existence of a unique strong solution to the above SDE, ν is assumed

to be locally Lipschitz, uniformly in t, and to satisfy the linear growth condition

ν2(t, x)x2 ≤ L(1 + x2) uniformly in t (2.2)

for a suitable positive constant L.

Consider N purely instrumental diffusion processes Y i(t) with dynamics

dY i(t) = µ(t)Y i(t)dt+ vi(t, Y i(t))Y i(t)dW (t) (2.3)
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with initial value Y i(0), marginal densities pit and with vi satisfying locally Lipschitz and

linear growth conditions, where each Y i(0) is set to S(0).

Remark 1 The reader should not interpret the Y i as real assets. They are just instrumental

processes that will be used to define mixtures of densities with desirable properties.

The marginal density pt of S(t) is assumed to be representable as the superposition of the

instrumental processes densities pit [9, 10, 11]:

pt =
∑
i

λipit with λi ≥ 0, ∀i and
∑
i

λi = 1. (2.4)

The problem of characterizing ν can then be cast in the following form: is there a local

volatility ν for Eq. (2.1) such that Eq. (2.4) holds? Purely formal manipulation of the related

Kolmogorov forward equation

∂pt
∂t

+
∂

∂x
(µxpt)−

1

2

∂2

∂x2
(ν2(t, x)x2pt) = 0 (2.5)

and of analogous equations for the pit’s shows that a candidate ν is

ν(t, x) =

√∑N
i=1 λ

ivi(t, x)2pit(x)∑N
i=1 λ

ipit(x)
. (2.6)

We may now introduce the following

Definition 2 General MD model. The general single-asset Mixture Dynamics (MD) can-

didate model is the model given by equations (2.1) and (2.6). If the model equation admits a

unique solution and if the related Kolmogorov forward equation admits a unique solution, then

the density of the model is a mixture according to Equation (2.4), where the pi terms are the

densities of the instrumental diffusion processes (2.3).

An important consequence of the above construction is the following

Proposition 3 Assume that the model (2.1,2.6), with pit from (2.3), admits a unique strong

solution and that the related Kolmogorov forward equation admits a unique solution. Then

the pricing of European options on S is simply a linear-convex combination with weights λi

of the option prices under the instrumental asset dynamics (2.3). Similarly for the Greeks at

time 0.

In other terms, let O be the value at t = 0 of an European option with strike K and

maturity T . O is given by O =
∑N

i=1 λ
iOi; where Oi is the European price associated to

the hypothetical instrumental dynamics (2.3). The option price O can be viewed as the

weighted average of the European option prices written on the processes Y i. Due to linearity

of differentiation, the same convex combination applies to all option Greeks. As a consequence,
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if the basic densities pit are chosen so that the prices Oi are computed analytically, one finds

an analytically tractable model.

The most natural choice for the (Y i, vi, p
i
t) triplet is :

Y i(0) = S(0)

vi(t, x) = σi(t)

V i(t) =
√∫ t

0 σ
i(s)2ds

pit(x) = 1√
2πxV i(t)

exp

[
− 1

2V 2
i (t)

(
ln
(

x
S(0)

)
− µt+ 1

2V
i(t)2

)2
]

=: `it(x)

(2.7)

with σi deterministic (lognormal mixture dynamics, LMD).

Brigo and Mercurio [10] proved that, with the above choice and additional nonstringent

assumptions on the σi, the corresponding dynamics for St indeed admits a unique strong

solution. A greater flexibility can also be achieved by shifting the auxiliary processes’ density

by a carefully chosen deterministic function of time (still preserving risk–neutrality). This is

the so–called shifted lognormal mixture dynamics model [11].

Theorem 4 Existence and uniqueness of solutions for the LMD model. Assume

that all the real functions σi(t), defined on the real numbers t ≥ 0, are once continuously

differentiable and bounded from above and below by two positive real constants. Assume also

that in a small initial time interval t ∈ [0, ε], ε > 0, the functions σi(t) have an identical

constant value σ0. Then the Lognormal Mixture Dynamics model (LMD) defined by Equations

(2.1,2.7), namely

dSt = µ(t)Stdt+ s(t, St)StdWt, S0, s(t, x) =

(∑N
k=1 λ

kσk(t)2`kt (x)∑N
k=1 λ

k`kt (x)

)1/2

, (2.8)

admits a unique strong solution and the Kolmogorov equation for its density admits a unique

solution satisfying (2.4), which is in this case a mixture of lognormal densities, leading to

option prices that are linear combinations of Black-Scholes prices.

In [9, 10] it is pointed out that the squared diffusion coefficient s(t, x)2 defined in (2.8)

can be considered as a state dependent weighted (convex combination) average of the basic

squared volatilities (σk)2 and that if the latter are uniformly bounded so is s.

The above description gives a sufficient basis for presenting our generalization of the LMD

to the multivariate setting, as before at first on the basis of pure formal manipulations, and

then with full rigor, with the specific aim of finding a method to infer the “implied volatility”

of a basket of securities from the individual components and/or an explicit dynamics for the
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multi-asset system. Later in the paper, formal proofs of the general consistency of the model

and of the existence and uniqueness of the solution to the multivariate version of Eq. (2.1)

will be provided.

3 Options on Baskets: Motivating multivariate models

A generalization of LMD to the multivariate setting aims to be able to compute the smile

effect on the implied volatilities for exotic options depending on more than one asset, such as

a basket options. Clearly, analogous techniques apply to indices.

3.1 Basket option

A basket option is an option whose payoff is linked to a portfolio or "basket" of underlying

assets. We can distinguish two types of basket option:

• An option of weighted arithmetic average of the underlyings:

Bt =

n∑
k=1

wkSk(t), (3.1)

where B is called an “arithmetic basket";

• An option of weighted geometric average of the underlyings:

Bt =

[
n∏
k=1

Sk(t)
wk

] 1
w1+...+wn

(3.2)

where B is called a geometric basket.

where Sk is the k–th component of the basket. Typically the basket is consisting of several

stocks, indices or currencies. Less frequently, interest rates are also possible (Sk could rep-

resent a forward rate process Fk in the Libor Market Model (LMM) and instead of (3.1) we

could have a more complicated expression representing a swap rate).

Such options have the most varied nature: from the plain European call/put options on

the value of the basket at maturity T , to options somewhat more complicated, such as Asian

options on the basket, Himalaya options, rainbow options and so on.

The weights (wk)k in (3.1) can be negative. When the basket (3.1) contains short positions

it is called spread and the option known as a spread option is written on the difference of

underlying assets. The weights (wk)k=1,...,n in (3.2) are positive.

It is instructive to view a basket option as a standard derivative on the underlying instru-

ment whose value at time t is the basket Bt so defined.
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3.2 European options pricing

Let us assume that interest rates are constant and equal to r > 0 . We also assume the

existence and uniqueness of a risk–neutral pricing measure Q that is equivalent to P under

which discounted asset prices are martingales, implying the absence of arbitrage (Q is also

equal to QT as interest rates are assumed to be deterministic).

According to the Black–Scholes pricing paradigm [30, 31], the price Π of an European

option at initial time t = 0 is given by the risk-neutral expectation:

Π = e−rTE
{

[ω (BT −K)]+
}

(3.3)

where the exponential factor takes care of the discounting and ω = ± 1 for a call/put

respectively. BT is the underlying instrument (can represent the value of the basket) at

maturity T , K is the strike.

The fundamental difficulty in pricing basket options on a weighted arithmetic average

of a basket is to determine the distribution of the sum of underlying asset prices. Let us

consider the basket of securities of Eq. (3.1). Several approximation methods have been

proposed for options on it when each Sk follows a geometric Brownian motion. Usually the

basket value (3.1) is approximated by the lognormal distribution. Recall that here we consider

baskets with possibly negative weights, such as spreads. Hence, we cannot approximate the

distribution of Bt by a lognormal distribution, since such a basket can have negative values

or negative skewness. However, Brigo and Masetti [8] in a LIBOR market model setting and

later Borovkova, Permana and Weide [6] show that a more general three-parameter family

of lognormal distributions: shifted, negative and negative shifted lognormal, can be used

to approximate the distribution of a general basket. The shifted lognormal distribution is

obtained by shifting the regular lognormal density by a fixed amount along the x-axis, and the

negative lognormal - by reflecting the lognormal density across the y-axis. The negative shifted

lognormal distribution is the combination of the negative and the shifted one. Note that this

family of distributions is flexible enough to incorporate negative values and negative skewness:

something that the regular lognormal distribution is unable to do. However, by using these

approximations we do not take into account the internal composition of the basket value in

terms of underlying assets having each its own dynamics. This approach structurally cannot

take into account any smile effect on the individual underlyings’ volatility, and therefore on

the "basket volatility".

In the following we will tackle the problem in a rigorous way, through the generalization of

the dynamical model of Eqs. (2.1,2.7) that has proven to perform quite well on some markets

[9, 10, 11] and that is under extension to the equity markets case.
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4 Multivariate extensions of the MD model

To fix ideas, suppose we are faced with the following problem: we want to price an option

maturing at T on the basket of n securities given by Eq. (3.1) or Eq. (3.2). Each of these n

securities will have a ”smiley” volatility structure, and we expect the basket to show a smile

in its implied volatility, too.

Through Eqs. (2.1–2.7) we now have a piece of machinery that allows us to calibrate an

LMD to each implied volatility smile structure of the individual component Sk of the basket.

Suppose we have already calibrated the individual LMDs to such smile surfaces, thus finding

the LMD local volatilities governing the dynamics of each Sk. We denote by Y 1
k , . . . , Y

N
k the

instrumental processes for asset Sk. Namely, for each asset in the basket we have a family

of instrumental processes like (2.3) that refer to that specific asset mixture distribution, each

(2.3) being specialized according to Equation (2.7). To guide the reader through notation, we

recall as a simple convention that for us upper indices in general denote a component in the

mixture, whereas lower indices denote different assets. So for example σhk will refer to asset

Sk and to the h-th component of the mixture, whereas the density of Y k
i at time t will be

denoted by `ki,t.

We are now interested in connecting these univariate LMD models S1, . . . , Sn into a mul-

tivariate model that embeds statistical dependence among the different asset. The most im-

mediate way to do this is to introduce a non-zero quadratic covariation between the Brownian

motions driving the LMD models for Si and Sj respectively.

4.1 Simply Correlated Mixture Dynamics model

Definition 5 SCMD Model. We define the Simply Correlated multivariate Mixture Dy-

namics (SCMD) model for S = [S1, . . . , Sn] as a vector of univariate LMD models, each

satisfying Theorem 4 with diffusion coefficients s1, . . . , sn given by Formula (2.8) and densi-

ties `1, . . . , `n applied to each asset, and connected simply through quadratic covariation ρj,j

between the Brownian motions driving assets i and j. This is equivalent to the following

n-dimensional diffusion process where we keep the W ’s independent and where we embedded

Brownian covariation into the diffusion matrix C̃, whose i-th row we denote by C̃i:

dS(t) = diag(µ)S(t)dt+ diag(S(t))C̃(t, S(t))dW (t), ãi,j(t, S) := C̃iC̃
T
j (4.1)

ãi,j(t, S) = si(t, Si)sj(t, Sj)ρij =

(∑N
k=1 λ

k
i σ

k
i (t)2`ki,t(Si)∑N

k=1 λ
k
i `
k
i,t(Si)

∑N
k=1 λ

k
jσ

k
j (t)2`kj,t(Sj)∑N

k=1 λ
k
j `
k
j,t(Sj)

)1/2

ρij .

(4.2)

where T represents the transposition operator.

Assumption. Throughout the paper we assume ρ to be positive definite.



4 MULTIVARIATE EXTENSIONS OF THE MD MODEL 13

Remark 6 SCMD: no multivariate mixture. It is important to point out in SCMD that

while single–assets probability densities are mixtures by construction, the multivariate density

is not a mixture of multivariate basic densities. The mixture property does not extend from

the mono-dimensional dynamics to the multidimensional one.

The practical use of the SCMDmodel is related to the following consideration. Most often, one

realistic way to price a plain European option depending on more than one asset, especially

in large dimension, is to use a Monte Carlo simulation that samples suitably discretized

paths according to the drift rate of each component (risk–free minus dividend yield) and to

the diffusion matrix given by the local volatility function in the mixture of densities model.

Therefore, assuming to have an exogenously computed structure of instantaneous correlations

ρij (computed e.g. through historical analysis or implied by market instruments and supposed

constant over time) among the assets’ returns, we could apply a naïve Euler Monte Carlo

scheme and simulate the joint evolution of the assets through a suitably discretized time

grid τ1 = 0 · · · τN = T with a covariance matrix whose (i, j) component over the (τl, τl+1)

propagation interval is given by (4.2) computed at t = τl. It is immediate by construction

that the SCMD approach is consistent with both the individual dynamics induced by a LMD

model for each underlying asset and with the imposed "instantaneous correlation" (Brownian

quadratic covariation) structure ρij .

However, besides the practical possibility of controlling the instantaneous correlation, and

that the number of base univariate densities to mix does not increase with the number of

underlying assets, one must be aware of the SCMD main limitations, especially the following

one. For European type basket options we do not really need the full dynamics when it comes

to actually computing the price, even with several maturities in the picture. Indeed, for each

maturity T the payout depends only upon the values of the assets at time T , i.e., upon the

values Sk(T ), ∀k, regardless of the history of prices. So in order to compute the risk–neutral

expectation in (3.3) giving the price Π, the only information we need is the joint density of

the process (S1(T ), S2(T ), . . . , Sn(T )) of random variables under that particular risk–neutral

measure. This density is usually called the state price density. In SCMD we do not know

this density, so we have to generate samples from the entire path Bt for 0 ≤ t ≤ T . The

discretization time steps τl+1 − τl should be chosen carefully to be sure that the numerical

scheme used to generate the discrete samples produces reasonable approximations. Notice

that when the maturity T increases, more time steps are needed. This is particularly relevant

in calibrating the model for risk management applications, for example, where the inverse

problem can become daunting if the dimension is large and the discretization step small.

4.2 The Multivariate Mixture Dynamics approach

One could try to do something different and approach the problem so that, under suitable

assumptions, the individual LMD models (one for each underlying asset, separately calibrated
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each on its volatility surface) could be merged so as to provide a coherent multi-asset model

that allows for a degree of (semi)analytic tractability comparable to the one typical of the uni-

variate case. This will lead to a model where the mixture property is lifted to the multivariate

density, contrary to the SCMD case (Remark 6 above).

Consider an n–dimensional stochastic process S(t) = [S1(t), · · · , Sn(t)]T whose generic i−
th component follows the SDE

dSi(t) = µiSi(t)dt+ Si(t)Ci(t, S)dW (t) (4.3)

where µi is a constant, W = [W1, · · · ,Wn]T is a standard n–dimensional Brownian motion

and Ci(t, S) is a row vector whose components are deterministic functions of time and of the

state of the process S.

Denote aij(t, S) = Ci(t, S) CTj (t, S). The associated Kolmogorov forward PDE to be

satisfied by the probability density pS(t) of the stochastic process S is

∂pS(t)

∂t
+

n∑
i=1

∂

∂xi
[µixipS(t)]−

1

2

n∑
i,j=1

∂2

∂xi∂xj
[aijxixjpS(t)] = 0 (4.4)

where all functions are evaluated at (t, x) for all t ≥ 0, x ∈ Rn.
With this notation S is given by the SDE

dS(t) = diag(µ)S(t)dt+ diag(S(t))C(t, S(t))dW (t) (4.5)

where C is the n× n matrix whose i th row is Ci.

C must be chosen so as to grant a unique strong solution to the SDE (4.5). In particular, C

is assumed to lead to a locally Lipschitz a(t, x) and to satisfy, for a suitable positive constant

K, the generalized linear growth conditions

trace(a(t, x))‖x‖2 ≤ K(1 + ‖x‖2). (4.6)

The symbol ‖‖ denotes here vector and matrix norms.

Consider an n dimensional stochastic process X(k) whose generic i th component follows

the dynamics

dX
(k)
i (t) = µiX

(k)
i (t)dt+X

(k)
i (t)σ

(k)
i (t,X(k))dW (t) (4.7)

with σ(k)
i (t,X(k)) an 1× n matrix satisfying particular conditions ensuring that the resulting

SDE giving the dynamic of X(k) has a unique strong solution.

Denote a(k)
ij (t,X(k)) = σ

(k)
i (t,X(k)) σ

(k)
j (t,X(k))T and p(k)

t the probability density function

of X(k). The associated Kolmogorov equation to be satisfied by p(k)
t is

∂p
(k)
t (x)

∂t
+

n∑
i=1

∂

∂xi
[µixip

(k)
t (x)]− 1

2

n∑
i,j=1

∂2

∂xi∂xj
[a

(k)
ij (t, x)xixjp

(k)
t (x)] = 0. (4.8)
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Inspired by the univariate approach which gave rise to the LMD model, let us postulate

that the density at any time t of the multivariate process S be equal to a weighted average of

the p(k)
t

pS(t)(x) =
N∑
k=1

λkp
(k)
t (x), λk ≥ 0 ∀k,

N∑
k=1

λk = 1 (4.9)

The condition that pS(t) satisfy Eq.(4.4) and that each p(k)
t satisfy the equation (4.8) leads

through standard algebra to the PDE

1

2

n∑
i,j=1

∂2

∂xi∂xj

[(
aij(t, x)

N∑
k=1

λkp
(k)
t (x)−

N∑
k=1

λka
(k)
ij (t, x)p

(k)
t (x)

)
xixj

]
= 0. (4.10)

Proposition 7 The unique candidate solution of the PDE (4.10) is

aij(t, x) =

∑N
k=1 λ

ka
(k)
ij (t, x)p

(k)
t (x)∑n

k=1 λ
kp

(k)
t (x)

, a
(k)
ij (t, x) = σ

(k)
i (t, x) σ

(k)
j (t, x)T . (4.11)

Proof. It can be easily proven that the most general solution of the equation
∑

ij
∂2

∂xi∂xj
fij(x) =

0 has a Fourier transform satisfying (q, f(q)q) = 0. The only matrix function f(q) satisfying

it and infinitely differentiable with respect to q is constant. This constant must be zero in

order to have finite first and second moments of the multivariate density pS(t).

This leads to the following definition.

Definition 8 The general Multivariate Mixture Dynamics (MVMD) candidate Model for the

vector of asset prices S is defined as given by Equations (4.5) and (4.11). If a unique solution

for the model equations exists and it admits a multivariate probability density, this is a mixture

of basic multivariate densities according to Eq (4.9), where each pk is a multivariate basic

density associated with an instrumental multivariate diffusion process (4.7).

Remark 9 MVMD: multivariate mixture. MVMD has been designed so as to have a

mixture law for the multivariate model, contrary to SCMD, see Remark 6 above.

Of course to show that this is indeed a model we need to prove that the equation has a

unique solution. We thus specialize our framework to a fully tractable case.

4.3 The lognormal case and the univariate - multivariate MD connection

We now specialize our framework by assuming that the volatility coefficient matrix for the

k–th "base" density p(k)
t of Eq. (4.8) is a deterministic function of time, independent of the

state, and of the particular form a
(k)
ij (t, x) = σ

(k)
i (t) σ

(k)
j (t)T .

Under this hypothesis we already know the dynamics corresponding to Eq. (4.8), since

we are dealing with multivariate geometric Brownian motions for (4.7), and we can explicitly
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write their densities p(k)
t

p
(k)
t (x) =

1

(2π)
n
2

√
det Ξ(k)(t)Πn

i=1xi
exp

[
− x̃

T (Ξ(k)(t))−1x̃

2

]
, (4.12)

where Ξ(k)(t) is the n × n integrated covariance matrix of returns for the many components

of the process X(k):

Ξ
(k)
ij (t) =

∫ t

0
σ

(k)
i (s)σ

(k)
j (s)Tds (4.13)

(Ξ(k) is assumed to be invertible at all times and instantaneous correlation is included into

the vector components) and

x̃
(k)
i = lnxi − lnxi(0)− µit+

∫ t

0

σ
(k)2

i (s)

2
ds. (4.14)

Calculations are simpler under the further assumption that instantaneous correlation is

constant in time, namely

σ
(k)
i (t)σ

(k)
j (t)T = ‖σ(k)

i (t)‖‖σ(k)
j (t)‖ρij =: σki (t)σkj (t)ρi,j ,

or in other terms, assuming that

ρ = BBT , σ
(k)
i (t) := σ

(k)
i (t)Bi (4.15)

via diagonalization or Cholesky decomposition and for positive and regular scalar time func-

tions σ(k)
i (t), where Bi is the i-th row of B. The fact that the densities will get mixed up

through Eq. (4.9) will have important consequences on the actual structure of correlations,

both instantaneous and average. But first, let us prove that under a further assumption we

can be fully consistent with the dynamics specified by the LMD model for the individual

assets.

Let’s assume that we have calibrated an LMD model for each Si(t): if pSi(t) is the density

of Si, we write

pSi(t)(x) =

Ni∑
k=1

λki `
k
i,t(x), with λki ≥ 0,∀k and

∑
k

λki = 1 (4.16)

where Y 1
i , ..., Y

Ni
i are instrumental processes for Si evolving lognormally according to the

stochastic differential equation:

dY k
i (t) = µiY

k
i (t)dt+ σki (t)Y k

i (t)dZi(t), d〈Zi, Zj〉t = ρijdt (4.17)

with density `ki,t.

For notational simplicity we will assume that the number of base densities Ni will be the

same, N , for all assets. The exogenous correlation structure ρij is given by the symmetric,

positive–definite matrix ρ.
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The most natural tentative choice for the base densities of Eq. (4.9) is

pS(t)(x) =
N∑

k1,k2,···kn=1

λk1
1 · · ·λ

kn
n `

k1,...,kn
1,...,n;t (x), `k1,...,kn

1,...,n;t (x) := p[
Y
k1
1 (t),...,Y knn (t)

]T (x), (4.18)

or more explicitly

`k1,...,kn
1,...,n;t (x) =

1

(2π)
n
2

√
det Ξ(k1···kn)(t)Πn

i=1xi
exp

[
− x̃

(k1···kn)TΞ(k1···kn)(t)−1x̃(k1···kn)

2

]
.

Here, Ξ(k1···kn)(t) is the integrated covariance matrix whose (i, j) element is

Ξ
(k1···kn)
ij (t) =

∫ t

0
σkii (s)σ

kj
j (s)ρijds (4.19)

and, generalizing Eq. (4.14)

x̃
(k1···kn)
i = lnxi − lnxi(0)− µit+

∫ t

0

σ
k2
i
i (s)

2
ds. (4.20)

Then, specializing (4.11), we have the following

Definition 10 The multivariate extension of the LMD model that we call Lognormal Multi

Variate Mixture Dynamics (LMVMD) model is given by Eqs. (4.5) and (4.11) under specifi-

cation (4.15), leading to

dS(t) = diag(µ) S(t) dt+ diag(S(t)) C(t, S(t))B dW (t), (4.21)

Ci(t, x) :=

∑N
k1,...,kn=1 λ

k1
1 ...λ

kn
n σkii (t)Bi `

k1,...,kn
1,...,n;t (x)∑N

k1,...,kn=1 λ
k1
1 ...λ

kn
n `k1,...,kn

1,...,n;t (x)

and therefore, defining consistently with earlier notation a = CB(CB)T ,

a(t, x) =

∑N
k1,...,kn=1 λ

k1
1 ...λ

kn
n V k1,...,kn(t) `k1,...,kn

1,...,n;t (x)∑N
k1,...,kn=1 λ

k1
1 ...λ

kn
n `k1,...,kn

1,...,n;t (x)
(4.22)

where

V k1,...,kn(t) =
[
σkii (t) ρi,j σ

kj
j (t)

]
i,j=1,...,n

. (4.23)

To avoid lengthy acronyms and with a slight abuse of notation, we will refer to the LMVMD

model simply as MVMD, assuming implicitly from now on that we are dealing with the log-

normal case.

Putting notational complexity aside, what we ultimately did is to mix in all possible ways

the component densities for the individual assets, still ensuring consistency with the starting

models for the components assets, and imposing the instantaneous correlation structure ρ at

the level of the constituent densities.

To confirm that with MVMD we have a full model and not just a candidate model, we

need the following theorem.
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Theorem 11 Under the assumption that the volatilities σkii (t) for all i are once continuously

differentiable and uniformly bounded from below and above by two positive real numbers σ̃ and

σ̂ respectively, and that they take a common constant value σ0 for t ∈ [0, ε] for a small positive

real number ε, namely

σ̃ = inf
t≥0

(
min

i=1···n,ki=1,···N
(σkii (t))

)
σ̂ = sup

t≥0

(
max

i=1···n,ki=1···N
(σkii (t))

)
σkii (t) = σ0 > 0 for all t ∈ [0, ε],

and assuming the matrix ρ to be positive definite, the MVMD n-dimensional stochastic differ-

ential equation (4.21) admits a unique strong solution. The diffusion matrix a(t, x) in (4.22)

is positive definite for all t and x.

Proof. Existence and uniqueness of a strong solution follows analogously to the univariate

case [9]. Indeed, from (4.22) we see that a is a weighted average of V ’s in (4.23), with positive

(and state-dependent) weights. Since we are assuming σ’s to be uniformly bounded and ρ’s

to be positive definite, all V matrices are positive definite and such is a. Moreover, all a’s

entries are immediately seen to be bounded above and and below, the diagonal terms being

bounded below by positive quantities. Standard algebra yields

nσ̃2 ≤ ‖a‖2 =

n∑
i,j=1

aij(t, S)2 ≤ n2σ̂2,

so that we have a uniformly bounded continuously-differentiable function (hence locallly Lip-

schitz), and the usual linear growth condition holds. The common value σ0 in an initial

transient interval is needed to simplify the analysis of the component densities limit for t ↓ 0

when the initial conditions for the single–asset densities are taken as Dirac delta functions.

We now check that MVMD is indeed consistent with the mixture of densities models LMD

through which we have specified the dynamics of the single components of S in the beginning.

Proposition 12 For any smooth test function f : R −→ R and any t ≥ 0, the expectation of

f(Si(t)) is the same under the SCMD model (4.1), (4.2) and the MVMD model (4.5), (4.22).

Proof. The proof is trivial: let us start from the MVMD model. It is enough to compute the

multiple integral

E0{f(Si(t))} =
∫
dx1 · · ·

∫
dxi · · ·

∫
dxnf(xi)pS(t)(x)

=
∑N

k1,k2,···kn=1 λk1
1 · · ·λknn

∫
dx1 · · ·

∫
dxi · · ·

∫
dxnf(xi)`

k1,...,kn
1,...,n;t (x)

(4.24)

Integrating out all variables but xi in each of the integrals in the right hand side we have

E0{f(Si(t))} =
∑N

k1,k2,···kn=1 λ
k1
1 · · ·λknn

∫
dxif(xi)`

ki
i,t(xi)

=
∑N

ki=1 λ
ki
i

∫
dxif(xi)`

ki
i,t(xi) =

∫
dxif(xi)pSi(t)(xi)

(4.25)
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where the last integral is the same under SCMD, since by the condition that probability

integrate up to one we know that
∑N

k=1 λ
k
i = 1 for all i.

4.4 Dimensionality issues

The computational scheme shown above ensures full consistency between the single–asset

and the multi–asset formulations of the mixture of lognormal densities’ model. It must be

borne in mind, however, that the number of “base” multivariate densities of the formulation

of Eqs. (4.18)–(4.20) explodes as Nn if we have N base univariate densities for each of the

n underlying assets (more generally, if asset i relies on a single–asset mixture theory based

on Ni densities, the number of multivariate densities entering the superposition amounts to∏n
i=1Ni). This “combinatorial explosion” seems to limit the applicability of the theory to

baskets made of very few assets.

However, as already observed elsewhere [11] two empirical facts appear in the univari-

ate mixture of densities model, that encourage the application of the model to real world

multivariate settings. They are briefly summed up here:

• the number of base densities N needed to reproduce accurately enough the implied

volatility surface for a single asset is typically 2 to 3;

• there appears to be a clear hierarchy between densities composing the mixture, dictated

by the weights λk borne by each density in the superposition (2.4): in fact, typically one

density takes up most of the weight, the second takes up most of the remaining weight

(remember that
∑N

k=1 λk = 1) and the last weighs little compared to the first two.

The consequences of the first issue are evident: the base in the power law Nn is of the

order of two/three. This is not enough to completely solve the explosion problem: taking

N = 3 and n = 8 still implies that in order to compute the price of an European option on

the basket, we should compute 6561 multidimensional integrals.

However, the second point ensures that most of the multivariate coefficients λk1
1 · · ·λknn

result from the product of the smallest λ, thus rendering the corresponding terms in the

expansion of Eq. (4.18) negligible. Given any 0 ≤ κ ≤ 1, a possible solution can therefore be

to approximate Eq. (4.18) through

pS(t)(x) ' pS(t)(x, κ) =
∑

(k1,...,kn)∈I(λ)

 n∏
j=1

λ̃
kj
j

 `k1,...,kn
1,...,n;t (x), (4.26)

I(λ) := {(k1, k2, . . . , kn) : ki ∈ N ∩ [1, N ],
n∏
j=1

λ
kj
j > κ}

κ therefore plays the role of a "cutoff parameter" that ensures that only significant contri-

butions to the multivariate expansion are retained; in order to preserve normalization of the



5 ANALYSIS AND COMPARISON OF DEPENDENCE STRUCTURES 20

resulting density,
n∏
j=1

λ̃
kj
j =

∏n
j=1 λ

kj
j∑

(k1,...,kn)∈I(λ)

∏n
j=1 λ

kj
j

. (4.27)

Note that pS(t)(x) = pS(t)(x, κ = 0), whereas increasing κ decreases the number of base

multivariate densities in the approximate expansion of Eq. (4.27); κ therefore controls the

tradeoff between the accuracy in the approximation and the computational efficiency.

In order to have an estimate of the computational gain due to a choice of κ 6= 0, we can

compute how the volume in n–dimensional space of the region κ <
∏n
i=1 xi ≤ 1 scales for

fixed cutoff as a function of n ≥ 1: the recursive law is

Vn(κ) =

∫ 1

κ
dx1

∫ 1

κ
x1

dx2 · · ·
∫ 1

κ∏n−1
i=1

xi

dxn = Vn−1(κ) +
(−1)n

(n− 1)!
κ (lnκ)n−1 (4.28)

setting V0 = 1 conventionally.

Now, let us neglect the striking feature that there exists a strong hierarchy between com-

ponents in the univariate mixtures of densities (point two above). Suppose instead that we

are in a less favorable case, namely that the density of coefficients λ of the mixture model for

each asset is uniform and equal to ρ (i.e. the distance on the [0, 1] interval between consec-

utive λ is equal to 1
ρ); then, the density of coefficients in the multivariate theory is ρn. An

estimate of the number of multivariate densities involved in the expansion of Eq. (4.27) is

Nn(κ) = Vn(κ)ρn. To give an example, if κ = 5% and ρ = 3, the number of densities has a

maximum at Nn(5%) ' 80 for n ' 8: neglecting the densities that contribute to 5% of the

normalization already yields much less than the full 6581 set of eight variate densities.

5 Analysis and comparison of dependence structures

5.1 Instantaneous correlations in the SCMD and MVMD models

From (4.2) and (4.22)-(4.23) we can compare the expression for the instantaneous local

covariance, or quadratic covariation, between asset returns in the two models, SCMD and

MVMD. Without loss of generality consider a two–dimensional process, namely take n = 2.

To lighten notation we omit the time argument in volatilities σki (t).

Recall that in a SCMD scheme the instantaneous variance for the log S1 asset, say, at

time t would be (see Eq. (4.2))

C̃11(x1, t) =

∑N
k=1 λ1

kσ
(k)2
1 `

(1k)
t (x1)∑N

k=1 λ1
k`

(1k)
t (x1)

(5.1)

and the instantaneous covariance of returns, or quadratic covariation, between the two assets

would be

C̃12(x1, x2, t) =

√√√√∑N
k=1 λ1

kσ
(k)
1 `

(1k)
t (x1)∑N

k=1 λ1
k`

(1k)
t (x1)

√√√√∑N
k=1 λ2

kσ
(k′)
2 `

(2k)
t (x2)∑N

k=1 λ2
k`

(2k)
t (x2)

ρ (5.2)
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to be compared with the expressions

C11(x, x2, t) =

∑N
k,k′=1 λ1

kλ2
k′σ

(k)2
1 `

(kk′)
t (x1, x2)∑N

k,k′=1 λ1
kλ2

k′`
(kk′)
t (x1, x2)

(5.3)

and

C12(x, t) =

∑ν
k,k′=1 λ1

kλ2
k′σ

(k)
1 σ

(k′)
2 ρ `

(kk′)
t (x1, x2)∑ν

k,k′=1 λ1
kλ2

k′`
(kk′)
t (x1, x2)

(5.4)

of MVMD.

An evident difference is that, while in Eq. (5.1) the instantaneous covariance of log S1

depends only on x1 itself, and not on x2, the opposite is true of Eq. (5.3). In other words, the

diffusion matrix is now fully dependent on the components of the multidimensional process.

Moreover, the two equations (5.2) and (5.4) are structurally different. However, there must

be a link between the two: we know that in the limit when the correlation ρ between variables

ln(S1) and ln(S2) vanishes, they will in fact evolve ignoring one another in both models.

By the choice we made at the beginning, `(kk
′)

t is a bivariate lognormal density, i.e. it has

the expression

`
(kk′)
t (x1, x2) = 1

2π
√
α11α22−ρ2α2

12

1
x1x2

exp
[
−1

2 x̃1
2 α22

α11α22−ρ2α2
12
− 2x̃1x̃2

α12ρ
α11α22−ρ2α2

12

+x̃2
2 α11

α11α22−ρ2α2
12

] (5.5)

with x̃1 and x̃2 defined as in Eq. (4.14) and

α11 =
∫ t

0 σ
(k)2

1 (s)ds

α22 =
∫ t

0 σ
(k′)2

2 (s)ds

α12 =
∫ t

0 σ
(k)
1 (s)σ

(k′)
2 (s)ds.

(5.6)

The tetrachoric expansion for the bivariate normal density with correlation ρ reads [48]

n(x1, x2, ρ) = n(x1)n(x2)

∞∑
k=0

ρk

k!
Hk(x1)Hk(x2) (5.7)

(Hk is the kth Hermite polynomial); this, applied to `(kk
′)

t yields

`
(kk′)
t (x1, x2) ' 1√

2πα11

1
x1

exp
[
− 1

2α11
x̃1

2
]

1√
2πα22

1
x2

exp
[
− 1

2α22
x̃2

2
]

+ 1√
2πα11

1
x1

exp
[
− 1

2α11
x̃1

2
]

1√
2πα22

1
x2

exp
[
− 1

2α22
x̃2

2
]
x̃1x̃2

α12
α11α22

ρ+O(ρ2)

(5.8)

and similarly expanding Eqs. (5.3) and (5.4) we get the following
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Proposition 13 SCMD approximates MVMD for weakly correlated systems. The

SMCD and MVMD instantaneous covariance structures, or quadratic co-variations, coincide

first order in the Brownian correlation ρ, namely
C11(x1, x2, t) = C̃11(x1, t) +O(ρ2)

C12(x1, x2, t) = C̃12(x1, x2, t) +O(ρ2).

(5.9)

We also have the following

Corollary 14 Local correlation structure in MVMD and SCMD. We may define the

instantaneous local correlation in a bivariate diffusion model as

ρL(t) :=
d〈S1, S2〉t√

d〈S1, S1〉t d〈S2, S2〉t
.

The instantaneous local correlation structure for SCMD is obviously the constant Brownian

correlation ρL(t) = ρ, whereas for MVMD we have a smaller local correlation, in absolute

value, given by

ρL(t) =
ρ
∑ν

k,k′=1 λ1
kλ2

k′σ
(k)
1 σ

(k′)
2 `

(kk′)
t (x1, x2)√(∑ν

k,k′=1 λ1
kλ2

k′σ
(k)2
1 `

(kk′)
t (x1, x2)

)(∑ν
k,k′=1 λ1

kλ2
k′σ

(k′)2
2 `

(kk′)
t (x1, x2)

) ≤ ρ
(5.10)

where the inequality follows from Schwartz’s inequality.

5.2 Terminal correlation

In both SCMD and MVMD the log–return expectation for component lnS1 in x1 is

E0{ln(S1(t)/S1(0))} =
∑
k

λ1
k

∫ t

0

(
µs −

σ
(k)2
s

2

)
ds (5.11)

and its variance is

Var0{ln(S1(t)/S1(0))} =
∑
k

λ1
k

∫ t

0
σ(k)2
s ds (5.12)

It is immediate to prove the following

Proposition 15 Terminal covariance and correlations in MVMD. The terminal co-

variance of log–returns of S1 and S2 in SCMD is not known in closed form, whereas for

MVMD we have

Cov0{ln(S1(t)/S1(0)), ln(S2(t)/S2(0))} =
∑
kk′

λ1
kλ2

k′ρ

∫ t

0
σ

(k)
1 (s)σ2(k′)(s)ds, (5.13)

giving rise to a terminal correlation between returns up to time t in MVMD given by

ρ̂(t) =
Cov0

{
ln S1(t)

S1(0) , ln
S2(t)
S2(0)

}
√
Var0

{
ln S1(t)

S1(0)

}
Var0

{
ln S2(t)

S2(0)

} =
ρ
∑

kk′ λ1
kλ2

k′
∫ t

0 σ
(k)
1 (s)σ

(k′)
2 (s)ds√

(
∑

k λ1
k
∫ t

0 σ
(k)2
1 (s)ds)(

∑
k′ λ2

k′
∫ t

0 σ
(k′)2
2 (s)ds)

.

(5.14)
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In MVMD, the terminal correlation between assets is, again, a weighted average of terminal

correlations in the various Black–Scholes states upon which the mixture is based.

Note that, instead, an analytical expression for terminal correlation does not exist for the

SCMD, so that any comparison between the two must be done on a numerical basis. This is

a further advantage of MVMD.

5.3 Correlation between asset and local covariance

It can be shown that the MVMD retains a property of single–asset mixture dynamics

models regarding the terminal asset–variance correlation:

Theorem 16 Consider for all i, j the random variable

vij(T ) =
1

T

∫ T

0
aij(t, S(t)) dt,

v(T ) being the ”average percentage covariance” of the process S. Then for all k

Corr0{aij(T, S(T )), Sk(T )} = 0

and

Corr0{vij(T ), Sk(T )} = 0

for all T . At the same time, however, notice that aij(T, S(T )) is a deterministic function of

S, whose components are all correlated with Sk. In the univariate case n = 1, in the LMD

model (2.8), one has the striking result

Corr0{s(T, S(T ))2, S(T )} = 0, Corr0

{∫ T

0
s(t, S(t))2dt, S1(T )

}
= 0,

with

Corr0{ds(t, S(t)), dS(t)} ∈ {+1,−1}.

showing that terminal correlation between assets and squared volatilities is zero despite the

latter being deterministic functions of the former and thus instantaneously perfectly correlated.

The proof follows closely [7], and will be omitted here in the interest of brevity.

Remark 17 Mixure Dynamics Models escape volatility-asset correlation criticism

of common local volatility models. It is worth repeating here a remark already made in

[7]: despite the commonly cited drawback of local volatility models (the perfect instantaneous

correlation between the asset and its local variance), mixture models feature vanishing terminal

correlations between assets and average variances after t = 0. This mitigates to some extent

the objection to local volatility models, at least only for the family of mixture models.
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5.4 Copula function in MVMD

Proposition 18 The copula function associated to MVMD (4.21) can be written as

C(u1, ..., un) =
N∑

k1,...,kn=1

λk1
1 ...λ

kn
n ΦM

(
h1(F−1

S1(t)(u1)), ..., hn(F−1
Sn(t)(un))

)
(5.15)

where ΦM denotes the standardized n-dimensional normal distribution function with correla-

tion matrix M given by

Mi,j =
Ξ

(k1···kn)
ij (t)√

Ξ
(k1···kn)
ii (t) Ξ

(k1···kn)
jj (t)

(5.16)

for i, j ∈ {1, ..., n}, where Ξ has been defined in (4.19). F−1
Si(t)

is the inverse of the cumulative

distribution function FSi(t) of Si(t) given by :

FSi(t)(x) =
N∑
ki=1

λkii Φ

 1√
Ξ

(k1,...,kn)
ii (t)

(
ln

x

Y ki
i (0)

− µit+
1

2
Ξ

(k1,...,kn)
ii (t)

) , (5.17)

where Φ is the usual standard normal cumulative distribution function, and hi is given by

hi(x) =
1

V ki
i (t)

(
ln

x

Y ki
i (0)

− µit+
1

2
Ξ

(k1,...,kn)
ii (t)

)
. (5.18)

Proof. We start by using the characterizaton (4.18) of the multivariate law of MVMD, where

each Y ki
i evolves lognormally according to the SDE (4.17). Using Corollary on page 47 of

Nelsen [44], we see that the MVMD copula is

C(u1, ..., un) =
N∑

k1,...,kn=1

λk1
1 ...λ

kn
n F[Y

k1
1 (t),...,Y knn (t)]T

(
F−1
S1(t)(u1), ..., F−1

Sn(t)(un)
)

(5.19)

where F
[Y
k1
1 (t),...,Y knn (t)]T

is the cumulative distribution function of the vector [Y k1
1 (t), ..., Y kn

n (t)]T .

Because F
[Y
k1
1 (t),...,Y knn (t)]T

is a cumulative distribution function and each Y ki
i evolve log-

normally, it follows that

∀ (x1, ..., xn) ∈ Rn, F
[Y
k1
1 (t),...,Y knn (t)]T

(x1, ..., xn) = ΦM (h1(x1), ..., hn(xn)) (5.20)

from which the copula’s expression follows.

Corollary 19 The MVMD copula is a mixture of multivariate copulas that are the standard-

ized multivariate normal distribution with correlation matrix M given by (5.16) and marginals

G1, ..., Gn defined as follows :

Gi(x) = FSi(t)

[
exp

(√
Ξ

(k1,...,kn)
ii (t) x+ ln(Y ki

i (0)) + µit−
1

2
Ξ

(k1,...,kn)
ii (t)

)]
. (5.21)



5 ANALYSIS AND COMPARISON OF DEPENDENCE STRUCTURES 25

Proof. ΦM is the standardized n–dimensional normal distribution function with correlation

matrix M given by (5.16).

We prove now that each ΦM

(
h1(F−1

S1(t)(u1)), ..., hn(F−1
Sn(t)(un))

)
is a copula.

Because ΦM is an n- dimensional distribution function, we only need to prove that each

hi ◦F−1
Si(t)

is inverse of a univariate distribution function and then the result is deduced using

Sklar’s theorem. To this end fix an i ∈ {1, · · · , n} and let Gi be the function from R to [0, 1]

given by

Gi(x) = FSi(t)

[
exp

(√
Ξ

(k1,...,kn)
ii (t) x+ ln(Y ki

i (0)) + µit−
1

2
Ξ

(k1,...,kn)
ii (t)

)]
.

Gi is a distribution function. Indeed, Gi is increasing as composition of increasing functions,

limx→−∞Gi(x) = limx→0 FSi(t)(x) = 0, limx→+∞Gi(x) = limx→+∞ FSi(t)(x) = 1, and G−1
i =

hi ◦ F−1
Si(t)

.

5.5 Rank correlations for normal mixtures

We may also need a synthetic rank correlation measure for the statistical dependence

between two assets returns, rather than the whole copula function. Indeed, we will use this

quantity in our subsequent tests. To this end, we now compute Kendall’s tau for a bivariate

distribution that is a mixture of two bivariate normal distributions. The proof of the following

proposition is straightforward.

Proposition 20 Let us consider a bivariate random variable (X,Y ) defined as a mixture of 2

bivariate Gaussian random variables (Xa, Ya) and (Xb, Yb). λ denotes the mixture coefficient.

µXa (resp. µYa, µXb and µYb) denotes the mean of Xa (resp. Ya, Xb and Yb). σXa (resp.

σYa , σXb and σYb) denotes the standard deviation of Xa (resp. Ya, Xb and Yb). ρa (resp. ρb)

denotes the correlation between Xa and Ya (resp. Xb and Yb).

Kendall’s tau for (X,Y ) is given by:

τ(X,Y ) =
2

π

[
λ2 arcsin (ρa) + (1− λ)2 arcsin (ρb)

]
+ 2λ(λ− 1)

+ 4λ(1− λ) [Φρ(mX ,mY ) + Φρ(−mX ,−mY )] , (5.22)

where

mX =
µXa − µXb√
σ2
Xa

+ σ2
Xb

, mY =
µYa − µYb√
σ2
Ya

+ σ2
Yb

,

ρ =
ρb σXb σYb√

σ2
Xa

+ σ2
Xb

√
σ2
Ya

+ σ2
Yb

+
ρa σXa σYa√

σ2
Xa

+ σ2
Xb

√
σ2
Ya

+ σ2
Yb

and Φρ is the cumulative distribution function of the bivariate normal variable with correlation

coefficient ρ, with zero means and unit variances.
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6 Markovian projections

In this section we provide two Markovian projection results. First, we introduce a model

that we call Multivariate Uncertain Volatility Model (MUVM) and we prove that MVMD is

a multivariate Markovian projection of MUVM. Secondly, we study the Markovian projection

for the basket price process, deriving a consistency mixture result between the multivariate

distribution and the basket dynamics for geometric baskets.

6.1 MVMD as projection of MUVM

We now introduce the Multivariate Uncertain Volatility Model (MUVM). This is a model

specified through a system of SDEs of the form

dξi(t) = µi ξi(t)dt+ σIii (t) ξi(t)dZi(t), i = 1, ..., n, (6.1)

where each Zi is a standard one dimensional Brownian motion, µi are constants, σI :=

[σI11 , . . . , σ
In
n ]T is a random vector independent of Z and representing uncertain volatilities.

We assume that the assets ξi are pairwise correlated through the driving Brownian motions

covariation. To be more specific we assume that d 〈Zi, Zj〉t = ρi,jdt. What is actually random

in σI are the indices I1, . . . , In, in the different σI components, each if which can take values

1, 2, . . . , N with different probabilities. I1, . . . , In are assumed to be mutually independent.

More specifically, each σIii takes values in a set of N deterministic functions σki with

probability λki (σki and λki as defined in the previous section). We thus have, for all times in

(ε,+∞), with small ε,

(t 7−→ σIii (t)) =


(t 7−→ σ1

i (t)) with Q probability λ1
i

(t 7−→ σ2
i (t)) with Q probability λ2

i
...

(t 7−→ σNi (t)) with Q probability λNi

We assume that all the above volatilities for asset i have a common time-path from 0 to ε/2,

and then from the reached common value σi(ε/2) at time ε/2 each time-function connects to

the relevant σki (ε) to continue then as σki . This is an initial regularization that is needed to

make the dynamics smooth and ensure existence and uniqueness of solutions for the related

equation. If ε is small and the volatilities are smooth in time then we may neglect the initial

regularization when computing expectations. We also assume that randomness of the time

functions (or of the random indices I) is realized at time ε/2. Hence the uncertainty is quite

short-lived and after that every asset follows a geometric Brownian motion. For an analogous

analysis of the univariate case and a discussion see [7].

Remark 21 MUVM vs MVMD as financial models. This is a good point to mention

that the feature we just mentioned makes MUVM a quite stylized and debatable model, and in-

deed MVMD, whose link with MUVM we are going to clarify now, is definitely more interesting
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and well behaving. This is why we stress that MUVM is interesting both as a mathematical tool

to originate MVMD and as a tool to clarify a number of features on dependence in MVMD,

but as pricing and hedging model per se MVMD remains superior in terms of smoothness,

consistency and dynamics. While we support the use of MVMD, we do not recommend the

use of MUVM as a standalone model.

Lemma 22 (Gyöngi’s Lemma [29]). Let us consider an n-dimensional stochastic process

(ξ
t
)t≥0 starting from 0 with the Itô form:

dξ
t

= β(t, ξ
t
)dt+ v(t, ξ

t
)dW t, (6.2)

whereW is a standard d-dimensional Brownian motion, β is an n-dimensional bounded process

and v is an n × d bounded process with vvT being uniform positive definite. There exists a

Markovian n-dimensional process (Xt)t≥0 which has the same distribution as (ξ
t
)t≥0 at each

fixed single time t, and which is a weak solution to the following stochastic differential equation:

dXt = µ(t,Xt)dt+ σ(t,Xt)dW t, X0 = 0, (6.3)

where

σσT (t, x) = E
[
vvT |ξ

t
= x

]
, µ(t, x) = E

[
β|ξ

t
= x

]
. (6.4)

X is called the Markovian projection (in dimension n) of ξ.

Theorem 23 The MVMD model is a Markovian projection in dimension n of the MUVM.

Proof. The system of SDEs (6.1) can be written in the following manner

dξ(t) = diag(µ) ξ(t) dt+ diag(ξ(t)) AI(t) dW (t) (6.5)

with W a vector of n independent standard Brownian motions and AI(t) the Cholesky de-

composition of the covariance matrix ΣI
i,j(t) := σIii (t)σ

Ij
j (t) ρij . This is our process (6.2) in

Lemma 22.

The MVMD model given by (4.21) can be written as

dS(t) = diag(µ) S(t) dt+ σ(t, S(t)) dW (t) (6.6)

where σ(t, S(t)) := diag(S(t)) C(t, S(t))B.

The Markovian process S verifies: (i) S and ξ have identical one-dimensional (in time)

distributions, i.e. they have identical distributions at every single time t conditional on the

common initial condition at time 0. (ii) The following equality holds:

E[vvT |ξ(t) = x] = σ σT (t, x). (6.7)
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To show this, denote v(t, ξ(t)) = diag(ξ(t))AI(t) so that

E[vvT |ξ(t) ∈ dx] =
E[diag(ξ(t)) Σ diag(ξ(t)) 1{ξ(t)∈dx}]

E[1{ξ(t)∈dx}]
. (6.8)

Calculate the probability density of ξ as

E[1{ξ(t)∈dx}] = E

 N∑
k1,...,kn=1

1{I1=k1,...,In=kn}1{ξ(t)∈dx}


=

N∑
k1,...,kn=1

λk1
1 ...λ

kn
n `k1,...,kn

1,...,n;t (x) dx

and notice it is the same as the density for MVMD, where we have used independence of Ii
of each other and of W to factor the expectation of indicators, and similarly

E[diag(ξ(t)) Σ diag(ξ(t)) 1{ξ(t)∈dx}] =

diag(x)

N∑
k1,...,kn=1

λk1
1 ...λ

kn
n V k1,...,kn(t) `k1,...,kn

1,...,n;t (x) diag(x) dx

(6.9)

where V had been defined in (4.23).

A substitution in (6.8) gives

E[vvT |ξ(t) = x] = σ σT (t, x).

We conclude by invoking Gyöngi’s Lemma 22.

Corollary 24 The process ξ has the same distribution function as the Markovian process S

for any time t. Then the MUVM can be used instead of the MVMD model to price European

options if convenient.

Remark 25 The MUVM features the following interesting properties: explicit dynamics,

explicit density function, semi-analytic formulas for European-style derivatives, and semi-

analytic formulas for early exercise derivatives (eg. American Options). The last property

follows via an iterated expectation, with the internal filtration referencing information at time

ε/2, and is not shared by the Markovian projection MVMD. See again [7] for a discussion of

the univariate case.

We conclude the analysis of the MUVM model with the following Corollary and Remark.

Corollary 26 The MUVM has the same copula function as the MVMD model.

Proof. This is an immediate consequence of the Markovian projection property.
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Remark 27 Revisiting the asset- instantaneous covariation decorrelation in MVMD.

We now further comment on the MVMD result on correlation between assets and their instan-

taneous variances (squared volatilities) and covariances. As we mentioned in the introduction

and as we have seen in detail in Theorem 16, in MVMD we have zero correlation between

assets and instantaneous covariances. This is surprising at first sight, since all instantaneous

covariances are deterministic functions of the correlated joint assets. However, the result be-

comes more intuitive when thinking about the relationship with MUVM. The zero correlation

is the best approximation MVMD can attain for its non-Markovian originator MUVM, where

instantaneous covariations and assets Brownian shocks are fully statistically independent.

6.2 Markovian projection for the geometric basket dynamics

Consider now the geometric basket (3.2) and set w′i := wi/(w1 + . . . + wn), so that we

write

Bt =

n∏
i=1

S
w′i
i (6.10)

For notation convenience we will omit the index in w′, writing simply w. w is the row vector

of weights in the basket. The problem we face now is the following. We may consider the

dynamics of B in the MVMD model. Such dynamics if clearly non-Markovian with respect

to the filtration generated by B itself. However, we may attempt a Markovian projection by

trying to find the local volatility of the basket such that the basket marginal distributions are

the same as in the original MVMD model. The true local volatility for the basket is easily

obtained by isolating the diffusion coefficient in d lnBt = w d ln(S(t)), where dS follows (4.21),

and is given by

σB(t, S) = w C(t, S)Bρ

where we added the index ρ to distinguish the factor matrix B in BBT = ρ from the bas-

ket. Since the basket B is one dimensional, its distribution does not change if we replace

the vector σB(t, S)dW with
√
σB(t, S) σB(t, S)TdW1 where W1 is a scalar standard Brow-

nian motion. This means that we can take as true squared basket volatility the quantity

σB(t, S) σB(t, S)T =: σ1
B(t, S)2 leading to

σ1
B(t, S)2 = w a(t, S)wT =

n∑
i,j=1

ai,j(t, S)wiwj .

We may now consider the Markovian projection of the true basket dynamics with volatility

σ1
B into Markovian one-dimensional diffusions. This is done via Gyöngi’s lemma above. We

assume that the basket drift is not a problem, as it is generally driven by no-arbitrage con-

straints. We rather focus on the volatility. The local volatility formula from Gyöngi’s lemma

is

σ2
B,loc(t, B) = E{σ1

B(t, S(t))2|B(t) = B} =
E{σ2

B(t, S(t))1{Bt∈dB}}
E{1{Bt∈dB}}

. (6.11)
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We will now derive a closed form solution expression for this formula in detail, with interesting

implications for the final result. To compute (6.11), we will first focus on the denominator,

and then on the numerator. The calculation of the expectation for the denominator solves all

the technical issues for a straightforward expression for the numerator, so that it is indeed

best starting from the denominator. Remembering that the multivariate density for S(t) in

MVMD is a mixture of multivariate lognormals as in (4.18), we have

E
{

1{
∏
i Si(t)

wi∈dB}

}
=

∫
dy 1{

∏
i y
wi
i ∈dB}

N∑
k1,k2,···kn=1

λk1
1 · · ·λ

kn
n `

k1,...,kn
1,...,n;t (y) (6.12)

Each of these integrals is performed on a multivariate lognormal `k1,...,kn
1,...,n;t (y). For a generic

multi–index k1, . . . , kn in the sum (omitted in the following for ease of notation) the cor-

responding term can be recast as an integral over a standard n-dimensional Gaussian with

covariance matrix Ξ defined earlier: denoting by Fi(t) the t–forward asset price, and defining

xi = ln Si
Fi(t)

+ Ξii
2∫

dx 1

{∏
i

Fwii exp

[
−1

2

∑
i

wiΞii +
∑
i

wixi

]
∈ dB

}
n(x; Ξ) =

(
− d

dB

∫
DB

dxn(x; Ξ)

)
dB

(6.13)

where

DB = {x ∈ Rn |
∏
i

Fwii exp

[∑
i

wixi

]
−B > 0} = {x ∈ Rn |w · x > γB}; (6.14)

n(x; Ξ) is the multivariate normal distribution density with zero mean and covariance matrix

Ξ, calculated at x, and γB is defined as

γB = ln

(
B∏

i F
wi
i exp

[
−1

2

∑
iwiΞii

]) .
Note that γB contains all the dependence on the basket value. The term to be differentiated

in (6.13) is nothing but the integral of a multidimensional Gaussian over a half space (the

domain DB) so it is bound to be computed easily.

To calculate it we need a few changes of variable which are purely linear–algebraic. Re-

member that

n(x; Ξ) =
1

(2π)
n
2

√
det Ξ

exp[−1

2
xTΞ−1x];

diagonalize Ξ = STΛS, with Λ diagonal and S unitary.

Let y = Sx. Then, (6.13) becomes

1

(2π)
n
2

√
det Ξ

∫
D̃B

dy exp[−1

2
yTΛ−1y]

where now

D̃B = {y ∈ Rn |wTSTx > γB}.
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Now let z =
√

Λ−1y; then the above integral becomes (|| || is the Euclidean norm)
1

(2π)
n
2

∫
D̄B

dz exp[−1
2 ||z||

2],

D̄B = {z ∈ Rn |wTST
√

Λz > γB}.

Denote by Γ any orthonormal matrix such that ΓwTST
√

Λ = ||wTST
√

Λ||ên , ên =

(0, 0, . . . 1)T and define finally ξ = Γz. The integral to be calculated now becomes
1

(2π)
n
2

∫
∆B

dξ exp[−1
2 ||ξ||

2],

∆B = {ξ ∈ Rn | ||wTST
√

Λ|| ξn > γB}.

(6.15)

(6.15) finally becomes∫ +∞

γB
||wT ST

√
Λ||

dξn
1√
2π

exp[−1

2
ξ2
n] = 1− Φ

(
γB

||(wTST
√

Λ||

)
,

Φ being a one–dimensional cumulative normal; therefore, by differentiating with respect to

B, (6.13) finally becomes the simple expression

n

(
γB

||
√

ΛSw||

)
1

||
√

ΛSw||
1

B

with n denoting the standard one–dimensional Gaussian density.

Note that

||
√

ΛSw||2 =
∑
i,j

wiwjΞij

is nothing but the variance of B in (6.10).

Restoring the k–indexation of the MVMD, with k = (k1, . . . , kn), the denominator (6.12)

in (6.11) can be written

1

B

∑
k

λk1
1 · · ·λ

kn
n n

 γ
k
B√∑n

i,j=1wiwjΞ
(k)
ij (t)

 1√∑n
i,j=1wiwjΞ

(k)
ij (t)

,

which reveals itself as a linear combination of lognormal densities in B.

We can now move to calculating the numerator in (6.11), namely E{σ1
B(t, S(t))21{Bt∈dB}} =

=

∫
dy 1

{∏
i

ywii ∈ dB

}
n∑

i,j=1

wiwjaij(t, y)
∑
k

λk1
1 · · ·λ

kn
n `

k1,...,kn
1,...,n;t (y)

=

n∑
i,j=1

wiwj
∑
k

λk1
1 · · ·λ

kn
n V

(k)
ij (t)

∫
dy 1

{∏
i

ywii ∈ dB

}
`k1,...,kn
1,...,n;t (y)



6 MARKOVIAN PROJECTIONS 32

where we have used (4.22) and we have the same type of integrals as before. The numerator

then becomes

E{σ1
B(t, S(t))21{Bt ∈ dB}} =

n∑
i,j=1

wiwj
∑
k

λk1
1 · · ·λ

kn
n V

(k)
ij (t)n

(
γ

(k)
B

||
√

Λ(k)S(k)w||

)
1

||
√

Λ(k)S(k)w||
dB

B

=
dB

B

∑
k

λk1
1 · · ·λ

kn
n n

(
γ

(k)
B

||
√

Λ
(k)
S(k)w||

)
1

||
√

Λ(k)Sw||

n∑
i,j=1

wiwjV
(k)
ij (t)

We have thus proven the following

Theorem 28 Markovian projection of the MVMD basket dynamics. The squared

local volatility for geometric basket dynamics associated with the MVMD model is given by

σ2
B,loc(B, t) =

∑
k λ

k1
1 · · ·λknn n

(
γ

(k)
B√∑n

i,j=1 wiwjΞ
(k)
ij (t)

)
1√∑n

i,j=1 wiwjΞ
(k)
ij (t)

∑n
i,j=1wiwjV

(k)
ij (t)

∑
k λ

k1
1 · · ·λ

kn
n n

(
γ

(k)
B√∑n

i,j=1 wiwjΞ
(k)
ij (t)

)
1√∑n

i,j=1 wiwjΞ
(k)
ij (t)

,

(6.16)

which is the analogous for B of the original univariate LMD model volatility s in (2.8). In

particular, remembering the expression for γ(k)
B , we recognize a locally weighted average of the

basket instantaneous variance calculated over the many Black–Scholes states that the mixture

is based upon. There is therefore a mixture consistency result at work: whenever we consider a

geometric basket on a MVMD model, the Markovian projection of this basket dynamics onto a

univariate diffusion yields precisely the one-dimensional LMD model that served as inspiration

for MVMD. The same result does not hold for arithmetic baskets.

In this theorem we turned the usual reasoning on its head: we know that under the assump-

tion that the densities of the geometric basket B are mixtures of lognormals with constant

coefficients λk, B’s local variance will indeed take the form (6.16); but under the usual as-

sumptions there exists a unique strong solution for the corresponding SDE as we have seen

in Theorem 4.

In the case of an equity index, or for that matter any other index based on constant

weights, the alternative possibilities to construct the local volatility are then

• to approximate the index with the corresponding geometric basket throughout the cal-

culation, or

• to use (6.16) for the local volatility of the geometric basket as a proxy for the local

volatility of the index, of course correcting B for the mismatch between the arithmetic

and the geometric average at time 0, à la Kemna–Vorst [38].
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7 Option pricing

Suppose that S represents the vector of underlying asset prices composing the underly-

ing B in Eq. (3.1) or Eq. (3.2). A conventional scheme for pricing a plain option on the

underlying basket in a way fully consistent with individual local volatilities would require,

according to a SCMD type approach, a sufficiently fine time discretization coupled with a

Monte Carlo integration with instantaneous covariance given by Eq. (4.2) (or by more com-

plicated discretization schemes for SDEs, see e.g. Milstein’s [39]). Our MVMD model allows

instead to compute the option price (3.3) through a set of single–step Monte Carlo integrations

(one integration for each combination (k1, · · · , kn)). Indeed since the terminal distribution of

S(T ) is known, the MVMD model allows to evaluate simple claims on a basket without time

discretization. Thus, using the MVMD approach, one can reduce the computational time

significantly. But the actual consequences of this approach are wider, in that they affect the

many–body dynamics in a deeper way.

Remembering (4.18), it is straightforward to obtain the model option prices in terms of the

option prices associated to the instrumental processes (momentarily thought of as underlying

assets) (Y k
i )i=1,··· ,n,k=1,··· ,N .

7.1 Option on an arithmetic basket

Let us begin by considering an option of European type on the basket of securities of Eq.

(3.1) with maturity T and strike K. The risk free interest rate is denoted by r and is assumed

to be constant for simplicity. Then, if ω = 1 for a call and ω = −1 for a put, the option value

(3.3) can be written as

Π = e−rT
∫
Rn

[
ω(

n∑
k=1

wkxk −K)

]+

pS(T )(x1, . . . , xn)dx1 . . . dxn (7.1)

where pS(T ) is the joint density of the random variables S1(T ),. . ., Sn(T ) and is given by Eqs.

(4.18) –(4.20). Finally we have

Π =
N∑

k1,...,kn=1

λk1
1 . . . λknn Θk1,...,kn (7.2)

where Θk1,...,kn denotes the European option price associated to the basket
∑n

i=1wiY
ki
i .

When the value of the basket (3.1) contains short positions as well then we are dealing

with spread options.
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7.2 Spread option

The simplest spread option is an option of the European type on the difference of two

underlying assets. The spread is naturally defined as the instrument

B(t) = S2(t)− S1(t), t ≥ 0. (7.3)

Buying such a spread is buying S2 and selling S1.

The price of the simplest spread option is a particular case of (7.2) and equal to

Π =
N∑

i,j=1

λi1λ
j
2 Θi,j (7.4)

where Θi,j denotes the European spread option price associated to the instrumental spread

Y j
2 − Y i

1 .

For all i, j = 1, . . . , N , Y i
1 and Y j

2 are log-normal underlying assets evolving according

to the SDE (4.17). Let us denote the correlation coefficient between the two assets by ρ. It

is possible to give a Black–Scholes type formula for the price of the European option with

maturity T associated to the spread Y j
2 − Y i

1 when the strike is K = 0, provided that the

drifts µ1 = µ2 = r match the short interest rate r and the volatilities σi1 and σj2 are constant

in time. This is of course Margrabe’s 1978 formula [42]. It cannot be extended to the general

case K 6= 0 (but the price in that case can easily be computed by a one–dimensional numerical

integration.) Besides the fact that the case K = 0 leads to a solution in fully closed form, it

has also a practical appeal to the market participants. Indeed, it can be viewed as an option

to exchange one asset for another at no additional cost.

Proposition 29 When the strike K = 0, the European spread option price is also the price

of an option to exchange one asset S1 for another S2, and under the MVMD model is given

by Formula (7.4), where Θi,j is given by

Θi,j = ω
[
xj2Φ(ωdij1 )− xi1Φ(ωdij0 )

]
, (7.5)

where

dij1 =
ln(xj2/x

i
1)

σij
√
T

+
1

2
σij
√
T , dij0 =

ln(xj2/x
i
1)

σij
√
T
− 1

2
σij
√
T

and xi1 = Y i
1 (0), xj2 = Y j

2 (0), (σij)2 = (σi1)2 − 2ρσi1σ
j
2 + (σj2)2,Φ is the standard normal

cumulative distribution function, T the maturity, and ω = 1 for a call and ω = −1 for a put.

The proof is straightforward.
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7.3 Option on a geometric basket

Let us consider an option of European type on the basket of securities of Eq. (3.2) with

maturity T and strike K. The short-term interest rate is denoted by r and is assumed to be a

deterministic constant. Then, if ω = 1 for a call and ω = −1 for a put, the option value (3.3)

can be written as

Π = e−rT
∫
Rn

{
ω
[
(xw1

1 · · ·x
wn
n )

1
w1+···+wn −K

]}+

pS(T )(x)dx1 · · · dxn (7.6)

where pS(T ) is the joint density of the random variables S1(T ), · · · , Sn(T ) and is given by Eqs.

(4.18) –(4.20). We have that

Π =

N∑
k1,··· ,kn=1

λk1
1 · · ·λ

kn
n Γk1,··· ,kn (7.7)

where Γk1,··· ,kn denotes the European option price at initial time t = 0 associated to the

instrumental geometric-average basket
(
Y
k
w1
1

1 · · ·Y kwnn
n

) 1
w1+···+wn

. Since this geometric average

is based on lognormal instrumental variables it is itself lognormal, and leads to Black Scholes

type closed form formulas for the Γ terms. Let us now consider the particular case n = 2.

The European option on weighted geometric average is then equal to

Π =
N∑

i,j=1

λi1λ
j
2 Γi,j (7.8)

where Γi,j denotes the European option price at initial time t = 0 associated to the instru-

mental geometric basket
(
Y iw1

1 Y jw2

2

) 1
w1+w2 . Recall that Y i

1 and Y j
2 , ∀i, j = 1, · · · , N are

lognormal underlying assets evolving according to the SDE (4.17). If the drifts µ1 = µ2 = r

and the volatilities σi1 and σj2 are constants in time, the price of the European Call option

with maturity T associated to the basket
(
Y iw1

1 Y jw2

2

) 1
w1+w2 when K = 0 is given by a closed

form formula.

Proposition 30 In the case n = 2 and with strike K = 0, the price of a European Call option

on a geometric basket under the MVMD model is given by Formula (7.8) where Γi,j is given

by

Γi,j = exp(−rT )Y i
1 (0)$w1Y j

2 (0)$w2 exp
{[

(r − 1
2σ

i2
1 )w1 + (r − 1

2σ
j2
2 )w2

]
$T+

1
2

[
σi21 w

2
1 + σj22 w

2
2 + 2ρσi1σ

j
2w1w2

]
$2T

} (7.9)

where $ = 1
w1+w2

and ρ denotes the correlation coefficient between Y i
1 and Y j

2 .

Proof. To ease the notation we shall omit indices i, j.
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Γ = e−rT E
{

[Y1(T )w1Y2(T )w2 ]
1

w1+w2

}
= e−rTY1(0)$w1Y2(0)$w2e[(r−

1
2
σ2

1)w1+(r− 1
2
σ2

2)w2]$T E
[
eγZ
] (7.10)

where Z is a standard normal variable and

γ =
√[

σ2
1w

2
1 + σ2

2w
2
2 + 2ρσ1σ2w1w2

]
$2T .

The result follows by using E(eγZ) = eγ
2/2.

Remark 31 The derivations (7.2) and (7.7) show that a dynamics leading to an n-dimensional

density for the vector of underlying asset prices that is the convex combination of n-dimensional

basic densities induces the same convex combination among the corresponding option prices.

Furthermore, due to the linearity of the derivative operator, the same convex combination

applies to option Greeks such as delta or gamma.

Remark 32 The results of this section can be easily extended to hold in the case of shifted

lognormal densities [11].

8 Numerical Results: SCMD vs MVMD

In this section we present some results for the pricing of three typical options: European

Call on a weighted arithmetic average containing only long positions, European Call Spread

option (long and short positions) and European Call option on a weighted geometric average

of a basket. We investigate these options in the SCMD and MVMD frameworks in order

to compare them. The performance of our approach is investigated by comparing the prices

under the two models.

For numerical sake, we focus on the two dimensional case n = 2 where each individual

component of the asset is modeled with a mixture of two lognormal densities, N = 2. We

assume also that the short-term interest rate r is deterministic and constant throughout the

life of the option (i.e., until the maturity date T ). Then, from Eq. (3.3), the European Call

prices tested in this section are given by the risk–neutral expectation

Π = e−rTE
[
(BT −K)+] (8.1)

where B is the underlying basket instrument at maturity T.
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8.1 Arithmetic basket and spread options

The European Call prices tested in this section are given by (8.1) where B is given by

(3.1) with (wk)k=1,2 > 0 for the option on a weighted arithmetic average containing only long

positions. We call this option "Vanilla basket". Instead, B is given by Eq. (7.3) for the

spread option.

Note that, under MVMD, the vanilla basket option price is given by Eq. (7.2) with

n = N = 2 and the spread option price is given by Eq. (7.4) with N = 2.

The parameters of the test baskets are given in Table 1. The interest rate r is 5%. The

time to maturity (T ) is one year. The strike K takes the values K = 0.7, K = 1 and K = 1.3.

In order to obtain the fair price of the options under SCMD, 100,000 Monte Carlo runs are

performed and an Euler scheme with time step ∆t = 1/360 is applied. The first comparison

uses a correlation ρ = 0.6. The results are given in Table 2. The second comparison is done

for a correlation ρ = 1. The results are shown in Table 3. The standard error of the prices is

given in parentheses.

Vanilla Basket Spread

Initial prices ([S1(0), S2(0)]) [1,1] [0.7,1.7]

drift ([µ1,µ2]) [5 %,5 %] [5 %,5 %]

[λ1
1,λ2

1] [0.6,0.4] [0.6,0.4]

[λ1
2,λ2

2] [0.7,0.3] [0.7,0.3]

[σ1
1,σ2

1] [0.3,0.2] [0.2,0.1]

[σ1
2,σ2

2] [0.25,0.35] [0.4,0.5]

weights [w1, w2] [0.5,0.5] [-1,1]

Table 1: Basket option parameters
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K = 0.7

Vanilla Basket Spread

MVMD 0.3380 (0.0007) 0.4413 (0.0019)

SCMD 0.3386 (0.0007) 0.4365 (0.0019)

K = 1

MVMD 0.1202 (0.0005) 0.2868 (0.0017)

SCMD 0.1200 (0.0005) 0.2833 (0.0017)

K = 1.3

MVMD 0.0290 (0.0003) 0.1810 (0.0014)

SCMD 0.0296 (0.0003) 0.1836 (0.0014)

Table 2: European Call on Basket Prices and Standard Errors for ρ = 0.6

K = 0.7

Vanilla Basket Spread

MVMD 0.3404 (0.0008) 0.4199 (0.0018)

SCMD 0.3411 (0.0008) 0.4193 (0.0019)

K = 1

MVMD 0.1307 (0.0006) 0.2611 (0.0016)

SCMD 0.1305 (0.0006) 0.2647 (0.0016)

K = 1.3

MVMD 0.0364 (0.0003) 0.1661 (0.0013)

SCMD 0.0373 (0.0003) 0.1637 (0.0013)

Table 3: European Call on Basket Prices and Standard Errors for ρ = 1

In Proposition 20 we derived a closed form formula (5.22) for Kendall’s tau in a normal

mixture. This formula can be easily generalized to compute Kendall tau for the MVMDmodel.

Through this formula (or alternatively simulation) for MVMD and simulation for SCMD, we

now compare Kendall’s tau for MVMD and SCMD when the parameters are assumed to be

the same.

The initial parameters we use are given in Table 4.

Computing Kendall’s tau under SCMD requires the choice of a discretization time step

∆t, and the generation of discrete time samples S(t0 + j∆t) for j = 0, 1, ...,M with t0 = 0

and t0 +M∆t = T. The discretization time steps ∆t should be taken with great care to make

sure that the numerical scheme used to generate the discrete samples produce reasonable

approximations. A good choice is an Euler scheme over equal time steps of size ∆t = 1/360.

The first comparison uses ρ = 0.6. The results are given in Table 5. The next comparison
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S1(0) = 1 S2(0) = 1

µ1 = 5 % µ2 = 3 %

σ1
1 = 0.3 σ1

2 = 0.25

σ2
1 = 0.2 σ2

2 = 0.35

λ1
1 = 0.6 λ1

2 = 0.7

λ2
1 = 0.4 λ2

2 = 0.3

Table 4: Initial parameters

is done for ρ = −0.6 . The results are given in Table 6. The final comparison uses ρ = 1. The

results are shown in Table 7. The standard error value is given in parentheses.

Maturity Exact τ for MVMD τ simulation under MVMD τ simulation under SCMD

1 y 0.4016 0.4012 (0.0004) 0.4092 (0.0004)

5 y 0.3977 0.3976 (0.0004) 0.4093 (0.0004)

10 y 0.3929 0.3930 (0.0004) 0.4090 (0.0004)

Table 5: Kendall’s tau (τ) under MVMD vs SCMD and Standard Errors (in parentheses) for

ρ = 0.6.

Maturity Exact τ for MVMD τ simulation under MVMD τ simulation under SCMD

1 y -0.4016 -0.4018 (0.0004) -0.4084 (0.0004)

5 y -0.3976 -0.3976 (0.0004) -0.4091 (0.0004)

10 y -0.3927 -0.3928 (0.0004) -0.4090 (0.0004)

Table 6: Kendall’s tau (τ) under MVMD vs SCMD and Standard Errors (in parentheses) for

ρ = −0.6.

We see that there is more terminal dependence in absolute value in SCMD than in MVMD.

In the SCMD Kendall’s tau does not change with the maturity, whereas, its absolute value

goes down significantly as the maturity increases in the MVMD model. The relative difference

of Kendall’s tau between SCMD and MVMD is increasing with the maturity. It is relatively

limited when ρ = ±0.6 and we could see more of difference when ρ = 1. We will analyze this

more in depth in further work, but this result is reminiscent of our correlation analysis in our

earlier Corollary 14.

Despite this difference, the basket option price is not very sensitive to the difference

between the two models, and indeed Table 3 shows that the prices obtained by the two models

are close. Table 2 shows that this feature is maintained for a correlation ρ = 0.6. Notice that
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Maturity Exact τ for MVMD τ simulation under MVMD τ simulation under SCMD

1 y 0.9109 0.9112 (0.0002) 0.9940 (0.00004)

5 y 0.8893 0.8894 (0.0002) 0.9949 (0.00004)

10 y 0.8650 0.8648 (0.0002) 0.9950 (0.00004)

Table 7: Kendall’s tau (τ) under MVMD vs SCMD and Standard Errors (in parentheses) for

ρ = 1.

the prices obtained by the two models when dealing with a basket option with long positions

are closer than in the case of a spread option. The price of the basket option with long

positions increases with the correlation between the assets for all strikes whereas the price of

the spread option decreases. Obviously, increasing the strike decreases dramatically the prices

of both options in the two models for all values of correlation. The price of the spread option

is higher than the price of the basket option with long positions and the difference between

the two option prices becomes smaller as the correlation increases. These features hold for all

strikes in the MVMD and SCMD models and are quite reasonable.

These results seem to suggest that an option on an arithmetic basket containing only long

positions and a spread option are not affected in an extreme way by the dependence between

the different assets since even models that give different Kendall’s tau give quite similar prices.

The largest relative difference we find in our pricing examples is for the spread option when

ρ = 1 andK = 1.3, see Table 3 (last two rows, last column). In this case the relative difference

between the MVMD price and the SCMD price is about 1.4%. However the difference for the

corresponding Kendall tau’s in MVMD and SCMD, as given in Table 7 (first row, last two

columns), is about 9%. Hence we see that to a large relative difference in the dependence

structure corresponds a much smaller relative difference in option prices.

Finally, since the MVMD and SCMD models give similar numerical results in pricing

European Call option on a weighted arithmetic average containing only long positions and

European Call Spread option, the MVMD model is the most convenient here since it allows to

compute the option price in one single Monte-Carlo step which can then be evaluated rapidly.

In the next section, we will price an European Call option on a weighted geometric average

under the SCMD and MVMD models and investigate if this option is more sensitive to the

different statistical dependence between the two models.

8.2 Geometric basket option

The European Call price tested in this paragraph is given by (8.1) where B is given by

Eq. (3.2). Note that, under MVMD, this option price is given by Eq. (7.8) with N = 2.
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Table 8 reports the parameters we use. The interest rate r is 5%. The time to maturity

(T ) is one year. The strike K takes the values K = 0.7, K = 1 and K = 1.3. In order to

obtain the fair price of the options 100,000 Monte Carlo runs are performed and an Euler

scheme with time step ∆t = 1/360 is applied. The first comparison uses a correlation ρ = 0.6.

The results are given in Table 9. The second comparison is done for a correlation ρ = −0.6.

The results are reported in Table 10. A last comparaison uses a correlation ρ = 1. The results

are shown in Table 11.

Initial prices ([S1(0), S2(0)]) [1,1]

drift ([µ1,µ2]) [5 %,5 %]

[λ1
1,λ2

1] [0.6,0.4]

[λ1
2,λ2

2] [0.7,0.3]

[σ1
1,σ2

1] [0.3,0.2]

[σ1
2,σ2

2] [0.25,0.35]

weights [w1, w2] [1,1]

Table 8: Basket Option parameters

K = 0.7

Option price

MVMD 0.3313 (0.00074)

SCMD 0.3312 (0.00075)

K = 1

MVMD 0.1154 (0.00055)

SCMD 0.1159 (0.00057)

K = 1.3

MVMD 0.0267 (0.00028)

SCMD 0.0268 (0.00029)

Table 9: European Call on Basket Prices and Standard Errors (in parentheses) for ρ = 0.6

While Kendall’s tau is different between the SCMD and MVMD models especially when

ρ is high, as we have seen eaerlier, the option price is not as sensitive. Table 11 shows that

the prices obtained by the two models are close. Tables 9 and 10 show that this feature is

maintained for a correlation ρ = ±0.6. We see that the prices obtained by the two models are

close to (but less than, see [38]) those obtained previously in Section 8.1 when dealing with an

option on a weighted arithmetic average of a basket with long positions. All the experiments

show that the price of the option increases as the correlation between the assets increases for
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K = 0.7

Option price

MVMD 0.3049 (0.00037)

SCMD 0.3045 (0.00037)

K = 1

MVMD 0.0584 (0.00025)

SCMD 0.0574 (0.00025)

K = 1.3

MVMD 0.0016 (0.00003)

SCMD 0.0013 (0.00003)

Table 10: European Call on Basket Prices and Standard Errors (in parentheses) for ρ = −0.6

K = 0.7

Option price

MVMD 0.3387 (0.00083)

SCMD 0.3413 (0.00084)

K = 1

MVMD 0.1308 (0.00063)

SCMD 0.1307 (0.00064)

K = 1.3

MVMD 0.0367 (0.00035)

SCMD 0.0376 (0.00038)

Table 11: European Call on Basket Prices and Standard Errors (in parentheses) for ρ = 1

all strikes. It can be seen that increasing the strike decreases dramatically the prices in the

two models for the different values of correlation.

These results seem to suggest that an option on a weighted geometric average of a basket

is not very sensitive to dependence between the different assets since even models that give

different Kendall’s tau give quite similar prices. This is basically the same result we obtained

for the arithmetic average basket in the previous section.

Because the above observations show that the MVMD and SCMD models give similar

numerical results in European Call option on a weighted geometric average of a basket pricing,

it is better to use the MVMD model allowing to compute the option price in closed form.
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9 Conclusions and perspectives

We illustrated how to extend in a conceptually simple fashion an asset price model, the

so–called (univariate and possibly shifted) lognormal mixture dynamics, that has been shown

to reproduce well general implied volatility structures commonly observed on the market

[9, 10, 11, 12, 24, 43]. This model is formulated in the space of the so–called local volatility

models. The extension aims at inferring an analytic expression for the local volatility of a

multivariate security (such as e.g. a basket of underlying assets) that is consistent with (i) the

individual dynamics of each component of the security as deduced by that security volatility

smile and (ii) a given instantaneous correlation structure between different securities.

A naïve approach would consist in connecting univariate lognormal mixure dynamics mod-

els for each asset through an instantaneous correlation connecting the Brownian motions driv-

ing different asset dynamics. We refer to this approach as simply correlated mixture dynamics,

SCMD.

However, we improve this approach by extending the mixture dynamics to the multivariate

case in a more radical way, leading to the multi-variate mixture dynamics, MVMD, implying

a multivariate mixture rather than single univariate mixtures patched together by Brownian

correlations. While this is perfectly equivalent to SCMD for single assets, the main practical

advantage of our MVMD extension is that our approach allows for a semi-analytic pricing

of European style derivatives on the multivariate security in a way that takes into account

the smile structures of the individual component securities and reduces computational time,

while staying arbitrage–free. Another important advantage is the availability of closed–form

dependence measures, that are important in a multi-asset setting. This points to MVMD

being an arbitrage-free dynamical model with a great potential for consistently modelling

single assets’ and baskets’ (or indices’) volatility smiles.

We further introduced Markovian projection results showing how our model is related to

multivariate uncertain volatility models and also illustrating how the Markovian projection

for a geometric basket dynamics is consistent with a univariate mixture dynamics model.

In the paper we also showed that our approach performs remarkably well in terms of

basket option pricing with a smile structure of implied volatilities, and provided a number of

numerical examples.

Future extensions include the testing of this approach in actual situations as swap rates

derivatives within the LIBOR Market Model. Such an extension would allow computing in

a quasi–analytical fashion the swap rates smile given the smiles in the individual caplets

and an instantaneous correlation assumption. We may also apply this setup to triangular

relationships among exchange rates in the FX market. An interesting application would be

to apply the framework in this paper to a real equity index smile, trying to connect said smile

with the index component single smiles. More generally, we could study other payouts whose
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valuation depends crucially on dependence assumptions, such as best-of baskets and similar

products.
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