ASYMPTOTICS OF FORWARD IMPLIED VOLATILITY

ANTOINE JACQUIER AND PATRICK ROOME

ABSTRACT. We prove here a general closed-form expansion formula for forward-start options and the forward
implied volatility smile in a large class of models, including Heston and time-changed exponential Lévy models.
This expansion applies to both small and large maturities and is based solely on the knowledge of the forward
characteristic function of the underlying process. The method is based on sharp large deviations techniques,
and allows us to recover (in particular) many results for the spot implied volatility smile. In passing we show (i)
that the small-maturity exploding behaviour of forward smiles depends on whether the quadratic variation of
the underlying is bounded or not, and (ii) that the forward-start date also has to be rescaled in order to obtain

non-trivial small-maturity asymptotics.

1. INTRODUCTION

Consider an asset price process (ext) >0 With Xo = 0, paying no dividend, defined on a complete filtered
probability space (2, F, (Ft)t>0, P) with a given risk-neutral measure P, and assume that interest rates are zero.

In the Black-Scholes-Merton (BSM) model, the dynamics of the logarithm of the asset price are given by
1
(1.1) dX, = —§J2dt + odWy,

where o > 0 is the instantaneous volatility and W is a standard Brownian motion. The no-arbitrage price of
the call option at time zero is then given by the famous BSM formula [I2, @4]: Cgg(7,k,0) :=E (eXT — ek)+ =
N (dy) —efN (d), with dg := —U—\kﬁ + 10/7, where N is the standard normal distribution function. For a
given market price C°"(7, k) of the option at strike e* and maturity 7 we define the spot implied volatility
o, (k) as the unique solution to the equation C°"*(7, k) = Cgs(7, k, 01 (k)).

For any ¢,7 > 0 and k € R, we define [00, &3] a Type-I forward-start option with forward-start date ¢,
maturity 7 and strike e® as a European option with payoff (eX”r* JeXt — ek)Jr. In the BSM model (D) its
value is simply worth Cgpg(7,k,0). For a given market price C°"(¢, 7, k) of the option at strike e, forward-
start date ¢ and maturity 7 we define the forward implied volatility smile oy - (k) as the unique solution to
C°b(t,1,k) = Cps(7,k,01,(k)) since 0,Cps(7,k,0) > 0 [0, B4]. A second type of forward-start option
exists [&3] and corresponds to a European option with payoff (eXf+T — ek+Xf)+. In the BSM model (D) the
value of the Type-II forward-start option is worth Cps(7, k, o) [£7]. Again, for a given market price C°**! (7, ¢, k)
of such an option, we define the Type-II forward implied volatility smile 7, (k) as the unique solution to
Cobs (7 ¢, k) = Cps(r, k, 7¢.-(k)). Both definitions of the forward smile are generalisations of the spot implied
volatility smile since they reduce to the spot smile when ¢ = 0.

The literature on implied volatility asymptotics is extensive and has been studied using a diverse range of

mathematical techniques. In particular, small-maturity asymptotics have historically received wide attention
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due to earlier results from the eighties on expansions of the heat kernel [7]. PDE methods for continuous-
time diffusions [9], large deviations |19, 06], saddlepoint methods [Z1] and differential geometry [37] are among
the main methods used to tackle the small-maturity case. Extreme strike asymptotics arose with the seminal
paper by Roger Lee [42] and have been further extended by Benaim and Friz [6, 6] and in [30, BT, 24, [6)].
Comparatively, large-maturity asymptotics have only been studied in [51, 20, 36, B5, 22| using large deviations
and saddlepoint methods. Fouque et al. [Z3] have also successfully introduced perturbation techniques in order to
study slow and fast mean-reverting stochastic volatility models. Models with jumps (including Lévy processes),
studied in the above references for large maturities and extreme strikes, ‘explode’ in small time, in a precise
sense investigated in [, 2, 50, &6, 45, [F].

A collection of implied volatility smiles over a time horizon (0, T is also known to be equivalent to the marginal
distributions of the asset price process over (0,7]. Implied volatility asymptotics has therefore provided a set
of tools to analytically understand the marginal distributions of a model and their relationships to market
observable quantities such as implied volatility smiles. However many models can calibrate to implied volatility
smiles (static information) with the same degree of precision and produce radically different prices and risk
sensitivities for exotic securities. This can usually be traced back to a complex and often non-transparent
dependence on model transitional probabilities or equivalently on the model generated dynamics of implied
volatility smiles. The model dynamics of implied volatility smiles is therefore a key model risk associated with
these products and any model used for pricing and risk management should produce realistic dynamics that
are in line with trader expectations and historical dynamics. One metric that can be used to understand the
dynamics of implied volatility smiles ([I0] calls it a 'global measure’ of the dynamics of implied volatilities) is to
use the forward smile defined above. The forward smile is also a market defined quantity and naturally extends
the notion of the spot implied volatility smile. Forward-start options also serve as natural hedging instruments
for several exotic securities (such as Cliquets, Ratchets and Napoleons; see [28, Chapter 10]) and it is therefore
important for a model to be able to calibrate to liquid forward smiles. Despite the significant research on implied
volatility asymptotics, there are virtually no results on the asymptotics of the forward smile: Glasserman and
Wu [28] introduced different notions of forward volatilities to assess their predictive values in determining future
option prices and future implied volatility, Keller-Ressel [40] studies a very specific type of asymptotic (when the
forward-start date becomes large), and empirical results have been carried out by practitioners in [0, 28, [3].

We consider below a continuous-time stochastic process (Z.) and prove an expansion of option prices on
(Z.) as € tends to zero. Setting Z. = X. or Z. = X/, then yields small or large-maturity expansions of
option prices. This main result is presented in Section B as well as corollaries applying it to forward-start option
asymptotics. We also translate these results into closed-form asymptotic expansions for the forward implied
volatility smile (Type I and Type II). In Section B, we provide explicit examples for the Heston, multi-Heston,
Schobel-Zhu and time-changed exponential Lévy processes. Section B provides numerical evidence supporting
the practical relevance of these results and we leave the proofs of the main results to Section B.

Notations: N (u,0?) shall represent the Gaussian distribution with mean p and variance 0. Furthermore
E shall always denote expectation under a risk-neutral measure P given a priori. We shall refer to the standard
(as opposed to the forward) implied volatility as the spot smile and denote it o,. The (Type-I) forward implied
volatility will be denoted o, as above. In the remaining of this paper ¢ shall always denote a strictly positive

small quantity.
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2. GENERAL RESULTS

This section gathers the main notations of the paper as well as the general results. The main result is
Theorem P8, which provides an asymptotic expansion—up to virtually any arbitrary order—of option prices
on a given process (X.), as ¢ tends to zero. This general formulation allows us, by a suitable scaling, to obtain
both small-time and large-time expansions. Indeed, setting X. = X, or X, = ¢X, /. yields two expansions for
different regimes, small and large maturities. The first rescaling is detailed in Section ZI1 and the second one
in Section EZT2. In each case, we shall make the computations explicit for the BSM (IT) case, which will also
be needed to translate these expansions into expansions for the forward implied volatility in Section EZ2. Such
expansions for European option prices and their corresponding spot implied volatilities are known for many
models, and we shall consider here forward-start options (which clearly reduce to standard vanilla options when

the forward-start date is null).

2.1. Forward-start option asymptotics. Let (X.) be a stochastic process with re-normalised moment gen-
erating function (mgf)

uXe

(2.1) Ac(u) :==clogE [exp < )] , for all u € D,

where D, := {u € R: |[A; (u) | < co}. We now introduce the following critical assumptions.

Assumption 2.1. For each u € Dy g the re-normalised mgf can be represented as
2
(2.2) A, (u) = ZAZVO (w)e'+ 0 (%), ase tends to 0.
i=0

Further we suppose that for all ¢ > 0 the map A. : D, — R is infinitely differentiable on Dg ; C D, and 0 € Dg ,,
where we define Dy g := {u € R : [Ag o (u) | < 0o} and D, is the interior of Dy in R.

The infinite differentiability assumption of the map A. could also be relaxed by a C4(D870) condition but
this hardly makes any difference in practice and does, however, render some formulations awkward. If the
expansion (EZ2) holds up to some higher order n > 3, one can in principle show that both forward-start option
prices and the forward implied volatility expansions below hold to order n as well. However expressions for the

coeflicients of higher order are extremely cumbersome and scarcely useful in practice.

Definition 2.2. [, Definition 2.3.5] A convex function h : R D D), — (—o00, 00| is essentially smooth if
(i) Dy is non-empty;
(ii) h is differentiable in Dy;
(iii) h is steep, in other words lim, o |h'(u,)| = oo for every sequence (uy,)nen in Dj that converges to a

boundary point of Dj.
Assumption 2.3. Ag is strictly convex and essentially smooth on D .

Define the function A* : R — Ry as the Fenchel-Legendre transform of Ago:

(2.3) A (k) .= sup {uk —Ag,o(u)}, for all k € R.

u€Do,0

For ease of exposition in the paper we will use the notation

(2.4) Aiy(u) := 0L A o(u) for 1 >1,
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where A; o is defined in (Z3) for ¢ = 0,1,2. The following lemma gathers some immediate properties of the

functions A* and A;; which will be needed later.

Lemma 2.4. Under Assumptions 2 and 223, the following properties hold:
(i) For any k € R, there exists a unique u*(k) € D§ o such that
(2.5) Ao1(u*(k)) =k,
(2.6) A*(K) = u* (k) — Ao (u* (K));
(ii) A* is strictly conver and differentiable on R;
(iii) if a € Dg o such that Ago(a) =0, then A*(k) > ak for all k € R\ {Ag1(a)} and A*(Ag1(a)) = alo1(a).

Proof.

(i) By Assumption P23 and 2701 Ay ; is a strictly increasing differentiable function from —oo to co on Dy g.

(ii) By (i), OxA* (k) = Aa%(k:) for all £ € R. In particular Oy A* is strictly increasing on R.

(iii) Since Ag. is strictly increasing, Ao 1(a) = k if and only if u*(k) = a and then A*(Ag1(a)) = alg1(a)
using (Z8). Using the definition (233) with a € Dg ; and Agg(a) = 0 gives A*(k) > ak. Since A* is strictly
convex from (ii) it follows that A*(k) > ak for all k € R\ {Ag1(a)}.

U

For ease of notation we shall write A;; in place of Aj; (u*(k)). Let f:R. — Ry be a function such that
(2.7) f(e)e =c+ O(e), for some ¢ >0, as ¢ tends to zero.
For any b > 0 we now define the functions Ay, A, : R\ {Ag1(0), Ag1(b)} x (0,00) — R by

_ byEL oy + €% f(e) =0y
w (k) (u*(k) —b) /2mAo 2
u*(k)(ef(e) —b)

(2.9)  Ap(k,e) := e N R/eHRIE) 4, (k) (1 + Y, k)e + Wl{bo} + ?:((Zil{b—()} +0 (52)> ’

(2.8)  Ay(k,e):

exp(ALo),

where T : [0,00) X R\{Ag1(0),Ag1(b)} — R is given by

5A2 4A1 1A A AZ +A A A
(2.10) T(b, k) — A2,0 _ 01;3 1,1 0,; + 0,4 _ 1,1 1,2 N 0,3 . _ 0,3 .
24/\0,2 8A0’2 2A02 2u*(k)A072 2 (u*(k) — b) A072
. Al,l (b — QU*(]{?)) +3 B b2

ur (k) (u*(k) = b) Moz w*(k)? (u*(k) — b)* Aoo
Remark 2.5. The domain of definition of A, excludes the set {Ag1(0),A01(0)} = {k € R : u*(k) € {0,b}}.
For all k£ in this domain, Ag2(u*(k)) > 0 by Assumption 23, so that A, is a well-defined real-valued function.

The main result of the section is the following theorem on asymptotics of option prices. A quick glimpse at
the proof of Theorem P8 in Section bl shows that this result can be extended to any arbitrary order.
Theorem 2.6. Let (X.) satisfy Assumptions 20 and 223, and f : Ry — Ry be a function satisfying (220)
with constant ¢ € D§ s "R y. Then the following expansion holds for all k € R\{Ag 1(0), Ao1(c)} as e\, 0:

+ +
A(k,e) =E |:(eX5f(e) _ ekf(s)) :| 1{k>A0=1(c)} +E |:(ekf(€) _ eXaf(E)) :| 1{k<A071(0)}

_E [exef(f) A ekf(s)] Lino 1 (0)<k<o (@)}

where Ao 1 is defined in (EA) and A.(k,€) in (E9).
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Remark 2.7. In the case ¢ = 0, the expansion holds for all £ € R\{A(1(0)} and the last term on the right-hand

side disappears, since the indicator function is taken over an empty set.

Let (X;):>0 be a stochastic process. For any ¢ > 0, we define (pathwise) the process (Xq(-t))TZO by
(2.11) XW =X, - X,
We now specialise Theorem P8 to forward-start option asymptotics.

2.1.1. Diagonal small-maturity asymptotics. We first consider asymptotics when both ¢ and 7 are small, which

we term diagonal small-maturity asymptotics.

Corollary 2.8. If (Xéi”) satisfies Assumptions 2, 223, then the following expansion holds:
>0

€

e~ N (k)/etk+Ar0.3/2 1 (ct) +
(1 + (T(O, k) + u*(k)) e+0 (52)> =E [(exﬁt - ek) } Lks 0.1 (00}

u*(k)2\/2m Ao 2
e\t
+E [(ek —e¥Xer ) ] Lik<roqr(0)}

as € tends to zero, where Ao 1, A*, u*(k), T and A;; are defined in (24), (233), (24), (210) and (232).

Proof. Set (X;) := ( E(it)) and f = 1. Then ¢ = 0 and the corollary follows from Theorem . d

Corollary 2.9. In the BSM model () the following expansion holds as € tends to zero:

_ 3/2
- + (e + ok/2 k2 /(202 7€) o2re 3 1
]E |:(GXET — ek) :| ]l{k>0}+E |:(ek — eXET ) :| 1{k<0} = k2\/27ﬂ.( ) 1— ﬁ + g 0'27-5 + 0(52) .

Proof. For the rescaled (forward) process (Xs(it)) in the BSM model () we have A (u) = Ago(u)+eA1 o(u)
for u € R, where Ago(u) = u?0?7/2 and Aq o(u) i>3u027'/2. It follows that Ag 1(u) = uo?r, Ag2(u) = 0?7 and
A1 1(u) = —o?7/2. For any k € R, u*(k) := k/(o?7) is the unique solution to the equation Ag 1 (u*(k)) = k and
A* (k) = k?/(20%7). Ao, is essentially smooth and convex on R and the BSM model satisfies Assumptions 271

and 3. Since 0 € Df , and Ag,1(0) = 0, the result follows from Corollary 278, O

It is natural to wonder why we considered diagonal small-maturity asymptotics and not the small-maturity
asymptotic of oy, for fixed ¢t > 0. In this case it turns out that in many cases of interest (stochastic volatility
models, time-changed exponential Lévy models), the forward smile blows up to infinity (except at-the-money)
as 7 tends to zero. However under the assumptions given above, this degenerate behaviour does not occur in
the diagonal small-maturity regime (Corollary Z8). We leave the precise study of this degeneracy for future
research, but provide a preliminary conjecture explaining the origin of this exploding behaviour. Consider a
two-state Markov-chain dX; = —%th +VVdAW,, starting at X, = 0, where W is a standard Brownian motion
and where V is independent of W and takes value V; with probability p € (0,1) and value V5 € (0,V;) with

probability 1 — p. Conditioning on V and by the independence assumption, we have
E (e“(X”“_X‘)) = peVrur(u=1)/2 4 (1- p)eVQUT(“_l)/z7 for all u € R.

Consider now the small-maturity regime where e = 7, f(¢) = 1 and X, := Xs(t) for a fixed t > 0. In this case

an expansion for the re-scaled mgf in (222) as 7 tends to zero is given by

\%
Ac(u) =7logE (e“(Xt+f—Xt)/T) = EluQ + 7log (pe_V1“/2) + 70 (e_"z(VI_VZ)/(QT)) , for all u € R.
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Since V1 > V5 the remainder tends to zero exponentially fast as 7 tends to zero. The assumptions of Theorem 2@
are clearly satisfied and a simple calculation shows that lim,« o o¢ - (k) = v/Vi. This example naturally extends
to an n-state Markov chain, and a natural conjecture is hence that the small-maturity forward smile does
not blow up if and only if the quadratic variation of the process is bounded. In practice, most models are of
unbounded quadratic variation (see the examples in Section B below), and hence the diagonal small-maturity

asymptotic is a natural scaling.

2.1.2. Large-maturity asymptotics. We now consider large-maturity asymptotics, when 7 is large and ¢ is fixed.
Define the function B : R\{A¢,1(0), Ao1(1)} x (0,00) — R by

—7(A"(k)—=k)+A1,0-—1/2
(2.12) B®(k,7) = — . (1 AL B0 < ! )) :
T

w* (k) (u* (k) — 1) /270 2 72

where A*, u*, T, A, ; are defined in (£33), (23), (£10), (24). From Remark PA, the function B is well-defined.

We now have the following large-maturity asymptotic for forward-start options.

Corollary 2.10. If the process (T*IX@> satisfies Assumptions 2, with e = =% and 1 € DY, then
7>0 ,
the following expansion holds as T tends to infinity:

0] AT - @\t () -
¢ [(eXT ~7) ]1{k>Ao,1(1>}+E [(ek -) }1{k<Ao,1<0>}—E [ AT 1 o)<k = BE(k,7),
where Ao 1 is defined in (E4) and B> in (E12).

Proof. Let (X,) := (EX(t)

1/5), e:=1/7 and f(e) =1/e (¢ = 1), then the result follows from Proposition EB. O

In the BSM case (), define the function By : R\{—0?/2,02/2} x (0,00) — R by

(213)  B(k.7) = exp ( ((k+/2> ) k)) Aot (1 A (ot 12?) (1)) |

202 (4k? — o) V27 (4k2 — o4’ 7
and we have the following corollary.

Corollary 2.11. In the BSM model () the following expansion holds as T tends to infinity:
E | (X _ k7 + 1 _E X Aok 1 E | (b — XY + 1 — B (L
e e {k>02/2} e’ Ne {—02/2<k<o2/2} T e e {k<—o02/2) = BEgs (k, 7).

Proof. Consider the process (Xg)/T) . and set ¢ = 77!, In the BSM model (IT) for any u € R, we have
T>

Ac(u) =771 logIE(eXp(qu))) = Ag,o(u) = 202u(u —1). Thus Ag1(u) = 0% (u—1/2) and Ag 2 (u) = 0. For
any k € R, the equation Ag;(u*(k)) = k has a unique solution u*(k) = 1/2 4+ k/o? and therefore A*(k) =
(k + 02/2)2 /(20%). Ao is essentially smooth and strictly convex on R and Assumptions B0 and that 223 are
satisfied. Since {0,1} C D§, the result follows from Corollary ZT0. O

2.2. Forward smile asymptotics. In this section we translate our results on forward-start options into asymp-

totics of the forward implied volatility smile k — oy, (k). We first focus on the diagonal small-maturity case.
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For i = 0,1, 2 we define the functions v; : R* x [0,00) x (0,00) — R by

k2
Uo(k7t7 T) = 27_A*(k_)7
21vo(k, t, T)? k2eAro(u™ (k) T (k, t,7)?
Ul(k7t’7—) = %log 9 3/2 0( k ) )
u*(k)2/Ag2(u* (k)) (Too(k,t, 7))
(2.14)
27203 (k,t,7) (3 1 2103 (k,t,7) 1
k.t PP VA ol AR (R Rk 220 Y (0. k
’Ug( ’ 37—) ] kg <k2+8>+ ]{}2 ( (07 )+u*(k))
vilk,t,7) 37
——— — —o(k,t k.t
’U()(k,t,T) kzvo( ) aT)vl( ) 7T)7

where A*, u*, A;;, T are defined in (E3) (23), (24), (210). Also if A 1(0) = 0 then A*(k) > 0 for k € R* and
A*(0) = 0 from Assumption 0 and Lemma BZ(iii) so that vy is always strictly positive. A direct application
of L'Hépitals rule, together with Lemma P(i)(ii), Assumption 270 and Ay 1(0) = 0, shows that for any ¢ > 0,
7> 0, the map vo(-,¢,7) can be extended by continuity at the origin with vo(0,¢,7) = 1/(ru* (0)). All the v;
(i = 0,1,2) are hence well-defined real-valued functions (see also Remark Z3H). The diagonal small-maturity

forward smile asymptotic is now given in the following proposition, proved in Section Bl

Proposition 2.12. Suppose that (Xe(it)> satisfies Assumptions B and 223, and that Ao1(0) = 0 (defined

e>0
in (232)). The following expansion holds for the corresponding forward smile for all k € R* as e tends to zero:

(2.15) 02 or(k) = vo(k,t,7) + vi(k,t, 7)e + va(k,t,7)e* + O (€°),
where vy, v1 and ve are given in (Z14).

In the large-maturity case, define for ¢ = 0,1, 2, the functions v$® : R\{Ag1(0), Ag1(1)} x [0,00) — R by

o 2 (20% (k) — k — 2/M(R) (A (R) — k) ), if k€ R\ [Ag1(0), Aga(1)],

kD)= 2 (20 (k) —k+ 2/ N R) (A (k) — k) ), if k€ (Ap1(0),Ao1(1)),

o) = U EDE ()t 42 — o (s, 1)?

v (k,t) = T (k) (Al,o( (k) +log <4(u*(k) T o (e )32 Aoyz(u*(k))»’
(2.16)

[ee) — 4 4,Uoo v 2 v o 6,Uoo 2

v (k,t) = P Y A BT [8k (&, 1) oS (k, £)? (v (k, t) + 6) — 16k505° (k, )

2
—27(1, K)o (k. 1) (vg"(k, 1?2 — 4k2> — K2 (k, 1) (96 o5 (k, 6)2 + 807 (K, t))
— 0k 1 (05 (k1) + 8) |.
A* is defined in B33, v* in (Z3H), A;; in (Z2) and T in (Z00). Since {0,1} C D§, and Ago(1) = Ag0(0) = 0,
we always have A*(k) > max(0,k) from Lemma P(iii). One can also check that 0 < v§°(k,t) < 2|k| for
k€ R\ [Ag1(0),Ap1(1)] and v§°(k,t) > 2|k| for k € (Ao,1(0),Ao1(1)). Together with Remark 23, this implies

that the functions v$® (i = 0, 1,2) are always well-defined and real-valued.

Remark 2.13. By Assumption P70 and Lemma P(iii) we have A*(Ag1(0)) = 0. Further by the assumptions
in Proposition 214 below we have 1 € Dg, and Ago(l) = 0. Again from Lemma ZA(iii) this implies that
A*(Ag1(1)) = Ap,1(1). Hence for all ¢ > 0, v3°(+,t) can be extended by continuity on R.

The large-maturity forward smile asymptotic is given in the following proposition, proved in Section Bl



8 ANTOINE JACQUIER AND PATRICK ROOME

Proposition 2.14. Suppose that (T_qu(—t)> satisfies Assumptions 2, 223 withe = 7! and that Ago(1) =0
>0
with 1 € D§ o (all defined in Assumption ). The following expansion then holds for the forward smile as T

tends to infinity for k € R\{Ao,1(0), Ao, 1(1)}:

T T2

= (k,t 5O (k,t 1
(2.17) 7 (hr) = wie (k) + TD | D g () |
where v§°, v$° and vVS® are defined in (Z18).

Remark 2.15.
(i) If we set t = 0 in (Z0H) and (EZI2) then we recover—and actually improve—the implied volatility asymp-
totics obtained in [I7], (9], [20], [21], [22].
(ii) The forward smile results can be extended to a deterministic interest rate setting by considering the

forward price instead of the stock price and re-scaling the strike appropriately.

Xu)

For the (F,)-martingale price (e**),>o (under P) define the stopped process )?ﬁ := Xiay for any t > 0.

Following [£3] define a new measure P by
(2.18) P(A) :=E (e)?tf#f]lA) ) for every A € Fiyr.

The stopped process (egi)uzo is a (Fipu)u-martingale and (EIR) defines the stopped-share-price measure P.

The following proposition shows how the Type-II forward smile o; » can be incorporated into our framework.

Proposition 2.16. If (eXt)t>0 is a (Fy)-martingale under P, then Propositions 212 and hold for the
Type-11 forward smile oy . with the mgf (El) calculated under P.

Proof. We can write the value of our Type-II forward-start call option as
E [(eX“T - ek+Xt)+] =F {eX" (eXrtr=Xe — ek)+] =F [e)?fw (eXrtr=Xe — ek)+] —E [(eX“T_X‘ — ek)+] )

Proposition 28 and Corollaries 228, P10 hold in this case with all expectations (and the mgf in (1)) calculated
under the stopped measure P. An easy calculation shows that under I?’, the forward BSM mgf remains the same

as under P. Thus all the previous results carry over and the proposition follows. g

3. APPLICATIONS

3.1. Heston. In this section, we apply our general results to the Heston model, in which the (log) stock price

process is the unique strong solution to the following SDEs:

1
dX, =3 Vidt+/VidW, X =0,
(3.1) AV, =x(0 Vo) dt +&VVidZ,, Vo =wv >0,
d(W,Z), = pdt,

with k > 0, £ > 0, 0 > 0 and |p| < 1. The Feller SDE for the variance process has a unique strong solution by
the Yamada-Watanabe conditions [88, Proposition 2.13, page 291]). The X process is a stochastic integral of the
V process and is therefore well-defined. The Feller condition, 2x6 > &2, ensures that the origin is unattainable.
Otherwise the origin is regular (hence attainable) and strongly reflecting (see [39, Chapter 15]). We do not

require the Feller condition in our analysis since we work with the forward mgf of X which is always well-defined.
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3.1.1. Diagonal Small-Maturity Heston Forward Smile. The objective of this section is to apply Proposition 2212
to the Heston forward smile. We define the function A : Dy » x [0,00) X (0,00) — R by

uv
3.2 Au,t,7) = C forallueD,.,
Y D)= e ) e
where
2
(3.3) Dy r = {u ER:A(u,0,7) < 521;} and pi=+1-p%

Further we let the function L : Dy, x [0,00) x (0,00) — R be defined as

L , 242 29 2 A 707
(3.4) L(u,t,7) := Lo(u,7) + Alu, t,7)? (/1\)(111,((?, TT))2 B nivt ) — wtA(u,t,7) — g—flog (1 - W) ,

where the functions L; : Dy X (0,00) — R for ¢ = 0,1, are defined by

(3.5)
_ —idoTu
Lo(u,7) := Z—g <(i§p —dp)itu — 2log (1iq0_ego>) ,
e tdoru . : sdgray , (36p —do) (1 — e *®™) (g1 — idigoTu)
Ly(u,7) := I ——T ((1§p —do)idiTu + (dy — k) (1 —e*®™) + T goo—idoru )
with
i(2kp — ip—p 2k —
d() = gﬁv dl = %, go ‘= pifz and g1 = %
p ip+p £p(p+1ip)

Remark 3.1. For any t > 0,7 > 0 the functions Ly and L; are well-defined real-valued functions for all u € Dy ;
(see Remark B8 for technical details). Also since A(0,¢,7)/A(0,0,7) =1, L is well-defined at v = 0.

Proposition 3.2. In Heston, Corollary 28 and Proposition 212 hold with Do o = Dy 7, Ao,o = A and A1 o = L.

Proof. We simply outline the proof of the proposition, and we refer the reader to Section B2 for the details.
(i) In Lemma 53 we show that Dy o = Dy,» and 0 € D o;

(ii) In Lemma B3 we show that the Heston diagonal small-maturity process has an expansion of the form
given in Assumption P with Agg = A and Ay = L;

)
t, T

(iii) In Lemma 571 we show that A is strictly convex and essentially smooth on DY, i.e. Assumption I3,

(iv) Ac is infinitely differentiable and A 1(0) = 0.
We now apply Proposition ZI2 and this completes the proof. O

In order to gain some intuition on the role of the Heston parameters on the forward smile we expand (E713)

around the ATM point in terms of the log strike k. We now define the following functions:

vo(t, ) = 4; (240 + & (p* — 4) + 120(¢p — 2K)) — % (E 44k (v —10)),
3
nt,t) = % (52 (1 _p2) — 2k (v +6) +§pv) + %
(3.6)
2
vo(t,7) = (80/{9 (13p” — 6) + &2 (521p" — T12p” + 176) + 40pv ({p — 2k) ) 7658(;—1)2
2 242
- 15222 (4r6 (16— 70%) + (70% —4) (9€? + 4rv) ) + 3)’;:02 (45 (v~ 30) + 9¢%).

The proof of the following corollary is given in Section BZ2ZI.



10 ANTOINE JACQUIER AND PATRICK ROOME

Corollary 3.3. The following expansion holds for the Heston forward smile as € and k tend to zero:

(3.7) agt,ﬁ(k) =v+evy(t,T) + <p§ + e (t, T)> k+ <(44’;f;2)€ + % + ewa(t, 7')> k?

+ O(k®) + O(ek®) + O(£%).

Remark 3.4. The following remarks should convey some practical intuition about the results above:

(i) For ¢t = 0 this expansion perfectly lines up with Corollary 4.3 in [21] for the implied volatility smile.
(ii) Corollary B33 implies ot 7 (0) — 00.er(0) = —8% (£2 4+ 4K(v — 0)) + O(?), as € tends to zero. For small
enough maturity, the spot ATM volatility is higher than the forward one if and only if €2 + 4x(v — 6) > 0.

In particular, when v > 6 the forward ATM volatility is lower than the corresponding spot ATM volatility
and this difference is increasing in the forward-start dates and volatility of variance. In Figure B we plot
this effect using § = v and 0 > v + £2/(4x). The relative values of v and @ impact the level of the forward
smile vs spot smile.

(iii) Similarly, we can deduce some information on the forward skew from Corollary BZ3:

§p + (4V1(f77')’l} - ngO(t7T))
4/v 8v3/2

Ok0Octer(0) = e+ 0(?),

and hence

Ept (382 + 4k(v —0))
3203/2

(iv) Likewise an expansion for the Heston forward convexity as ¢ tends to zero is given by

8k05t,57(0) - akJO,ET(O) = g+ 0(82).

E2((2=5p)T +6t)  wo(t,7)E2(3t + (1 — 4p*)7) + 67V(plrr (t, T) — 4 (t, 7))
247103/2 B 2471572

02011 (0) = e+ O(e?),

and in particular 0204 ¢, (0) — 0200 - (0) = &2t/ (47v3/2) + O(e). For fixed maturity the forward convexity
is always greater than the spot implied volatility convexity (see Figure B) and this difference is increasing
in the forward-start dates and volatility of variance. At zeroth order in ¢ the wings of the forward
smile increase to arbitrarily high levels with decreasing maturity. (see Figure M(a)) This effect has been
mentioned qualitatively by practitioners [I3]. As it turns out for fixed ¢ > 0 the Heston forward smile
blows up to infinity (except ATM) as the maturity tends to zero. This is clearly outside the scope of our

main theorem, and we leave this degenerate case for future research.

In the Heston model (eXt);>¢ is a true martingale [3, Proposition 2.5]. Applying Proposition P18 with
Lemma B3, giving the Heston forward mgf under the stopped-share-price measure, we derive the following
asymptotic for the Type-II Heston forward smile o; ;. The proof of Corollary B3 is omitted as it is analogous
to the proofs of Proposition B2 and Corollary B3. Set

Pf (7 2 ) pE3t?

vo(t, 1) = wvo(t, 7) + Eput, vy (t, 1) == v (t, 7), Ua(t, 7)== wo(t,T) + -

)

with vy, v1 and v, defined in B8. In particular when p=0o0rt=0,v; =7; (i = 1,...,3), and hence the Heston

forward smiles Type-I and Type-II are the same as shown in the following corollary.

Corollary 3.5. The diagonal small-maturity expansion of the Heston Type-II forward smile as € and k tend to

zero is the same as the one in Corollary B3 with vy, v1 and vy replaced by vy, 1 and Us.



ASYMPTOTICS OF FORWARD IMPLIED VOLATILITY 11
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(a) Small-maturity forward smile explosion. (b) Type I vs Type II forward smile.

FIGURE 1. In (a) we plot forward smiles with forward-start date ¢ = 1/2 and maturities
T =1/6,1/12,1/16,1/32 given by circles, squares, diamonds and triangles respectively using
the Heston parameters v = 0.07,0 = 0.07,x = 1,p = —0.6,§ = 0.5 and the asymptotic in
Proposition B2. In (b) we plot the Type I (circles) vs Type 2 (squares) forward smile with
t =1/2, 7 = 1/12 and the Heston parameters v = 0.07,6 = 0.07,k = 1,p = —0.2,£ = 0.34
using Corollaries B33 and B=3.

FwdSmile

L e ghrke
0.9 10 11 12

FIGURE 2. Forward smile vs spot smile with v = § and § > v + £2/(4x). Circles (t = 0,7 =
1/12) and squares (¢t = 1/2,7 = 1/12) use the Heston parameters v = 6 = 0.07,x = 1, p = —0.6,
& = 0.3. Diamonds (¢t = 0,7 = 1/12) and triangles (¢t = 1/2, 7 = 1/12) use the same parameters
but with 8 = 0.1. Plots use the asymptotic in Proposition B2

3.1.2. Large-maturity Heston forward smile. We apply here Proposition 14 to the Heston forward smile. We
shall use the standing assumption k > p&, needed in the proof of Proposition B=. If this condition fails then
we have a finite explosion time for moments greater than one for the price process (8l) and consequently the
limiting mgf is not essentially smooth on its effective domain and Assumption P23 is violated. This a standard
assumption in the large-maturity implied volatility asymptotics literature [20, 22, 36]. It has been relaxed in [85]
for the Heston model to study the limiting spot smile, but not the higher-order terms. This restriction bears no
consequences in markets where the implied volatility skew is downward sloping, such as equity markets, where

the correlation is negative. Define the quantities

~2%kpt +
(3.8) wp = E2PEDd W vy

%(1—p2) YT g (et — 1)
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with
(3.9) n:=/€2(1 - p2) + (2k — p€)2, vi=/1? — 16K2ert and = E(e™ — 1) — drpe”t,

as well as the interval Do, C R and the real numbers p_ and py by

[u,,ui), if —1<p<p_andt >0,
(3.10) Do i= (ui,u+] , if py < p<min(l,k/€),t>0and k > pi&,
[u—,uy],  if p— < p < min(p,K£/§),
o2t (f(e%t — 1) & (et + 1)\/I6r2e2 + £2(1 — ent)2)
3.11 = .
(3.11) P+ S

Remark 3.6. The following remarks are proved in Lemmas b9, b0 and bT2 and we summarise them here.

(i) When /€ < p4, the second case in (BIO) never occurs. From the proof of Lemma BI0(i) if £ > £ then
p+ < 1 so that min(p4,k/&) < 1.
(i) If t >0 and p < p_, then uy >u* >1andift > 0and p > p;, then u_ <u* <O0.
(iii) We always have —1 < p_ < 0 and if kK > p;€ then 1/2 < p; < 1. Also p— = —1 if and only if ¢t = 0.
When k > py€ then py = 1 if and only if ¢ = 0. Finally v defined in (Bd) is a well-defined real number
for all p € [—1,p_] U [p4,1].

We define the functions V and H from D, to R by

_ Kb . — ofu — dlu an ) V(wve ™ 2xf o k0 — 23,V (u)
B V= ot d) o H= U - e ()
with

— 2 2 1/2 _ &= p&u —d(u) & — kit
(3.13) d(u) := ((k — ptu)® +u(1 —w)) ", ~(u):= gt du)’ and 8, := y (1—e ).

Remark 3.7. We have (k — p¢u)® 4+ u (1 —u) €2 > 0 and 16 — 253,V (u) > 0 for all u € Do from the proof of
Proposition BT3. Further by the definition of v in (BI3) we have v(u) € (—1,1) for all u € Dy using (533)
and (B339) in the proof of Proposition BI3. So V and H are always well-defined real-valued functions.

Finally we define the functions ¢* : R — [u_,u4] and V* : R — R, by

& — 2kp + (kbp + x€) n (22E% + 2zK0pE + ,%292)_1/2

26 (1= p?)
where V' and 7 are defined in (B12) and in (89). The following proposition gives the large-maturity forward
Heston smile in Case (iii) in (BTW).

(3.14) ¢*(x) := and V*(z) = q"(x)x =V (¢"(z)),

Proposition 3.8. Suppose that p— < p < min (p4,k/§) in the Heston model with py defined in (BI0). Then
Corollary ZI0 and Proposition hold with Ao =V, A* = V*, v* = ¢*, Mg = H, Ayyg = 0 and
Do,o = [u—,ut], where V, H, V*, ¢* and us are defined in (B12), (814) and (BR).

Proof. We simply outline the proof of the proposition, and we refer the reader to Section 6522 for the details.
(i) In Proposition 513 we show that Dy ¢ = D and that {0,1} C DI;

(ii) In Lemma 514 and Remark B8 we show that the process has an expansion of the form given in Assump-

tion 201 with Ago =V, A1 o= H and Ay o = 0;
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(iii) By Proposition B3 and Lemma B9, V is strictly convex and essentially smooth on D2 if p_ < p <
min (p4, k/&); see also Remark BH(ii);
(iv) A. is infinitely differentiable and V(1) = 0 from Lemma B,

(v) u* can be computed in closed-form and is given by ¢* in (814).

A direct application of Proposition 2124 completes the proof. O

Remark 3.9.

(i) In the Heston model there is no t-dependence for v§°® in (E14) since V* does not depend on ¢. Therefore
under the conditions of the proposition, the limiting (zeroth order) smile is exactly of SVI form (see [27]).

(ii) For Cases (i) and (ii) in (BIO) the essential smoothness property in Assumption P23 is not satisfied and a
different strategy needs to be employed to derive a sharp large deviation result for large-maturity forward-
start options. We leave this analysis for future research.

(iii) For t = 0 we have p1 = +1 and Proposition B8 agrees with and extends the Heston large-maturity implied
volatility asymptotics in [20] and [22].

(iv) The condition p € [0,min(1/2, k/£)] is stronger than the condition in Proposition B=S.

(v) Even though the rate function V* does not depend on t, there is ¢-dependence through pi and the
function H (see the ATM example below). That said, to zeroth order and correlation close to zero,
the large-maturity forward smile is the same as the large-maturity spot smile. This is a very different
result compared to the Heston small-maturity forward smile, as mentioned in Remark B3(iv), where large

differences emerge between the forward smile and the spot smile at zeroth order.

We now give an example illustrating some of the differences between the Heston large-maturity forward smile
and the large-maturity spot smile due to first order differences in the asymptotic (2). This ties in with
Remark BU(v). Specifically we look at the forward ATM volatility which, when using Proposition B8 with
p— < p <min(py,k/£), has the asymptotic

07 +(0) = v°(0) + v3°(0,8) /7 + O (1/7%), as T tends to infinity,

with
so/my _ A0K(n — 2K+ &p)
Yo (0) = 52 (1 _ p2) ’
16 —2 1660 [Ae™™ (2x —&p+ (1 - 207
02 (0.4) = Kv (p§A€2 ) + 5/; log ( e (SHH (ff p2§2n P )77)>

Slog ¢ (1) /n(26p — dr 1 20)
(€1 =2p%) = p(n —2r)) (p(n — 26) +€)
n is defined in (B9) and A := 2k (1 4 e (1 — 2p?)) — (1 — e**) (p€ + ). To get an idea of the t-dependence of
the ATM forward volatility we set p = 0 (since Proposition B is valid for correlations near zero) and perform

a Taylor expansion of v$°(0,t) around ¢ = 0:

20
v1°(0,t) = v7°(0,0 —v|t+0 ().
F00) =00+ (1 o o)
When v > 6 then at this order the large T-maturity forward ATM volatility is lower than the corresponding

large 7-maturity ATM implied volatility and this difference is increasing in ¢ and in the ratio £/x. This is similar

in spirit to Remark B(ii) for the small-maturity Heston forward smile.
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3.2. Multivariate Heston. The n-Heston model (n € N) is defined as the unique strong solution to the
following SDE:

dx, :—fZVt(ZdH—Z\/ Daw ), X, =0€R,

(3.15) av = (9 A )) dt — e/ vPazi=1,...n VP =0 ere,
d<W(i), Z(j)>t = pilj;—jydt, i,7=1,...,n,
d<W(i)7W(j)>t — d<Z(i)7Z(j)>t = 1—jydt, i,j=1,...,n,

where kK = (K1,...,kn) € (0,00)", p € (=1,1)", 6 € (0,00)", & € (0,00)", vg € (0,00)". The independence
assumption of the variances allows the forward mgf of the n-Heston to be written as the sum of the forward
mgf’s of the individual Heston models. The asymptotics of the forward smile are then given directly in terms
of the results in Section Bl. For ease of notation in this section, whenever we reference a function or variable
used in the Heston analysis in Section Bl and use the index i, it means that function or variable defined using
the i-th Heston model parameters in (BIH). So for example when we reference the function L; in (B2) we mean

that function L evaluated using the i-th Heston model parameters in (BI3).

Proposition 3.10. In the n-Heston model Corollary B8 and Proposition BZI2 hold with Dy = ﬂz 1
Noo=>1 A and Ay o =37 | L;, where Dtm A; and L; are defined in 23, @3 and B3.

tT’

Consider for instance n = 2, and define the functions:

2
(3.16)  wo(t,7) .W[(;Zl@zm(vlJrvg) 120, (01 + v2)? (Eipi — 2k3)
+ 62 (02 —4) (1 +va)? ) — 0363 (o — 4) — v3€3 (03 — 4) — 201us (&F (503 — 2)

— 9&&1p1p2 + & (5p3 — 2)) ] RS (Z 4r; (v1 +va) (vi — 0;) + §§Ui> ,

) 2
(3.17) (7)== m (; & (4= 7p7) v + 2v1v2 (€7 (40T + 2) — 15E&1p1p2 + €5 (495 + 2)))

2
2
+4 (v1+112 (;5 vz>.

In order to gain some intuition on the role of the Heston parameters on the forward smile we expand our solution

around the ATM point in terms of the log strike k.

Corollary 3.11. The following expansion holds for the 2-Heston forward smile as € and k tend to zero:

&1p1v1 + E2p2v2
201 4+ 2v9

2

Jet,sT(k) =0 +v2 + 81/0(t, T) +

k4 v (t, 7)E* + O(K®) + O(ek) + O(e?).
Remark 3.12. Remarks similar to Remark BA(ii)-(iv) for the Heston forward smile also apply to the 2-Heston.

Proposition 3.13. If p°. < p; < min(p’,k/€) fori = 1,2,...,n (p' defined in (8IW)), then Corollary ZID
and Proposition hold with Moo = > Vi, Ao = 3oiy Hi, Moo =0 and Do = (i, [u’, ], with V;,
H;, u. defined in (8B12) and (B31).
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3.3. Schébel-Zhu. The Schobel-Zhu (SZ) stochastic volatility model [28] is an extension to non-zero correlation
of the Stein & Stein [29] model in which the logarithmic spot price process (Xt),, satisfies the following system
of SDEs:

1
dX;, = —ia?dt + oy dW, Xo=1z0 €R,

1
(3.18) oy =k (0~ o)) dt+ €42, 00 = /0> 0,

d(W,Z), = pdt,
where x, 6 and ¢ are strictly positive real numbers, p € (—1,1) and (W}),~, and (Z;),s, are two standard
Brownian motions. The volatility process (o¢),~ is Gaussian and hence the _SDE is Well—aeﬁned. The process
(X¢);>( is simply the integrated volatility proce;s and hence is well-defined as well. The analysis in this section
is Ver;/ similar to the diagonal small-maturity Heston analysis and therefore the proofs are omitted. Note that
although in some cases we use the same variables as in the Heston analysis they may have a different definition
in this section. We present limited results to highlight the similarities and differences between the Heston and

Schobel-Zhu forward smiles.

Proposition 3.14. In the Schébel-Zhu model Corollary 28 and Proposition BZI2 hold with Dy = D;, and
Ao = A, where Dy ; and A are defined in @3 and E32.

Remark 3.15. At zeroth order in € the SZ diagonal small-maturity forward smile is the same as in Heston
modulo a re-scaling of the volatility of volatility. The first-order asymptotic is used in Corollary B8 below to
highlight differences with the Heston model.

Let us now define the following functions:
(3.19)
1 1
vo(t,7) =7 (4852 (P> +2) + KO/ + Zv(gp - 4/<;)> + 26ty/v (0 — V),

2 _ 2\ _ 3
ity o= KA UZ20) “ St 26m) | €t

2
i <2(521p * 45292 + 56) €2 + 48050\/0 (2° — 1) + 40p%0(p€ — 4x)) 7658():;2
242
(147 )€ 4 200V (10— 767) 4 2m0 (757 ) ) + ot (36 4 0T (VB 20) ).

In order to gain some intuition on the role of the Schobel-Zhu parameters on the forward smile we expand

our solution (to first order in €) around the ATM point in terms of the log strike k.

Corollary 3.16. The following expansion holds for the Schébel-Zhu forward smile as € and k tend to zero:

2y e2 2
(3.20) agt,ﬁ(k) =v+ev(t,T)+ <§2p + 5V1(t,7’)> k+ <(44;Z)€ + Z—Z + syg(t,7)> k2

+O(K®) + O(ek®) + O(<?),
where vy, v1 and vy are defined in (BTY).

Remark 3.17. At this order we can make the following remarks concerning the SZ forward smile:

(i) Remark B3(iv) for the Heston forward smile also applies to the SZ forward smile.
(ii) The forward ATM volatility has a different dependence on the volatility of volatility £ in Heston and SZ.
In Heston (Remark BA(ii)), 0ct,or (0) — 00, (0) is decreasing in £. In the SZ model, Corollary BIA implies

Oct er(0) — 00..-(0) = (0 — Vv)rte + O(e?), as € tends to zero,
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which does not depend on ¢ (up to an error of order O(¢?)). Also for realistic parameter choices (eg.
p < 0) the Heston ATM forward volatility is decreasing in & while in the SZ model (for example when

& > 2v) it is increasing in £ and the impact is small. This effect is illustrated in Figure B.

Remark 3.18. An analysis analogous to that of the Heston model can be conducted for the large-maturity SZ

forward smile. We shall omit it here though for brevity.

FwdSmile FwdSmile
034 0.36 d
0.32H

030

028f
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026
024F
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L grrike
11 12

(a) Heston forward smile £ dependence (b) SZ forward smile £ dependence

FIGURE 3. Here t = 1/2 and 7 = 1/12 and we apply Corollaries B8 and B33. Circles use the
Heston parameters v = 0.07,0 = 0.07,x = 1,p = —0.6,£ = 0.3 and SZ parameters v = 0.07,0 =
v0.07,k =1,p = —0.6,£ = 0.3. Squares use the same parameters but with £ = 0.4.

3.4. Time-changed exponential Lévy. It is well-known (see for example in |4, Proposition 11.2]) that the
forward smile in exponential Lévy models is time-homogeneous in the sense that o; ; does not depend on ¢ for any
fixed 7 > 0, since the process has stationary increments. This is not necessarily true in time-changed exponential
Lévy models as we shall now see. Let (Y;);>0 be a Lévy process with mgf given by logE (e“¥*) = t¢(u) for
allt > 0 and u € Dy := {u € R: |p(u)| < co}. We consider models where (X;)i>0 := (Yv,)i>0 pathwise and
the time-change is given by V; := fot vsds with v being a strictly positive process independent of Y. We shall

consider the two following examples:

(3.21) doy = K (0 — vp) dt + £/ v dWy,

(3.22) dv; = —Avedt + dZ;,

with vg = v > 0 and k,&,0,\ > 0. Here W is a standard Brownian motion and Z is a compound Poisson
subordinator with exponential jump size distribution and Lévy exponent I(u) := Adu/(a — u) for all u < «

with d > 0 and a > 0. In (BZ20), v is a Feller diffusion and in (B22), it is a I'-OU process. We now define the
functions V and H from ﬁoo to R by

=, Kb =\ V(uwve "t 2k0 KO — 23,V (u)
(3.23)  V(u):= =) (KJ — VK2 — 2¢(u)§2) and H(u):= YA 257 (a) - log (H@ = 7@)(“)))) ,
and the functions V and H from Da to R by
~ d(u)Ad
Vv ="
(3.24) T o)

77 _ _ Aad P(u)\ | plujve ™ d(u) — are
H(u) '_a/\gb(u)log(l_ " >+ +d10g(e“‘(¢(u)a)\))’
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where we set
(3.25) Doo = {u:p(u) <r?/(26%)}, Do := {u: ¢(u) < ar},

¢ is the Lévy exponent of Y and S; and v are defined in (628). The following proposition—proved in Sec-

tion BA—1is the main result of the section.

Proposition 3.19. Suppose that ¢ is essentially smooth (Definition Z3), strictly convex and infinitely differ-
entiable on Dg with {0,1} C D and ¢(1) = 0. Then Corollary and Proposition hold:

(i) if v follows (B=2W), with Ago =V, Ao =H, A2o=0 and Dy = 1300;

(i) if v follows (B=2Z2), with Aoy =V, A1o = H, Ayg =0 and Do = Duo;
(i) if vy =1, with Ago =@, A1,o =0, Ao =0 and Dy = Dy.

Remark 3.20.

(i) The uncorrelated Heston model (Bl) can be represented as Y; := —t/2+ W, time-changed by an integrated
Feller diffusion (8221I). With ¢(u) = u(u—1)/2 and Dy = R, Proposition BTU(i) agrees with Proposition BR.

(ii) The zeroth order large-maturity forward smile is the same as its corresponding zeroth order large-maturity
spot smile and differences only emerge at first order. It seems plausible that this will always hold if there
exists a stationary distribution for v and if v is independent of the Lévy process Y

(iii) Case (iii) in the proposition corresponds to the standard exponential Lévy case (without time-change).

We now use Proposition BT9 to highlight the first-order differences in the large-maturity forward smile (2211)

and the corresponding spot smile. If v follows (B721) then a Taylor expansion of v{° in (EI8) around ¢ = 0 gives

v (k)?  — 20V (u* v — —
vi°(t, k) —vi°(0,k) = MV(U*(/’@)) (ém +1-— 9> t+(9(t2), for all k € R\{V (0),V (1)}.

Using simple properties of v3® discussed below (EI8) and V we see that the large-maturity forward smile is

lower than the corresponding spot smile for k& € (V' (0), V/(l)) (which always include the at-the-money) if v > 6.
The forward smile is higher than the corresponding spot smile for k € R\(V/(O), V/(l)) (OTM options) if v < 6,
and these differences are increasing in ¢/k and t. This effect is illustrated in Figure @ and k € (V' (0), V(1))
corresponds to strikes in the region (0.98,1.02) in the figure.

If v follows (B22) then a simple Taylor expansion of v$°(-, k) in (E18) around t = 0 gives

Bug° ()2 p(u () A — aw) + vo(u (k)]
1 — o (0 X — (u (R))

00t k) — (0, k) = t+O(t?), forall ke R\ {V'(0),V'(1)}.

Similarly we deduce that the large-maturity forward smile is lower than the corresponding spot smile for k €
(V'(0), V'(1)) if v > d/a. The forward smile is higher than the corresponding spot smile for k € R\(V’(0), V'(1))
(OTM options) if v < d/«, and these differences are increasing in ¢.

If v follows (B=2W)((B=22)) then the stationary distribution is a gamma distribution with mean 6 (d/a),
see |4, page 475 and page 487]. The above results seem to indicate that the differences in level between the
large-maturity forward smile and the corresponding spot smile depend on the relative values of vy and the
mean of the stationary distribution of the process v. This is also similar to Remark BA(ii) and the analysis
below Remark B for the Heston forward smile. These observations are also independent of the choice of ¢
indicating that the fundamental quantity driving the non-stationarity of the large-maturity forward smile over

the corresponding spot implied volatility smile is the choice of time-change.
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As an example of a Lévy process satisfying the assumptions of Proposition BT, consider the Variance-Gamma
model, defined by

GM
= 1 —_— for all -G, M
o(u) Hu+00g((M—u)(G+u))’ orallue (-G, M),
with ¢ >0,G >0, M > 1 and pu:= —C'log (%) ensures that (eXt);>¢ is a true martingale (¢(1) = 0).

We immediately obtain
oy = GG =M+ 2u) + p(G+u)(M —w) C((G+M)*+(2u+G—M)?)

(G +u)(M —u) 2(G 4+ u)2(M — u)? ’
foru € (—G, M), so that ¢ is essentially smooth and strictly convex on (—G, M). It is also infinitely differentiable
on (=G, M) with {0,1} C (-G, M) and Proposition BT9 applies. For Proposition BTY(iii) we can compute
u* : R — (=G, M) through (23) in closed-form. The solutions to ¢'(u*(k)) = k are u*(u) = (M — G)/2 and
=20 — (G — M)(k — p) £ /4C? + (G + M)%(k — p1)?
B 2(k — p)
The sign condition (M — u) (G +u) > 0 imposes —2C £ /4C? + (G + M)2(k — y1)2 > 0 for all k # . Hence u’}
(continuous on the whole real line) is the only valid solution and the rate function is then given in closed-form
as A*(k) = ku (k) — ¢(u? (k)) for all real k.

and  ¢"(u) =

for all k # pu.

u% (k)

FwdSmile FwdSmile
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(a) Feller time-change: forward smile vs spot smilev > 0. (b) Feller time-change: forward smile vs spot smile v < 6.

FIGURE 4. Circles represent ¢ = 0 and 7 = 2 and squares represent t = 1/2 and 7 = 2 using
a Variance-Gamma model time-changed by a Feller diffusion and the asymptotic in Proposi-
tion BTU. In (a) the parameters are C = 58.12, G = 50.5, M = 69.37, k = 1.23, § = 0.9,
& =1.6,v =1 and (b) uses the same parameters but with § = 1.1.

4. NUMERICS

We compare here the true forward smile in various models and the asymptotics developed in Propositions 212
and E14. We calculate forward-start option prices using the inverse Fourier transform representation in [A1),
Theorem 5.1] and a global adaptive Gauss-Kronrod quadrature scheme. We then compute the forward smile oy ,
and compare it to the zeroth, first and second order asymptotics given in Propositions 12 and ZI4 for various
models. In Figure B we compare the Heston diagonal small-maturity asymptotic in Proposition B2 with the
true forward smile. Figure B tests the accuracy of the Heston large-maturity asymptotic from Proposition BR.

In order to use this proposition we require p_ < p < min (p4, k/€) with py defined in (B). For the parameter
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choice in the figure we have p_ = —0.65 and the condition is satisfied. Finally in Figure @ we consider the
Variance Gamma model time-changed by a I'-OU process using Proposition BTY. Results are in line with

expectations and the higher the order of the asymptotic the closer we match the true forward smile.

FwdSmile

Error

" W
-

+ Wﬂw‘,, oo t‘_,\’t ,4"**"5?’*‘{3 Strike

—o01f

—0.02}

i R L Srike
07 08 09 10 11 12 13 -00g¢f

(a) Heston diagonal small-maturity vs Fourier inversion. (b) Errors

FIGURE 5. In (a) circles, squares and diamonds represent the zeroth, first and second order
asymptotics respectively in Proposition B2 and triangles represent the true forward smile us-
ing Fourier inversion. In (b) we plot the differences between the true forward smile and the
asymptotic. We use t = 1/2 and 7 = 1/12 and the Heston parameters v = 0.07, § = 0.07,
k=1£6=0.34, p=—0.8.

FwdSmile

Error

Strike

T R R e R e ae

(a) Heston Large-Maturity vs Fourier Inversion. (b) Errors

FIGURE 6. In (a) circles, squares and diamonds represent the zeroth, first and second order
asymptotics respectively in Proposition B8 and triangles represent the true forward smile us-
ing Fourier inversion. In (b) we plot the differences between the true forward smile and the
asymptotic. We use t = 1 and 7 = 5 and the Heston parameters v = 0.07, § = 0.07, k = 1.5,
£ =034, p=—-0.25.
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FwdSmile

(a) I-OU time-change large-maturity vs Fourier inver- (b) Errors

sion.

FIGURE 7. In (a) circles, squares and diamonds represent the zeroth, first and second order
asymptotics respectively in proposition B9 and triangles represent the true forward smile using
Fourier inversion for a variance gamma model time-changed by a I'-OU process. In (b) we plot
the differences between the true forward smile and the asymptotic. We use t = 1 and 7 = 3
with the parameters C = 6.5, G =11.1, M =334,v=1, a =0.6, d = 0.6, A = 1.8.

5. PROOFS

5.1. Proofs of Section B. We define a change of measure by

06e _ oy (0K _ 08

(5.1) -

with w*(k) defined in (2Z3). By Lemma EA(i), u*(k) € D, for all k € R. Since D§, C D? this means that
A (u*(k)) < oo. Also dQy /dP is almost surely strictly positive and by the very definition E (dQy/dP) = 1.

Therefore (B) is a valid measure change for all £k € R. We define the random variable
(5.2) ne = (Xe— ) JVE

and set the characteristic function @z, . : R — C of Zj . in the Qy .-measure as follows
(5.3) Bz, (u) = EUe (eiufhe),

Recall from Section B that for ease of exposition A;; := A;; (u*(k)) with A;; defined in (Z4). This notation

will be used throughout the section. We now have the following important technical lemma.
Lemma 5.1. The following expansion holds for the characteristic function ®z, _ defined in (63) as € — 0:
1
log ®z, (u) = —§A072U2 + (W) + n2(w)e + n3(w)e? + O (%),
where the functions n;, i = 1,2,3 are defined in (54).

Remark 5.2. By Lévy’s Convergence Theorem [62, Page 185, Theorem 18.1], Z . defined in (B2) converges

weakly to a normal random variable with mean 0 and variance Ag 2 in the Qj .-measure as € tends to zero.
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Proof. By Lemma P4, u*(k) € Dg , therefore using the definition of the Qj .-measure in (5) we have

ot o) = g (12801 ) g o (U ALY o (5 (X))

3

= _éAE (u*(k)) — % +log EF {exp (<)§> (iuve+ U*(k))ﬂ

_ _iuk % (A (iuv/z + u* (k) — A (u*(K)))

iuk 1=l i "
RV D i (Rom+ehin %Mo, + 0 (%)) (1uve)

where the last equality holds by the differentiation and expansion properties in Assumption . We now write

10g¢2ky€(u):_%+1 01U “Agou® 4 = (Z —Aon 1u\f Zn— (eA1p + e A2n+0( )) (1uve) )

n=1

Ve o WE 2
= —7A0 2’LL + Z ol (<7’L—|—2A0 n+2 (lu) + A17n> + 5A27n + O (52)> (lU\/g)
1
= —§A012u2 + 1 (u)VE + n2(w)e + n3(w)e®? + O (£2)
where we used (Z3) from Lemma 22 and where

1
771(71) = iuA1 1 — *iUBAO 3,

1 1
(5.4) m(u) = —zu®Ais+ —ulAgya,
2 24 1
7’]3(’u) = 1uA2 1 — —iu A1 3+ 71U5A0 5-

6 120

Proof of Theorem B@. For j = 1,2,3, let us define the functions g, : Ri — R4 by

(x_y)+7 ifj=1,
gj(mvy) = (y—$)+7 lfj:25
min(z,y), if j = 3.

Using the definition of the Qj c-measure in (670) we can re-write the option price as
E {gj (eXaf(s)’ekf(s)ﬂ — oA (u (k) RQx. {eﬂ@xs 9 (eXEf(s),ekf(E))]

— o= Llkut ()= Ac(u” (k)] gQx.c [ef“l‘wxrk)gj (eXaf(e)&kf(s))}_

By the rescaled mgf expansion in Assumption Pl and Equality (E8) we immediately have
1 1
(5.5) exp (_5 (ku* (k) — Ac (u*(k)))) = exp <_5A* (k) + Ao+ Ape+0O (52)> .

From the definition of the random variable Zj . in (B2) we have

. [e_u WXy, (eXEf(s)7ekf(a)>} = T ORx [3.(Z.)]

where for j = 1,2,3, we define the modified payoff functions g; : R — R by

Gi(2) = v (B2/VE g, (ez\/%f@), 1) .
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For a function f € L?(R) denote its Fourier transform by (Ff)(u) := [ e** f(z)dz, for any v € R. Assuming
(for now) that g; € L*(R), we have for any u € R,

o *(k )
(Fgj) (u) = / exp (u ( )Z> 9; (ezﬁf(s), 1) e™*dz, for j=1,2,3.

For j =1 we can write
g1(2)e**dz = - - -
—oo Vef(e) —ur(k)/ve + iu —u*(k)/Ve+iu

_ e¥2f(e)
(k) — 1u/e) (ur (k) — ef(e) — iuy/e)’

/oo exp (2 (Vaf (&) —w )/ +iu)) ] [exp ((—ur(B)/VE+1u) )

which is valid for u*(k) > ef (¢). For e sufficiently small and by the definition of f in (2Z2) this holds for

u*(k) > c. For j = 2 we can write

. g2(z)e™7dz = —u (k) /\/E + iu B Vef(e) —ux(k)/v/eE+ iu

— 00 — 00

/oo exp (= (-uwrk)ve+ 1) ] Jexp (2 (VEf (€) — w (h)/vE + 5w )

_ 324 (e)
(w(F) — 1u/2) (" (k) — £ (2) — Guv/e)’

which is valid for u*(k) < 0 as € tends to zero. Finally, for j = 3 we have

> . 0wt . o ut) .
/ G3(z)et**dz = / e~ Ve zg3 (ez\/gf(a)’ 1) eltzd, +/ e~ vE Zgg (ez\/Ef(fs)7 1) RACEP
0

exp (= (VEF ©) —w(B)/vE+3w)) ] [exp (=(—ur(k)/vE + 5w) )
Ve @) —w B/ + u * “w(W)/VE + 1u

oo 0
B e3/2f(e)
(u*(k) — iuv/e) (u*(k) — ef(e) — iuve)’

which is valid for 0 < u*(k) < ef (). For ¢ sufficiently small and by the assumption on f in (EZ2) this is true for
0 < u*(k) < c. In this context u*(k) comes out naturally in the analysis as a classical dampening factor. Note
that in order for these strips of regularity to exist we require that {0,c} C D, as assumed in the theorem. By
the differentiability property in Assumption B and the strict convexity and essential smoothness property in

Assumption 223 we have

0<u*k)<c if and only if  Ag1(0) < k < Ag,1(c),
(5.6) u*(k) <0 if and only if &k < Ag1(0),
u*(k) > c if and only if k> Ag1(c).

For ¢ sufficiently small and the strips of regularity defined above, the modified payoffs g; are in L?(R). By

Remark b4, Zj, . converges weakly to a zero-mean Gaussian random variable as ¢ tends to zero and the Gaussian
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density is in L?(R). For ¢ sufficiently small we can apply Parseval’s Theorem [29, Theorem 13E] to write

2 @ iisjgi((?’ii;’g—(gfiz) Tae T heE e
67 B BN 5 [ T e T =<0

% fwms izgkjg((jii?'g—(tifiz;) Fiave R0k <
where we have used that

3/2f(¢) 32 f(e)

(w (k) — 1u/2) (u" (k) — £ (2) — uv/) (- (k) + 1uy/e) (u* (k) — e/ (&) + 1uy/2)’

with @ denoting the complex conjugate for a € C. Now using Lemma Bl we write

32 f(e)®(u)du - _A0,2u2 W) du
) L et e ~ oo () e

where the function H : Ry x R — C is defined as

exp (11 (w)VE +1m2(u)e + n3(u)e** + O () ()2
(u(k) + iuy/e) (u* (k) — ef(e) + iuye) ’

with n; (¢ =1,2,3) defined in (B4). A Taylor expansion of H around € = 0 for ¢ = 0 yields

H(e,u) ==

() = L (1m0 + a0+ o, 002+ 105 - B 1 o (2))
(14 mvE+ (Gm? + mw) e+ (e + mim( + m@) 2+ 0 ()

= L (1 i 0VE + R, 0)e + a0+ L (U B gy 4 0(2)).

where we define the following functions:

(5.9)
w.c) = iy c u,c) = _u2 (62 _3Cu*(k)—|—3u*(k)2)
hi(u,c) = w(k) —c (u*(k) 2)’ ol )= w* (k)2 (u*(k) — ¢)?
iud (du* (k)3 -3 Au* — 6cu*(k)? - iu (e — 2u*
hauc) s — AU = @ kA (R) et k) - p (e 2 ()

u*(k) (u* (k) —c)’
~ . n2(u) B u? (02 —3cu (k) +3 (U*(k))Q) iung (u) c
ha(u, ) == === + na(u) ( (u (k) 2)

wr (k)P (u (k) = o)

T2 ? w (k)2 (u*(k) — ¢)? Tu) -
- _ni(u) iud u?ny (u) iud
h3(u5 C) T 6 + 771(“)“2(“) + 773(“’) + ’U,*(k)3 - u*(k)g (u*(k) _ 0)3
B iu n?(u) _dumi(u) u? iu® — w?u* (k)ny(u) _iu 03 (u) "
e (e S ) e w U )
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with the #; for i = 1,2, 3, defined in (54). A Taylor expansion of H around & = 0 for ¢ > 0 yields
H(e,u) =

c 2(u 3(u,
) (Jfk) —{1rm@ve (né = Mu)) e+ (”é Lt o () + n3<u>) S210(2)

W (R)(f(e) — o) 2iuVE(ef(e) — ot (k)
{14 P, ) VE + hau, c)e + hy(u, )/ + cw®) -0 crk) o) +0() }
I

- ha (u, ho(u, ¢ ha(u, c)e®/? u*(k)(ef(e) —¢)
(k) (@ (k) —9) {”hl( L OWVE + ho(u, ¢)e + hy(u, )™ +

(
c(u*(k) =)
w* (k) VE(Ef () ) 21u )
- @

+ c(u*(k)—c) m(u) u*(k) —c O g
with the h;, h; defined in (69) and the 7; defined in (68). We will shortly be integrating H against a zero-
mean Gaussian characteristic function over R and as such all odd powers of w will have a null contribution. In

particular we note that the polynomials

b h (m) B N wRVEESE -0 (2
e (u*(k) <u*<k>>2>€ 7 e SR (- )

are odd functions of u and hence have zero contribution. The major quantity is ho, which we can rewrite as

_ _ 5 - 4 Ag 3u6
(5.10) ha(u,c) = ha1(c)u” + ha2(c)u” — 7’2 ,
where
3 (C) . 2A1)1 _ CA171 _ A%l + A1,2 B 2 — 3C’U,*(l€) + 3u*(k:)2
T wr (k) — e wr (k) (ur (k) — o) 2 (k)2 (k) — )
= cAos Aojs AigAos  Agg
haa(c) == : - ’ 120, =
22() = G (=9 3wk -0 6 T
Let

b.(c) = eVElesop + 32 f(e)lemgy
=(C) = w (k) (u* (k) — c)

Using simple properties of moments of a Gaussian random variable we finally compute the following

A 2
/exp (—0’2u) H (g,u)du
R 2

2 6 *
=00 [ bt (1 +haa(el + Rap(out - 8 CONETO 0y SOy Lo <62>> d“

72 c(u*(k)—c)

o 2 5271(6) 35272(6) 5A(2)73 U* (k)(€f(€) — C) €f(€)
= ¢E(C)” K,? (1 + Ao + Ag’z - 24A8,2 + c(u (k) —¢) ]l{c>0} + u*(k)]l{c:O} +0 (52)> :

In the second line we have dropped all odd powers of u and have used (EEI0). Combining this with (E3R), (K1)
and (B3) with the property (50), the proposition follows. O

In [P5] Gao and Lee have obtained representations for asymptotic implied volatility for small and large-
maturity regimes in terms of the assumed asymptotic behaviour of certain unspecified option prices, outlining
the general procedure for transforming option price asymptotics into implied volatility asymptotics.

The same methodology can be followed to transform our forward-start option asymptotics (Corollary 28

and Corollary Z10) into forward smile asymptotics. In the proofs of Proposition ZI2 and Proposition EZ14
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we therefore assume for brevity the existence of an ansatz for the forward smile asymptotic and solve for the

coefficients. We refer the reader to [25] for the complete methodology.

Proof of Proposition ZI3. Using Ag1(0) = 0 and substituting the ansatz o2, . (k) = vo(k,t,7) + v1(k,t,7)e +

et,eT

vo(k,t, 7)e2 + O (&?3) into Corollary 79, we get that forward-start option prices have the asymptotics

E {(exgﬂ - ek) +] Loy +E [(ek — eXéit))Jr] Lik<oy

k2 k2vy(k,t,7) k (Uo(k7t77')57')3/2 2
— _ — 1
exp ( druoktr)e T 2rug(k t, 7)2 2) k22 ( +v(k,t,T)e+ O (6 )) )

where we set

1) k2vy(k,t,T) k2vi(k,t,7)%  3vi(k,t,T)

(k,t,7):= —Tvo(k,t,T) i-i-* -
vY(k,t, = o\, T,y k2 8 2T’l)0(k,t,7—)2 2’7’1}0(/€,t,7’)3 ZUO(kvtaT).

The result follows after equating orders with the general formula in Corollary EZ3. d
Proof of Proposition [Z-14. Substituting the ansatz

(5.11) af’T(k) = v°(k,t) + v (k, t) /T + v (k, ) /7% 4+ O (1/73) ,

into Corollary 2101 we obtain the following asymptotic expansions for forward-start options:

t + t t +
]E{(exﬁ)—e’”) ]IA—]E[eXL)/\ekT}IB+IE[<ekT—eX£)) }lc

- k2 k ’Uo(k,t) Ul(k,t)kz 'Ul(k,t)
- oxp <T <2v0(l<;,t) R ) M TN R PR )

—1/2 3/2 o0
4t vo(k,t) <1+7 (k,t)+0(1>>’
T

(4k2 — vo(k,t)2) V2r 2
where
(5.12) A= {k > ;aiT(k)}, B = {—;agT(k) <k< ;Ufi(k)}, Cim {k < —;aiT(k)},
o (ht) (1262 + v (k. 1)) (4K%v1 (k1) — vg (K, 1) (vi(k,t) +8))  vf(k, )k | va(k, k> va(k,t)

2o (k. t) (v3(k, t) — 4k2)> 205(k,t)  2v5(k,t) 8

We obtain the expressions for v and v5° by equating orders with the formula in Corollary ZT0. However it is
not clear which is the correct root for the zeroth order term v5°. In order to do so, we have to match the domains
in (602) and in Corollary 0. Indeed, suppose that we choose the roots according to vg° in (218). For 7
sufficiently large the condition k > 02/2 is equivalent to k > v5°(k,t)/2. Now for k > Ag1(1) or k < Ag1(0),
the definition of v§° in (EZI8) implies

(5.13) k>0%/2  ifandonly it \/(A%(k) — K)® + K (A*(k) — k) > A*(K) — k,

which is always true since A*(k) > k by Lemma PA(iii). Now, for k € (Ao,1(0),Ao,1(1)), the definition of v§°
in (E18) implies

(5.14) k>o%/2  ifand only if — — \/(A*(k) —k)? + k(A (k) — k) > A*(k) — k,

which never holds. By the assumption in the proposition E1d and Assumption 20 we have {0,1} C D§ o and
Ao 0(0) = Ag,o(1) = 0. The differentiability and strict convexity of Ag ¢ (Assumptions P23 and E1) then imply
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Ap1(0) <0 and Ag1(1) > 0. Since v§® > 0 we can ignore the case k < Ag1(0) < 0 and hence k > 02/2 if and
only if £ > Ag,1(1). Similarly the definition of v§° in (Z7IH) implies that for 7 large enough T,

—0%/2 <k < o?/2 if and only if ~ Ag1(0) <k < Ag1(1) and k < —0?/2 if and only if k& < Ag1(0).

This lines up the domains in (612) with the domains in Corollary ZZ10. Had we specified the roots in any other

way, it is easy to check that a contradiction would have occurred. O
5.2. Proofs of Section B. For a stochastic process (X;)¢>o we define the forward mgf of the process by
(5.15) A(u) :=1logE (euxy)) ) for all u € Dy,

where Dy := {u € R : |A(u)| < oo} and X is defined in (E1m). We now let (X;);>0 be the Heston process
satisfying the SDE (BOl). By a straightforward application of the tower property for expectations (see also [34]),
the forward mgf defined in (B13) is given by

B (u,7) et 20

(5.16) A(u) =A (U,T) + TB(U,T)UQ — fT

log (1 —28:B (u,7)), forall u & Dy,

where

Afwr) =" ((ﬁ otu— d(u) r—2l0g (L7 v(z;)ixia(i;d(u)ﬂ )) |
k—péu—d(u) 1—exp(—d(u)r)

£ 1 —y(u)exp (—d(u)7)’
and d, v and 8 were introduced in (B13). In the next two sections we develop the tools needed to apply
Propositions 212 and 214 to the Heston model.

(5.17)
B(u,7) =

5.2.1. Proofs of Section @I. We consider here the Heston diagonal small-maturity process (Xg(it)) with X
e>0

defined in (B) and (Xg)) in (21M). The forward rescaled mgf A, in (E70) is easily determined from (E18).
>0

Lemma 5.3. For the Heston diagonal small-maturity process we have Doog = Dy, and 0 € D&O with Dy -
defined in (B33) and Dy o and Df, defined in Assumption E.

Proof. For any t > 0, the random variable V; in (81) is distributed as [3; times a non-central chi-square random
variable with ¢ = 4k0/£2 > 0 degrees of freedom and non-centrality parameter A\ = ve "'/, > 0. It follows
that the corresponding mgf is given by

1
1-28u)"?,  forallu< -—.
) ( Bru) ) or all u < 5,

)\,Btu

(5.18) AY (u) :=E (e""") = exp (1 ~ 2B

The re-normalised Heston forward mgf is then computed as

AET(U) - F e%(XEt+ET_XEt):| —F [E (e%(X5t+ET_XEt)|f€t)i| —F (eA(%@T)-I-B(%@T)VEt) - eA(%7ET)A¥ (B (u/e,eT)),

which agrees with (5IH). This only makes sense in some effective domain D, C R. The mgf for V,

is well-defined in DY, :== {u € R : B(u/e,er) < ﬁ}, and hence D..r = DY, N DL, where DI is the

T
H
eT

€2(ufe — 1)u > (k — €pu/e)? then the explosion time 7*(u) := sup{t > 0 : E(e“Xt) < oo} of the Heston mgf is

VT~ Tufe = (o= o)
péu/e — K '

effective domain of the (spot) Heston mgf. Let us first consider D2 for small €. From [3, Proposition 3.1] if

TH <g> N \/§2(u/<€ —u/e — (k — p&u/e)?

(ﬂ'l{pgu/s_n<0} + arctan (
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Recall the following Taylor series expansions, for = close to zero:

2
arctan (pfu/ic—n\/@ (%71> %f (Ii*ﬁp%) ) = sgn(u) arctan (5) +O(z), if p#0,
1 U U ™
e (Ve 2y =1 if p=
arctan( K\/f (x 1) ol > 5 + O(x), if p=0.
As ¢ tends to zero £2(u/e — 1)u/e > (k — pu/e)? is satisfied since €2 > £2p? and hence

9 _
ﬁ (Wl{p_o} + E (ﬂ'l{pu<0} + sgn(u) arctan (Z)) Lipz0y + (’)(5)) , if u#0,

00, ifu=0.

T (u/e) =
Therefore, for ¢ small enough, we have 7j; (%) > e7 for all u € (u_,uy), where

p p
u_ = ——arctan | — | 1 ]l + — <arctan <) — 77) 1 ,
g <p) {p<0} — ér {p=0} PET P {p>0}

0 2
uy = — | arctan +7)1 + ]l + — arctan ( ) 1
T e ( (p) ) =0 T om0 T Gy o

So as ¢ tends to zero, DX shrinks to (u_,uy). Regarding DY;, we have (see (5222) for details on the expansion
computation) BB (u/e,eT) = %A (u,0,7) + O(e) for any u € (u_,uy), with A defined in (82). Therefore
im0 DY, = {u € R: A(u,0,7) < %} and hence lime\ o Deter = {u € R: A(u,0,7) < %} N (u—,uy). It
is easily checked that A (u,0,7) is strictly positive except at uw = 0 where it is zero, A’ (u,0,7) > 0 for u > 0,
A (u,0,7) < 0 for uw < 0 and that A (u,0,7) tends to infinity as u approaches uy. Since v and ¢ are strictly
positive and ¢ > 0 it follows that {u € R : A (u,0,7) < 52t} C (u—,us) with equality only if t = 0. So Dy is

an open interval around zero and the lemma follows with Dy g = Dy . O

Remark 5.4. For u € R* the inequality 0 < A(u,0,7) < %
defined in (B22). In Lemma B3 below we show that A is the limiting mgf of the rescaled Heston forward mgf

is equivalent to A(u,t,7) € (0,00), where A is

and so the condition for the limiting forward domain is equivalent to ensuring that the limiting forward mgf

does not blow up and is strictly positive except at u = 0 where it is zero.

Lemma 5.5. For anyt >0, 7 >0, u € Dy, the following expansion holds as € tends to zero:
Ac(u) = A(u,t,7) + L(u,t,7)e + O (%),

where Dy, A and L are defined in (83), (82) and (BA) and A. is the rescaled mgf in Assumption 22 for the

Heston diagonal small-maturity process ( E(it)) .
e>0

Remark 5.6. For any u € Dy ,, Lemma B3 implies that A.(u) is a real number for any ¢ > 0. Therefore L

defined in (B4) and used in Lemma B3 is a real-valued function on Dy .
Proof. All expansions below for d, v and 8, defined in (BT3) hold for any u € D, ,:

1 ‘
d(ufe) = - (k%€ + ue (€ — 2kp) — uzﬁzﬁ)l/Q = %do +dy + O(e),

Ke — pu — iudy — die + O (e2) ie ,
K&—p§u+iud0+d1€+o(52) *90*;91+0(s ),

(5.19) Bet = ig%s - éﬂfzt%z +0 (%),

v (u/e) =
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where we have set

g, - 1(2rp — §sgn(u) _ip—psen(w) (2K &p)sen(w)

5.20) do:= pEsgn(u), = , = - — = )
P20 o pesead. 2 P apv ) T (o + apse(u)?

where sgn(u) =1 if u > 0 and -1 otherwise. From the definition of A in (55T7) we obtain

(5.21) Alufe,er) = ’%f ((H ~ peuje — d(ufe))er — 2log (1 — 15)_9’;125/‘;;(“/ 6)”)»
K0

= ((rke — pu — iudy — edy + O(e?)) T
o1 1— (g0 — ieg1/u+ O(e?)) exp (—iudoT — edi 7 + O(e?))
% 1= (g0 — ig1/u+ O())

= Lo(u, T) + 0(5)7
where Ly is defined in (B3). Substituting the asymptotics for d and  above we further obtain

1 —exp(—d(u/e)er) 1 —exp (—iudyr — edi7 + O(e?))
1 —y(u/e)exp (—d(u/e)et) 1 — (go — iegi/u + O(e2)) exp (—iudoT — ediT + O(£2))’

and therefore using the definition of B in (B14) we obtain

Kk — pufe — d(u/e) 1 —exp(—d(u/e)eT)
& 1= (u/e)exp (—d(u/e)eT)
_ plutiudy 1— exp(—iudor) w
N c&? 1 — go exp (—iudyT) + La(u,7) + O(e)
A(u,0,7)

= + Li(u,7) + O(e),

with L; defined in (BH) and A in (82). Combining (619) and (E22) we deduce

(5.22) B(u/e,eT) =

(523) BetB (u/a, 67—) =

%A (u,0,7) N <L1(u,7)§2t 3 A(u,0,7)KE%t2

2
4v 4 8v )€+O(€ )

and therefore as ¢ tends to zero,

eB(u/e, eT)ve Rt B [A(u, 0,7) +vLi(u,m)e+ O (52)} (1 —tkE + (’)(52))
1—2B.4B(uje,et) 1 —&2tA(u,0,7)/2v + (A(u, 0, 7)kE2t2 dv — Ly (u, 7)E2t/2) € + O (£2)
vLy(u,7)  KEH?

(5.24) = A(u,t,7) + (A(u,t,T)2 (A(u,0,7)2 - ) - mfA(u,t,r)) e+ 0(?).

Again using (B223) we have

2k6e 2k6 A(u,0, 7)€%t 9
(5.25) e log (1 —2B8.4B (u/e,eT)) = —g—zlog (1 s + O(e9).
Recalling that
eB (u/e,eT) et 2Kbe
A(u) = €A (ufe, ret _ log (1 — 2B.,B (u/e, e1))
(u) =cA(ufe,eT) + 1= 2548 (u)e,e7) ve e og ( Bet B (u/e,eT))
the lemma follows by combining (E21), (A=24) and (E22H). O

Lemma 5.7. Forallt >0, 7> 0, A (given in (B2)) is convexr and essentially smooth on Dy ,, defined in (B33).
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Proof. The first derivative of A is given by

O (u,t,T) —v uv (5 f €000 esc? (%5/77'“»
du N pE + 5E%u — p€ cot (5EpTu) * (- §p — $&%tu+ Epcot ($EpTu 2
= A(uj’ﬂ (1 + A(u;}t,r) (i + 5 p°T csc? <2p§7-u>)>
Any sequence tending to the boundary satisfies A (u,0,7) — 2v/£%t which implies A(u,t,7) oo from Re-

mark 54 and hence |0A(u,t,7)/0u| /* co. Therefore A(-, ¢, 7) is essential smooth. Now,

2 2
02A(u,t,7)  2uv (*% - %52/3270862(%)) | E0+ %6270 (1= cot(4h) esc? (1)

ou?(—tp— Seu+ pE cot(thn))’ (—p€ — $€2tu+ p€ cot(v))
€ gty PTECW)” vt 2o (1 =y cotlba) s (W)
27 (p+ etu— peot(ipn))” (p+ S&tu — peot(v)’
where 1, := 3p&Tu. For u € Dy, \ {0}, we have A(u,t,7) > 0 and A(0,¢,7) = 0 from Remark 54. Also we
have the identity that 1 —6/2cot (8/2) > 0 for 6 € (—27,27), so that A is strictly convex on D ;. O

Proof of Corollary B3. We first look for a Taylor expansion of u*(k) around k = 0 using A’ (u*(k),t,7) = k.
Differentiating this equation iteratively and setting &k = 0 (and using v*(0) = 0) gives an expansion for v* in
terms of the derivatives of A. In particular, A”(0,t, 7)u* (0) = 1 and A (0,t,7)(u* (0))24A"(0,t,7)u*" (0) = 0,
which implies that u* (0) = 1/A”(0,¢,7) and u* (0) = —A""(0,¢,7)/A”(0,t,7)3. From the explicit expression
of A in (B2), we then obtain

ko360 €097 —4)7—121) 5 56 (481 + (16 —375°) 7)

* k)= — — k4
u” (k) T ATv? 2471293 1927294
4(1080t% + (2437p* — 1604p% + 112) 72 — 180 (27p% — 4) 7t
L& (2437p p )T RT" =7 15 L o),
19207302

Using this series expansion and the fact that A*(k) = u*(k)k — A(u*(k),t,7), the corollary follows from tedious
but straightforward Taylor expansions of vy and vy defined in (E14). O

Lemma 5.8. Under the stopped-share-price measure (2IR) the forward Heston mgf defined in (BI8) reads

B(u, ) _we 2K0
Alu) = Alu,7) + ——=—"—ve ™ — 1 1—2ﬁBu7‘ or all u € Dy,
(1) = Al )+ Ty — T log(1-28Bw), A
where A and B are defined in (BEI1),
~ 2 ~
(5.26) Bt = %( —e ") and R:=kK—Ep.

Proof. Under the stopped-share-price measure (E7I8) the Heston dynamics are given by

dX, = =1V, + Viluy) du+ /VpdW,, X, € R,
(5.27) dV, = (kb — &V, + pEV 1<) du + €/V,,dZ,, Vo=v>0,

d(W,Z2),, = pdu.

We now compute
(5.28) f[«i (eu(XH—-r—Xt)) -k (E (eu(XH_T—X,,) ‘]:t)) _ IE (eA(u,T)—o—B(u,r)Vt)

(5.29) = AWDE (eB@vTWt) = AW RY (B(u, 1)),
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where
~ ~ \~4/2 1
(5.30) AY (u) = exp Lui (1 — 26tu) ! for all u < —,
2B

with ¢ := 4k0/€2, X := ve™*/B,. Over (t,t + 7] the Heston dynamics in (5:27) remain the same as under the
risk-neutral measure and so we can apply the standard spot Heston mgf in (5228). On [0, ¢] we use the modified

chi-squared mgf in (B=30) to obtain (B229), corresponding to the modified Heston process in (6222) on [0,¢]. O

5.2.2. Proofs of Section @13. In this section we shall use the standing assumption that x > p€. Let ¢ = 771

and consider the Heston process (T_qu(—t)) . with (X¢), defined in (B) and (Xg)) defined in (ECTM).
T> T

Specifically A, defined in (20) is then given by A (u) = 771E (euxﬁt>)7 and for ease of notation we set

(5.31) A (u) = A.(u) for all u € D..

The following lemma [P0, page 13] recalls some elementary facts about the function V' in (B132), which will be

used throughout the section. We then proceed with two technical results needed in the proof of Proposition 6BTL3.

Lemma 5.9. The function V defined in (BI3) is infinitely differentiable, strictly convez, essentially smooth on
the open interval (u—_,uy) with uy defined in (BR) and

K0 (2K — p€ + pn)

Viu):= ul&r& V(u) = 267 (1= p7) < o0,
— _ K02k — p€ — pn)
V(ug) := ul}r{}+ Viu) = 262 (1= p7) < 00,

with u— < 0, uy > 1 and V(0) = V(1) = 0. Furthermore, it has a unique minimum at %}%i’*ﬁ}%ﬁ € (0,1).

Lemma 5.10. Let py be defined as in (BIW), 5; in (BI3), and recall the standing assumption p < k/E.
Assume further that t > 0 and define the functions g4+ and g— by

_ea-p
B
(i) The inequality —1 < p_ < 0 always holds and if K/€ > p4 then 1/2 < py < 1;
(ii) the inequality g4 (p) > 0 holds if and only if p € (p4+,1) and K/ > py;
(#ii) the inequality g_(p) > 0 holds if and only if p € (—1,p_).

g2 (p) = (26— p€) £ p\J€2 (1 — p2) + (265 — pt)?

Remark 5.11. From the proof, we have the equality p— = —1 if and only if t = 0. Also if & > p4&, then
p+ = 1if and only if ¢t = 0.

Proof. We first prove Lemma BET0(i) and consider the inequality —1 < p_ < 0. Using the definition of p_
in (B) this is equivalent to proving that

€ — (8r + E)e*r
ert +1

£ —e*)

< 7\/16'%262’“ +&2(1 - em)Q <¢ (1 - em) - 1+ et

The upper bound then follows trivially. Also we can write

\/165262’“ +&2(1- e"“‘/)2 — (&—Br+ 5)62“t)2  16ke2nt (vt — 1) (k + € + Eer! + 3rent)
(e 1) (e 17



ASYMPTOTICS OF FORWARD IMPLIED VOLATILITY 31

and the lower bound follows. We now prove that p; > 1/2. From (BT) this is equivalent to
46 + (5 — 4)e™!

4(ert+1)
Tedious rearrangements show that the left-hand side can be written as

—_ 2rkt)2 2kt 2kt _ Kt 2Kt
\/16ﬁ2e2“t Le2(1—ent)? = (4€+ (k 45)62 ) L he (8¢ (e 1) + k (512e i + 255e2+t 4 256))
16 (et + 1) 16 (ent + 1)

\/16/@292’“ +&2(1- em&)Q >

)

and the result follows. We now prove that the upper bound p; < 1 holds if k/€ > p;. Assume that k/& > p,.

Since 3'3:;111 is always strictly smaller than 1/2, we immediately obtain the inequality
et +1 Kk

5.32 — < .

( ) et +1 &

Using the definition of p; in (BI) the statement py < 1 is equivalent to
Sk — 2Kt
2 £+ 8k —§)e

\/16%262'“ + 62 (1 _ ef‘it)

ert + 1 ’
which can be written as
(5.33) (E+ 8k — f)eQ"””’f)2 B 16ke2%t (et — 1) (k — & (eRt 4+ 1) + 3kert) < 4+ (8 — £)e?nt
. (e"it + 1)2 (e"“t + 1)2 e/«et + 1 .

This statement is true if x — & (e™ + 1) + 3ke™ > 0 and if the rhs is positive. The former inequality is
precisely (6232), and immediately implies the positivity condition. Therefore p; < 1.
We now prove Lemma BET0(ii). The equation g4 (p) = 0 implies (by squaring and rearranging the terms):

(5.34) 4k(p® — 1) (4ke*p* + £(1 — e*")p — k(1 + 2™ + *)) = 0.

The roots of this equation are +1 and py defined in (8). Clearly some of these solutions are extraneous. The
two possible positive roots are {p4,1} and the two possible negative ones are {p_,—1}. Clearly g, (—1) = 0.
Straightforward computations show that g/, (—1) < 0 and ¢/, (0) > 0. Since g4 is continuous on (—1,0) with
9+(0) < 0, it cannot have a single root in this interval, and p_ € (—1,0) (by Lemma BT0(i)) is hence not a valid
root. Consider now p € (0,x/£). From Lemma BT0(i) the only possible roots are p € {1,p4}. If p =1 then
clearly x/& > 1 by the standing assumption. But g4 (1) = 2k — & + /(2k — €)2 is null if and only if k/& < 1/2,

which is a contradiction. Therefore the only possible positive solution is p;. Now, on (0, /&) we have

) 2 8
g+(p):_£_\/z#:€pﬁ-£2+ 4/{2—4H€p+§2+1%ep_m5
e 2KEp 7 _ 7, 8K
> =& \/452—4n§(n/§)+§2+\/4ﬁ 4kE (K/€) + € R p——

In summary, g, is strictly increasing on (0, x/€) with a unique zero at p, satisfying k > p;&. On the inter-
val (—1,k/&), g+(p) > 0 if and only if p € (p4,1) and p1€ < k. The proof of (iii) is analogous to the proof
of (ii) and we omit it for brevity.

g

Lemma 5.12. Let p+ and v’ be as in (BID) and (B8) and t > 0. Then u > 1 if p < p_, and u* < 0 if
p =P
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Proof. From (BM) write v = y/z(p), where

z2(p) = &% — 2™ (8k% — drép + €2) + (€ — dkp)®.
The two numbers u* and v} in (B) are well-defined in R if and only if z(p) > 0 and ¢ > 0. The two roots
of this quadratic polynomial are given by y+ 1= & [e7" (£(e"* — 1) £ 4ke"'/2)]. We now claim that p_ < x_
and p4 > x4. From the expression of p_ given in (B), the inequality p— < x_ can be rearranged as

£ — 2Pt 4 Le2rt — et
ert +1

— /€2 4+ 16K2e2Kt — 2€2ent 4 £221 <

Noting the the square root term is equal to

4\ 2
ekt (emt _ 1)2 (é’ + 2,@@%)
(et + 1)2

2\ 2
(f — 28ert + Le2rt — 8/<ce%>

€2 4 16K2e26t — 2€2ent 4 20268 —
y i

+

)

proves the claim. Analogous manipulations imply the other claim p; > x4, and hence z(p) is a well-defined
real number for p € [—1, p_] U [p4, 1].

The claim u* < 0 is equivalent to —+/€2 — 2ert (8k2 — 4kép + £2) + 251 (€ — 4rp)? < € (1 — ") + drkpert,
which holds as soon as £ (1 — ") +4kpe™ > 0, or p > ﬁ (1 — e~"*). Therefore the claim follows for any p > p

if and only if py > ﬁ (1 — e~ "*). This inequality simplifies to

£ (e — 1)

\/52 + 16K2e26t — 2€2emt 4 (2625t > T

)

which can be written as

ekt (4H2€“t (et 4 1)2 + €2 (ent _ 1)2) N ¢ (e“t _ 1)4 . f(eﬁt . 1)2
(ert +1)° (et +1)° et +1

)

which is always true.

Now straightforward manipulations show that the inequality u’} > 1 is equivalent to

\/(f (vt — 1) 4 drpert)® — 16kest (k + Ep (et — 1)) > € (e — 1) + 4kpe"™,

1— —kKt
which is true if p < fg(tiﬁl) or p < 7¥. And of course the claim (ui‘|r >1if p < p_) shall hold if
ert — K
K

5.35 L
(5.35) P~ < TEet o)

1— —rt
(5.36) or p_< 75(47:).

Consider (5234). This inequality, which can be re-written as

1623t (52 (ent —1)% (ePt + 1) — 4m2e“t) €2(1 — ert)(1 — e2nt) 4+ 8k2e2rt\ 2 £2(1 — et)(1 — e25t) + 8 2e2At
€2 (e2rt — 1)2 + ( £(ert +1)(1 — ent) ) < £(emt +1)(1 — ent) )

Kkt _1)2 et
holds if €2 ("t — 1) (e" + 1) — 4r2e™ > 0, or % > g—; Quick manipulations turn (6238) into

4ert (4/{%’“ (et +1)% — €2 (vt —1)° (2ert + 1)) €2 (2ent — 3e2nt 1) £ (2 — 3028 4 1)
+ <
(e”t + 1)2 (elit + 1)2 ert + 1
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Again this trivially holds if 4k2e~* (et + 1)% — €2 (e"t — 1) (2e%* 4 1) > 0, which is in turn equivalent to Z—z >
(et 1) (2o ) (1) (o) _ (et1) (1)

BRCECE ey S 1

valid choice of parameters either (5233) or (B238) (or both) hold, and the claim follows. O

. Since the inequality

, is clearly true, it follows that for any

Proposition 5.13. Let ¢ = 7! and consider the large-maturity Heston forward process (7'_1X7(-t)> with X3
7>0

defined in (B) and XY defined in (). Then Do = Doo and {0,1} C Dg o with Deo, Do,o and D§  defined
in (B10) and in Assumption 2.

Proof. We write

E (eu(x,,+7_xt)) ) [E (eu(xtﬁ—xt)‘}-t)} ) (eA(u,T)-i-B(u,T)Vt) — AR (eB(u,Tm) '
For any fixed ¢ > 0 we require that
(5.37) E (e“<Xt+f*Xf>|ft) <oo forall 7>0.
Andersen and Piterbarg [8, Proposition 3.1] proved that if the following conditions are satisfied
(5.38) K> pu,
(5.39) (k—péu)® +u (1l —u) & >0,

then the explosion time is infinite and (6537) is satisfied. In [20] the authors proved that these conditions are

equivalent to k > p€ and u € [u_,uy], with u_ < 0 and uy > 1 (ug defined in (BR)). Further we require that
(5.40) E (eB(“’T)Vt) < oo, forall 7>0.
Now denote
Dy :={ueR:E (eB(“’T)V‘) < o0, for all 7 > 0}.

Then the limiting forward mgf domain is given by Do = [u_,uy] N Dy and k > p€. The condition (B20) is
equivalent to B (u,7) < 1/(28;) for all 7 > 0, where

1—exp(—d(u)T)
1= (u)exp (=d(u)T)’
and where d and v are given in (813). Now a simple calculation gives B (0,7) = 0 and B (1,7) = 0 for all 7 > 0.

B (u,7):= &% (k — pEu — d (u))

Furthermore for v € (0,1), and given Conditions (538) and (6239), we have d(u) > k — p&u and ~ (u) < 0.
This implies that B (u, 7) is strictly negative for u € (0,1) and 7 > 0. In particular [0,1] C Dy (recall that the

process is a martingale). For a fixed u € R we calculate

0B (u,7) 2u(u — 1)d(u)?e W7

or (KZ _ Hed(u)‘r + é'pu (ed(u)'r _ 1) _ d(u) (ed(u)-,— + 1))2’

so that for any u ¢ [0,1], B (u, -) is strictly increasing. Therefore the limiting domain is given by

1
Do = {uER: lim B (u,7) < w}ﬂ[uﬂu],

T—00 t

with [0,1] C De. We first concentrate on the first condition and check at the end that our solution always
contains [0, 1]. We have lim, o B (u,7) = £72 (k — pfu — d (u)) = V(u)/(k0), with V defined in (BI2). So the
condition is equivalent to k — pfu — d(u) < 2k/(1 —e ™). If p <0 (p > 0) and u < 0 (u > 0) then

2K

H—pfufd(u)gn—pfugﬂ<1_76_m,
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and the condition is always satisfied. So if p = 0 the domain is given by [u_,uy]. If p < 0 (p > 0), the
domains contain [u_,0] ([0,u4]). Now suppose that p < 0 and u > 0. The condition above is equivalent to

V(u) < k0/(2B;). From Lemma B9, on (0, u,], the function V' attains its maximum at w4 with

_ K0 (2k — p€ — pn)
V) = 5a0 - )

Using the properties in Lemma B39, there exists v € (1,u4) solving the equation

(5.41) =

if and only if (2k — p§) — p\/§2 (1—p2) + (26 — p€)® > €2 (1 —p?) /B;. This condition has been shown in
Lemma B0 to be equivalent to —1 < p < p_ and ¢ > 0. The solution to (521) has two roots v* and u* defined
in (B3), and the correct solution in this case is u* since from Lemma 6T2 we know that u* > 1 and u* < 0.
So if p_ < p < 0 then the effective limiting domain is [u_,uy]. If =1 < p < p_ and ¢ > 0 then the effective
limiting domain is given by [u,, ui) Following a similar procedure we can show for 0 < p < min (k/&, p+) the
effective limiting domain is given by [u_,u4]. If p4 < p < min(k/§,1), t > 0 and £ > p;£ then the effective
limiting domain is given by (ui,u+] , with u_ <u* <0. O

Lemma 5.14. The following expansion holds for the forward mgf A(Tt) defined in (B230):

AD (u) =V (u) + @ (1 +0 (e*d(“)T)) , forallu € Do, as T tends to infinity,

where the functions V, H, d and the interval Do are defined in (B12), (B13) and (BIM).

Remark 5.15. For any u € D, d(u) > 0. Indeed Do, C [u—,uy] by Proposition BT3. Furthermore since
k> p€, u € [u_,us] implies (B=39) which in turn implies d(u) > 0.

Remark 5.16. We note in particular that the exponential decay in the remainder implies that for all u € Do,
AD (W) =V (u) + Hw)/r+ O (1/73) for 7 large enough, which is used in the proof of Proposition B=.

Proof of Lemma p-14. From the definition of AY in (63T) and the Heston forward mgf given in (BI0) we

immediately obtain the following asymptotics as 7 tends to infinity:

Au,7) =7V (u) — 2%29 log (1 {Y(U)) +0 (e_d(”)T) ) B (u,7) = % +0 (e_d(“)T) ,

where A and B are defined in (614), V in (B2) and d and v in (813). In particular this implies that

B (u,7) B V(u) d(u)r
=288 () =25V @) " © (7).
log (1 —23;B (u, 7)) = log (1 - W) +0 (e_d(“)T) ,

which are well-defined for all u € D,,. We therefore obtain

V() e 260 L 2B,V(u) 26 1
0o = g v~ e 8 (1 x0 ) & log(l—v(u))’

and the lemma follows from straightforward simplifications. O
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5.3. Proofs of Section BZ2. For ease of notation here, the subscript ¢ for a function or a variable shall refer
to the i-th Heston model, for which we can readily use the results of Section BTl. For instance the function A;

shall refer to the function A evaluated using the parameters in the i-th Heston model.

Lemma 5.17. In the n-dimensional multivariate Heston model (BI3) the forward mgf defined in (BI3) reads

A(u) =logE (e“Xit)) = i/\i(u), for allu e ﬁ Da,,
i=1

i=1

where A; and Dy, are defined in (B1H).

Proof. Conditioning on the filtration (F;);>o and using the tower property, we obtain

A(u) = logE (IE (euxgw |ft)) = Zn: Ai(u,7) +logE (ez;; . Bi(u,T)Vt«n) 7
=1

using the mgf of the standard Heston model. By independence of the variance processes, we obtain

n

Au) = ZAi(U,T) +logE (ez?zl (ur V(l)) ZA , forallue ﬁ Dy, .

=1 i=1

5.4. Proofs of Section BZ3. Consider the following functions:

(5.42)

2
(’LL) + d(u)u_QX(;) —d(u)T
Au,7) = Ay (u, 7) + x(u)tdlu)

2k%0%(x (u) — d(w))
d( 3 1— ( ) —2d(u)T

40 x(u) — d(u) (1 — exp (=d(u)r))” 2(x(u) —d(u)) 1 —exp(=2d(u)7)

Bl = 0wy T men(2dwn’ 2T T E T e (2w
and
(5.43)  M(r,p,q) = % (1p g —log(1— 2rq)> By = g—ﬂ (1 — e_2”t) . = Nve "t 40 (1 — e_”t) ,
o\ /2 ~ x(w) —d(u) péu
()= (x(w? + (=) §€) 2w =gy ad xw) = s =

Note that although in some cases we use the same variables and functions as in the Heston analysis they
may have a different definition in this section. In our analysis we require the following lemma which is a direct

consequence of [d, Equation 29.6].
Lemma 5.18. If Z ~ N(0,1) and p and q are two constants, then, for M defined in (543),
logE (eu(pz"'qzz)) = M(u,p,q), whenever uq < 1/2.
Lemma 5.19. In the Schobel-Zhu model (BIR) the forward mgf defined in (BI3) is given by
A(w) = A 7) + B (u, 7)pae + Ba(u, 1) + M (1, B (u, 7) /By + 2B (7)1 Bupie, Bau, )5 )

for all u € Dy, where all the functions and variables are defined in (B22) and (BZ3).
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Proof. Conditioning on the filtration (F3);>o and using the tower property we find
A(u) =1ogE {IE (e“Xit) |.7-"t)} = A(u,7) + logE [exp (Bl (u, 7)ot + Ba(u, T)O'tz)] ,

where we have used the standard Schébel-Zhu mgf from [87] and the functions defined in (623). Since o} is

Gaussian with mean p; and variance §; (given in (623)), we obtain
A(u) = A(u, 7) + logE (eBl(“’T)"t+BQ(“’T)”?>
= A(u,7) + By(u, )iy + Ba(u, 7)p; + logE (e(Bl("’T)‘/EHBQ(“’T)‘/E”‘)Z“BQ(“’T)B”ZZ) ,
with Z ~ N(0,1), and the lemma follows directly from Lemma BTS. O

5.5. Proofs of Section BA. Let ¢ be the Lévy exponent of the Lévy process Y. If v follows (BZ0), by a

straightforward application of the tower property for expectations, the forward mgf defined in (6IH) is given by
B(¢(u)7 T) ,Uefnt _ %

1—28:B(¢(u), 1) &2

(5.44) Alu) = A(p(u), T) + log (1 —28:B(¢(u), 7)), for all u € Dy,

where
= 50 (0 ) 7 — 210 (L0 XD )
(545) A(U,T) T 52 <( d( )) 21 8 < 1 —’}/(U) >> ’
) BT d(u) 1 —exp(=d(u)T)
B( ) ) . 52 1 —'y(u) exp (—d(u)T)’
Kk —d(u 2
(5.46) d(u) = (nz - 2uf2) 1/27 Y(u) == H—&-ZEM; and By := 4%‘6 (L=e™)

u), 7) — etra
(5.47) Au) = A(p(u), ) + B(p(u), )ve > 4 dlog (ei((ql;(((;&u)) - )) , for all u € Dy,
where
(5.48) Au,7) = - [uT + alog (1 - % (1- e*”))} and  B(u,7):= % (1—e?7).

Proof of Proposition Z13. We show that Proposition EI4 is applicable given the assumptions of Proposi-
tion BTU. Consider case (i). The expansion for AY defined in (B33T) is straightforward and analogous to
Lemma BT4A. In particular we establish that

_ H ~
AP (u) = V(u) + Hlu) (1 +0 (e*d(“)T)) , for all u € Dy, as 7 tends to infinity,
T

where the functions V, H, d and the domain Do, are defined in (823), (528) and (B2H). Since ¢ is essentially
smooth and strictly convex on Dy and Do C D, then the limiting mgf Agg = V is essentially smooth and
strictly convex on ﬁoo. Also A(Tt) is infinitely differentiable on ﬁoo since ¢ is of class C* on 1300. Since ¢(1) =0
we have that V(1) = 0 and {0,1} C ﬁgo It remains to be checked that the limiting domain is in fact given
by 7300. We first note that that by conditioning on (V,)i<u<i+- and using the independence of the time-change
and the Lévy process we have E (e"(X“fT_X‘)) =E (e¢(“) Je “Sds) and so any w in the limiting domain must

satisfy ¢(u) < co. Using [, page 476] and the tower property we compute

(5.49) E (eum“fxt)) -E [E <e¢><u> ST veds) ;t)} —F (eA<¢<u>,T>+B<¢<u>,T>vt) — AW R (eBw(u),r)vt) ,
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with A and B defined in (623). Further from (EI8) we have

— kit
logE (e""*) = ;Lfem - 257/{20 log (1 — 28u), for all u < %ﬁt

Following a similar argument to the proof of Proposition 513 we can show that for any ¢t > 0, B(¢(u),7) <
1/(20) is always satisfied for each 7 > 0. This follows from the independence of the Lévy process Y and the time-
change. We also require that for any ¢t > 0, E (eftHT vsdsg(u) |.7:t> < 00, for every 7 > 0. Here we use [B][Corollary
3.3] with zero correlation to find that we require ¢(u) < x2/(2¢2). It follows that Du, = {u:o(u) < r?/(26%)}.
Regarding case (ii), arguments analogous to case (i) hold and we focus on showing that the limiting domain

is Doo. Using [14, page 488] Equality (529) also holds with A and B defined in (648). Since we require that

for any t > 0, E (eftHT vsdse(u) |]-"t> < o0, for every 7 > 0 we have ¢(u) < a\. Using |14, page 482] we also have

N u — aeM
log E (e“*) = uve™* + dlog ((u—a)e“) ) for all u < a.
But it is straightforward to show that ¢(u) < a) implies B(¢(u),7) < a for any 7 > 0 and it follows that
Doo = {u: p(u) < aX}. Case (iii) is straightforward and omitted. O
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