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Abstract

We consider the approximation of stochastic differential equations (SDEs) with
non-Lipschitz drift or diffusion coefficients. We present a modified explicit Euler-
Maruyama discretisation scheme that allows us to prove strong convergence, with
a rate. Under some regularity conditions, we obtain the optimal strong error rate.
We consider SDEs popular in the mathematical finance literature, including the
Cox-Ingersoll-Ross (CIR), the 3/2 and the Ait-Sahalia models, as well as a family
of mean-reverting processes with locally smooth coefficients.

Key words: Stochastic differential equations, non-Lipschitz coefficients, explicit Euler-
Maruyama scheme with projection, CIR model, Ait-Sahalia model.

MSC Classification (2000): 60H10, 65J15, 91G60.

1

ar
X

iv
:1

40
5.

35
61

v1
  [

q-
fi

n.
C

P]
  1

4 
M

ay
 2

01
4



1 Introduction

One of the main tasks in mathematical finance is pricing of option derivatives. Typi-
cally, the underlying assets are modelled by multi-dimensional SDEs, which rarely admit
closed-form solutions and need to be numerically simulated. Therefore, Monte Carlo
techniques are used to approximate the prices of options, by simulating sample paths
of the underlying assets and estimating functionals to price the derivatives of interest
(see [12] for a comprehensive overview of such methods with applications to financial
engineering).
Classical weak and strong convergence results for discretisation schemes of SDEs as-
sume that the drift and the diffusion coefficients driving the SDEs are globally Lipschitz
continuous (see [24]); however many popular models in the literature violate this as-
sumption e.g. CIR, CEV, Ait-Sahalia models. Typically, in financial derivative pricing
weak error is sufficient for applications. Strong convergence rates are important when
using Multilevel Monte Carlo methods, as the strong rate of convergence can be used
to optimise computation of functionals [10, 11].
In recent years there has been a strong interest in convergence results for discretisation
schemes for SDEs with non-Lipschitz continuous coefficients in a restricted domain [2, 3,
4, 17, 20, 26]. A classical Euler-Maruyama discretisation scheme defines approximations
which can potentially escape the domain of the true solution of the SDE. To prevent
such an escape, several modifications have been introduced such as the drift-implicit [8]
and the increment-tamed explicit Euler schemes [18, Theorem 3.15]. Modified Itô-Taylor
schemes of order ψ > 0 have been shown to have pathwise convergence of order ψ−ε for
arbitrarily small ε > 0, provided that the drift and diffusion functions are sufficiently
differentiable [21]. The method relies on a localisation argument similar to the one used
in [13], with an auxiliary drift and diffusion function chosen upon the discretised process
exiting a sub-domain. Recently, there have been results for strong approximations of
scalar SDEs with one-sided Lipschitz continuous drift, constant diffusion, and values in
some domain, using implicit Euler and Milstein schemes [26]. Strong rates of convergence
for SDEs with irregular coefficients have been proven under more restrictive conditions
imposed on the drift and diffusion functions [27], improving on results in [13, 14, 29].
A review for convergence of numerical methods specific to finance is provided by Kloeden
and Neuenkirch [23].
Motivated by these varying approaches, we present an explicit Euler scheme with a
projection, which has a computational cost of the same order as the explicit Euler-
Maruyama scheme. We prove strong rates of convergence for this modified scheme
under some regularity assumptions and integrability conditions for the true solution.
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If necessary, a transformation can be applied to the process in order to shift the non-
Lipschitz behaviour from the diffusion to the drift function, before using the modified
scheme. The remainder of the paper is structured as follows. In Section 2, the modified
Euler-Maruyama scheme is introduced. In Section 3, the main convergence result is
proven for the scheme. In Section 4, the scheme is applied to families of SDEs commonly
used in mathematical finance, including the CIR, the 3/2 and the Ait-Sahalia models.
In Section 5, numerical results for the rates of convergence obtained are shown and
discussed.
Notations: In the sequel, D shall always denote an interval, such that D ⊆ R. We
denote by D̄η the domain [η,∞), and D̄ := D̄0. Furthermore, we define the interval
D̆ζ := [0, ζ]. We denote by C2(D) the space of twice differentiable functions with
continuous derivatives on D, and by C2

b (D) the space of functions in C2(D) with first
and second bounded derivatives. We shall denote by N+ the set of strictly positive
integers.

2 Definitions and assumptions

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space, and W = (Wt)t≥0 a standard
(Ft)-adapted Brownian motion. Consider a stochastic differential equation of the form

dYt = f(Yt)dt+ γ(Yt)dWt, Y0 = y0. (2.1)

Throughout this article, we shall assume the following:
- the SDE (2.1) admits a unique strong solution in D = (0,∞);
- the drift f is locally Lipschitz continuous and globally one-sided Lipschitz continuous
on D, namely there exist α, β ≥ 0 and K > 0, such that for all (x, y) ∈ D2:

|f(x)− f(y)| ≤ K(1 + |x|α + |y|α +
1

|x|β
+

1

|y|β
)|x− y|, (2.2)

(x− y) (f(x)− f(y)) ≤ K|x− y|2. (2.3)

- the diffusion function γ is K-Lipschitz continuous on D̄ for some K > 0: for all
(x, y) ∈ D̄2, the inequality |γ(x)− γ(y)| ≤ K|x− y| holds.

Remark 2.1. The function γ could as well be defined on D. However, assuming the
Lipschitz continuity of γ on D would lead to a natural extension of γ on D̄.

Remark 2.2. In many models used in practice (in particular the Feller/CIR diffusion
in mathematical finance, see Section 4.1), these assumptions are not met. A suitable
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change of variables allows us to bypass this issue: consider indeed an SDE of the form

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x0, (2.4)

where the process X takes values in some domain DX ⊆ R. If σ(x) > 0 for all x ∈ DX ,
the Lamperti transformation of X is defined as F (x) ≡

∫ x
σ(z)−1dz, and Itô’s Lemma

then implies that the process defined pathwise by Y := F (X) satisfies (2.1) with f ≡
F ′µ+ 1

2F
′′σ2 and γ ≡ F ′σ.

Let n ∈ N+ be a fixed positive integer and T > 0 a fixed time horizon. Define
the partition of the interval [0, T ] by π := {0 = t0 < t1 < . . . < tn = T}, with
maxi=0,...,n−1(ti+1 − ti) ≤ h = O(1/n).
For a closed interval C ⊂ R, we define pC : R→ C as the projection operator onto C. We
introduce a domain Dn = [n−k, nk

′
] ⊆ D with strictly positive (and possibly infinite)

real numbers k, k′. The constants k and k′ will be chosen optimally later on. For ease
of notation, we define pn := pDn and

pn(x) ≡ n−k ∨ x ∧ nk′ . (2.5)

In the following, we denote by C a constant that depends only on K, T , α, β, y0, but
whose value may change from line to line. We denote it by Cp if it depends on an extra
parameter p.

We now introduce our explicit scheme for the discretisation process Ŷ :

Definition 2.1. Set Ŷ0 := Y0 and for i = 0, . . . , n− 1,

Ŷti+1 := Ŷti + fn(Ŷti)hi+1 + γ̄(Ŷti)∆Wi+1,

with hi+1 := ti+1 − ti, ∆Wi+1 := Wti+1 −Wti , fn := f ◦ pn and γ̄ := γ ◦ pD̄.

Remark 2.3. For some applications, it may be interesting to force the scheme to take
values in a domain, e.g. intervals D̄, D̄η or even D̆ζ . To this end, we introduce some ex-
tensions of the previous scheme. For all i ≤ n, we define Ȳti := pD̄(Ŷti), Ỹti := pD̄η(Ŷti)

and Y̆ti := pD̆ζ (Ŷti), for some η, ζ > 0 to be determined later on, see Corollary 3.1 for
details. In Proposition 3.3, we prove finite moments and finite inverse moments for
these modifications.

We have the following result whose proof is postponed to the appendix.

Lemma 2.1. The composition fn is Lipschitz continuous with Lipschitz constant L(n) =

C(nkβ + nk
′α). Moreover, for any n ∈ N+, the function fn is one-sided Lipschitz con-

tinuous, with the same constant K as the one-sided Lipschitz continuous constant of
function f .

4



Remark 2.4. Since fn and γ are Lipschitz continuous, an easy induction shows that
the scheme given in Definition 2.1 satisfies maxi=0,...,n E

[
|Ŷti |2

]
< ∞, for all n ∈ N+.

The bound is a priori non-uniform in n, since the Lipschitz constant of fn depends on n.

We now introduce the following assumption, which implies that L(n)2h ≤ C, for all
n ∈ N+, and which relates the locally Lipschitz exponents α and β to the size of the
truncated domain, Dn:
(Hp): the strictly positive constants k, k′ satisfy 2βk ≤ 1 and 2αk′ ≤ 1.

We require additional assumptions to prove the strong convergence rate of our scheme:
below (Hy1) imposes a condition on the moments of the process Y in terms of the
locally Lipschitz exponents α and β, to obtain a minimal convergence rate. We shall
further impose regularity conditions on f and γ to obtain a better rate of convergence.
(Hy1): assume that (Hp) holds and that there exist q′ > 2(α+ 1) and q > 2β such that
E(|Yt|q

′
) and E(|Yt|−q) are finite for all t ∈ [0, T ].

(Hy2): assume that (Hy1) holds, that the drift function f is of class C2(D), and that

sup
t∈[0,T ]

E|γ(Yt)f
′(Yt)|2 + sup

t∈[0,T ]
E
∣∣∣∣f ′(Yt)f(Yt) +

γ2(Yt)

2
f ′′(Yt)

∣∣∣∣2 <∞. (2.6)

For an implicit scheme, strong rates of convergence have been derived in [26] assum-
ing (Hy2); inspired by their paper, our motivation is to recover strong rates of conver-
gence for the explicit scheme in Definition 2.1.

3 Convergence results

In this section we prove strong rate of convergence for the scheme in Definition 2.1
under some of the assumptions stated above; this results follows from estimates for the
regularity of the processes Y and f(Y ) and the discretisation error of the scheme.

3.1 Preliminary estimates

Throughout this section, we shall always assume that (Hy1) holds. Our first two results
concern the error due to projecting Y on Dn.

Lemma 3.1. For any t ∈ [0, T ], the following inequality holds:

E
[
|Yt − pn(Yt)|2

]
≤ Cq,q′

(
1

nk(q+2)
+

1

nk′(q′−2)

)
=: K1(n, q, q′).
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Proof. For any t ∈ [0, T ], we can write

E
[
|Yt − pn(Yt)|2

]
≤ 1

n2k
P{Yt <

1

nk
}+ E

[
|Yt|21{Yt>nk′}

]
.

Set η = q′/2 and θ = q′/(q′ − 2), its conjugate exponent. Hölder’s inequality yields

E
[
|Yt|21{Yt>nk′}

]
≤ E
[
|Yt|q

′
]1/η

P{Yt > nk
′}1/θ.

Using (Hy1) and the set equality {Yt > nk
′} = {Y q′

t > nk
′q′}, Markov’s inequality

implies E
[
|Yt|21{Yt>nk′}

]
≤ Cq′n

−k′(q′−2). Likewise, since {Yt < n−k} = {Y −qt > nkq},
Markov’s inequality yields P(Yt < n−k) ≤ Cqn−kq. The proof then follows by combining
the previous inequalities. 2

Lemma 3.2. For any t ∈ [0, T ], the following upper bound holds:

E
[
|f(Yt)− fn(Yt)|2

]
≤ Cq,q′

(
1

nk(q−2(β−1))
+

1

nk′(q′−2(α+1))

)
=: K2(n, q, q′).

Proof. Using (2.2), we observe that

|f(Yt)− fn(Yt)|2 ≤ C
(

1 + |Yt|−2β + |Yt|2α
)
|Yt − pn(Yt)|2

≤ C
(

1 + |Yt|−2β
) 1

n2k
1{Yt<n−k} + C

(
1 + |Yt|2α

)
|Yt|21{Yt>nk′}

:= A1 +A2.

Set η := q/(2β) and θ := q/(q − 2β). Hölder’s inequality then yields

E(A1) ≤ Cq
n2k

E
[
|Yt|−q

]1/η P{Yt < n−k}1/θ,

and (Hy1) together with Markov’s inequality imply E(A1) ≤ Cqn
−k(q−2(β−1)). Setting

η′ := q′

2(α+1) and θ
′ := q′

q′−2(α+1) , a similar computation gives E(A2) ≤ Cq′n
−k′(q′−2(α+1)).

2

The following lemma provides a regularity result for the process Y and shall be required
for the main convergence result. For a given stochastic process X on (Ω,F , (Ft)t≥0,P)

and the partition π, we define its regularity by

Rπ[X] :=

n−1∑
i=0

∫ ti+1

ti

E
[
|Xt −Xti |2

]
dt . (3.1)
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Lemma 3.3. The regularity of Y satisfies Rπ[Y ] ≤ Cq,q′h.

Proof. For t ∈ (ti, ti+1], since γ is K-Lipschitz, (Hy1) implies

E
[
|Yt − Yti |2

]
≤ CE

[(∫ t

ti

f(Ys)ds

)2

+

∫ t

ti

(|Ys|2 + 1)ds

]
≤ Ch

(
1 +

1

h
E

[(∫ t

ti

f(Ys)ds

)2
])

.

For t ∈ (ti, ti+1], we now compute

1

h
E

[(∫ t

ti

f(Ys)ds

)2
]
≤ E
[∫ ti+1

ti

|f(Ys)|2ds

]
≤
∫ ti+1

ti

E
[
|f(Ys)− fn(Ys)|2

]
ds+

∫ ti+1

ti

E
[
|fn(Ys)|2

]
ds

≤ Ch

(
K2(n, q, q′) + L(n)2 sup

t∈[ti,ti+1]
E
[
1 + |Yt|2

] )
.

Using (Hy1) and the inequality L(n)2h ≤ C, which holds under (Hp), we obtain that
E
[
|Yt − Yti |2

]
≤ Cq,q′h holds for t ∈ (ti, ti+1], and the lemma follows from the following

upper bound:

Rπ[Y ] =
n−1∑
i=0

∫ ti+1

ti

E
[
|Yt − Yti |2

]
dt ≤ C max

i=0,...,n−1
sup

t∈[ti,ti+1]
E
[
|Yt − Yti |2

]
≤ Cq,q′h .

2

We now compute upper bounds for the regularity of f(Y ).

Lemma 3.4.

(i) Under (Hy1), the inequality Rπ[f(Y )] ≤ C
(
K2(n, q, q′) + L(n)2h

)
holds;

(ii) Under (Hy2), the inequality Rπ[f(Y )] ≤ Ch holds.

Proof. The inequality in statement (i) is a direct consequence of the following compu-
tation:∫ ti+1

ti

E
[
|f(Yt)− f(Yti)|2

]
dt ≤ C

(∫ ti+1

ti

E
[
|f(Yt)− fn(Yt)|2

]
dt

+

∫ ti+1

ti

E
[
|fn(Yt)− fn(Yti)|2

]
dt

+ hE
[
|fn(Yti)− f(Yti)|2

] )
≤ Ch

(
K2(n, q, q′) + L(n)2h

)
,

where we used Lemma 3.2, Lemma 3.3, and (Hp). Let us now prove statement (ii). The
drift function f is of class C2(D) by (Hy2); Itô’s Formula on the interval [ti, ti+1] reads

f(Yti+1)− f(Yti) =

∫ ti+1

ti

(
f ′(Yt)f(Yt) +

1

2
f ′′(Yt)γ(Yt)

2

)
dt+

∫ ti+1

ti

f ′(Yt)γ(Yt)dWt;
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squaring and applying the Cauchy-Schwarz inequality implies

E
[
|f(Yti+1)− f(Yti)|2

]
≤
∫ ti+1

ti

E

[
|γ(Yt)f

′(Yt)|2 + h

∣∣∣∣f ′(Yt)f(Yt) +
γ2(Yt)

2
f ′′(Yt)

∣∣∣∣2
]

dt,

and statement (ii) follows from (2.6), direct integration on [ti, ti+1] and summation. 2

3.2 Convergence result

We now consider the discretisation error between the true process Y and the discretised
process Ŷ . Let us introduce the following notations,

δYi := Yti − Ŷti , δnfi := fn(Yti)− fn(Ŷti), δγi := γ(Yti)− γ̄(Ŷti) . (3.2)

We now state and prove a key result, which provides a bound on the squared differ-
ences |δYi|2. This bound depends on both the partition size and the regularity (in the
sense of (3.1)), and is refined further in Theorem 3.1 below.

Proposition 3.1. Assume that (Hy1) holds, then

max
i=0,...,n

E
[
|δYi|2

]
≤ C

(
K2(n, q, q′) +Rπ[f(Y )] +Rπ[Y ]

)
. (3.3)

Proof. 1. We first show that the global error between the scheme and the solution is
controlled by the sum of local truncation errors defined below. Indeed, we observe that,
for i ≤ n− 1,

Yti+1 = Yti + fn(Yti)hi+1 + γ̄(Yti)∆Wi+1 + ζdi+1 + ζwi+1,

where

ζdi+1 :=

∫ ti+1

ti

(f(Yt)− fn(Yti)) dt,

ζwi+1 :=

∫ ti+1

ti

(γ(Yt)− γ̄(Yti)) dWt =

∫ ti+1

ti

(γ(Yt)− γ(Yti)) dWt.

The last equality comes from the fact that Y takes its values in D and then γ̄(Yti) =

γ(Yti), for all i ≤ n. Therefore, squaring the difference δYi+1 gives

|δYi+1|2 =|δYi|2 + 2δYiδnfihi+1 + 2δYiδγi∆Wi+1 + 2δYiζ
d
i+1 + 2δYiζ

w
i+1

+ |δnfihi+1 + δγi∆Wi+1 + ζdi+1 + ζwi+1|2 .
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Using the simple identity Eti
[
2δYiδγi∆Wi+1 + 2δYiζ

w
i+1

]
= 0 and an application of

Young’s inequality yields

E
[
|δYi+1|2

]
≤ (1 + Ch)E

[
|δYi|2

]
+ CE

[
|δnfihi+1|2 + |δγi|2hi+1 +

|Eti
[
ζdi+1

]
|2

h
+ |ζwi+1|2

]

≤
(
1 + Ch+ CL(n)2h2

)
E
[
|δYi|2

]
+ CE

[(
Eti
[
ζdi+1

])2
h

+ |ζdi+1|2 + |ζwi+1|2
]
,

where we have used the fact that fn is one-sided Lipschitz continuous (Lemma 2.1),
locally Lipschitz continuous with Lipschitz constant L(n) and γ is Lipschitz continuous.
Since (Hp) holds, L(n)2h ≤ C and iteration yields

max
i=0,...,n

E
[
|δYi|2

]
≤ C

n∑
j=1

E


(
Etj
[
ζdj

])2

h
+ |ζdj |2 + |ζwj |2

 (3.4)

≤ C
n∑
j=1

E

[
|ζdj |2

h
+ |ζwj |2

]
. (3.5)

2. We now provide explicit errors for the global truncation. As γ is K-Lipschitz, we
have E

[
|ζwi+1|2

]
≤ C

∫ ti+1

ti
E
[
|Yt − Yti |2

]
dt, and hence

n∑
i=1

E
[
|ζwi |2

]
≤ CRπ[Y ]. (3.6)

We now compute an upper bound for E
[
|ζdi+1|2

]
. Since

ζdi+1 :=

∫ ti+1

ti

(f(Yt)− fn(Yti))dt =

∫ ti+1

ti

(f(Yt)− f(Yti))dt+

∫ ti+1

ti

(f(Yti)− fn(Yti))dt,

(3.7)
we have, using the Cauchy-Schwarz inequality,

E
[
|ζdi+1|2

]
≤ Ch

(∫ ti+1

ti

E
[
|f(Yt)− f(Yti)|2

]
dt+ hE

[
|f(Yti)− fn(Yti)|2

])
.

Lemma 3.2 then implies that the inequalities E
[
|ζdi+1|2

]
≤ Ch(

∫ ti+1

ti
E
[
|f(Yt)− f(Yti)|2

]
dt+

hK2(n, q, q′)) and 1
h

∑n
i=1 E

[
|ζdi |2

]
≤ C (K2(n, q, q′) +Rπ[f(Y )]) hold. Combining the

latter with (3.5) and (3.6) concludes the proof of (3.3). 2

We have kept the above result general, without a priori assuming that the drift function
belongs to C2(D). If we consider a constant diffusion and (Hy2), we can recover a better
upper bound using (3.4) instead of (3.5) in the first part of the previous proof and prove
a first order strong rate of convergence. This will be illustrated in Proposition 3.2 below.
We now state the main result of our paper, recalling the projection defined in (2.5).
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Theorem 3.1. The following holds:

max
i=0,...,n

E
[
|δYi|2

]
≤ Cq,q′hr, (3.8)

with r = min(1− 2β
q+2 , 1−

2α
q′−2) > 0 under (Hy1) by setting (k, k′) = (1/(q+2), 1/(q′−2))

and r = min(1, q+2
2β − 1, q

′−2
2α − 1) > 0 under (Hy2) by setting (k, k′) = (1/(2β), 1/(2α)).

Proof. 1. Assume (Hy1). Combining Lemma 3.4 (i) with (3.3) yields

max
i=0,...,n

E
[
|δYi|2

]
≤ C(K2(n, q, q′) + L(n)2h+ h);

≤ Cq,q′(h1−2βk + hk(q+2)−2βk + h1−2αk′ + hk
′(q′−2)−2αk′ + h) .

To balance the error terms, set k = 1
q+2 and k′ = 1

q′−2 , observing that under (Hy1),
(Hp) holds for this choice of parameters. Thus, we obtain maxi=0,...,n E

[
|δYi|2

]
≤ Cq,q′hr,

with r = min(1− 2β
q+2 , 1−

2α
q′−2), with r > 0.

2. We assume that (Hy2) holds. Combining Lemma 3.4 (ii) with (3.3), we obtain

max
i=0,...,n

E
[
|δYi|2

]
≤ C(K2(n, q, q′) + h) .

Setting k = 1/(2β), k′ = 1/(2α) yields maxi=0,...,n E
[
|δYi|2

]
≤ Cq,q′h

r, where r =

min(1, q+2
2β − 1, q

′−2
2α − 1). Since (Hy2) =⇒ (Hy1), we observe that r > 0. 2

We now state the convergence results associated to the extensions of the scheme defined
in Remark 2.3.

Corollary 3.1. In the setting of Theorem 3.1, we have

max
i=0,...,n

E
[
|Yti − Ȳti |2

]
+ max
i=0,...,n

E
[
|Yti − Ỹti |2

]
+ max
i=0,...,n

E
[
|Yti − Y̆ti |2

]
≤ Cq,q′hr .

where for (Ỹti)i≤n and (Y̆ti)i≤n, we set η = hr/q and ζ = h−r/(q
′−2), recalling Remark 2.3.

Proof. 1. For all i ≤ n, we compute, using the 1-Lipschitz continuity of pD̄,

E
[
|Yti − Ȳti |2

]
= E
[
|pD̄(Yti)− pD̄(Ŷti)|2

]
≤ E
[
|Yti − Ŷti |2

]
,

and the upper bound in this case follows directly from Theorem 3.1.
2. For i ≤ n, we compute

E
[
|Yti − Ỹti |2

]
≤ 2

(
E
[
|Yti − pD̄η(Yti)|2

]
+ E
[
|pD̄η(Yti)− pD̄η(Ŷti)|2

])
≤ 2

(
E
[
|Yti − pD̄η(Yti)|2

]
+ E
[
|Yti − Ŷti |2

])
≤ Cq,q′

(
E
[
|Yti − pD̄η(Yti)|2

]
+ hr

)
, (3.9)
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where we applied Theorem 3.1 to get the last inequality. A straightforward adaptation
of the proof of Lemma 3.1 yields the inequality E

[
|Yti − pD̄η(Yti)|2

]
≤ Cqη

q. Inserting

the previous inequality back into (3.9) and setting η = hr/q concludes the result.
3. Similarly, for i ≤ n, the equality E[|Yti − pD̆ζ (Yti)|

2] = E[|Yti − ζ|21{Yti>ζ}] holds,

and an application of Hölder’s inequality leads to E[|Yti − pD̆ζ (Yti)|
2] ≤ Cq′ζ

−(q′−2).

Choosing ζ = h−r/(q
′−2) concludes the proof. 2

We now show that, as for the classical Euler scheme, our modified scheme may have a
first order strong rate of convergence if the diffusion coefficient is constant. This can
be observed in practice, see Section 5.1. This also suggests that a similarly modified
Milstein scheme, if the diffusion coefficient is not constant, will have a first order strong
rate of convergence.

Proposition 3.2. Assume that γ(x) ≡ γ > 0 for all x ∈ D, and (Hy2) holds, with
q > 6β − 2 and q′ > 6α+ 2. Then, maxi=0,...,n E

[
|δYi|2

]
≤ Cq,q′h2.

Proof. The proof is similar to step 2 in the proof of Proposition 3.1 but it uses
the sharper upper bound (3.4). Since the diffusion function is constant, the identity∑n

i=1 E
[
|ζwi |2

]
= 0 holds. Fix (k, k′) = (1/(2β), 1/(2α)) and it follows that

n∑
i=1

E
[
|ζdi |2

]
≤ Ch

(
K2(n, q, q′) +Rπ[f(Y )]

)
≤ Cq,q′h2 , (3.10)

holds. Consider the term E
[(
Eti
[
ζdi+1

])2]. For t ∈ (ti, ti+1], using Itô’s Lemma in the

first term of (3.7), Eti
[∫ ti+1

ti
f(Yt)− f(Yti)dt

]
, we compute

Eti
[∫ ti+1

ti

(∫ t

ti

f ′(Yu)f(Yu) +
1

2
f ′′(Yu)γ2du+

∫ t

ti

f ′(Yu)γdWu

)
dt

]
= Eti

[∫ ti+1

ti

(∫ t

ti

f ′(Yu)f(Yu) +
1

2
f ′′(Yu)γ2du

)
dt+

∫ ti+1

ti

(ti+1 − t)f ′(Yt)γdWt

]
,

hence taking the expectation of the square and (2.6) yields

E

[(
Eti
[∫ ti+1

ti

f(Yt)− f(Yti)dt

])2
]
≤ Ch4 .

From the second component of (3.7) it follows that

E

[(
Eti
[∫ ti+1

ti

f(Yti)− fn(Yti)dt

])2
]

= h2E
[
|f(Yti)− fn(Yti)|2

]
≤ h2K2(n, q, q′) ≤ Cq,q′h4 ,

from Lemma 3.2, and the assumptions on q, q′. Dividing through by h and combining
with (3.10) concludes the proof. 2
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3.3 Moments properties of the schemes

For latter use, we show that our approximations have uniformly bounded second mo-
ments. This completes the result of Remark 2.4.

Lemma 3.5. Assume that (Hy1) holds, then maxi=0,...,n E
[
|Ŷti |2

]
≤ Cq,q′ .

Proof. Since |Ŷi|2 ≤ 2(|Yti − Ŷti |2 + |Yti |2), (Hy1) and Theorem 3.1 imply that

E
[
|Ŷti |2

]
≤ 2

(
E
[
|Yti − Ŷti |2

]
+ E
[
|Yti |2

])
≤ Cq,q′(hr + 1) ≤ Cq,q′

holds for any i ≤ n, which proves the claim. 2

We now consider the modifications Ỹ and Y̆ , and prove some finite moments for them.

Proposition 3.3.

• If (Hy1) holds, then maxi=0,...,n E(Y̆ p′

ti
) ≤ Cp′,q′ for all p′ ∈ [1, q′/2];

• if (Hy1) holds with q ≥ 4, then maxi=0,...,n E(Ỹ −pti
) ≤ Cp,q for all p ∈ [1, q/2− 1].

Proof. Let p′ be some constant such that p′ ∈ (1, q′/2). By the Mean Value Theorem,
for some c ∈ [min(Y p′

ti
, Y̆ p′

ti
),max(Y p′

ti
, Y̆ p′

ti
)] it holds that |Y p′

ti
− Y̆ p′

ti
| ≤ Cp′cp

′−1|Yti− Y̆ti |,
and an application of the Cauchy-Schwarz inequality yields

E|Y p′

ti
− Y̆ p′

ti
| ≤ Cp′

√
E|Y 2(p′−1)

ti
|+ E|Y̆ 2(p′−1)

ti
|
√

E|Yti − Y̆ti |2 .

Since Yti has finite moments for the power of 2(p′−1), using the result from Corollary 3.1
and setting ζ = h−r/(q

′−2), it follows that

E|Y p′

ti
− Y̆ p′

ti
| ≤ Cp′,q′(1 + ζ2(p′−1))1/2hr/2 ≤ Cp′,q′(1 + ζp

′−1)hr/2 ≤ Cp′,q′h
r(q′−2p′)
2(q′−2) ,

which proves that our modification, Y̆ti , has finite moments of order p′.
Similar proof using D̄η, with η = hr/q and the modification Ỹti = pD̄η(Ŷti). 2

Remark 3.1. For SDEs defined on R, strong convergence rates have been proved using a
tamed explicit scheme [20]. The authors assumed that the drift satisfies (2.2) and (2.3)
with locally Lipschitz exponents α ∈ (0,∞) and β = 0, and that the diffusion is K-
Lipschitz. Under these assumptions, (2.1) has a unique strong solution [25]. We can
recover rates of convergence using our modified scheme and a slight modification to our
projection pn.
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4 Applications

We now apply our results to various stochastic differential equations widely used in the
literature.

4.1 CIR model

We consider the Feller diffusion [9], defined as the unique strong solution to

dXt = κ(θ −Xt)dt+ ξ
√
XtdWt, X0 = x0 > 0, (4.1)

where W is a Brownian motion, and κ, θ, ξ are strictly positive constant parameters.
This process has been widely used in the mathematical finance literature, both for
interest rate modelling [5] and as dynamic for the instantaneous variance of a stock
price process [15]. If the Feller condition ω =: 2κθ/ξ2 > 1 holds, then Xt remains
strictly positive for all t ≥ 0 almost surely. Itô’s Lemma implies that the Lamperti
transform Y =

√
X is the unique strong solution to

dYt = f(Yt)dt+ cdWt, Y0 =
√
x0 > 0, (4.2)

where

f(x) ≡ a/x+ bx, a := (4κθ − ξ2)/8, b := −κ/2, c := ξ/2; (4.3)

furthermore, a > 0 when the Feller condition holds. Since X = Y 2, proving a rate of
convergence for a discretisation scheme for process Y is sufficient to obtain a rate of
convergence for process X. In the following corollary, we apply Theorem 3.1 to provide
bounds for E(|δYi|2) and E[|δXi|], where δXi := Xti − X̂ti = Y 2

ti − Ŷ
2
ti .

Corollary 4.1. Suppose that ω > 2 holds, then maxi=0,...,n E[|δYi|2] ≤ Cqh
r and

maxi=0,...,n E[|δXi|] ≤ Cqh
r/2, with r = 1 − 2/(ω + 1) > 0 if 2 < ω ≤ 3 and r = 1

if 3 < ω.

Proof. The drift of Y is one-sided Lipschitz continuous and locally Lipschitz contin-
uous with exponents α = 0 and β = 2, and the diffusion is constant, hence Lipschitz
continuous. It has been shown that supt∈[0,T ] E(|Xt|p) is finite for all p > −2κθ/ξ2;
therefore supt∈[0,T ] E(|Yt|−q) is finite for all q < 4κθ/ξ2 = 2ω [8, page 5].
Let us now prove the first part directly from Theorem 3.1. Assume 2 < ω ≤ 3.
Fix k = 1/(2ω + 2), such that (Hp) holds (no condition on k′ is required, since α = 0).
Using (Hy1), we require that q > 2β = 4 (which is satisfied when ω > 2) such that
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maxt∈[0,T ] E(|Yt|−q) is finite. From Theorem 3.1 it follows that r = 1 − 2β/(q + 2) =

1− 4/(2ω + 2) = 1− 2/(ω + 1) > 0.
Let us now prove the second part directly from Theorem 3.1, and assume that 3 < ω.
The drift function f belongs to C2(D) and differentiation yields E(|f ′(Yt)|2) ≤ CE(1 +

|Yt|−4), which is finite since ω > 3. Similarly, the inequalities E(|f(Yt)f
′(Yt)+

1
2c

2f ′′(Yt)|2) ≤
CE(|Yt|2 + |Yt|−6) ≤ C hold. Combining the above ensures that (Hy2) holds. For
k = 1/4, it follows directly that r = min(1, (2ω + 2)/4− 1) = 1 from Theorem 3.1.
We now prove the corollary for the difference δXi. The Cauchy-Schwarz inequality and
the result above imply

E[|δXn|] = E
[
|(Ytn − Ŷtn)(Ytn + Ŷtn)|

]
≤
√

E(|δYn|2)E
[
|Ytn + Ŷtn |2

]
≤ Chr/2

√
E(|Ytn |2) + E(|Ŷtn |2) ≤ Chr/2,

since E(|Ŷtn |2) and E(|Ytn |2) are finite from [17, Lemma 3.2] and Lemma 3.5. 2

Remark 4.1. We are able to obtain a rate of convergence for a larger set of parameters
compared to the results using an implicit Euler scheme in [26]. However, note that their
results are stated using Lp-norms with p > 2, whereas we consider p = 1 throughout.

4.2 Locally smooth coefficients

We now consider a stochastic differential equation of the form (2.4), with drift function
µ(x) ≡ µ1(x)− µ2(x)x, where µ1, µ2 : D → R, and diffusion function σ(x) ≡ γxν , with
γ > 0 and ν ∈ [1/2, 1]. This model encompasses the Feller diffusion (see Section 4.1)
and the CEV model [6], both widely used in mathematical finance. For the special
case ν = 1, the diffusion function is K-Lipschitz and our scheme applies directly to the
process X as long as (2.2) and (2.3) hold for the drift function µ.
We now focus on the case ν ∈ [1/2, 1). The Lamperti transform reads F (x) ≡

∫ x
dy/σ(y) ≡

1
γ(1−ν)x

1−ν . Its inverse F−1(y) ≡ [γ(1− ν)y]
1

1−ν , is such that Xt := F−1(Yt). The pro-
cess Y is the solution to dYt = f(Yt)dt+ dWt, with Y0 = F (x0) and

f(y) ≡
µ
(
F−1(y)

)
σ (F−1(y))

− 1

2
σ′
(
F−1(y)

)
. (4.4)

In order for the functions µ and σ to satisfy the required conditions, we assume:
(Hs0): ν ∈ [1/2, 1), and µ1, µ2 are bounded and belong to C2

b (D); furthermore µ1 is
non-negative and non-increasing, and µ2 is non-decreasing.
We distinguish between two cases for parameter ν:
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(Hs1): ν ∈ (1/2, 1) and µ1(0) > 0.
(Hs2): ν = 1/2 and there exists x̄ > 0 such that 2µ1(x)/γ2 ≥ 1 for all 0 < x < x̄.
We now prove a rate of convergence as a corollary of Theorem 3.1.

Corollary 4.2 (Locally smooth coefficients). Assume that (Hs0) holds.

1. If (Hs1), then maxi=0,...,n E[|δYi|2] ≤ Ch and maxi=0,...,n E[|δXi|] ≤ Ch1/2.

2. If (Hs2) and 2µ1(0)/γ2 =: ω > 3 hold, then maxi=0,...,n E
[
|δYi|2

]
≤ Cqh

r and
maxi=0,...,n E[|δXi|] ≤ Cqh

r/2, with r = 1 − 2/ω > 0 if 3 < ω ≤ 4 and r = 1 if
4 < ω.

Proof. In [7, Proposition 3.1], the author proves that if (Hs0) holds, then there exists a
unique strong solution to (2.4), which stays in [0,∞) almost surely. In addition, he shows
that (Hs1) and (Hs2) further implies that P(τ0 = ∞) = 1, where τ0 is the first time
process X reaches zero. We recall that once we perform the Lamperti transformation,
the diffusion function is a constant.
We divide the proof in several parts: (i) we show that the drift function f is one-sided
Lipschitz continuous; (ii) we show that f is locally Lipschitz continuous, and hence
conclude that (2.2) and (2.3) hold.
(i) We first show that the function defined in (4.4) is globally one-sided Lipschitz con-
tinuous. From (4.4), it follows that, for all (x, y) ∈ D2,

(x− y) (f(x)− f(y)) = (x− y)

(
µ(F−1(x))
σ(F−1(x))

− 1
2σ
′ (F−1(x)

)
− µ(F−1(y))

σ(F−1(y))
+ 1

2σ
′ (F−1(y)

))
.

Using σ′(F−1(x)) = ν/[(1− ν)x], we observe that

(x− y)

(
1

2
σ′
(
F−1(y)

)
− 1

2
σ′
(
F−1(x)

))
=

ν

2(1− ν)
(x− y)

(
1

y
− 1

x

)
≤ 0,

since x, y > 0 and ν/(2−2ν) > 0. By direct computation σ
(
F−1(x)

)
= γ [γ(1− ν)x]

ν
1−ν

and

µ
(
F−1(x)

)
= µ1

(
[γ(1− ν)x]

1
1−ν
)
− µ2

(
[γ(1− ν)x]

1
1−ν
)

[γ(1− ν)x]
1

1−ν .

Now, consider the remaining terms, namely

(x− y)

(
µ(F−1(x))
σ(F−1(x))

− µ(F−1(y))
σ(F−1(y))

)
.

Introduce x̃ := [γ(1− ν)x]
1

1−ν and ỹ := [γ(1− ν)y]
1

1−ν . Note that

(x− y)

(
µ1 (x̃)

σ (F−1(x))
− µ1 (ỹ)

σ (F−1(y))

)
=

(x− y)µ1 (x̃)

(
1

σ (F−1(x))
− 1

σ (F−1(y))

)
+

(x− y)

σ (F−1(y))
[µ1 (x̃)− µ1 (ỹ)] ≤ 0,
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since µ1 is non-negative and non-increasing, ν/(1− ν) ≥ 1, and using the fact that the
map σ ◦ F−1 is increasing. Additionally,

(x− y)
(

µ2(ỹ)ỹ
σ(F−1(y))

− µ2(x̃)x̃
σ(F−1(x))

)
= (1− ν)(x− y)µ2 (ỹ) (y − x) + x(x− y) [µ2 (ỹ)− µ2 (x̃)] ≤ C(x− y)2,

since σ
(
F−1(x)

)
≡ γ [γ(1− ν)x]

ν
1−ν , and since µ2 is bounded and non-decreasing.

Combining these results shows that the function f is one-sided Lipschitz continuous.
(ii) We now show that f is locally Lipschitz continuous. By differentiation, it is clear
that σ

(
F−1(x)

)
=
(
F−1

)′
(x), and hence

f ′(x) = µ′
(
F−1(x)

)
−
µ
(
F−1(x)

)
σ′
(
F−1(x)

)
σ (F−1(x))

− 1

2

(
F−1

)′
(x)σ′′

(
F−1(x)

)
. (4.5)

We now prove that the first term on the right-hand side of (4.5) is bounded by Cxα, for
some α to be determined. By (Hs0),

|µ′
(
F−1(x)

)
| ≤ |µ′1

(
F−1(x)

)
|+|µ2

(
F−1(x)

)
|+|µ′2

(
F−1(x)

)
F−1(x)| ≤ C

(
1 + |x|1/(1−ν)

)
,

hence the first term on the right-hand side of (4.5) is bounded by C(1 + xα), where
α = 1/(1− ν).
We now consider the second term on the right-hand side of (4.5). Since σ′

(
F−1(x)

)
=

γν [γ(1− ν)x]
ν−1
1−ν = ν

(1−ν)x , and

µ
(
F−1(x)

)
= µ1

(
[γ(1− ν)x]1/(1−ν)

)
− µ2

(
[γ(1− ν)x]1/(1−ν)

)
[γ(1− ν)x]1/(1−ν) ,

we see that∣∣∣∣∣µ
(
F−1(x)

)
σ′
(
F−1(x)

)
σ (F−1(x))

∣∣∣∣∣ ≤
∣∣∣∣∣∣C1

µ1

(
C2x

1
1−ν
)

x
1

1−ν

∣∣∣∣∣∣+
∣∣∣C3µ2(C4x

1
1−ν )

∣∣∣ , (4.6)

where C1, C2, C3, C4 are positive constants. By (Hs0) it follows that (4.6) is bounded
by C

(
1 + x−β

)
, for β = 1/(1− ν).

We finally consider the last term on the right-hand side of (4.5). Observe that

σ′′
(
F−1(x)

)
= γν(ν − 1) [γ(1− ν)x]

ν−2
1−ν = −Cx

ν−2
1−ν

and |12
(
F−1

)′
(x)σ′′

(
F−1(x)

)
| ≤ C/x2 ≤ Cx−β , since ν ∈ [1/2, 1). These three results

yield |f ′(x)| ≤ C(1+x1/(1−ν)+x−1/(1−ν)), and hence the drift function is locally Lipschitz
continuous, with α = β = 1/(1 − ν). Combining this with (i) allows us to conclude
that (2.2) and (2.3) hold.
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We now prove statements 1 and 2 in the corollary.
1) Assume (Hs1) holds. Since the locally Lipschitz exponents are α = β = 1/(1−ν), fix
k = k′ = (1− ν)/2, so that (Hp) holds. By [7], E(supt∈[0,T ] |X

p
t |) is finite for all p > 0,

and E(supt∈[0,T ] |Xt|−p) is finite for all p > 0; therefore E(supt∈[0,T ] |Yt|−q) is finite for
all q > 0 [7, Lemma 3.1]. We note that f belongs to the class C2(D) and (Hy2) holds,
therefore r = 1.
2) Assume (Hs2) holds and let 2µ1(0)/γ2 =: ω > 3. Then, maxt∈[0,T ] E(|Xt|−p) is
finite for all p < ω − 1 [7, Lemma 3.1]: therefore the term maxt∈[0,T ] E(|Yt|−q) is finite
for all q < 2(ω − 1). Fix k = 1/(q + 2), so that (Hp) holds. For some q > 4 we
have that maxt∈[0,T ] E(|Yt|−q) is finite, so (Hy1) also holds. From Theorem 3.1, r =

1− 2β/(q + 2) = 1− 2/ω holds.
Further assume that ω > 4. Note that the drift function f belongs to the class C2(D).
Fix k = 1/4, so that (Hp) holds. By the assumptions on the parameters it follows that
the term maxt∈[0,T ] E(|Yt|−6) = maxt∈[0,T ] E(|Xt|−3) is finite, therefore (Hy2) holds.
From Theorem 3.1, r = min(1, (q + 2)/4− 1) = min(1, (2ω − 2 + 2)/4− 1) = 1.

2

In the CIR model, we obtain r = 1 for 3 < ω using the finite inverse moment for the
process Y from [8]. For the general case in Corollary 4.2, we assumed that 4 < ω.
In the next corollary, we impose additional assumptions in order to recover the same
parameter constraints as for the Feller diffusion in the previous section:

Corollary 4.3. Assume (Hs0) and (Hs2), and let a∗, b∗ > 0 be such that µ1(x) ≥ a∗

and µ2(x) ≤ b∗ for all x ∈ D. If 3 < ω := 2µ1(0)/γ2, then maxi=0,...,n E
[
|δYi|2

]
≤ Cqh

and maxi=0,...,n E[|δXi|] ≤ Cqh1/2.

Proof. From the assumptions on µ1 and µ2, there exists a∗, b∗ strictly positive such
that the inequality µ1(x)−µ2(x)x ≥ a∗−b∗x holds in the domain D = (0,∞). We define
Z as the process with drift function a∗ − b∗x (instead of µ1(x)− µ2(x)x), and diffusion
function σ(x) ≡ γx1/2. Therefore, by the Comparison Theorem (see [22]) the inequality
Xt ≥ Zt holds for all t ∈ [0, T ] almost surely, and hence E(|Xt|−p) ≤ E(|Zt|−p) holds
for all p > 0. We recognise process Z as the Feller diffusion: from the assumption on ω,
it follows that maxt∈[0,T ] E(|Zt|−3) is finite. The result then follows directly from the
second part of Corollary 4.1. 2
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4.3 3/2 model

The 3/2 process X = (Xt)t≥0 [16] is the solution to

dXt = c1Xt(c2 −Xt)dt+ c3X
3/2
t dWt , X0 = x0 > 0 , (4.7)

with c1, c2, c3 > 0. Introduce the quantity ω := 2 + 2c1/c
2
3. The Feller diffusion and

the 3/2 process are related as follows: using the map F (y) ≡ y−1/2 yields the Lamperti
transformed CIR process Y := F (X), as in (4.2) and (4.3), with parameters, a :=

(4c1 + 3c2
3)/8, b := −c1c2/2 and c := −c3/2. Existence and uniqueness can be retrieved

from the properties of the Feller diffusion. Furthermore, maxt∈[0,T ] E(|Xt|p) is finite for
all p < ω.

Corollary 4.4 (3/2 model). Let Y := X−1/2. Then, maxi=0,...,n E
[
|δYi|2

]
≤ Chr, with

r = (ω − 1)/(ω + 1) > 0 if ω ∈ (2, 3], and r = 1 if ω > 3.

Proof. In terms of the CIR coefficients, we have ω = 2 + 2c1/c
2
3 = 2κθ/ξ2. We directly

apply Corollary 4.1 to note that for 2 < ω ≤ 3, it follows that r = (ω − 1)/(ω + 1) > 0.
For r = 1, we require that ω > 3 and an application of Corollary 4.1. 2

We now establish a convergence result for the 3/2 process X, using the modification X̃
(recall Remark 2.3).

Corollary 4.5. If ω > 3, then maxi=0,...,n E(|Xti − X̃ti |) ≤ Cqh(ω−3)/(2ω).

Proof. Recall that E(|Yti |−6) is finite for ω > 3 and from Corollary 4.4 we recall that
r = 1. Using a similar approach to Proposition 3.3, E(|Ỹti |−6) ≤ η−6, and the result
from Corollary 3.1 for η := h1/q yield

E(|Xti − X̃ti |) ≤ Cq(1 + η−6)1/2h1/2 ≤ Cq(1 + η−3)h1/2 ≤ Cqh(ω−3)/(2ω) ,

which concludes the result. 2

By imposing additional assumptions, one can obtain maxi=0,...,n E(|Xti−X̃ti |) ≤ Cqh1/2

using Proposition 3.3. In [26, Proposition 3.2] the authors prove strong convergence for
the 3/2 process using a drift-implicit scheme when ω > 6 holds. Using our scheme, we
obtain strong rates of convergence for ω > 3.

4.4 Ait-Sahalia model

In the Ait-Sahalia interest rate model [1], X is the solution to

dXt =

(
a−1

Xt
− a0 + a1Xt − a2X

%
t

)
dt+ γXρ

t dWt , X0 = x0 > 0 , (4.8)
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where all constant parameters are non-negative, and ρ, % > 1. From [28], we know that
there exists a strong solution on (0,∞). Using the Lamperti transformation F (x) ≡
x1−ρ, x > 0, we define the process Y , which satisfies

dYt = f(Yt)dt+ (1− ρ)γdWt , Y0 = x1−ρ
0 > 0 , (4.9)

where

f(x) ≡ (1− ρ)

(
a−1x

−1−ρ
1−ρ − a0x

−ρ
1−ρ + a1x− a2x

−ρ+%
1−ρ − ργ2

2
x−1

)
.

Corollary 4.6. If %+ 1 > 2ρ, then max
i=0,...,n

E
[
|δYi|2

]
≤ Ch.

Proof. Straightforward differentiation yields

f ′(x) = −a−1(1 + ρ)x
2
ρ−1 + a0ρx

1
ρ−1 + a1(1− ρ)− a2(−ρ+ %)x

− r−1
ρ−1 − ργ2

2
(ρ− 1)x−2.

We have limx→0 f
′(x) = limx→∞ f

′(x) = −∞, hence sup0<x<∞ f
′(x) is finite by conti-

nuity and therefore f is one-sided Lipschitz continuous. In addition, |f ′(x)| ≤ C(1 +

x
2
ρ−1 + x

− %−1
ρ−1 ) for x > 0, so f is locally Lipschitz continuous with α = 2/(ρ − 1) and

β = (%− 1)/(ρ− 1). The diffusion is a constant, hence Lipschitz continuous. Using the
locally Lipschitz continuous properties of the drift, fix k = 1/(2β) and k′ = 1/(2α). We
recall that if %+ 1 > 2ρ, then maxt∈[0,T ] E(|Xt|p) and maxt∈[0,T ] E(|Xt|−p) are finite for
all p ≥ 2 [28, Lemma 2.3] so that (Hy1) holds. Differentiation yields

f ′′(x) =
−2a−1(ρ+ 1)

ρ− 1
x

3−ρ
ρ−1 +

a0ρ

ρ− 1
x

2−ρ
ρ−1 + a2

(−ρ+ %)(%− 1)

ρ− 1
x
− %+ρ−2

ρ−1 + ργ2(ρ− 1)x−3 .

Since f belongs to C2(D) and (2.6) is finite by [28, Lemma 2.3], then (Hy2) holds. The
result follows from Theorem 3.1. 2

We now compute a strong rate of convergence for the Ait-Sahalia process X, and recall
the modification X̃ti = pD̄η(X̂ti).

Corollary 4.7. Let % + 1 > 2ρ, then maxi=0,...,n E(|Xti − X̃ti |) ≤ Ch
1
2
− ρ
q(ρ−1) , where

η := h1/q for some q > 2ρ/(ρ− 1).

Proof. Using a similar approach to Proposition 3.3 yields

E[|Xti − X̃ti |] ≤ C
(
E
[
|Yti |2ρ/(1−ρ)

]
+ E

[
|Ỹti |2ρ/(1−ρ)

])1/2
(E|Yti − Ỹti |2)1/2.

Since ρ > 1 and %+ 1 > 2ρ, E[|Yti |2ρ/(1−ρ)] is finite and the result follows. 2
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5 Numerical results

In this section, numerical simulations demonstrate the strong convergence rate of the
modified Euler scheme. The CIR model, the one-dimensional stochastic Ginzburg-
Landau equation with multiplicative noise, and an example of the Ait-Sahalia model
are all considered. For process X, denote by X̂(j)

T the modified Euler-Maruyama ap-
proximation at time T and X(j)

T the closed-form solution (or reference solution), using
the same Brownian motion path (the jth path). The empirical average absolute error E
for the process X is defined by

E :=
1

M

M∑
j=1

|X(j)
T − X̂

(j)
T | ,

over M sample paths. Throughout, fix M = 10000. The error quantity E measures
the error at time T , as typically that will yield the largest value throughout the path.
An equidistant time grid is used, with step sizes h := T/2N , for different values of N .
The strong error rates are computed by plotting E against the number of discretisation
steps on a log-log scale: the strong rate of convergence r is then retrieved using linear
regression.

5.1 CIR model

The Lamperti-transformed drift-implicit square-root Euler method (see [8, 26]) has the
unique strictly positive solution defined for i = 0, . . . , n− 1 by

Yti+1 =
Yti + c∆Wi+1

2(1− bhi+1)
+

√
(Yti + c∆Wi+1)2

4(1− bhi+1)2
+

ahi+1

1− bhi+1
, Y0 =

√
x0 > 0,

with a, b, c defined in (4.3). The CIR/Feller diffusion is recovered by setting Xti = Y 2
ti

for i ≤ n, and we compare the modified explicit Euler scheme with this implicit scheme
used as a reference solution (with a large number of time steps).
We compute the strong rates of convergence for the CIR process, where the implicit
scheme is used as a reference solution. Set (κ, θ, ξ, T, x0) = (0.125ω, 1, 0.5, 1, 1), such
that 2κθ/ξ2 = ω. The cases ω = (1, 1.5, 2, 2.5, 3, 3.5, 4) are considered. The reference
solution is computed using N = 12. Figure 1 shows the rates of convergence r achieved
for the CIR process, where k = 1/4 in the modified scheme, according to Corollary 4.1.
In the corollary, we prove a strong rate of convergence of 1/2 when ω > 3. The coefficient
of determination R2 is above 0.998 for all ω.
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Figure 1: CIR model: E against number of steps (log2 scale).

Remark 5.1. The empirical rates of convergence achieved are higher than the predicted
rates from Corollary 4.1. In fact, r is approximately 1, due to the constant diffusion
function in the transformed Feller diffusion (see Proposition 3.2). The “classical” Euler
scheme is a strong order 1 scheme in this case.

Remark 5.2. The projection introduced in Definition 2.1 can be modified to p̃n(x) :=

Ln−k∨x∧Unk′ , with L,U > 0 suitably chosen constant. This is beneficial if the process
has extreme initial conditions or average state, and does not impact the convergence
results.

For small x0, it is intuitive to use the projection in Remark 5.2 to achieve faster conver-
gence (albeit not affect the asymptotic behaviour). Set (κ, θ, ξ, T ) = (0.375, 1, 0.5, 1),
such that 2κθ/ξ2 = 3. In Figure 2, we let x0 vary between 0.05 and 1.2 in increments of
0.05. We compare the errors achieved for k = 1/4, using the projections pn (L = U = 1)
and p̃n (L =

√
x0 and U = 1). By using projection p̃n, smaller errors can be achieved

for small x0.

5.2 Ginzburg-Landau

Consider the one-dimensional stochastic Ginzburg-Landau SDE [24, Chapter 4], where
the process X is the unique strong solution to

dXt =

[
−X3

t +

(
λ+

1

2
σ2

)
Xt

]
dt+ σXtdWt, X0 = x0 > 0 ,
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Figure 2: Absolute error (log2 scale) for N = 10.

for λ, σ ≥ 0, which admits the closed-form solution

Xt =
x0 exp(λt+ σWt)√

1 + x2
0

∫ t
0 exp(2λs+ 2σWs)ds

.

This SDE is a special case of the Ait-Sahalia process with (a−1, a0, a1, a2, %, ρ) = (0, 0, λ+

1/2σ2, 1, 3, 1). For this choice of parameters, %+ 1 > 2ρ holds and hence the moments
and inverse moments of Xt are finite for all t ∈ [0, T ], and the solution stays in (0,∞)

almost surely. The drift function satisfies (2.2), with (α, β) = (2, 0), e.g. set k′ = 1/4

in the modified scheme. In addition, the drift is one-sided Lipschitz continuous and the
diffusion is K-Lipschitz. As a result, theoretical convergence for this example can be
obtained with rate r = 1/2.

5.2.1 Ginzburg-Landau strong convergence

For this SDE, the closed-form solution is used in the definition of E to compute the strong
rate of convergence r. Figure 3 shows the average absolute error E using the modified
scheme, for parameters (σ, λ, T, x0) = (1, 1/2, 1, 1). The empirical rate achieved of 0.54

coincides with the predicted rate of 1/2.
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Figure 3: Ginzburg-Landau model: average absolute error E vs N (log2 scale).

5.2.2 Ginzburg-Landau Euler-Maruyama divergence

We consider an example of the Ginzburg-Landau SDE for which the standard Euler-
Maruyama scheme diverges, and compare the results with the modified explicit scheme.
Fix parameters (σ, λ, T, x0) = (7, 0, 3, 1) as in [19], for which the authors prove moment
explosion for the classical Euler-Maruyama scheme, see [19, Table 1]. Figure 4 shows
the error E for the classical and the modified schemes, for different N . For the modified
scheme, set k = 1 and k′ = 1/4. It can be seen that both schemes eventually converge,
with rates (re, rm) = (0.84, 0.83) for the classical and modified Euler schemes. However,
for a range of step sizes, the classical Euler scheme explodes, as proven in [19] (N.B.
very large and NaN values are set to 210 in the figure, to illustrate the explosions for
the classical scheme).

5.3 Ait-Sahalia model

The strong rate of convergence for the Ait-Sahalia model is computed using a reference
solution with a large number of steps. Consider the parameters (a−1, a0, a1, a2, γ, x0) =

(1, 1, 1, 1, 1, 1), and (%, ρ, T ) = (2, 3/2, 1). From these parameters, note that α = 4

and β = 2. Fix k and k′, such that 2βk = 1 and 2αk′ = 1: therefore (Hy1) holds.
Figure 5 shows E against the number of steps (log-log plot), where 212 steps are used
for the reference solution. The Ait-Sahalia strong rate of convergence r = 1.25 could be
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Figure 4: Average absolute error E vs number of steps (log2 scale).

Figure 5: Ait-Sahalia model: average absolute error vs N (log2 scale).
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justified by recalling Remark 5.1, and since a reference solution is used, as opposed to
the true solution.
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A Proof of Lemma 2.1

1. Let r > l > 0 such that Dn ⊂ (l, r). Assume that f is C1 on (l, r). From (2.2), we
have, for z, z′ ∈ Dn, z > z′,

f(z)− f(z′)

z − z′
≤ K,

and letting z′ → z, we retrieve that f ′(z) ≤ K. This shows that f = g + `, where g
is a non-increasing function and ` is K-Lipschitz continuous, setting e.g. g(x) ≡∫ x
l+r
2
f ′(u)1{f ′(u)≤0}du and `(x) ≡

∫ x
l+r
2
f ′(u)1{f ′(u)>0}du. Since pn is non-decreasing

and 1-Lipschitz on R, we have fn = g ◦ pn + ` ◦ pn, with g ◦ pn non-increasing and ` ◦ pn
K-Lipschitz continuous on R. This shows that fn satisfies (2.3) as well on R.
2. We now deal with the general case using a smoothing argument. Let l, r ∈ D, r > l,
such that for all Dn ⊂ (l, r). We consider a sequence (ϕm)m≥1 of mollifiers whose sup-
ports are included in [− l

2 ,
l
2 ] and define fm ≡ ϕm ? f ≡

∫
[− l

2
, l
2

] ϕm(u)f(x− u)du as the
convolution of ϕm and f . We observe that, for all x, y ∈ (l, r),

(x− y)(fm(x)− fm(y)) =

∫
[− l

2
, l
2

]
ϕm(u){(x− y)(f(x− u)− f(y − u))}du

≤ K|x− y|2
∫

[− l
2
, l
2

]
ϕm(u)du ≤ K|x− y|2 ,

where we used (2.3) and the fact that
∫
D ϕm(u)du = 1. Since fm is smooth, we can

apply Step 1 to obtain, for all (x, y) ∈ R2,

(x− y) (fm(pn(x))− fm(pn(y))) ≤ K|x− y|2 .

Letting m go to infinity, we then obtain

(x− y) (f(pn(x))− f(pn(y))) ≤ K|x− y|2 ,

for all x, y ∈ R, which concludes the proof.
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