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Abstract. This paper studies the loss of the semimartingale property of the process g(Y )

at the time a one-dimensional diffusion Y hits a level, where g is a difference of two convex

functions. We show that the process g(Y ) can fail to be a semimartingale in two ways only,

which leads to a natural definition of non-semimartingales of the first and second kind. We give

a deterministic if and only if condition (in terms of g and the coefficients of Y ) for g(Y ) to

fall into one of the two classes of processes, which yields a characterisation for the loss of the

semimartingale property. A number of applications of the results in the theory of stochastic

processes and real analysis are given: e.g. we construct an adapted diffusion Y on [0,∞) and

a predictable finite stopping time ζ, such that Y is a semimartingale on the stochastic interval

[0, ζ), continuous at ζ and constant after ζ, but is not a semimartingale on [0,∞).

1. Introduction

Continuous semimartingales form an important, general and well-studied class of stochastic

processes. This paper deals with the phenomenon of the loss of the semimartingale property at

the hitting time of a level as motivated and explained below.

1.1. The motivation for this work is best described by the following two examples.

Example 1.1. Let B be an (Ft,P)-Brownian motion starting from x0 > 0 defined on some

filtered probability space (Ω,F , (Ft)t∈[0,∞),P). It is well-known that the process
√
|B| is not a

semimartingale (see the original reference [13] or the monograph [11, Th. 72]). A possible short

argument is as follows. Let X be a continuous semimartingale and La
t (X) its local time at time

t ≥ 0 and level a ∈ R. Recall that if f is a strictly increasing function on R, which moreover is the

difference of two convex functions, then, for any a ∈ R, it holds Lf(a)
. (f(X)) = f ′

+(a)L
a
. (X) a.s.,

where f ′
+(a) is the right derivative of f at the point a (see [12, Ch. VI, Ex. 1.23]). If X :=

√
|B|

were a semimartingale, then, applying the statement above to f(x) = x2 sgnx, we would get

that L0
. (|B|) ≡ 0, which would contradict the well-known fact that the local time at zero of |B|

increases immediately after the time τB0 = inf{t ≥ 0 : Bt = 0}.
Intuitively this can be summarized as follows: the semimartingale property of

√
|B| fails

immediately after τB0 because the increase in local time at zero of |B| and the infinite slope of
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the function x 7→ √
x at the origin make the process

√
|B| accumulate an infinite amount of

local time at zero immediately after τB0 .

It is now natural to ask whether the square root of a nonnegative continuous semimartingale

that does not accrue local time at zero may fail to be a semimartingale (for a different reason).

This is also possible as the following example shows.

Example 1.2. Let x0 > 0. Consider a squared Bessel process Y of dimension δ ∈ (0, 1) starting

from x20, i.e. it holds dYt = δ dt + 2
√
Yt dWt, where W is a Brownian motion. It is well-known

that Y is a nonnegative semimartingale that a.s. hits 0 at a finite time, 0 is an instantaneously

reflecting boundary point for Y , and Y does not accrue local time at 0 (see e.g. [12, Ch. XI]). Let

ρ = (ρt)t∈[0,∞) be given by ρt =
√
Yt, i.e. ρ is a Bessel process of dimension δ ∈ (0, 1) starting

from x0 > 0. It is known that ρ is not a semimartingale. For completeness we present a formal

proof of this fact in Appendix A. Here again the semimartingale property of ρ fails immediately

after τρ0 = inf{t ≥ 0 : ρt = 0}.

As we already observed the loss of the semimartingale property in both examples above

occurs immediately after the hitting time of zero. Let us first discuss whether this happens in

fact even at the hitting time of zero, i.e. whether the stopped processes
√
BτB0 and ρτ

ρ
0 are

semimartingales. We shall see that they are semimartingales (see Corollaries 3.9 and 3.11), i.e.

the loss of the semimartingale property in both examples above does not occur at the hitting

time of zero.

The following natural question arises.

Question I. Let B be a Brownian motion starting from x0 > 0. Does there exist a continuous

strictly increasing function g : [0,∞) → R, which is smooth on (0,∞), such that the process

g(BτB0 ) is not a semimartingale?

In other words we are asking here if the loss of the semimartingale property can occur at τB0 .

The requirement for g to be strictly increasing stems from the desire to construct a function

“like
√ · ”.

As we shall see, the answer to Question I is affirmative, and we will construct such examples

below.

1.2. In this paper we consider a one-dimensional diffusion Y with the state space J = (l, r),

−∞ ≤ l < r ≤ ∞, possibly exiting its state space at a finite time. By convention Y is stopped

after it reaches l or r. The setting is formally described in Section 2. Denoting by ζ the exit

time from J (i.e. the hitting time of either l or r), we study whether the process g(Y ) loses the

semimartingale property at the time ζ. A particular case of our discussion, when g is equal to

the identity, will answer the following question:

Question II. Assuming that Y exits J only at finite endpoints1, can Y fail to be a semimartin-

gale?

1Note that if Y were allowed to exit at an infinite endpoint, then Y would clearly fail to be a semimartingale.
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As we shall see, the answer to Question II is affirmative, and we will construct examples

below. In particular, our construction gives rise to a globally defined continuous adapted process

Y = (Yt)t∈[0,∞) and a predictable stopping time ζ such that Y is a semimartingale on the

stochastic interval [0, ζ), Y is continuous at ζ and constant after ζ, but it is not a semimartingale

on [0,∞).

1.3. After finishing the paper we discovered the very deep and surprisingly general treat-

ment [3], where one of the questions discussed is whether a function of a Markov process is a

semimartingale. Theorem 4.6 in [3] gives a necessary and sufficient condition for this in a very

general setting. The Brownian case is discussed in detail in Section 5 of [3], where explicit crite-

ria are presented for a Brownian motion (Theorems 5.5 and 5.6), a reflecting Brownian motion

(Theorem 5.8), and a killed Brownian motion (Theorem 5.9). At the end of Section 5 of [3], it is

explained how the results for a Brownian motion can be used to imply the corresponding results

for diffusions (via a state-space transformation and a random time-change), but the explicit

statements are not presented.

In the present paper, the setting is far less general setting than that of Section 4 in [3]. As

discussed above, we are interested only in the loss of the semimartingale property at the exit

time ζ. This allows us to assume from the outset that

g : J → R is a difference of two convex functions,

which implies that g(Y ) is a continuous semimartingale on the stochastic interval [0, ζ), and

investigate the behaviour of g near the endpoints of J that preserves the semimartingale property

of g(Y ) globally, i.e. on [0,∞). Even though our setting is less general than the one in [3], the

results obtained in this paper are complementary to the results in [3]. As explained in more

detail below, we enrich the picture presented in [3] in several directions.

In Section 3 we present a necessary and sufficient condition for g(Y ) to be a semimartingale

(Theorem 3.2), a sufficient one (Theorem 3.7), a necessary one (Theorem 3.12), and a discussion

of the phenomena that lead to the loss of the semimartingale property at ζ (Theorem 3.15).

It may be possible to establish our Theorem 3.2 from the general Theorem 4.6 in [3], but this

way of proving Theorem 3.2 does not look straightforward. Furthermore, the authors of [3]

recommend that one obtain results for diffusions from the corresponding results for Brownian

motion, i.e. from the results of Section 5 in [3]. Thus, our Theorem 3.2 can be deduced

from Theorem 5.9 in [3] via a state-space transformation and a random time-change. We,

however, prove Theorem 3.2 directly. This requires an investigation of the convergence of certain

additive functionals of diffusion processes, which is carried out in this paper. We hope that this

classification of convergence obtained here is of interest in its own right.

The other main results of Section 3, Theorems 3.7, 3.12, and 3.15, do not have their analogues

in [3] and thus do not follow from the results of [3]. The question arises of why we give a separate

sufficient condition for g(Y ) to be a semimartingale (Theorem 3.7) and a separate necessary one

(Theorem 3.12) in addition to a necessary and sufficient condition (Theorem 3.2). Even though

Theorem 3.2 is a more precise result, it is often less convenient in specific situations. For example,
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the sufficient condition for g(Y ) to be a semimartingale in Theorem 3.7 is typically easier to verify

than the necessary and sufficient condition in Theorem 3.2 (compare (3.8) and (3.4)). In specific

situations we get some qualitative information (say, about the structure of certain examples)

from Theorems 3.7 and 3.12 that is not easy to obtain from Theorem 3.2. For instance, if one

wishes to construct an example demonstrating that the answer to Question II is affirmative, one

requires the insight from Corollary 3.11 that the drift has to oscillate around zero near the finite

endpoint, where Y exits. Corollary 3.11 is an immediate consequence of Theorem 3.7 and does

not follow from Theorem 3.2.

In Section 4 we construct examples answering Questions I and II. For each question we

construct two examples: one for each of the two possible ways (characterised in Theorem 3.15)

the loss of the semimartingale property can occur. In Section 5 we discuss in more detail the

case where Y is a Brownian motion stopped upon hitting zero. We start with two lemmas from

real analysis that arise in the study of the Brownian case and are also of independent interest.

Then we present a result, Theorem 5.4, where two different equivalent conditions for g(Y ) to

be a semimartingale are given. One of them is a slight variation of the equivalent condition of

Theorem 5.9 in [3] (simply put, it is observed that parts (ii) and (iii) of Theorem 5.9 in [3] imply

part (i) of that theorem). The other one is new.

In Section 6 we consider the additive functional

(1.1)

∫

J

Ly
t (Y ) ν(dy), t ∈ [0, ζ],

where (Ly
t (Y ); t ∈ [0, ζ), y ∈ J) is the local time of the diffusion Y and ν is an arbitrary

positive measure on J . We describe the stopping time after which this additive functional is

infinite, and present deterministic criteria for the convergence and divergence of (1.1) at this

stopping time. As a particular case of this investigation, Lemma 5.10 in [3] is generalised to the

diffusion setting and complemented by a criterion for a.s.-infiniteness of the additive functional.

This characterisation is the reason why the idea behind the proof of the corresponding result in

Section 6 differs from the one in [3, Lemma 5.10]: our treatment in Secton 6 uses the Ray-Knight

theorem in the corresponding place. Finally, in Section 7 we prove the theorems from Section 3.

2. Setting and Notations

2.1. First we introduce some common notations used in the sequel. Let us consider an open

interval J = (l, r) ⊆ R.

• J denotes [l, r](⊆ [−∞,∞]).

• νL denotes the Lebesgue measure on J .

• L1
loc(J) denotes the set of Borel functions J → [−∞,∞], which are locally integrable

on J , i.e. integrable on compact subsets of J with respect to νL.

• For a positive measure ν on J , L1
loc(l+, ν) (resp. L1

loc(r−, ν)) denotes the set of Borel

functions f : J → [−∞,∞] such that for some z ∈ J , it holds
∫
(l,z) |f(y)| ν(dy) < ∞

(resp.
∫
(z,r) |f(y)| ν(dy) < ∞).

• L1
loc(l+) and L1

loc(r−) denote L1
loc(l+, νL) and L1

loc(r−, νL) respectively.
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• For a function x 7→ f(x) on J , the notations “f ∈ L1
loc(l+, ν)” and “f(x) ∈ L1

loc(l+, ν)”

are synonymous.

• For a locally finite signed measure νS on J , |νS | denotes the variation measure of νS .

2.2. Let the state space be J = (l, r), −∞ ≤ l < r ≤ ∞, and Y = (Yt)t∈[0,∞) be a J-valued

solution of the one-dimensional SDE

(2.1) dYt = µ(Yt) dt+ σ(Yt) dWt, Y0 = x0,

on some filtered probability space (Ω,F , (Ft)t∈[0,∞),P), where x0 ∈ J and W is an (Ft,P)-

Brownian motion. We allow Y to exit its state space J at a finite time in a continuous way.

The exit time is denoted by ζ. That is to say, P-a.s. on {ζ = ∞} the trajectories of Y do not

exit J , while P-a.s. on {ζ < ∞} we have: either limt↑ζ Yt = r or limt↑ζ Yt = l. Then we need to

specify the behaviour of Y after ζ on {ζ < ∞}. In what follows we assume that on {ζ < ∞}
the process Y stays after ζ at the endpoint of J where it exits, i.e. l and r are by convention

absorbing boundaries.

Throughout the paper it is assumed that the coefficients µ and σ in (2.1) satisfy the Engelbert-

Schmidt conditions

σ(x) 6= 0 ∀x ∈ J,(2.2)

1

σ2
,
µ

σ2
∈ L1

loc(J).(2.3)

Under (2.2) and (2.3) SDE (2.1) has a weak solution, unique in law, which possibly exits J

(see [5] or [8, Ch. 5, Th. 5.15]). Conditions (2.2) and (2.3) are reasonable weak assumptions:

any locally bounded Borel function µ and locally bounded away from zero Borel function σ on J

satisfy (2.2) and (2.3). In what follows we also need the scale function s of Y and its derivative ρ:

ρ(x) = exp

{
−
∫ x

c

2µ

σ2
(y) dy

}
, x ∈ J,(2.4)

s(x) =

∫ x

c

ρ(y) dy, x ∈ J,(2.5)

for some c ∈ J . In particular, s is an increasing C1-function J → R with a strictly positive

derivative, which is absolutely continuous on compact intervals in J , while s(r) (resp. s(l)) may

take value ∞ (resp. −∞).

3. Characterisation of the Semimartingale Property

In this section we study whether g(Y ) is a semimartingale for the possibly exiting diffusion

Y described in the previous section and a certain class of functions g described below. Let us

consider a function g on the state space J such that

g : J → R is a difference of two convex functions.(3.1)

In particular, the left derivative g′− and the right derivative g′+ are well-defined everywhere on J

and are functions of finite variation on compact subsets of J . Furthermore the derivative g′

exists everywhere on J except possibly on a countable set. So the second derivative g′′ exists
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as a function νL-a.e. on J . It follows from (3.1) that the second derivative of g in the sense of

distributions can be identified with a locally finite signed measure on J (see § 3 in the appendix

in [12]), which is typically denoted by g′′(dy) (see e.g. [12, Ch. VI, Th. 1.5]). An equivalent

description of this object is as follows: g′′(dy) is the locally finite signed measure on J satisfying

g′′((a, b]) = g′+(b)− g′+(a), l < a < b < r. It follows that the Lebesgue decomposition of g′′(dy)

with respect to νL takes the form

g′′(dy) = g′′(y) dy + g′′s (dy),

where the locally finite signed measure g′′s (dy) on J denotes the singular part of g′′(dy) with

respect to νL.

In what follows, given a function g satisfying (3.1), we define a locally finite signed measure

νg on J by the formula

(3.2) νg(dy) :=

(
g′µ
σ2

+
1

2
g′′
)
(y)dy +

1

2
g′′s (dy).

Below we use the following terminology:

Y exits J at r means P

(
ζ < ∞, lim

t↑ζ
Yt = r

)
> 0;

Y exits J at l is understood in an analogous way.

We distinguish between the following four cases:

(A) Y exits J neither at l nor at r;

(B) Y exits J at l, and there exists a finite limit

g(l) := lim
x↓l

g(x);

Y does not exit J at r;

(C) Y exits J at r, and there exists a finite limit

g(r) := lim
x↑r

g(x);

Y does not exit J at l;

(D) Y exits J at l and at r, and there exist finite limits

g(l) := lim
x↓l

g(x) and g(r) := lim
x↑r

g(x).

In each of these cases g(Y ) is well-defined globally (i.e. on [0,∞)) and finite, and hence the

question whether g(Y ) is a semimartingale is well-posed.

Remark 3.1. By the Itô-Tanaka formula (see [12, Ch. VI, Th. 1.5]), condition (3.1) implies

that

(3.3) (g(Yt))t∈[0,ζ) is a continuous semimartingale on [0, ζ).

In fact, (3.1) is equivalent to (3.3). In the Brownian case µ ≡ 0, σ ≡ 1 (i.e. Y is a Brownian

motion absorbed at l and r), this follows just as in the proofs of Theorems 5.5 and 5.6 in [3],
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and is stated right after the proof of Lemma 5.10 in [3]. In general it remains to note that (3.1)

is equivalent to

g ◦ s−1 : s(J) → R is a difference of two convex functions,

because under (2.2) and (2.3) both s and s−1 are C1-functions with derivatives absolutely

continuous on compact subintervals in J , and refer to the discussion at the end of Section 5

in [3]. Thus, since condition (3.3) is necessary for g(Y ) to be a semimartingale globally (i.e.

on [0,∞)), assuming (3.1) and studying whether g(Y ) is a semimartingale amounts to studying

whether the loss of the semimartingale property occurs at the time ζ.

Case (A). There is nothing to study in this case: g(Y ) is always a semimartingale.

Case (B). First let us note that by Propositions B.3–B.5, case (B) amounts to the following:

(B.i) there is a finite limit g(l) := limx↓l g(x);

(B.ii) s(l) > −∞ and s−s(l)
ρσ2 ∈ L1

loc(l+);

(B.iii) either s(r) = ∞, or:

s(r) < ∞ and
s(r)− s

ρσ2
/∈ L1

loc(r−).

Theorem 3.2. Assume (3.1) and case (B). Then g(Y ) is a semimartingale if and only if

(3.4)
s− s(l)

ρ
∈ L1

loc(l+, |νg|),

where the variation measure |νg| of the locally finite signed measure νg, defined in (3.2), equals

|νg|(dy) =
∣∣∣∣
g′µ
σ2

+
1

2
g′′
∣∣∣∣ (y)dy +

1

2
|g′′s |(dy).

Remark 3.3. The proof of Theorem 3.2 will reveal that under (3.4), g(Y ) has the semimartin-

gale decomposition

(3.5) g(Yt) = g(x0) +At +Mt, t ∈ [0,∞),

where

At =

∫

J

Ly
t∧ζ(Y ) νg(dy), t ∈ [0,∞),(3.6)

Mt =

∫ t∧ζ

0
(g′σ)(Yu) dWu, t ∈ [0,∞),(3.7)

and the integrals in (3.6) and (3.7) are well-defined. The random field {Ly
t (Y ) : y ∈ J, t ∈ [0, ζ)}

in (3.6) denotes the local time of the semimartingale Y defined on the stochastic interval [0, ζ)

(see Section 6 for further details and references on local time of Y ). Note also that the local

martingale M in (3.7) does not depend on the choice of g′ on any countable set. In particular, on

the set where the left and the right derivatives of g do not coincide we can define g′ arbitrarily.

When the measure g′′(dy) is absolutely continuous with respect to νL, Theorem 3.2 implies

the following characterisation.
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Corollary 3.4. If g ∈ C1(J,R) and g′ is absolutely continuous on compact intervals in J , then,

in case (B), g(Y ) is a semimartingale if and only if

s− s(l)

ρ

∣∣∣∣
g′µ
σ2

+
1

2
g′′
∣∣∣∣ ∈ L1

loc(l+).

Remark 3.5. Under the assumptions of Corollary 3.4, the signed measure g′′s (dy) is a zero

measure and the finite variation process in the semimartingale decomposition (3.5) takes the

form

At =

∫ t∧ζ

0

(
g′µ+

1

2
g′′σ2

)
(Yu) du, t ∈ [0,∞).

We now investigate when the process Y itself is a semimartingale. To get a deterministic

necessary and sufficient condition it is now enough to apply Theorem 3.2 or Corollary 3.4 with

g(x) = x, x ∈ J .

Corollary 3.6. Assume that l > −∞, Y exits J at l, and Y does not exit J at r. Then Y is a

semimartingale if and only if
s− s(l)

ρ

|µ|
σ2

∈ L1
loc(l+).

In specific examples it may be hard to check (3.4). The following result, Theorem 3.7, gives

an easy-to-check sufficient condition for g(Y ) to be a semimartingale. In Theorem 3.12 below

we present a necessary condition for the semimartingale property of g(Y ).

Theorem 3.7. In addition to the assumptions of Theorem 3.2 suppose that, for some a ∈ J ,

(3.8) νg|(l,a) is either a positive measure or a negative measure.

Then g(Y ) is a semimartingale.

Remark 3.8. (i) In view of Theorem 3.2, there is an equivalent reformulation of Theorem 3.7,

which appears to be purely analytic: under the assumptions of Theorem 3.2, (3.8) im-

plies (3.4). We note that our proof is probabilistic and raise the question of finding an

analytic proof.

(ii) Observe that (3.4) does not imply (3.8). For instance, consider J = (0,∞), µ ≡ 0, σ ≡ 1,

g(x) =
∫ x

1 (2 + sin 1√
y
) dy, x ∈ [0,∞).

Corollary 3.9. In addition to the assumptions of Theorem 3.2 suppose that, for some a ∈ J ,

µ = 0 νL-a.e. on (l, a)

and

g is convex or concave on (l, a).

Then g(Y ) is a semimartingale.

In particular, it immediately follows from Corollary 3.9 that
√
BτB0 is a semimartingale (see

the discussion after Examples 1.1 and 1.2). This can also be seen directly since, by Jensen’s

inequality, the process
√
BτB0 is a supermartingale.
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Remark 3.10. (i) Let X be a continuous semimartingale satisfying P(Xt ≥ l ∀t ≥ 0) = 1 for

some l > −∞, and h : [l,∞) → R a convex or concave function continuous at l with a finite

derivative h′(l+). Then h(X) is a semimartingale by the Itô-Tanaka formula because such a

function h can be extended to a convex or concave function on R. However, if |h′(l+)| = ∞,

the Itô-Tanaka formula cannot be used to conclude that h(X) is a semimartingale (recall

Examples 1.1 and 1.2, where the semimartingale property is lost for h(·) = √ · , l = 0).

(ii) The statement in (i) demonstrates that the gist of Corollary 3.9 lies in the cases

|g′(l+)| = ∞ or l = −∞.

We now apply Theorem 3.7 to get a sufficient condition for Y itself to be a semimartingale.

Corollary 3.11. Assume that l > −∞, Y exits J at l, Y does not exit J at r. Further suppose

that, for some a ∈ J ,

either µ ≥ 0 νL-a.e. on (l, a) or µ ≤ 0 νL-a.e. on (l, a).

Then Y is a semimartingale.

In particular, it follows from Corollary 3.11 that ρτ
ρ
0 is a semimartingale (see the discussion

after Examples 1.1 and 1.2). Indeed, by Itô’s formula, on the stochastic interval [0, τρ0 ) one has

dρt =
δ−1
2ρt

dt+dWt, hence Corollary 3.11 applies with J = (0,∞), σ ≡ 1, µ(y) = δ−1
2y ≤ 0, y ∈ J .

It is interesting to note that even though Corollary 3.6 gives a more precise result than

Corollary 3.11, the latter is sometimes more convenient. For instance, we can conclude from

Corollary 3.11 (but not from Corollary 3.6) that for Y to fail the semimartingale property, the

drift µ has to oscillate around zero near the boundary point l. Such examples will be constructed

below.

We now present a necessary condition for g(Y ) to be a semimartingale.

Theorem 3.12. Under the assumptions of Theorem 3.2 let g(Y ) be a semimartingale. Then

(3.9)
s− s(l)

ρ
(g′)2 ∈ L1

loc(l+).

Put differently, if (3.9) is violated, then g(Y ) is not a semimartingale. Let us note that in

specific situations it may be easier to see that (3.9) is violated than that (3.4) is violated.

Remark 3.13. In the language of analysis, Theorem 3.12 can be recast as follows: under the

assumptions of Theorem 3.2, (3.4) implies (3.9). Again we observe that our proof is probabilistic

and that an analytic proof appears not to be straightforward. Note also that (3.9) does not in

general imply (3.4) (see Example 4.1 below).

Finally, we characterise the phenomena that lead to the loss of the semimartingale property

of g(Y ). As in [6] we will denote by VarA = (VarAt)t∈[0,∞) the variation process of a process

A = (At)t∈[0,∞). Let the assumptions of Theorem 3.2 hold (in particular, P(ζ < ∞) > 0) and

let g(Y ) be a non-semimartingale. Decomposition (3.5) with A and M given by (3.6) and (3.7)

still holds, but only on the stochastic interval [0, ζ) (also A = (At)t∈[0,ζ) and M = (Mt)t∈[0,ζ)
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are in general well-defined only on [0, ζ), A has a locally finite variation on [0, ζ), M is a local

martingale on [0, ζ)). We use this decomposition on the stochastic interval [0, ζ) in the following

definition.

Definition 3.14. Let the assumptions of Theorem 3.2 hold and let g(Y ) be a non-

semimartingale.

(i) We say that g(Y ) is a non-semimartingale of the first kind if P-a.s. on {ζ < ∞} there are

finite limits

Mζ = lim
t↑ζ

Mt and Aζ = lim
t↑ζ

At.

(ii) We say that g(Y ) is a non-semimartingale of the second kind if P-a.s. on {ζ < ∞} one

has

lim sup
t↑ζ

Mt = − lim inf
t↑ζ

Mt = ∞ and lim sup
t↑ζ

At = − lim inf
t↑ζ

At = ∞.

We will now see that g(Y ) can lose the semimartingale property in these two ways only.

Moreover, we have the following characterisation result.

Theorem 3.15. Let the assumptions of Theorem 3.2 hold.

(i) g(Y ) is a non-semimartingale of the first kind if and only if (3.9) holds and (3.4) is

violated. In this case the process (Mt∧ζ)t∈[0,∞) is a continuous local martingale on [0,∞) (not

only on [0, ζ)), but VarAζ = ∞ P-a.s. on {ζ < ∞}.
(ii) g(Y ) is a non-semimartingale of the second kind if and only if (3.9) is violated.

Cases (C) and (D) are treated similarly to case (B). For instance, the counterpart of

Theorem 3.2 in case (D) is as follows: under (3.1), g(Y ) is a semimartingale if and only if

s− s(l)

ρ
∈ L1

loc(l+, |νg|) and
s(r)− s

ρ
∈ L1

loc(r−, |νg|).

We omit further details.

4. Examples

4.1. Answer to Question I. Let B be an (Ft,P)-Brownian motion starting from x0 > 0

defined on some filtered probability space (Ω,F , (Ft)t∈[0,∞),P). Question I in the introduction

asks whether it is possible to find a function g : [0,∞) → R satisfying

(4.1) g ∈ C([0,∞),R) ∩ C∞((0,∞),R)

and

(4.2) g is strictly increasing

such that (g(Bt∧τB0 ))t∈[0,∞) is not a semimartingale, where τB0 = inf{t ≥ 0 : Bt = 0}. Following
the discussion at the end of Section 3 (see in particular Definition 3.14 and Theorem 3.15), two

further natural subquestions arise:

(a) Can g(BτB0 ) be a non-semimartingale of the first kind?
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(b) Can g(BτB0 ) be a non-semimartingale of the second kind?

The present setting here is a special case of the setting in Section 3 with J = (0,∞), µ ≡ 0,

σ ≡ 1, and we are in case (B) (note that condition (3.1) and the existence of a finite limit

g(0) := limx↓0 g(x) hold due to (4.1)). Conditions (3.4) and (3.9) take the form

(4.3) x|g′′(x)| ∈ L1
loc(0+)

and

(4.4) x(g′(x))2 ∈ L1
loc(0+)

respectively. Thus, question (a) above amounts to constructing a function g : [0,∞) → R satis-

fying (4.1), (4.2) and (4.4), such that (4.3) is violated; question (b) amounts to constructing a

function g satisfying (4.1) and (4.2), such that (4.4) is violated. The answers to both questions

(a) and (b) are affirmative. We now construct both examples.

Example 4.1 (g(BτB0 ) is a non-semimartingale of the first kind).

Let us consider the function h : (0,∞) → R given by

h(x) =
1√
x

(
2 + sin

1

x

)
, x ∈ (0,∞).

It is easy to see that h satisfies

h ∈ C∞((0,∞),R),(4.5)

h(x) > 0 ∀x ∈ (0,∞),(4.6)

h ∈ L1
loc(0+),(4.7)

xh2(x) ∈ L1
loc(0+),(4.8)

x|h′(x)| /∈ L1
loc(0+).(4.9)

Setting

g(x) =

∫ x

1
h(y) dy, x ∈ [0,∞)

(note that g(0) is finite due to (4.7)), we get a function g satisfying (4.1), (4.2), and (4.4) such

that (4.3) is violated, which is what was required.

Example 4.2 (g(BτB0 ) is a non-semimartingale of the second kind).

Let us set

an =
1

n
− 1

n4
, n = 2, 3, . . . ,

bn =
1

n
+

1

n4
, n = 2, 3, . . . ,

E =
∞⋃

n=2

(an, bn)
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and define the strictly positive function

h(x) =





1
x2 if x ∈ E,

1√
x

if x ∈ (0,∞) \ E.

Since
∫ bn
an

dx
x2 = bn−an

anbn
∼ const

n2 as n → ∞, we get h ∈ L1
loc(0+). It follows from

∫ bn
an

dx
x3 ≥

1
bn

∫ bn
an

dx
x2 ∼ const

bnn2 ∼ const
n

as n → ∞ that xh
2
(x) /∈ L1

loc(0+). It is clear that such a function h

can be smoothed in the neighbourhoods of the points an and bn, n = 2, 3, . . ., so that we get a

function h : (0,∞) → R satisfying (4.5)–(4.7) and

xh2(x) /∈ L1
loc(0+).

Setting

g(x) =

∫ x

1
h(y) dy, x ∈ [0,∞),

we get a function g satisfying (4.1) and (4.2) such that (4.4) is violated.

4.2. Answer to Question II. Let us consider the setting and notation of Section 2. Ques-

tion II in the introduction asks whether Y can fail to be a semimartingale whenever Y exits J

only at finite endpoints. Let us consider case (B) of Section 3 with l > −∞ and g(x) = x, x ∈ J .

Now two further natural subquestions arise:

(c) Can Y be a non-semimartingale of the first kind?

(d) Can Y be a non-semimartingale of the second kind?

The answers to both questions are affirmative. The examples are obtained from Examples 4.1

and 4.2 by setting J := (g(0), g(∞)) and Y := g(BτB0 ) (that is, µ = 1
2g

′′ ◦ g−1, σ = g′ ◦ g−1).

5. Further Discussions in the Brownian Case

In this section we discuss in more detail the particular case, where Y is a Brownian motion

stopped upon hitting zero, i.e. the case J = (0,∞), µ ≡ 0, σ ≡ 1.

5.1. Two Lemmas from Real Analysis. We will need the following result from real

analysis, which is also of independent interest.

Lemma 5.1. For some a > 0, let

g : (0, a) → R be a difference of two convex functions,(5.1)
∫

(0,u]
x |g′′|(dx) < ∞(5.2)

for some u ∈ (0, a). Then

there exists a finite limit g(0) := lim
x↓0

g(x),(5.3)

∫

(0,u]
x(g′(x))2 dx < ∞.(5.4)
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Let us recall that g′′(dx) is the locally finite signed measure on (0, a) satisfying g′′((x, y]) =

g′+(y) − g′+(x), 0 < x < y < a, and |g′′|(dx) is the variation measure of g′′(dx). Let us further

note that statement (5.4) does not depend on the definition of the integrand on the (at most

countable) set where g′ does not exist. For more details, see the discussion in the beginning of

Section 3.

Let us observe that Lemma 5.1 is a refinement of the analytical statement implied by Theo-

rems 3.2 and 3.12 in the Brownian case. Indeed, Remark 3.13 states that (5.1)–(5.3) imply (5.4).

Note that (5.3) is assumed in Theorems 3.2 and 3.12 as a part of the description of case (B) in

Section 3.

Proof. First we prove by contradiction that (5.1) and (5.2) imply (5.3). If not, there would exist

a convex function h on (0, a) such that

(5.5)

∫

(0,u]
xh′′(dx) < ∞

and

(5.6) lim
x↓0

h(x) = ∞

(note that for a convex function such a limit always exists but may be infinite). For ε ∈ (0, u),

integrating by parts, we get
∫

(ε,u]
xh′′(dx) = uh′+(u)− εh′+(ε)−

∫

(ε,u]
h′+(x) dx.

Since h is convex on (0, a), it is absolutely continuous on compact intervals in (0, a), hence

(5.7)

∫

(ε,u]
xh′′(dx) = uh′+(u)− εh′+(ε)− h(u) + h(ε).

As ε ↓ 0 we now get a contradiction, as the limit of the left-hand side of (5.7) is finite by (5.5),

while the limit of the right-hand side of (5.7) equals ∞ due to (5.6) and −εh′+(ε) ≥ 0 for

sufficiently small ε > 0.

It remains to prove the implication

(5.1)–(5.3) =⇒ (5.4),

which follows from Theorems 3.2 and 3.12, as observed above. Such an argument is very indirect;

we now present a short direct argument. Let g satisfy (5.1)–(5.3). Clearly, (5.7) holds with g

instead of h. By (5.2) and (5.3), there is a finite limε↓0 εg′+(ε). Now using integration by parts

in a different way, we obtain

(5.8)

∫

(ε,u]
x(g′+(x))

2 dx =
(ug′+(u))

2 − (εg′+(ε))
2

2
−
∫

(ε,u]
x2g′+(x) g

′′(dx).

As ε ↓ 0 the right-hand side, hence also the left-hand side, of (5.8) has a finite limit (here (5.2)

and the existence of a finite limε↓0 εg′+(ε) are used). Since x(g′+(x))
2 is a nonnegative function,

statement (5.4) follows by monotone convergence (or by Fatou’s lemma). �
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Theorems 3.2 and 3.7 in the Brownian case imply another result from real analysis, again of

interest in itself.

Lemma 5.2. For some a > 0, let g : (0, a) → R be a convex or concave function satisfying (5.3).

Then, for any u ∈ (0, a), it satisfies (5.2).

We note that here assumption (5.3) cannot be dropped: consider, for instance, g(x) = 1
x
. The

way of proving Lemma 5.2 via Theorems 3.2 and 3.7 is of course very indirect. We present a

direct proof.

Proof. In the first step let us establish that g′+ ∈ L1
loc(0+). Since g is convex or concave on

(0, a), it is absolutely continuous on compact intervals in (0, a). In particular, for 0 < ε < u < a,

we have

(5.9)

∫

(ε,u]
g′+(x) dx = g(u)− g(ε).

Again by convexity or concavity of g, g′+ is monotone, hence g′+ is either nonnegative or non-

positive in a sufficiently small right neighborhood (0, δ) of zero. Now g′+ ∈ L1
loc(0+) follows

from (5.9) by letting ε ↓ 0 and using monotone convergence and (5.3).

As in (5.7), we get

(5.10)

∫

(ε,u]
x g′′(dx) = ug′+(u)− εg′+(ε)− g(u) + g(ε).

Since g is convex or concave, g′′(dx) is a positive or negative measure. So, the left-hand side,

hence also the right-hand side, of (5.10) has a limit as ε ↓ 0, finite or infinite. By (5.3), there is

a finite or infinite limε↓0 εg′+(ε). The latter limit can only be 0 (provided it exists), as otherwise

g′+ /∈ L1
loc(0+). Hence

∫

(0,u]
x g′′(dx) = lim

ε↓0

∫

(ε,u]
x g′′(dx) is finite

(the equality holds by the monotone convergence). We thus get (5.2). �

5.2. Another Characterisation of the Semimartingale Property. Let B be a Brownian

motion starting from x0 > 0. In the following we consider the stopped process BτB0 with

τB0 := inf{t ≥ 0 : Bt = 0} and discuss the conditions on a Borel function g : [0,∞) → R

under which the process g(BτB0 ) is a semimartingale. Under the assumption that g is continuous

at 0 and the restricted function g|(0,∞) is a difference of two convex functions, a necessary

and sufficient condition is given in Theorem 3.2 above. With no assumption, a necessary and

sufficient condition is given in Theorem 5.9 in [3]. Here we enrich the picture in two ways:

firstly, we discuss the relations between the elementary conditions that form the necessary and

sufficient condition of Theorem 5.9 in [3] (namely, parts (ii) and (iii) of [3, Th. 5.9] imply part (i)

of that theorem); secondly, we present another necessary and sufficient condition for g(BτB0 ) to

be a semimartingale.
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In order to formulate the result we introduce several conditions:

the restriction g|(0,∞) is a difference of two convex functions (0,∞) → R,(5.11)

there exists a finite limit g(0) := lim
x↓0

g(x),(5.12)

x ∈ L1
loc(0+, |g′′|(dx)),(5.13)

g = h1 − h2 with hi : [0,∞) → R convex and continuous at 0, i = 1, 2.(5.14)

Remark 5.3. Let us note that condition (5.14) is strictly stronger than (5.11) and (5.12). For

instance, the functions g constructed in Examples 4.1 and 4.2 satisfy (5.11) and (5.12), but for

them, g(BτB0 ) is not a semimartingale, hence, by Theorem 5.4 below, (5.14) fails.

Theorem 5.4. Let g : [0,∞) → R be a Borel function. The following are equivalent:

(a) g(BτB0 ) is a semimartingale;

(b) (5.11) and (5.13) hold;

(c) (5.14) holds.

Proof. If (5.14) holds, then, by Corollary 3.9, hi(B
τB0 ) are semimartingales, i = 1, 2 (alterna-

tively, one can use Lemma 5.2 here). Thus, (c) ⇒ (a). By [3, Th. 5.9], (a) is equivalent to

(5.11)–(5.13). In particular, (a) ⇒ (b).

It remains to prove that (b) ⇒ (c). Assume (5.11) and (5.13). By Lemma 5.1, (5.12) holds.

Let

g′′(dx) = ν1(dx)− ν2(dx)

be the Jordan decomposition of the locally finite signed measure g′′(dx) on (0,∞), that is νi(dx)

are locally finite positive measures on (0,∞) such that ν1 ⊥ ν2. In particular, we have

ν1(dx) + ν2(dx) = |g′′|(dx),

so by (5.13)

(5.15) x ∈ L1
loc(0+, νi), i = 1, 2.

For i = 1, 2, define the functions

ki(x) =




νi((1, x]) if x ∈ [1,∞),

−νi((x, 1]) if x ∈ (0, 1).

We prove that (5.14) is satisfied with functions hi = Hi, where

Hi(x) =

∫ x

1
ki(y) dy + aix+ bi, x ∈ [0,∞), i = 1, 2,

for a suitable choice of constants ai, bi. Since ki are nondecreasing and right-continuous and

(Hi)
′
+ = ki + ai, we have that Hi are convex functions on (0,∞). By construction it holds

(H1 −H2)
′
+(x) = g′+(x)− g′+(1) + a1 − a2, x ∈ (0,∞).
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Choosing a1 and a2 so that a1 − a2 = g′+(1), b1 and b2 so that (H1 −H2)(1) = g(1), we obtain

that g = H1 −H2 on (0,∞). It remains to prove that limx↓0Hi(x) < ∞, i = 1, 2. To this end,

it is enough to prove that
∫ 1
0 νi((y, 1]) dy < ∞. For i = 1, 2, we have

∫ 1

0
νi((y, 1]) dy =

∫

(0,1]

∫

(0,1]
I(y < x ≤ 1) νi(dx) dy =

∫

(0,1]
x νi(dx) < ∞

by (5.15). This concludes the proof. �

6. Finiteness of Additive Functionals of Diffusion Processes

In this section we study the finiteness of the process

(6.1)

∫

J

Ly
t (Y ) ν(dy), t ∈ [0, ζ],

where ν is an arbitrary positive measure defined on the Borel σ-field B(J) (setting and notations

in Section 2 apply), and (Ly
t (Y ); t ∈ [0, ζ), y ∈ J) is an a.s. continuous in t and càdlàg in y version

of the local time of Y (in fact, it will be even a.s. jointly continuous in (t, y); see [10, Prop. A.1]).

The characterisation of the finiteness of the additive functional given in (6.1) plays a key role in

the proofs of the results of Section 3. The occupation times formula (see [12, Ch. VI, Cor. 1.6])

implies that this question has been answered in [9] when the measure ν is absolutely continuous

with respect to the Lebesgue measure νL. In this section we give a deterministic characterisation

of the finiteness of the additive functional in (6.1) for a general positive (possibly non-locally

finite) measure ν on the interval J .

We proceed in two steps. First we reduce the study of the finiteness of (6.1) in general to the

question of the convergence of the integral

(6.2)

∫

J

Ly
ζ(Y ) ν(dy),

where the measure ν is now locally finite on J . In the second step we formulate the answer to

the latter problem in terms of a deterministic integrability criterion involving the scale function

s and its derivative ρ, given in (2.4)–(2.5), and the measure ν.

Let us consider a general positive measure ν on J . With Bε(x) := (x− ε, x+ ε) we set

Dν := {l, r} ∪ {x ∈ J : ∀ε > 0 it holds ν(Bε(x)) = ∞},

i.e. Dν is the set of points in J where local finiteness of ν fails, augmented by {l, r}. Clearly,

Dν is closed in J . For a closed subset E in J and a, b ∈ J , we define the stopping times

τYE := inf{t ∈ [0,∞) : Yt ∈ E} (inf ∅ := ∞),

τYa := τY{a},

τYa,b := τYa ∧ τYb .

We start with the following result.
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Theorem 6.1. P-a.s. we have:
∫

J

Ly
t (Y ) ν(dy) < ∞, t ∈ [0, τYDν ),(6.3)

∫

J

Ly
t (Y ) ν(dy) = ∞, t ∈ (τYDν , ζ].(6.4)

Remark 6.2. Once Theorem 6.1 is established, it remains to study the convergence of the

integral ∫

J

Ly

τY
Dν

(Y ) ν(dy).

If x0 ∈ Dν , then there is nothing to study here because τYDν ≡ 0 and
∫
J
Ly
0(Y ) ν(dy) = 0. So

assume now that x0 /∈ Dν , and define

(6.5) α = sup([l, x0) ∩Dν) and β = inf((x0, r] ∩Dν).

Then we have τYDν = τYα,β . Now if we consider I := (α, β) as a new state space for Y , then τYα,β
will be the new exit time, and we clearly have that ν is locally finite on I. This concludes the

reduction of the study of the finiteness of the process in (6.1), with a general positive measure ν,

to the question of the convergence of the integral given in (6.2) with measure ν, which is now

locally finite on J .

Proof of Theorem 6.1. If x0 ∈ Dν , then there is nothing to prove in (6.3). Let x0 /∈ Dν . A.s.

on {t < τYDν} the following holds: [infu≤t Yu, supu≤t Yu] ⊂ (α, β) with α and β from (6.5), hence

ν
(
[infu≤t Yu, supu≤t Yu]

)
< ∞, and the function y 7→ Ly

t (Y ) is bounded as a càdlàg function

with a compact support. Thus, statement (6.3) follows.

As for (6.4), let us first assume that x0 /∈ Dν . Then τYDν = τYα,β , hence {τYDν < t < ζ} = {τYα <

t < ζ} ∪ {τYβ < t < ζ}. If P(τYα < t < ζ) > 0 (in particular, this means that α > l), then (6.4)

holds a.s. on {τYα < t < ζ} because α ∈ J ∩Dν and, by [2, Th. 2.7], the function y 7→ Ly
t (Y ) is

strictly positive in some neighbourhood of α a.s. on {τYα < t < ζ}. Similarly, (6.4) holds a.s. on

{τYβ < t < ζ}. In the case x0 ∈ Dν statement (6.4) again follows from [2, Th. 2.7] by the same

reasoning. �

It now remains to study the convergence of the integral in (6.2) under the assumption that

the measure ν on J is locally finite. The answer depends on the behaviour of Y . Theorems 6.3

and 6.4 below examine the cases P(A) = 1 and P(Br ∪Bl ∪ Cr ∪ Cl) = 1 separately (the events

A, Br, Bl, Cr, Cl are defined in Appendix B; see Propositions B.2 and B.3 for the description

of these cases).

Theorem 6.3. Let ν be a locally finite positive measure on the interval J = (l, r). Assume that

s(r) = ∞ and s(l) = −∞. Then P-a.s. we have

(6.6) Ly
ζ(Y ) = ∞ for every y ∈ J,

hence
∫
J
Ly
ζ(Y ) ν(dy) = ∞ P-a.s. whenever ν is a non-zero measure (i.e. ν(J) > 0).
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Let us remark that the assumption s(r) = ∞ and s(l) = −∞ of Theorem 6.3 is equivalent to

P(A) = 1 (see Propositions B.2 and B.3). In particular, in Theorem 6.3 we have ζ = ∞ P-a.s.

The study of the remaining case P(Br ∪ Bl ∪ Cr ∪ Cl) = 1 consists of the investigation of

the convergence of (6.2) on the event {limt↑ζ Yt = l} and on the event {limt↑ζ Yt = r}. In

the following theorem we investigate the convergence of (6.2) on the event {limt↑ζ Yt = l}
(in particular, we need to assume s(l) > −∞, which is, by Proposition B.3, equivalent to

P(limt↑ζ Yt = l) > 0).

Theorem 6.4. For ν a locally finite positive measure on the interval J = (l, r), assume that

s(l) > −∞.

(i) If
s− s(l)

ρ
∈ L1

loc(l+, ν),

then ∫

J

Ly
ζ(Y ) ν(dy) < ∞ P-a.s. on

{
lim
t↑ζ

Yt = l

}
.

(ii) If
s− s(l)

ρ
/∈ L1

loc(l+, ν),

then ∫

J

Ly
ζ(Y ) ν(dy) = ∞ P-a.s. on

{
lim
t↑ζ

Yt = l

}
.

The investigation of the convergence of (6.2) on the event {limt↑ζ Yt = r} is similar. This

completes the study of the convergence of the integral in (6.2).

Proofs of Theorems 6.3 and 6.4. It is clear that Theorem 6.3 follows if we prove the equality

in (6.6). By the Dambis-Dubins-Schwarz theorem, there exists a Brownian motion B starting

from s(x0) (possibly on an enlargement of the initial probability space) such that

(6.7) s(Yt) = B〈s(Y ),s(Y )〉t P-a.s., t ∈ [0, ζ).

Since s(r) = ∞ and s(l) = −∞, P-a.s. we have lim supt↑ζ s(Yt) = ∞, lim inft↑ζ s(Yt) = −∞,

hence 〈s(Y ), s(Y )〉ζ = ∞ P-a.s. It can be deduced from the Itô-Tanaka formula that

(6.8) Ly
t (Y ) =

1

ρ(y)
L
s(y)
〈s(Y ),s(Y )〉t(B), (t, y) ∈ [0, ζ)× J, P-a.s.

Since P-a.s. we have Lz
∞(B) = ∞ for any z ∈ R (see e.g. [12, Ch. VI, § 2]), the equality in (6.6)

and Theorem 6.3 follow.

We prove Theorem 6.4 by reducing it to Lemma 6.5 below, which deals with an analogous

problem for Brownian motion. Note first that (6.8) implies the following equality:

(6.9)

∫

J

Ly
ζ(Y ) ν(dy) =

∫

J

L
s(y)
〈s(Y ),s(Y )〉ζ (B)

ν(dy)

ρ(y)
P-a.s.

Since s(l) > −∞, we have P(L) > 0, where L := {limt↑ζ Yt = l}. By the equality in (6.7) it

follows that limt↑ζ B〈s(Y ),s(Y )〉t = s(l) P-a.s. on L, and hence

(6.10) 〈s(Y ), s(Y )〉ζ = τBs(l) P-a.s. on L,
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where τB
s(l) is the first time the Brownian motion B hits the level s(l). Define ν̃(dy) := ν(dy)/ρ(y),

y ∈ J , and let µ̃ be the pushforward measure of ν̃ via s: µ̃(E) = ν̃(s−1(E)) for any Borel subset

E ⊆ s(J). Equalities (6.9) and (6.10) yield
∫

J

Ly
ζ(Y ) ν(dy) =

∫

s(J)
Lz
τB
s(l)

(B) µ̃(dz) P-a.s. on L.

Theorem 6.4 now follows from∫

(s(l),s(z))
(x− s(l)) µ̃(dx) =

∫

(l,z)

s(y)− s(l)

ρ(y)
ν(dy), z ∈ J,

and an application of Lemma 6.5. �

Lemma 6.5. For some l ∈ R, define I := (l,∞). Let B be a Brownian motion starting from

x0 ∈ I and ν a locally finite positive measure on I. Let τBl denote the first time B hits the

level l.

(i) If x− l ∈ L1
loc(l+, ν), then

∫

I

Ly

τB
l

(B) ν(dy) < ∞ P-a.s.

(ii) If x− l /∈ L1
loc(l+, ν), then

∫

I

Ly

τB
l

(B) ν(dy) = ∞ P-a.s.

Remark 6.6. Lemma 6.5 is known and has a long history. On the one hand, Lemma 6.5

contains Lemma 5.10 in [3], which is complemented by a criterion for a.s.-infiniteness of the

additive functional. That is why the proof below is different from that of Lemma 5.10 in [3].

On the other hand, Lemma 6.5 appeared in the literature already in this form. It can be traced

back to [1, Lem. 1.4.1] (the discussion in [9, Sec. 4] gives a detailed account of the history of this

result). The proof in [1, Lem. 1.4.1] is based on the Ray-Knight theorem and an application of

Jeulin’s [7] lemma (e.g. [1, Lem. 1.4.2]). Here we give a proof which replaces the application of

Jeulin’s lemma by a simple direct argument.

Proof. The mapping x 7→ Lx
τB
l

(B) is P-a.s. a continuous function with compact support in [l,∞).

So the finiteness of the integral
∫
I
Ly

τB
l

(B) ν(dy) reduces to the question

whether

∫

(l,x0)
Ly

τB
l

(B) ν(dy) =

∫

(0,x0−l)
Ll+u

τB
l

(B) ν(l + du) is finite.

Let W and W̃ be independent Brownian motions starting from 0. We set ηt = W
2
t + W̃ 2

t , i.e.

η = (ηt)t∈[0,∞) is a squared two-dimensional Bessel process starting from 0. It follows from the

first Ray-Knight theorem that

Law
(
Ll+u

τB
l

(B);u ∈ [0, x0 − l]
)
= Law (ηu;u ∈ [0, x0 − l]) .

So, the question is

(6.11) whether

∫

(0,x0−l)
ηu ν(l + du) =

∫

(l,x0)
ηy−l ν(dy) is finite.

In what follows we prove that, for a Brownian motion W starting from 0,
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(A) x− l ∈ L1
loc(l+, ν) implies that

∫
(l,x0)

W 2
y−l ν(dy) < ∞ P-a.s.;

(B) x− l /∈ L1
loc(l+, ν) implies that

∫
(l,x0)

W 2
y−l ν(dy) = ∞ P-a.s.

Together with (6.11) this will complete the proof of Lemma 6.5.

By Fubini’s theorem we have E
∫
(l,x0)

W 2
y−l ν(dy) =

∫
(l,x0)

(y − l) ν(dy) and (A) follows.

In order to prove (B) we assume that

(6.12) P

(∫

(l,x0)
W 2

y−l ν(dy) < ∞
)

> 0.

Then there exists a large M < ∞ such that γ := P(E) > 0, where

E :=

{∫

(l,x0)
W 2

y−l ν(dy) ≤ M

}
.

For any positive δ and u, the probability P(W 2
u ≥ δ2u) = P(|N(0, 1)| ≥ δ) does not depend

on u. Pick a sufficiently small δ > 0 such that P(|N(0, 1)| ≥ δ) ≥ 1 − γ
2 , and note that, for

any y ∈ (l, x0) we have

E
(
W 2

y−lIE
)
≥ E

(
W 2

y−lIE∩{W 2
y−l

≥δ2(y−l)}

)
≥ δ2γ

2
(y − l).

By Fubini’s theorem,

M ≥ E

[
IE

∫

(l,x0)
W 2

y−l ν(dy)

]
=

∫

(l,x0)
E(W 2

y−lIE) ν(dy) ≥
δ2γ

2

∫

(l,x0)
(y − l) ν(dy).

Hence (6.12) implies x− l ∈ L1
loc(l+, ν), which proves (B), and the lemma follows. �

7. Proofs of Theorems from Section 3

In this section we will prove Theorems 3.2, 3.7, 3.12 and 3.15. We assume (3.1) and case (B)

of Section 3.

1. Consider a sequence (αn)n∈N, l < αn < x0, αn ↓ l. By the Itô-Tanaka formula applied to

the stopped process g(Y τYαn ), n ∈ N, we get

(7.1) g(Yt) = g(x0) +At +M t, t ∈ [0, ζ), P-a.s.,

where the locally finite measure νg on the interval J is defined in (3.2) and

At =

∫

J

Ly
t (Y ) νg(dy), t ∈ [0, ζ),

M t =

∫ t

0
(g′σ)(Yu) dWu, t ∈ [0, ζ).

We note that the process M = (M t)t∈[0,ζ) is a continuous local martingale on the stochastic

interval [0, ζ) with

(7.2) 〈M,M〉t =
∫ t

0
(g′σ)2(Yu) du =

∫

J

Ly
t (Y )(g′)2(y) dy, t ∈ [0, ζ)

(the second equality follows from the occupation times formula), and the process A = (At)t∈[0,ζ)
has locally finite variation on [0, ζ).
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With VarA = (VarAt)t∈[0,ζ) the variation process of A, one has

(7.3) VarAt =

∫

J

Ly
t (Y ) |νg|(dy), P-a.s., t ∈ [0, ζ),

where |νg| is the variation measure of νg. We will now prove (7.3) by a pathwise argument,

but first observe that the right-hand side of (7.3) is, clearly, (Ft)-adapted and finite; finiteness

P-a.s. on {t < ζ} follows from the fact that P-a.s. on {t < ζ} the function y 7→ Ly
t (Y ) is càdlàg

with compact support and the measure |νg| is locally finite on J . To prove (7.3), note that

P-a.s. on {t < ζ} there exists a compact interval I ⊂ J , which depends on ω and contains the

support of y 7→ Ly
t (Y ). Let ω be fixed. Since |νg|(I) < ∞, there exists a Jordan decomposition

νg = ν+g −ν−g : ν
+
g and ν−g are positive measures and ν+g (·) = νg(·∩P ) and ν−g (·) = −νg(·∩(I\P ))

for some Borel set P in I. Furthermore, |νg| = ν+g + ν−g on I. Note that

(7.4) At(ω) =

∫

I

Ly
t (Y )(ω) ν+g (dy)−

∫

I

Ly
t (Y )(ω) ν−g (dy), t ∈ [0, ζ(ω)),

is a decomposition of A(ω) into a difference of two non-decreasing continuous functions. To

show (7.3), it is sufficient to prove that the measures on [0, ζ(ω)) induced by these functions,

i.e. the measures

(7.5)

∫

I

dLy
s(Y )(ω) ν+g (dy) and

∫

I

dLy
s(Y )(ω) ν−g (dy),

are mutually singular (that is the decomposition in (7.4) is minimal). In fact it is easy to see

that the former measure is concentrated on the set

P̃ = {u ∈ [0, t] : Yu(ω) ∈ P},

while the latter measure is concentrated on the corresponding set with P replaced by I \ P .

Indeed, by Fubini’s theorem,

∫

[0,ζ(ω))
I
P̃
(s)

∫

I

dLy
s(Y )(ω) ν−g (dy) =

∫

I

(∫

[0,ζ(ω))
I
P̃
(s) dLy

s(Y )(ω)

)
ν−g (dy) = 0,

and similarly for the other statement. Thus, (7.3) follows.

2. Whenever

(7.6) P-a.s. on {ζ < ∞} there exists a finite limit M ζ := lim
t↑ζ

M t,

we extend the process (M t)t∈[0,ζ) to the process M = (Mt)t∈[0,∞) by setting

(7.7) Mt := M t∧ζ , t ∈ [0,∞).

Let us prove that under (7.6) M is a local martingale (now on the whole [0,∞)). Indeed, there

exists a sequence of stopping times (ηn)n∈N such that ηn ↑ ζ P-a.s. and Mηn is a martingale for

any n ∈ N. For m ∈ N, set

ξm = inf{t ∈ [0,∞) : |Mt| ≥ m} (inf ∅ := ∞)

and note that ξm ↑ ∞ P-a.s. as m ↑ ∞. Since for fixed m ∈ N, the processes Mηn∧ξm , n ∈ N,

are uniformly (in n) bounded martingales and Mηn∧ξm
t → M ξm

t P-a.s. as n → ∞ (note that M
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is stopped at ζ), the process M ξm is a martingale for any m ∈ N. So, M = (Mt)t∈[0,∞) is a local

martingale.

3. Since we consider case (B) of Section 3, we have limt↑ζ Yt = l P-a.s. on {ζ < ∞}, and there

is a finite limit g(l) := limx↓l g(x). Then it follows from (7.1) that condition (7.6) is equivalent

to

(7.8) P-a.s. on {ζ < ∞} there exists a finite limit Aζ := lim
t↑ζ

At.

Whenever (7.8) holds, we extend the process (At)t∈[0,ζ) to the process A = (At)t∈[0,∞) by setting

(7.9) At := At∧ζ , t ∈ [0,∞).

Finally, we note that the condition

(7.10) VarAζ < ∞ P-a.s. on {ζ < ∞}

implies (7.8) and under (7.10) the process A = (At)t∈[0,∞) has locally finite variation (on the

whole of [0,∞)).

4. By applying Theorem 6.4 with the positive measure ν(dy) = (g′)2(y)dy, we obtain

from (7.2) the following alternative (additionally use the Dambis-Dubins-Schwarz theorem for

continuous local martingales on stochastic intervals):

(M1) If (3.9) is satisfied, then

〈M,M〉ζ < ∞ P-a.s. on {ζ < ∞},

hence (7.6) and (7.8) hold.

(M2) If (3.9) is violated, then

〈M,M〉ζ = ∞ P-a.s. on {ζ < ∞},

hence

lim sup
t↑ζ

M t = − lim inf
t↑ζ

M t = ∞ P-a.s. on {ζ < ∞},(7.11)

lim sup
t↑ζ

At = − lim inf
t↑ζ

At = ∞ P-a.s. on {ζ < ∞}.(7.12)

(We note that (7.12) follows from (7.11) via (7.1).) Applying Theorem 6.4 once again with the

measure ν = |νg|, we get from (7.3) another alternative:

(A1) (3.4) implies (7.10).

(A2) If (3.4) is violated, then

VarAζ = ∞ P-a.s. on {ζ < ∞}.

5. We now assume that g(Y ) is a semimartingale, i.e.

g(Yt) = g(x0) + Ãt + M̃t, t ∈ [0,∞),
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with a continuous process Ã = (Ãt)t∈[0,∞) of locally finite variation and a continuous local

martingale M̃ = (M̃t)t∈[0,∞). Then, for t ∈ [0,∞),

Ãt = At and M̃t = M t P-a.s. on {t < ζ},

hence (7.6) and (7.10) hold. By alternatives (M1), (M2) and (A1), (A2) above, (3.9) and (3.4)

hold. This proves Theorem 3.12 and the “only if”-part of Theorem 3.2.

6. In order to prove the “if”-part of Theorem 3.2, we now assume that (3.4) holds. By (A1)

and the reasoning in item 3, (7.10) and (7.6) (which is equivalent to (7.8)) are satisfied. Then,

by items 2 and 3, g(Y ) is a semimartingale with the decomposition

g(Yt) = g(x0) +At +Mt, t ∈ [0,∞),

where A and M are given in (7.9) and (7.7).

Thus, Theorem 3.2 is proved. Theorem 3.15 can be proved similarly (again use the alternatives

(M1), (M2) and (A1), (A2) and items 2 and 3).

7. It remains to prove Theorem 3.7. Let us assume that (3.8) is satisfied. Then P-a.s. on

{ζ < ∞}, one has:

(7.13) there exists ε > 0 such that (At)t∈(ζ−ε,ζ) is monotone,

hence, P-a.s. on {ζ < ∞} there exist limits

Aζ := lim
t↑ζ

At and M ζ := lim
t↑ζ

M t,

which are either both finite or both infinite (see (7.1)). By alternative (M1), (M2) above, either

the limit limt↑ζ M t is finite or (7.11) holds. Then M ζ and, consequently, Aζ are finite. Thus,

(7.8) holds.

Now it follows from the fact that A has locally finite variation on [0, ζ) and from (7.13)

and (7.8) that (7.10) holds. By alternative (A1), (A2), we get (3.4), hence, by Theorem 3.2,

g(Y ) is a semimartingale. This completes the proof.

Appendix A. Bessel Process of Dimension δ ∈ (0, 1) Is Not a Semimartingale

It is known that a Bessel process of dimension δ ∈ (0, 1) is not a semimartingale. However,

we could not find a direct reference for this. We think that it can be deduced from the general

Theorem 7.9 in [3], but this does not look straightforward. So, we now present a direct proof.

Let x0 ≥ 0. Consider a squared Bessel process Y of dimension δ ∈ (0, 1) starting from x20, i.e.

Y satisfies

(A.1) Yt = x20 + δt+

∫ t

0
2
√
Ys dWs, t ≥ 0,

with W a Brownian motion. It is well-known that SDE (A.1) has a pathwise unique strong

solution, which is nonnegative, and

(A.2)

∫ ∞

0
I(Ys = 0) ds = 0 a.s.
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(see [12, Ch. XI, § 1]). A Bessel process of dimension δ ∈ (0, 1) starting from x0 is by definition

ρt :=
√
Yt, t ≥ 0.

Assume ρ = x0 +M + A for a continuous local martingale M and a continuous finite variation

process A with M0 = A0 = 0. In particular, ρ has a version (La
t (ρ); t ≥ 0, a ∈ R) of local time,

continuous in t and càdlàg in a The process
∫ .

0 I(ρs = 0) dMs is a continuous local martingale

starting from 0 with quadratic variation
∫ t

0
I(ρs = 0) d〈M,M〉s =

∫ t

0
I(ρs = 0) d〈ρ, ρ〉s =

∫

R

I{0}(a)L
a
t (ρ) da = 0 a.s., t ≥ 0,

where the second equality follows from the occupation times formula (see [12, Ch. VI, Cor. 1.6]),

i.e.

(A.3)

∫ t

0
I(ρs = 0) dMs = 0 a.s., t ≥ 0.

Since Y = ρ2, we have

(A.4) Yt = x20 +

∫ t

0
2ρs dMs +

∫ t

0
(2ρs dAs + d〈ρ, ρ〉s), t ≥ 0.

Comparing decompositions (A.1) and (A.4) and using (A.3) and (A.2), we obtain

Mt =

∫ t

0
I(ρs 6= 0) dMs =

∫ t

0
I(ρs 6= 0) dWs = Wt a.s., t ≥ 0.

Then 〈ρ, ρ〉t = 〈M,M〉t = t, so by (A.1) and (A.4),

∫ t

0
2ρs dAs = (δ − 1)t, t ≥ 0,

whence

(A.5) At =

∫ t

0
I(ρs = 0) dAs +

∫ t

0
I(ρs 6= 0)

δ − 1

2ρs
ds a.s., t ≥ 0.

By the occupation times formula, for the term
∫ t

0 I(ρs 6= 0) δ−1
2ρs

ds to be finite, we necessarily

have L0
t (ρ) = 0 a.s., t ≥ 0. Furthermore, L0−

t (ρ) = 0 a.s., t ≥ 0, because ρ is nonnegative.

By [12, Ch. VI, Th. 1.7],

∫ t

0
I(ρs = 0) dAs =

1

2
(L0

t (ρ)− L0−
t (ρ)) = 0 a.s., t ≥ 0.

Thus, using (A.5), we get that ρ is a nonnegative global (i.e. on [0,∞)) solution of the SDE

(A.6) dρt = I(ρt 6= 0)
δ − 1

2ρt
dt+ dWt.

But, by [2, Th. 2.13], the latter SDE does not have a nonnegative global solution. Here is a

description of what happens: the singular point 0 of SDE (A.6) has right type 1, which is one of

non-entrance types, in the terminology of [2], that is, after ρ reaches 0, which happens in finite

time with probability 1, it cannot be continued in the positive direction (also see [2, Sec. 2.4]).

The obtained contradiction completes the proof.
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Appendix B. Behaviour of One-Dimensional Diffusions

Now we state some well-known results about the behaviour of a one-dimensional diffusion Y

of (2.1) with coefficients satisfying (2.2) and (2.3). These results follow from the construction

of solutions of (2.1) (see e.g. [5] or [8, Ch. 5.5] or [2, Ch. 2 and Ch. 4]), or can be deduced from

the results in [4, Sec. 1.5].

Proposition B.1. For any a ∈ J , with

τYa := inf{t ≥ 0 : Yt = a} (inf ∅ := ∞),

we have P(τYa < ∞) > 0.

We consider the sets

A =

{
ζ = ∞, lim sup

t→∞
Yt = r, lim inf

t→∞
Yt = l

}
,

Br =
{
ζ = ∞, lim

t→∞
Yt = r

}
,

Cr =

{
ζ < ∞, lim

t↑ζ
Yt = r

}
,

Bl =
{
ζ = ∞, lim

t→∞
Yt = l

}
,

Cl =

{
ζ < ∞, lim

t↑ζ
Yt = l

}
.

Proposition B.2. Either P(A) = 1 or P(Br ∪Bl ∪ Cr ∪ Cl) = 1.

Proposition B.3. (i) P(Br ∪ Cr) = 0 holds if and only if s(r) = ∞.

(ii) P(Bl ∪ Cl) = 0 holds if and only if s(l) = −∞.

In particular, we get that P(A) = 1 holds if and only if s(r) = ∞, s(l) = −∞.

Proposition B.4. Assume that s(r) < ∞. Then either P(Br) > 0, P(Cr) = 0 or P(Br) = 0,

P(Cr) > 0. Furthermore, we have

P

(
lim
t↑ζ

Yt = r, Yt > a ∀t ∈ [0, ζ)

)
> 0

for any a < x0.

Proposition B.5 (Feller’s test for explosions). We have P(Br) = 0, P(Cr) > 0 if and only if

s(r) < ∞ and
s(r)− s

ρσ2
∈ L1

loc(r−).

Clearly, Propositions B.4 and B.5, which contain statements about the behaviour of one-

dimensional diffusions at the endpoint r, have their analogues for the behaviour at l. Feller’s

test for explosions in this form is taken from [2, Sec. 4.1]. For a different (but equivalent) form

see e.g. [8, Ch. 5, Th. 5.29].

Let us finally emphasize that the results stated in this appendix do not in general hold

beyond (2.2) and (2.3).
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[9] A. Mijatović and M. Urusov. Convergence of integral functionals of one-dimensional diffusions. Electronic

Communications in Probability, 17:1–13, 2012.
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