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Abstract. We prove here a general closed-form expansion formula for forward-start options and the forward

implied volatility smile in a large class of models, including Heston and time-changed exponential Lévy models.

This expansion applies to both small and large maturities and is based solely on the knowledge of the forward

characteristic function of the underlying process. The method is based on sharp large deviations techniques,

and allows us to recover (in particular) many results for the spot implied volatility smile. In passing we show (i)

that the small-maturity exploding behaviour of forward smiles depends on whether the quadratic variation of

the underlying is bounded or not, and (ii) that the forward-start date also has to be rescaled in order to obtain

non-trivial small-maturity asymptotics.

1. Introduction

Consider an asset price process
(
eXt
)
t≥0

with X0 = 0, paying no dividend, defined on a complete filtered

probability space (Ω,F , (Ft)t≥0,P) with a given risk-neutral measure P, and assume that interest rates are zero.

In the Black-Scholes-Merton (BSM) model, the dynamics of the logarithm of the asset price are given by

dXt = −1

2
σ2dt+ σdWt,(1.1)

where σ > 0 is the instantaneous volatility and W is a standard Brownian motion. The no-arbitrage price of

the call option at time zero is then given by the famous BSM formula [12, 44]: CBS(τ, k, σ) := E
(
eXτ − ek

)
+
=

N (d+) − ekN (d−), with d± := − k
σ
√
τ
± 1

2σ
√
τ , where N is the standard normal distribution function. For a

given market price Cobs(τ, k) of the option at strike ek and maturity τ we define the spot implied volatility

στ (k) as the unique solution to the equation Cobs(τ, k) = CBS(τ, k, στ (k)).

For any t, τ > 0 and k ∈ R, we define [10, 43] a Type-I forward-start option with forward-start date t,

maturity τ and strike ek as a European option with payoff
(
eXt+τ /eXt − ek

)+
. In the BSM model (1.1) its

value is simply worth CBS(τ, k, σ). For a given market price Cobs(t, τ, k) of the option at strike ek, forward-

start date t and maturity τ we define the forward implied volatility smile σt,τ (k) as the unique solution to

Cobs(t, τ, k) = CBS(τ, k, σt,τ (k)) since ∂σCBS(τ, k, σ) > 0 [10, 34]. A second type of forward-start option

exists [43] and corresponds to a European option with payoff
(
eXt+τ − ek+Xt

)+
. In the BSM model (1.1) the

value of the Type-II forward-start option is worth CBS(τ, k, σ) [47]. Again, for a given market price Cobs,II(τ, t, k)

of such an option, we define the Type-II forward implied volatility smile σ̃t,τ (k) as the unique solution to

Cobs,II(τ, t, k) = CBS(τ, k, σ̃t,τ (k)). Both definitions of the forward smile are generalisations of the spot implied

volatility smile since they reduce to the spot smile when t = 0.

The literature on implied volatility asymptotics is extensive and has been studied using a diverse range of

mathematical techniques. In particular, small-maturity asymptotics have historically received wide attention
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due to earlier results from the eighties on expansions of the heat kernel [7]. PDE methods for continuous-

time diffusions [9], large deviations [19, 16], saddlepoint methods [21] and differential geometry [32] are among

the main methods used to tackle the small-maturity case. Extreme strike asymptotics arose with the seminal

paper by Roger Lee [42] and have been further extended by Benaim and Friz [5, 6] and in [30, 31, 24, 16].

Comparatively, large-maturity asymptotics have only been studied in [51, 20, 36, 35, 22] using large deviations

and saddlepoint methods. Fouque et al. [23] have also successfully introduced perturbation techniques in order to

study slow and fast mean-reverting stochastic volatility models. Models with jumps (including Lévy processes),

studied in the above references for large maturities and extreme strikes, ‘explode’ in small time, in a precise

sense investigated in [1, 2, 50, 46, 45, 18].

A collection of implied volatility smiles over a time horizon (0, T ] is also known to be equivalent to the marginal

distributions of the asset price process over (0, T ]. Implied volatility asymptotics has therefore provided a set

of tools to analytically understand the marginal distributions of a model and their relationships to market

observable quantities such as implied volatility smiles. However many models can calibrate to implied volatility

smiles (static information) with the same degree of precision and produce radically different prices and risk

sensitivities for exotic securities. This can usually be traced back to a complex and often non-transparent

dependence on model transitional probabilities or equivalently on the model generated dynamics of implied

volatility smiles. The model dynamics of implied volatility smiles is therefore a key model risk associated with

these products and any model used for pricing and risk management should produce realistic dynamics that

are in line with trader expectations and historical dynamics. One metric that can be used to understand the

dynamics of implied volatility smiles ([10] calls it a ’global measure’ of the dynamics of implied volatilities) is to

use the forward smile defined above. The forward smile is also a market defined quantity and naturally extends

the notion of the spot implied volatility smile. Forward-start options also serve as natural hedging instruments

for several exotic securities (such as Cliquets, Ratchets and Napoleons; see [26, Chapter 10]) and it is therefore

important for a model to be able to calibrate to liquid forward smiles. Despite the significant research on implied

volatility asymptotics, there are virtually no results on the asymptotics of the forward smile: Glasserman and

Wu [28] introduced different notions of forward volatilities to assess their predictive values in determining future

option prices and future implied volatility, Keller-Ressel [40] studies a very specific type of asymptotic (when the

forward-start date becomes large), and empirical results have been carried out by practitioners in [10, 26, 13].

We consider below a continuous-time stochastic process (Zε) and prove an expansion of option prices on

(Zε) as ε tends to zero. Setting Zε ≡ Xε or Zε ≡ εX1/ε then yields small or large-maturity expansions of

option prices. This main result is presented in Section 2 as well as corollaries applying it to forward-start option

asymptotics. We also translate these results into closed-form asymptotic expansions for the forward implied

volatility smile (Type I and Type II). In Section 3, we provide explicit examples for the Heston, multi-Heston,

Schöbel-Zhu and time-changed exponential Lévy processes. Section 4 provides numerical evidence supporting

the practical relevance of these results and we leave the proofs of the main results to Section 5.

Notations: N (µ, σ2) shall represent the Gaussian distribution with mean µ and variance σ2. Furthermore

E shall always denote expectation under a risk-neutral measure P given a priori. We shall refer to the standard

(as opposed to the forward) implied volatility as the spot smile and denote it στ . The (Type-I) forward implied

volatility will be denoted σt,τ as above. In the remaining of this paper ε shall always denote a strictly positive

small quantity.
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2. General Results

This section gathers the main notations of the paper as well as the general results. The main result is

Theorem 2.6, which provides an asymptotic expansion—up to virtually any arbitrary order—of option prices

on a given process (Xε), as ε tends to zero. This general formulation allows us, by a suitable scaling, to obtain

both small-time and large-time expansions. Indeed, setting Xε ≡ Xε or Xε ≡ εX1/ε yields two expansions for

different regimes, small and large maturities. The first rescaling is detailed in Section 2.1.1 and the second one

in Section 2.1.2. In each case, we shall make the computations explicit for the BSM (1.1) case, which will also

be needed to translate these expansions into expansions for the forward implied volatility in Section 2.2. Such

expansions for European option prices and their corresponding spot implied volatilities are known for many

models, and we shall consider here forward-start options (which clearly reduce to standard vanilla options when

the forward-start date is null).

2.1. Forward-start option asymptotics. Let (Xε) be a stochastic process with re-normalised moment gen-

erating function (mgf)

Λε(u) := ε logE
[
exp

(
uXε

ε

)]
, for all u ∈ Dε,(2.1)

where Dε := {u ∈ R : |Λε (u) | <∞}. We now introduce the following critical assumptions.

Assumption 2.1. For each u ∈ D0,0 the re-normalised mgf can be represented as

(2.2) Λε (u) =

2∑
i=0

Λi,0 (u) ε
i +O

(
ε3
)
, as ε tends to 0.

Further we suppose that for all ε > 0 the map Λε : Dε 7→ R is infinitely differentiable on Do
0,0 ⊆ Dε and 0 ∈ Do

0,0

where we define D0,0 := {u ∈ R : |Λ0,0 (u) | <∞} and Do
0,0 is the interior of D0,0 in R.

The infinite differentiability assumption of the map Λε could also be relaxed by a C4(Do
0,0) condition but

this hardly makes any difference in practice and does, however, render some formulations awkward. If the

expansion (2.2) holds up to some higher order n ≥ 3, one can in principle show that both forward-start option

prices and the forward implied volatility expansions below hold to order n as well. However expressions for the

coefficients of higher order are extremely cumbersome and scarcely useful in practice.

Definition 2.2. [15, Definition 2.3.5] A convex function h : R ⊃ Dh → (−∞,∞] is essentially smooth if

(i) Do
h is non-empty;

(ii) h is differentiable in Do
h;

(iii) h is steep, in other words limn→∞ |h′(un)| = ∞ for every sequence (un)n∈N in Do
h that converges to a

boundary point of Do
h.

Assumption 2.3. Λ0,0 is strictly convex and essentially smooth on Do
0,0.

Define the function Λ∗ : R → R+ as the Fenchel-Legendre transform of Λ0,0:

Λ∗(k) := sup
u∈D0,0

{uk − Λ0,0(u)} , for all k ∈ R.(2.3)

For ease of exposition in the paper we will use the notation

Λi,l(u) := ∂luΛi,0(u) for l ≥ 1,(2.4)
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where Λi,0 is defined in (2.2) for i = 0, 1, 2. The following lemma gathers some immediate properties of the

functions Λ∗ and Λij which will be needed later.

Lemma 2.4. Under Assumptions 2.1 and 2.3, the following properties hold:

(i) For any k ∈ R, there exists a unique u∗(k) ∈ Do
0,0 such that

Λ0,1(u
∗(k)) = k,(2.5)

Λ∗(k) = u∗(k)k − Λ0,0 (u
∗(k)) ;(2.6)

(ii) Λ∗ is strictly convex and differentiable on R;
(iii) if a ∈ Do

0,0 such that Λ0,0(a) = 0, then Λ∗(k) > ak for all k ∈ R \ {Λ0,1(a)} and Λ∗(Λ0,1(a)) = aΛ0,1(a).

Proof.

(i) By Assumption 2.3 and 2.1 Λ0,1 is a strictly increasing differentiable function from −∞ to ∞ on D0,0.

(ii) By (i), ∂kΛ
∗(k) = Λ−1

0,1(k) for all k ∈ R. In particular ∂kΛ
∗ is strictly increasing on R.

(iii) Since Λ0,1 is strictly increasing, Λ0,1(a) = k if and only if u∗(k) = a and then Λ∗(Λ0,1(a)) = aΛ0,1(a)

using (2.6). Using the definition (2.3) with a ∈ Do
0,0 and Λ0,0(a) = 0 gives Λ∗(k) ≥ ak. Since Λ∗ is strictly

convex from (ii) it follows that Λ∗(k) > ak for all k ∈ R \ {Λ0,1(a)}.

�

For ease of notation we shall write Λj,l in place of Λj,l (u
∗(k)). Let f : R+ → R+ be a function such that

f(ε)ε = c+O(ε), for some c ≥ 0, as ε tends to zero.(2.7)

For any b ≥ 0 we now define the functions Ab, Āb : R \ {Λ0,1(0),Λ0,1(b)} × (0,∞) → R by

Āb(k, ε) :=
b
√
ε11{b>0} + ε3/2f(ε)11{b=0}

u∗(k) (u∗(k)− b)
√
2πΛ0,2

exp(Λ1,0),(2.8)

Ab(k, ε) := e−Λ∗(k)/ε+kf(ε)Āb(k, ε)

(
1 + Υ(b, k)ε+

u∗(k)(εf(ε)− b)

(u∗(k)− b) b
11{b>0} +

εf(ε)

u∗(k)
11{b=0} +O

(
ε2
))

,(2.9)

where Υ : [0,∞)× R\{Λ0,1(0),Λ0,1(b)} → R is given by

Υ(b, k) := Λ2,0 −
5Λ2

0,3

24Λ3
0,2

+
4Λ1,1Λ0,3 + Λ0,4

8Λ2
0,2

−
Λ2
1,1 + Λ1,2

2Λ0,2
− Λ0,3

2u∗(k)Λ2
0,2

− Λ0,3

2 (u∗(k)− b) Λ2
0,2

(2.10)

− Λ1,1 (b− 2u∗(k)) + 3

u∗(k) (u∗(k)− b) Λ0,2
− b2

u∗(k)2 (u∗(k)− b)
2
Λ0,2

.

Remark 2.5. The domain of definition of Ab excludes the set {Λ0,1(0),Λ0,1(b)} = {k ∈ R : u∗(k) ∈ {0, b}}.
For all k in this domain, Λ0,2(u

∗(k)) > 0 by Assumption 2.3, so that Ab is a well-defined real-valued function.

The main result of the section is the following theorem on asymptotics of option prices. A quick glimpse at

the proof of Theorem 2.6 in Section 5.1 shows that this result can be extended to any arbitrary order.

Theorem 2.6. Let (Xε) satisfy Assumptions 2.1 and 2.3, and f : R+ → R+ be a function satisfying (2.7)

with constant c ∈ Do
0,0 ∩ R+. Then the following expansion holds for all k ∈ R\{Λ0,1(0),Λ0,1(c)} as ε↘ 0:

Ac(k, ε) = E
[(

eXεf(ε) − ekf(ε)
)+]

11{k>Λ0,1(c)} + E
[(

ekf(ε) − eXεf(ε)
)+]

11{k<Λ0,1(0)}

− E
[
eXεf(ε) ∧ ekf(ε)

]
11{Λ0,1(0)<k<Λ0,1(c)},

where Λ0,1 is defined in (2.4) and Ac(k, ε) in (2.9).
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Remark 2.7. In the case c = 0, the expansion holds for all k ∈ R\{Λ0,1(0)} and the last term on the right-hand

side disappears, since the indicator function is taken over an empty set.

Let (Xt)t≥0 be a stochastic process. For any t ≥ 0, we define (pathwise) the process (X
(t)
τ )τ≥0 by

(2.11) X(t)
τ := Xt+τ −Xt

We now specialise Theorem 2.6 to forward-start option asymptotics.

2.1.1. Diagonal small-maturity asymptotics. We first consider asymptotics when both t and τ are small, which

we term diagonal small-maturity asymptotics.

Corollary 2.8. If
(
X

(εt)
ετ

)
ε>0

satisfies Assumptions 2.1, 2.3, then the following expansion holds:

e−Λ∗(k)/ε+k+Λ1,0ε3/2

u∗(k)2
√
2πΛ0,2

(
1 +

(
Υ(0, k) +

1

u∗(k)

)
ε+O

(
ε2
))

= E
[(

eX
(εt)
ετ − ek

)+]
11{k>Λ0,1(0)}

+ E
[(

ek − eX
(εt)
ετ

)+]
11{k<Λ0,1(0)},

as ε tends to zero, where Λ0,1, Λ
∗, u∗(k), Υ and Λi,l are defined in (2.4), (2.3), (2.5), (2.10) and (2.4).

Proof. Set (Xε) :=
(
X

(εt)
ετ

)
and f ≡ 1. Then c = 0 and the corollary follows from Theorem 2.6. �

Corollary 2.9. In the BSM model (1.1) the following expansion holds as ε tends to zero:

E
[(

eX
(εt)
ετ − ek

)+]
11{k>0}+E

[(
ek − eX

(εt)
ετ

)+]
11{k<0} =

ek/2−k2/(2σ2τε)
(
σ2τε

)3/2
k2

√
2π

[
1−

(
3

k2
+

1

8

)
σ2τε+O(ε2)

]
.

Proof. For the rescaled (forward) process
(
X

(εt)
ετ

)
ε>0

in the BSM model (1.1) we have Λε(u) = Λ0,0(u)+εΛ1,0(u)

for u ∈ R, where Λ0,0(u) = u2σ2τ/2 and Λ1,0(u) = −uσ2τ/2. It follows that Λ0,1(u) = uσ2τ , Λ0,2(u) = σ2τ and

Λ1,1(u) = −σ2τ/2. For any k ∈ R, u∗(k) := k/(σ2τ) is the unique solution to the equation Λ0,1(u
∗(k)) = k and

Λ∗(k) = k2/(2σ2τ). Λ0,0 is essentially smooth and convex on R and the BSM model satisfies Assumptions 2.1

and 2.3. Since 0 ∈ Do
0,0 and Λ0,1(0) = 0, the result follows from Corollary 2.8. �

It is natural to wonder why we considered diagonal small-maturity asymptotics and not the small-maturity

asymptotic of σt,τ for fixed t > 0. In this case it turns out that in many cases of interest (stochastic volatility

models, time-changed exponential Lévy models), the forward smile blows up to infinity (except at-the-money)

as τ tends to zero. However under the assumptions given above, this degenerate behaviour does not occur in

the diagonal small-maturity regime (Corollary 2.8). We leave the precise study of this degeneracy for future

research, but provide a preliminary conjecture explaining the origin of this exploding behaviour. Consider a

two-state Markov-chain dXt = − 1
2V dt+

√
V dWt, starting at X0 = 0, where W is a standard Brownian motion

and where V is independent of W and takes value V1 with probability p ∈ (0, 1) and value V2 ∈ (0, V1) with

probability 1− p. Conditioning on V and by the independence assumption, we have

E
(
eu(Xt+τ−Xt)

)
= peV1uτ(u−1)/2 + (1− p)eV2uτ(u−1)/2, for all u ∈ R.

Consider now the small-maturity regime where ε = τ , f(ε) = 1 and Xε := X
(t)
ε for a fixed t > 0. In this case

an expansion for the re-scaled mgf in (2.2) as τ tends to zero is given by

Λε(u) = τ logE
(
eu(Xt+τ−Xt)/τ

)
=
V1
2
u2 + τ log

(
pe−V1u/2

)
+ τO

(
e−u2(V1−V2)/(2τ)

)
, for all u ∈ R.
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Since V1 > V2 the remainder tends to zero exponentially fast as τ tends to zero. The assumptions of Theorem 2.6

are clearly satisfied and a simple calculation shows that limτ↘0 σt,τ (k) =
√
V1. This example naturally extends

to an n-state Markov chain, and a natural conjecture is hence that the small-maturity forward smile does

not blow up if and only if the quadratic variation of the process is bounded. In practice, most models are of

unbounded quadratic variation (see the examples in Section 3 below), and hence the diagonal small-maturity

asymptotic is a natural scaling.

2.1.2. Large-maturity asymptotics. We now consider large-maturity asymptotics, when τ is large and t is fixed.

Define the function B∞ : R\{Λ0,1(0),Λ0,1(1)} × (0,∞) → R by

(2.12) B∞(k, τ) :=
e−τ(Λ∗(k)−k)+Λ1,0τ−1/2

u∗(k) (u∗(k)− 1)
√
2πΛ0,2

(
1 +

Υ(1, k)

τ
+O

(
1

τ2

))
,

where Λ∗, u∗, Υ, Λi,l are defined in (2.3), (2.5), (2.10), (2.4). From Remark 2.5, the function B∞ is well-defined.

We now have the following large-maturity asymptotic for forward-start options.

Corollary 2.10. If the process
(
τ−1X

(t)
τ

)
τ>0

satisfies Assumptions 2.1, 2.3 with ε = τ−1 and 1 ∈ Do
0,0, then

the following expansion holds as τ tends to infinity:

E
[(

eX
(t)
τ − ekτ

)+]
11{k>Λ0,1(1)}+E

[(
ekτ − eX

(t)
τ

)+]
11{k<Λ0,1(0)}−E

[
eX

(t)
τ ∧ ekτ

]
11{Λ0,1(0)<k<Λ0,1(1)} = B∞(k, τ),

where Λ0,1 is defined in (2.4) and B∞ in (2.12).

Proof. Let (Xε) :=
(
εX

(t)
1/ε

)
, ε := 1/τ and f(ε) ≡ 1/ε (c = 1), then the result follows from Proposition 2.6. �

In the BSM case (1.1), define the function B∞
BS : R\{−σ2/2, σ2/2} × (0,∞) → R by

(2.13) B∞
BS(k, τ) := exp

(
−τ

((
k + σ2/2

)2
2σ2

− k

))
4σ3τ−1/2

(4k2 − σ4)
√
2π

(
1−

4σ2
(
σ4 + 12k2

)
(4k2 − σ4)

2
τ

+O
(

1

τ2

))
,

and we have the following corollary.

Corollary 2.11. In the BSM model (1.1) the following expansion holds as τ tends to infinity:

E
[(

eX
(t)
τ − ekτ

)+]
11{k>σ2/2} − E

[
eX

(t)
τ ∧ ekτ

]
11{−σ2/2<k<σ2/2} + E

[(
ekτ − eX

(t)
τ

)+]
11{k<−σ2/2} = B∞

BS (k, τ) .

Proof. Consider the process
(
X

(t)
τ /τ

)
τ>0

and set ε = τ−1. In the BSM model (1.1) for any u ∈ R, we have

Λε(u) = τ−1 logE(exp(uX(t)
τ )) = Λ0,0(u) =

1
2σ

2u(u − 1). Thus Λ0,1(u) = σ2 (u− 1/2) and Λ0,2 (u) = σ2. For

any k ∈ R, the equation Λ0,1(u
∗(k)) = k has a unique solution u∗(k) = 1/2 + k/σ2 and therefore Λ∗(k) =(

k + σ2/2
)2
/(2σ2). Λ0,0 is essentially smooth and strictly convex on R and Assumptions 2.1 and that 2.3 are

satisfied. Since {0, 1} ⊂ Do
0,0 the result follows from Corollary 2.10. �

2.2. Forward smile asymptotics. In this section we translate our results on forward-start options into asymp-

totics of the forward implied volatility smile k 7→ σt,τ (k). We first focus on the diagonal small-maturity case.
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For i = 0, 1, 2 we define the functions vi : R∗ × [0,∞)× (0,∞) → R by

(2.14)

v0(k, t, τ) :=
k2

2τΛ∗(k)
,

v1(k, t, τ) :=
2τv0(k, t, τ)

2

k2
log

(
k2eΛ1,0(u

∗(k))

u∗(k)2
√

Λ0,2(u∗(k)) (τv0(k, t, τ))
3/2

)
+
τv0(k, t, τ)

2

k
,

v2(k, t, τ) :=
2τ2v30(k, t, τ)

k2

(
3

k2
+

1

8

)
+

2τv20(k, t, τ)

k2

(
Υ(0, k) +

1

u∗(k)

)
+
v21(k, t, τ)

v0(k, t, τ)
− 3τ

k2
v0(k, t, τ)v1(k, t, τ),

where Λ∗, u∗, Λi,l, Υ are defined in (2.3) (2.5), (2.4), (2.10). Also if Λ0,1(0) = 0 then Λ∗(k) > 0 for k ∈ R∗ and

Λ∗(0) = 0 from Assumption 2.1 and Lemma 2.4(iii) so that v0 is always strictly positive. A direct application

of L’Hôpitals rule, together with Lemma 2.4(i)(ii), Assumption 2.1 and Λ0,1(0) = 0, shows that for any t ≥ 0,

τ > 0, the map v0(·, t, τ) can be extended by continuity at the origin with v0(0, t, τ) = 1/(τu∗
′
(0)). All the vi

(i = 0, 1, 2) are hence well-defined real-valued functions (see also Remark 2.5). The diagonal small-maturity

forward smile asymptotic is now given in the following proposition, proved in Section 5.1.

Proposition 2.12. Suppose that
(
X

(εt)
ετ

)
ε>0

satisfies Assumptions 2.1 and 2.3, and that Λ0,1(0) = 0 (defined

in (2.4)). The following expansion holds for the corresponding forward smile for all k ∈ R∗ as ε tends to zero:

(2.15) σ2
εt,ετ (k) = v0(k, t, τ) + v1(k, t, τ)ε+ v2(k, t, τ)ε

2 +O
(
ε3
)
,

where v0, v1 and v2 are given in (2.14).

In the large-maturity case, define for i = 0, 1, 2, the functions v∞i : R\{Λ0,1(0),Λ0,1(1)} × [0,∞) → R by

(2.16)

v∞0 (k, t) :=

 2
(
2Λ∗(k)− k − 2

√
Λ∗(k)(Λ∗(k)− k)

)
, if k ∈ R\ [Λ0,1(0),Λ0,1(1)] ,

2
(
2Λ∗(k)− k + 2

√
Λ∗(k)(Λ∗(k)− k)

)
, if k ∈ (Λ0,1(0),Λ0,1(1)) ,

v∞1 (k, t) :=
8v∞0 (k, t)2

4k2 − v∞0 (k, t)2

(
Λ1,0(u

∗(k)) + log

(
4k2 − v∞0 (k, t)2

4(u∗(k)− 1)u∗(k)v∞0 (k, t)3/2
√
Λ0,2(u∗(k))

))
,

v∞2 (k, t) :=
4

v∞0 (k, t) (v∞0 (k, t)2 − 4k2)
3

[
8k4v∞1 (k, t)v∞0 (k, t)2 (v∞1 (k, t) + 6)− 16k6v∞1 (k, t)2

− 2Υ(1, k)v∞0 (k, t)3
(
v∞0 (k, t)2 − 4k2

)2
− k2v∞0 (k, t)4

(
96 + v∞1 (k, t)2 + 8v∞1 (k, t)

)
− v∞0 (k, t)6 (v∞1 (k, t) + 8)

]
.

Λ∗ is defined in 2.3, u∗ in (2.5), Λi,l in (2.4) and Υ in (2.10). Since {0, 1} ⊂ Do
0,0 and Λ0,0(1) = Λ0,0(0) = 0,

we always have Λ∗(k) ≥ max(0, k) from Lemma 2.4(iii). One can also check that 0 < v∞0 (k, t) < 2|k| for
k ∈ R\ [Λ0,1(0),Λ0,1(1)] and v

∞
0 (k, t) > 2|k| for k ∈ (Λ0,1(0),Λ0,1(1)). Together with Remark 2.5, this implies

that the functions v∞i (i = 0, 1, 2) are always well-defined and real-valued.

Remark 2.13. By Assumption 2.1 and Lemma 2.4(iii) we have Λ∗(Λ0,1(0)) = 0. Further by the assumptions

in Proposition 2.14 below we have 1 ∈ Do
0,0 and Λ0,0(1) = 0. Again from Lemma 2.4(iii) this implies that

Λ∗(Λ0,1(1)) = Λ0,1(1). Hence for all t ≥ 0, v∞0 (·, t) can be extended by continuity on R.

The large-maturity forward smile asymptotic is given in the following proposition, proved in Section 5.1.
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Proposition 2.14. Suppose that
(
τ−1X

(t)
τ

)
τ>0

satisfies Assumptions 2.1, 2.3 with ε = τ−1 and that Λ0,0(1) = 0

with 1 ∈ Do
0,0 (all defined in Assumption 2.1). The following expansion then holds for the forward smile as τ

tends to infinity for k ∈ R\{Λ0,1(0),Λ0,1(1)}:

(2.17) σ2
t,τ (kτ) = v∞0 (k, t) +

v∞1 (k, t)

τ
+
v∞2 (k, t)

τ2
+O

(
1

τ3

)
,

where v∞0 , v∞1 and v∞2 are defined in (2.16).

Remark 2.15.

(i) If we set t = 0 in (2.15) and (2.17) then we recover—and actually improve—the implied volatility asymp-

totics obtained in [17], [19], [20], [21], [22].

(ii) The forward smile results can be extended to a deterministic interest rate setting by considering the

forward price instead of the stock price and re-scaling the strike appropriately.

For the (Fu)-martingale price (eXu)u≥0 (under P) define the stopped process X̃t
u := Xt∧u for any t > 0.

Following [43] define a new measure P̃ by

P̃(A) := E
(
eX̃

t
t+τ 11A

)
, for every A ∈ Ft+τ .(2.18)

The stopped process (eX̃
t
u)u≥0 is a (Ft∧u)u-martingale and (2.18) defines the stopped-share-price measure P̃.

The following proposition shows how the Type-II forward smile σ̃t,τ can be incorporated into our framework.

Proposition 2.16. If
(
eXt
)
t≥0

is a (Ft)-martingale under P, then Propositions 2.12 and 2.14 hold for the

Type-II forward smile σ̃t,τ with the mgf (2.1) calculated under P̃.

Proof. We can write the value of our Type-II forward-start call option as

E
[(
eXt+τ − ek+Xt

)+]
= E

[
eXt

(
eXt+τ−Xt − ek

)+]
= E

[
eX̃

t
t+τ
(
eXt+τ−Xt − ek

)+]
= Ẽ

[(
eXt+τ−Xt − ek

)+]
.

Proposition 2.6 and Corollaries 2.8, 2.10 hold in this case with all expectations (and the mgf in (2.1)) calculated

under the stopped measure P̃. An easy calculation shows that under P̃, the forward BSM mgf remains the same

as under P. Thus all the previous results carry over and the proposition follows. �

3. Applications

3.1. Heston. In this section, we apply our general results to the Heston model, in which the (log) stock price

process is the unique strong solution to the following SDEs:

(3.1)

dXt = −1

2
Vtdt+

√
VtdWt, X0 = 0,

dVt = κ (θ − Vt) dt+ ξ
√
VtdZt, V0 = v > 0,

d 〈W,Z〉t = ρdt,

with κ > 0, ξ > 0, θ > 0 and |ρ| < 1. The Feller SDE for the variance process has a unique strong solution by

the Yamada-Watanabe conditions [38, Proposition 2.13, page 291]). The X process is a stochastic integral of the

V process and is therefore well-defined. The Feller condition, 2κθ ≥ ξ2, ensures that the origin is unattainable.

Otherwise the origin is regular (hence attainable) and strongly reflecting (see [39, Chapter 15]). We do not

require the Feller condition in our analysis since we work with the forward mgf of X which is always well-defined.
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3.1.1. Diagonal Small-Maturity Heston Forward Smile. The objective of this section is to apply Proposition 2.12

to the Heston forward smile. We define the function Λ : Dt,τ × [0,∞)× (0,∞) → R by

(3.2) Λ (u, t, τ) :=
uv

ξ
(
ρ̄ cot

(
1
2ξρ̄τu

)
− ρ
)
− 1

2ξ
2tu

, for all u ∈ Dt,τ ,

where

(3.3) Dt,τ :=

{
u ∈ R : Λ (u, 0, τ) <

2v

ξ2t

}
and ρ̄ :=

√
1− ρ2.

Further we let the function L : Dt,τ × [0,∞)× (0,∞) → R be defined as

L(u, t, τ) := L0(u, τ) + Λ(u, t, τ)2
(
vL1(u, τ)

Λ(u, 0, τ)2
− κξ2t2

4v

)
− κtΛ(u, t, τ)− 2θκ

ξ2
log

(
1− ξ2tΛ(u, 0, τ)

2v

)
,(3.4)

where the functions Li : Dt,τ × (0,∞) → R for i = 0, 1, are defined by

L0(u, τ) :=
κθ

ξ2

(
(iξρ− d0)iτu− 2 log

(
1− g0e

−id0τu

1− g0

))
,

(3.5)

L1(u, τ) :=
e−id0τu

ξ2 (1− g0e−id0τu)

(
(iξρ− d0)id1τu+ (d1 − κ)

(
1− eid0τu

)
+

(iξρ− d0)
(
1− e−id0τu

)
(g1 − id1g0τu)

1− g0e−id0τu

)
,

with

d0 := ξρ̄, d1 :=
i (2κρ− ξ)

2ρ̄
, g0 :=

iρ− ρ̄

iρ+ ρ̄
and g1 :=

2κ− ξρ

ξρ̄ (ρ̄+ iρ)
2 .

Remark 3.1. For any t ≥ 0, τ > 0 the functions L0 and L1 are well-defined real-valued functions for all u ∈ Dt,τ

(see Remark 5.6 for technical details). Also since Λ(0, t, τ)/Λ(0, 0, τ) = 1, L is well-defined at u = 0.

Proposition 3.2. In Heston, Corollary 2.8 and Proposition 2.12 hold with D0,0 = Dt,τ , Λ0,0 = Λ and Λ1,0 = L.

Proof. We simply outline the proof of the proposition, and we refer the reader to Section 5.2.1 for the details.

(i) In Lemma 5.3 we show that D0,0 = Dt,τ and 0 ∈ Do
0,0;

(ii) In Lemma 5.5 we show that the Heston diagonal small-maturity process has an expansion of the form

given in Assumption 2.1 with Λ0,0 = Λ and Λ1,0 = L;

(iii) In Lemma 5.7 we show that Λ is strictly convex and essentially smooth on Do
t,τ , i.e. Assumption 2.3;

(iv) Λε is infinitely differentiable and Λ0,1(0) = 0.

We now apply Proposition 2.12 and this completes the proof. �

In order to gain some intuition on the role of the Heston parameters on the forward smile we expand (2.15)

around the ATM point in terms of the log strike k. We now define the following functions:

(3.6)

ν0(t, τ) :=
τ

48

(
24κθ + ξ2

(
ρ2 − 4

)
+ 12v(ξρ− 2κ)

)
− t

4

(
ξ2 + 4κ (v − θ)

)
,

ν1(t, τ) :=
ρξτ

24v

(
ξ2
(
1− ρ2

)
− 2κ (v + θ) + ξρv

)
+
ρξ3t

8v
,

ν2(t, τ) :=
(
80κθ

(
13ρ2 − 6

)
+ ξ2

(
521ρ4 − 712ρ2 + 176

)
+ 40ρ2v (ξρ− 2κ)

) ξ2τ

7680v2

− ξ2t

192v2

(
4κθ

(
16− 7ρ2

)
+
(
7ρ2 − 4

) (
9ξ2 + 4κv

) )
+

ξ2t2

32τv2

(
4κ (v − 3θ) + 9ξ2

)
.

The proof of the following corollary is given in Section 5.2.1.
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Corollary 3.3. The following expansion holds for the Heston forward smile as ε and k tend to zero:

σ2
εt,ετ (k) = v + εν0(t, τ) +

(
ρξ

2
+ εν1(t, τ)

)
k +

(
(4− 7ρ2)ξ2

48v
+
ξ2t

4τv
+ εν2(t, τ)

)
k2(3.7)

+O(k3) +O(εk3) +O(ε2).

Remark 3.4. The following remarks should convey some practical intuition about the results above:

(i) For t = 0 this expansion perfectly lines up with Corollary 4.3 in [21] for the implied volatility smile.

(ii) Corollary 3.3 implies σεt,ετ (0) − σ0,ετ (0) = − εt
8
√
v

(
ξ2 + 4κ(v − θ)

)
+O(ε2), as ε tends to zero. For small

enough maturity, the spot ATM volatility is higher than the forward one if and only if ξ2 +4κ(v− θ) > 0.

In particular, when v ≥ θ the forward ATM volatility is lower than the corresponding spot ATM volatility

and this difference is increasing in the forward-start dates and volatility of variance. In Figure 2 we plot

this effect using θ = v and θ > v+ ξ2/(4κ). The relative values of v and θ impact the level of the forward

smile vs spot smile.

(iii) Similarly, we can deduce some information on the forward skew from Corollary 3.3:

∂kσεt,ετ (0) =
ξρ

4
√
v
+

(4ν1(t, τ)v − ξρν0(t, τ))

8v3/2
ε+O(ε2),

and hence

∂kσεt,ετ (0)− ∂kσ0,ετ (0) =
ξρt
(
3ξ2 + 4κ(v − θ)

)
32v3/2

ε+O(ε2).

(iv) Likewise an expansion for the Heston forward convexity as ε tends to zero is given by

∂2kσεt,ετ (0) =
ξ2((2− 5ρ2)τ + 6t)

24τv3/2
− ν0(t, τ)ξ

2(3t+ (1− 4ρ2)τ) + 6τv(ρξν1(t, τ)− 4ν2(t, τ)v)

24τv5/2
ε+O(ε2),

and in particular ∂2kσεt,ετ (0)−∂2kσ0,ετ (0) = ξ2t/(4τv3/2)+O(ε). For fixed maturity the forward convexity

is always greater than the spot implied volatility convexity (see Figure 2) and this difference is increasing

in the forward-start dates and volatility of variance. At zeroth order in ε the wings of the forward

smile increase to arbitrarily high levels with decreasing maturity. (see Figure 1(a)) This effect has been

mentioned qualitatively by practitioners [13]. As it turns out for fixed t > 0 the Heston forward smile

blows up to infinity (except ATM) as the maturity tends to zero. This is clearly outside the scope of our

main theorem, and we leave this degenerate case for future research.

In the Heston model (eXt)t≥0 is a true martingale [3, Proposition 2.5]. Applying Proposition 2.16 with

Lemma 5.8, giving the Heston forward mgf under the stopped-share-price measure, we derive the following

asymptotic for the Type-II Heston forward smile σ̃t,τ . The proof of Corollary 3.5 is omitted as it is analogous

to the proofs of Proposition 3.2 and Corollary 3.3. Set

ν̃0(t, τ) := ν0(t, τ) + ξρvt, ν̃1(t, τ) := ν1(t, τ), ν̃2(t, τ) := ν2(t, τ) +
ρξ3t

48v

(
7ρ2 − 4

)
− ρξ3t2

8vτ
,

with ν0, ν1 and ν2 defined in 3.6. In particular when ρ = 0 or t = 0, νi = ν̃i (i = 1, . . . , 3), and hence the Heston

forward smiles Type-I and Type-II are the same as shown in the following corollary.

Corollary 3.5. The diagonal small-maturity expansion of the Heston Type-II forward smile as ε and k tend to

zero is the same as the one in Corollary 3.3 with ν0, ν1 and ν2 replaced by ν̃0, ν̃1 and ν̃2.
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(a) Small-maturity forward smile explosion.
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(b) Type I vs Type II forward smile.

Figure 1. In (a) we plot forward smiles with forward-start date t = 1/2 and maturities

τ = 1/6, 1/12, 1/16, 1/32 given by circles, squares, diamonds and triangles respectively using

the Heston parameters v = 0.07, θ = 0.07, κ = 1, ρ = −0.6, ξ = 0.5 and the asymptotic in

Proposition 3.2. In (b) we plot the Type I (circles) vs Type 2 (squares) forward smile with

t = 1/2, τ = 1/12 and the Heston parameters v = 0.07, θ = 0.07, κ = 1, ρ = −0.2, ξ = 0.34

using Corollaries 3.3 and 3.5.
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Figure 2. Forward smile vs spot smile with v = θ and θ > v + ξ2/(4κ). Circles (t = 0, τ =

1/12) and squares (t = 1/2, τ = 1/12) use the Heston parameters v = θ = 0.07,κ = 1, ρ = −0.6,

ξ = 0.3. Diamonds (t = 0, τ = 1/12) and triangles (t = 1/2, τ = 1/12) use the same parameters

but with θ = 0.1. Plots use the asymptotic in Proposition 3.2.

3.1.2. Large-maturity Heston forward smile. We apply here Proposition 2.14 to the Heston forward smile. We

shall use the standing assumption κ > ρξ, needed in the proof of Proposition 3.8. If this condition fails then

we have a finite explosion time for moments greater than one for the price process (3.1) and consequently the

limiting mgf is not essentially smooth on its effective domain and Assumption 2.3 is violated. This a standard

assumption in the large-maturity implied volatility asymptotics literature [20, 22, 36]. It has been relaxed in [35]

for the Heston model to study the limiting spot smile, but not the higher-order terms. This restriction bears no

consequences in markets where the implied volatility skew is downward sloping, such as equity markets, where

the correlation is negative. Define the quantities

(3.8) u± :=
ξ − 2κρ± η

2ξ(1− ρ2)
and u∗± :=

ψ ± ν

2ξ(eκt − 1)
,
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with

(3.9) η :=
√
ξ2(1− ρ2) + (2κ− ρξ)2, ν :=

√
ψ2 − 16κ2eκt and ψ := ξ(eκt − 1)− 4κρeκt,

as well as the interval D∞ ⊂ R and the real numbers ρ− and ρ+ by

D∞ :=


[
u−, u

∗
+

)
, if − 1 < ρ < ρ− and t > 0,(

u∗−, u+
]
, if ρ+ < ρ < min(1, κ/ξ), t > 0 and κ > ρ+ξ,

[u−, u+] , if ρ− ≤ ρ ≤ min(ρ+, κ/ξ),

(3.10)

ρ± :=
e−2κt

(
ξ(e2κt − 1)± (eκt + 1)

√
16κ2e2κt + ξ2(1− eκt)2

)
8κ

.(3.11)

Remark 3.6. The following remarks are proved in Lemmas 5.9, 5.10 and 5.12 and we summarise them here.

(i) When κ/ξ < ρ+, the second case in (3.10) never occurs. From the proof of Lemma 5.10(i) if κ ≥ ξ then

ρ+ ≤ 1 so that min(ρ+, κ/ξ) ≤ 1.

(ii) If t > 0 and ρ ≤ ρ−, then u+ > u∗+ > 1 and if t > 0 and ρ ≥ ρ+, then u− < u∗− < 0.

(iii) We always have −1 ≤ ρ− < 0 and if κ > ρ+ξ then 1/2 < ρ+ ≤ 1. Also ρ− = −1 if and only if t = 0.

When κ > ρ+ξ then ρ+ = 1 if and only if t = 0. Finally ν defined in (3.9) is a well-defined real number

for all ρ ∈ [−1, ρ−] ∪ [ρ+, 1].

We define the functions V and H from D∞ to R by

(3.12) V (u) :=
κθ

ξ2
(κ− ρξu− d(u)) and H(u) :=

V (u)ve−κt

κθ − 2βtV (u)
− 2κθ

ξ2
log

(
κθ − 2βtV (u)

κθ (1− γ (u))

)
,

with

(3.13) d(u) :=
(
(κ− ρξu)2 + uξ2(1− u)

)1/2
, γ(u) :=

κ− ρξu− d(u)

κ− ρξu+ d(u)
, and βt :=

ξ2

4κ

(
1− e−κt

)
.

Remark 3.7. We have (κ− ρξu)
2
+ u (1− u) ξ2 ≥ 0 and κθ − 2βtV (u) > 0 for all u ∈ D∞ from the proof of

Proposition 5.13. Further by the definition of γ in (3.13) we have γ(u) ∈ (−1, 1) for all u ∈ D∞ using (5.38)

and (5.39) in the proof of Proposition 5.13. So V and H are always well-defined real-valued functions.

Finally we define the functions q∗ : R → [u−, u+] and V
∗ : R → R+ by

(3.14) q∗(x) :=
ξ − 2κρ+ (κθρ+ xξ) η

(
x2ξ2 + 2xκθρξ + κ2θ2

)−1/2

2ξ (1− ρ2)
and V ∗(x) := q∗(x)x− V (q∗(x)) ,

where V and η are defined in (3.12) and in (3.9). The following proposition gives the large-maturity forward

Heston smile in Case (iii) in (3.10).

Proposition 3.8. Suppose that ρ− ≤ ρ ≤ min (ρ+, κ/ξ) in the Heston model with ρ± defined in (3.11). Then

Corollary 2.10 and Proposition 2.14 hold with Λ0,0 = V , Λ∗ = V ∗, u∗ = q∗, Λ1,0 = H, Λ2,0 = 0 and

D0,0 = [u−, u+], where V , H, V ∗, q∗ and u± are defined in (3.12), (3.14) and (3.8).

Proof. We simply outline the proof of the proposition, and we refer the reader to Section 5.2.2 for the details.

(i) In Proposition 5.13 we show that D0,0 = D∞ and that {0, 1} ⊂ Do
∞;

(ii) In Lemma 5.14 and Remark 5.16 we show that the process has an expansion of the form given in Assump-

tion 2.1 with Λ0,0 = V , Λ1,0 = H and Λ2,0 = 0;
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(iii) By Proposition 5.13 and Lemma 5.9, V is strictly convex and essentially smooth on Do
∞ if ρ− ≤ ρ ≤

min (ρ+, κ/ξ); see also Remark 3.9(ii);

(iv) Λε is infinitely differentiable and V (1) = 0 from Lemma 5.9;

(v) u∗ can be computed in closed-form and is given by q∗ in (3.14).

A direct application of Proposition 2.14 completes the proof. �

Remark 3.9.

(i) In the Heston model there is no t-dependence for v∞0 in (2.17) since V ∗ does not depend on t. Therefore

under the conditions of the proposition, the limiting (zeroth order) smile is exactly of SVI form (see [27]).

(ii) For Cases (i) and (ii) in (3.10) the essential smoothness property in Assumption 2.3 is not satisfied and a

different strategy needs to be employed to derive a sharp large deviation result for large-maturity forward-

start options. We leave this analysis for future research.

(iii) For t = 0 we have ρ± = ±1 and Proposition 3.8 agrees with and extends the Heston large-maturity implied

volatility asymptotics in [20] and [22].

(iv) The condition ρ ∈ [0,min(1/2, κ/ξ)] is stronger than the condition in Proposition 3.8.

(v) Even though the rate function V ∗ does not depend on t, there is t-dependence through ρ± and the

function H (see the ATM example below). That said, to zeroth order and correlation close to zero,

the large-maturity forward smile is the same as the large-maturity spot smile. This is a very different

result compared to the Heston small-maturity forward smile, as mentioned in Remark 3.4(iv), where large

differences emerge between the forward smile and the spot smile at zeroth order.

We now give an example illustrating some of the differences between the Heston large-maturity forward smile

and the large-maturity spot smile due to first order differences in the asymptotic (2.17). This ties in with

Remark 3.9(v). Specifically we look at the forward ATM volatility which, when using Proposition 3.8 with

ρ− ≤ ρ ≤ min (ρ+, κ/ξ), has the asymptotic

σ2
t,τ (0) = v∞0 (0) + v∞1 (0, t)/τ +O

(
1/τ2

)
, as τ tends to infinity,

with

v∞0 (0) =
4θκ(η − 2κ+ ξρ)

ξ2 (1− ρ2)
,

v∞1 (0, t) =
16κv (ρξ − 2κ+ η)

∆ξ2
+

16κθ

ξ2
log

(
∆e−κt

(
2κ− ξρ+

(
1− 2ρ2

)
η
)

8κ (1− ρ2)
2
η

)

− 8 log

(
ξ
(
1− ρ2

)3/2√
η (2ξρ− 4κ+ 2η)

(ξ (1− 2ρ2)− ρ(η − 2κ)) (ρ(η − 2κ) + ξ)

)
,

η is defined in (3.9) and ∆ := 2κ
(
1 + eκt

(
1− 2ρ2

))
− (1− eκt) (ρξ + η). To get an idea of the t-dependence of

the ATM forward volatility we set ρ = 0 (since Proposition 3.8 is valid for correlations near zero) and perform

a Taylor expansion of v∞1 (0, t) around t = 0:

v∞1 (0, t) = v∞1 (0, 0) +

(
2θ

1 +
√

1 + ξ2/4κ2
− v

)
t+O

(
t2
)
.

When v ≥ θ then at this order the large τ -maturity forward ATM volatility is lower than the corresponding

large τ -maturity ATM implied volatility and this difference is increasing in t and in the ratio ξ/κ. This is similar

in spirit to Remark 3.4(ii) for the small-maturity Heston forward smile.
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3.2. Multivariate Heston. The n-Heston model (n ∈ N) is defined as the unique strong solution to the

following SDE:

(3.15)

dXt = −1

2

n∑
i=1

V
(i)
t dt+

n∑
i=1

√
V

(i)
t dW

(i)
t , X0 = 0 ∈ R,

dV
(i)
t = κi

(
θi − V

(i)
t

)
dt− ξi

√
V

(i)
t dZ

(i)
t , i = 1, . . . , n V

(i)
0 = v

(i)
0 ∈ R∗

+,

d
〈
W (i), Z(j)

〉
t

= ρi11{i=j}dt, i, j = 1, . . . , n,

d
〈
W (i),W (j)

〉
t

= d
〈
Z(i), Z(j)

〉
t
= 11{i=j}dt, i, j = 1, . . . , n,

where κ = (κ1, . . . , κn) ∈ (0,∞)n, ρ ∈ (−1, 1)n, θ ∈ (0,∞)n, ξ ∈ (0,∞)n, v0 ∈ (0,∞)n. The independence

assumption of the variances allows the forward mgf of the n-Heston to be written as the sum of the forward

mgf’s of the individual Heston models. The asymptotics of the forward smile are then given directly in terms

of the results in Section 3.1. For ease of notation in this section, whenever we reference a function or variable

used in the Heston analysis in Section 3.1 and use the index i, it means that function or variable defined using

the i-th Heston model parameters in (3.15). So for example when we reference the function Li in (3.4) we mean

that function L evaluated using the i-th Heston model parameters in (3.15).

Proposition 3.10. In the n-Heston model Corollary 2.8 and Proposition 2.12 hold with D0,0 =
∩n

i=1 Di
t,τ ,

Λ0,0 =
∑n

i=1 Λi and Λ1,0 =
∑n

i=1 Li, where Di
t,τ , Λi and Li are defined in 3.3, 3.2 and 3.4.

Consider for instance n = 2, and define the functions:

ν0(t, τ) :=
τ

48 (v1 + v2)
2

[( 2∑
i=1

24θiκi (v1 + v2)
2
+ 12vi (v1 + v2)

2
(ξiρi − 2κi)(3.16)

+ ξ2i
(
ρ2i − 4

)
(v1 + v2)

2
)
− v21ξ

2
2

(
ρ22 − 4

)
− v22ξ

2
1

(
ρ21 − 4

)
− 2v1v2

(
ξ21
(
5ρ21 − 2

)
− 9ξ2ξ1ρ1ρ2 + ξ22

(
5ρ22 − 2

)) ]
− t

4 (v1 + v2)

(
2∑

i=1

4κi (v1 + v2) (vi − θi) + ξ2i vi

)
,

ν1(t, τ) :=
1

48 (v1 + v2)
3

(
2∑

i=1

ξ2i
(
4− 7ρ2i

)
v2i + 2v1v2

(
ξ21
(
4ρ21 + 2

)
− 15ξ2ξ1ρ1ρ2 + ξ22

(
4ρ22 + 2

)))
(3.17)

+
t

4τ (v1 + v2)
2

(
2∑

i=1

ξ2i vi

)
.

In order to gain some intuition on the role of the Heston parameters on the forward smile we expand our solution

around the ATM point in terms of the log strike k.

Corollary 3.11. The following expansion holds for the 2-Heston forward smile as ε and k tend to zero:

σ2
εt,ετ (k) = v1 + v2 + εν0(t, τ) +

ξ1ρ1v1 + ξ2ρ2v2
2v1 + 2v2

k + ν1(t, τ)k
2 +O(k3) +O(εk) +O(ε2).

Remark 3.12. Remarks similar to Remark 3.4(ii)-(iv) for the Heston forward smile also apply to the 2-Heston.

Proposition 3.13. If ρi− ≤ ρi ≤ min(ρi+, κ/ξ) for i = 1, 2, ..., n (ρi± defined in (3.11)), then Corollary 2.10

and Proposition 2.14 hold with Λ0,0 =
∑n

i=1 Vi, Λ1,0 =
∑n

i=1Hi, Λ2,0 = 0 and D0,0 =
∩n

i=1

[
ui−, u

i
+

]
, with Vi,

Hi, u
i
± defined in (3.12) and (3.8).
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3.3. Schöbel-Zhu. The Schöbel-Zhu (SZ) stochastic volatility model [48] is an extension to non-zero correlation

of the Stein & Stein [49] model in which the logarithmic spot price process (Xt)t≥0 satisfies the following system

of SDEs:

(3.18)

dXt = −1

2
σ2
t dt+ σtdWt, X0 = x0 ∈ R,

dσt = κ (θ − σt) dt+
1

2
ξdZt, σ0 =

√
v > 0,

d 〈W,Z〉t = ρdt,

where κ, θ and ξ are strictly positive real numbers, ρ ∈ (−1, 1) and (Wt)t≥0 and (Zt)t≥0 are two standard

Brownian motions. The volatility process (σt)t≥0 is Gaussian and hence the SDE is well-defined. The process

(Xt)t≥0 is simply the integrated volatility process and hence is well-defined as well. The analysis in this section

is very similar to the diagonal small-maturity Heston analysis and therefore the proofs are omitted. Note that

although in some cases we use the same variables as in the Heston analysis they may have a different definition

in this section. We present limited results to highlight the similarities and differences between the Heston and

Schöbel-Zhu forward smiles.

Proposition 3.14. In the Schöbel-Zhu model Corollary 2.8 and Proposition 2.12 hold with D0,0 = Dt,τ and

Λ0,0 = Λ, where Dt,τ and Λ are defined in 3.3 and 3.2.

Remark 3.15. At zeroth order in ε the SZ diagonal small-maturity forward smile is the same as in Heston

modulo a re-scaling of the volatility of volatility. The first-order asymptotic is used in Corollary 3.16 below to

highlight differences with the Heston model.

Let us now define the following functions:

(3.19)

ν0(t, τ) := τ

(
1

48
ξ2
(
ρ2 + 2

)
+ κθ

√
v +

1

4
v(ξρ− 4κ)

)
+ 2κt

√
v
(
θ −

√
v
)
,

ν1(t, τ) :=
ρξτ

(
ξ2
(
1− 2ρ2

)
− 8κv + 2ξρv

)
48v

+
ξ3ρt

8v
,

ν2(t, τ) :=
( (

521ρ4 − 452ρ2 + 56
)
ξ2 + 480κθ

√
v
(
2ρ2 − 1

)
+ 40ρ2v(ρξ − 4κ)

) ξ2τ

7680v2

− ξ2t

48v2

( (
14ρ2 − 5

)
ξ2 + 2κθ

√
v
(
10− 7ρ2

)
+ 2κv

(
7ρ2 − 4

) )
+

ξ2t2

16τv2

(
3ξ2 + 4κ

√
v
(√
v − 2θ

) )
.

In order to gain some intuition on the role of the Schöbel-Zhu parameters on the forward smile we expand

our solution (to first order in ε) around the ATM point in terms of the log strike k.

Corollary 3.16. The following expansion holds for the Schöbel-Zhu forward smile as ε and k tend to zero:

σ2
εt,ετ (k) = v + εν0(t, τ) +

(
ξρ

2
+ εν1(t, τ)

)
k +

(
(4− 7ρ2)ξ2

48v
+
ξ2t

4τv
+ εν2(t, τ)

)
k2(3.20)

+O(k3) +O(εk3) +O(ε2),

where ν0, ν1 and ν2 are defined in (3.19).

Remark 3.17. At this order we can make the following remarks concerning the SZ forward smile:

(i) Remark 3.4(iv) for the Heston forward smile also applies to the SZ forward smile.

(ii) The forward ATM volatility has a different dependence on the volatility of volatility ξ in Heston and SZ.

In Heston (Remark 3.4(ii)), σεt,ετ (0)−σ0,ετ (0) is decreasing in ξ. In the SZ model, Corollary 3.16 implies

σεt,ετ (0)− σ0,ετ (0) = (θ −
√
v)κtε+O(ε2), as ε tends to zero,
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which does not depend on ξ (up to an error of order O(ε2)). Also for realistic parameter choices (eg.

ρ ≤ 0) the Heston ATM forward volatility is decreasing in ξ while in the SZ model (for example when

ξ > 2v) it is increasing in ξ and the impact is small. This effect is illustrated in Figure 3.

Remark 3.18. An analysis analogous to that of the Heston model can be conducted for the large-maturity SZ

forward smile. We shall omit it here though for brevity.
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(b) SZ forward smile ξ dependence

Figure 3. Here t = 1/2 and τ = 1/12 and we apply Corollaries 3.16 and 3.3. Circles use the

Heston parameters v = 0.07, θ = 0.07, κ = 1, ρ = −0.6, ξ = 0.3 and SZ parameters v = 0.07, θ =
√
0.07, κ = 1, ρ = −0.6, ξ = 0.3. Squares use the same parameters but with ξ = 0.4.

3.4. Time-changed exponential Lévy. It is well-known (see for example in [14, Proposition 11.2]) that the

forward smile in exponential Lévy models is time-homogeneous in the sense that σt,τ does not depend on t for any

fixed τ > 0, since the process has stationary increments. This is not necessarily true in time-changed exponential

Lévy models as we shall now see. Let (Yt)t≥0 be a Lévy process with mgf given by logE
(
euYt

)
= tφ(u) for

all t ≥ 0 and u ∈ Dφ := {u ∈ R : |φ(u)| <∞}. We consider models where (Xt)t≥0 := (YVt)t≥0 pathwise and

the time-change is given by Vt :=
∫ t

0
vsds with v being a strictly positive process independent of Y . We shall

consider the two following examples:

dvt = κ (θ − vt) dt+ ξ
√
vtdWt,(3.21)

dvt = −λvtdt+ dZt,(3.22)

with v0 = v > 0 and κ, ξ, θ, λ > 0. Here W is a standard Brownian motion and Z is a compound Poisson

subordinator with exponential jump size distribution and Lévy exponent l(u) := λdu/(α − u) for all u < α

with d > 0 and α > 0. In (3.21), v is a Feller diffusion and in (3.22), it is a Γ-OU process. We now define the

functions V and H from D̂∞ to R by

(3.23) V (u) :=
κθ

ξ2

(
κ−

√
κ2 − 2φ(u)ξ2

)
and H(u) :=

V (u)ve−κt

κθ − 2βtV (u)
− 2κθ

ξ2
log

(
κθ − 2βtV (u)

κθ (1− γ(φ(u)))

)
,

and the functions Ṽ and H̃ from D̃∞ to R by

(3.24)
Ṽ (u) :=

φ(u)λd

αλ− φ(u)
,

H̃(u) :=
λαd

αλ− φ(u)
log

(
1− φ(u)

αλ

)
+
φ(u)ve−λt

λ
+ d log

(
φ(u)− αλeλt

etλ(φ(u)− αλ)

)
,
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where we set

(3.25) D̂∞ :=
{
u : φ(u) ≤ κ2/(2ξ2)

}
, D̃∞ := {u : φ(u) < αλ} ,

φ is the Lévy exponent of Y and βt and γ are defined in (5.46). The following proposition—proved in Sec-

tion 5.5—is the main result of the section.

Proposition 3.19. Suppose that φ is essentially smooth (Definition 2.2), strictly convex and infinitely differ-

entiable on Do
φ with {0, 1} ⊂ Do

φ and φ(1) = 0. Then Corollary 2.10 and Proposition 2.14 hold:

(i) if v follows (3.21), with Λ0,0 = V , Λ1,0 = H, Λ2,0 = 0 and D0,0 = D̂∞;

(ii) if v follows (3.22), with Λ0,0 = Ṽ , Λ1,0 = H̃, Λ2,0 = 0 and D0,0 = D̃∞;

(iii) if vt ≡ 1, with Λ0,0 = φ, Λ1,0 = 0, Λ2,0 = 0 and D0,0 = Dφ.

Remark 3.20.

(i) The uncorrelated Heston model (3.1) can be represented as Yt := −t/2+Wt time-changed by an integrated

Feller diffusion (3.21). With φ(u) ≡ u(u−1)/2 andDφ = R, Proposition 3.19(i) agrees with Proposition 3.8.

(ii) The zeroth order large-maturity forward smile is the same as its corresponding zeroth order large-maturity

spot smile and differences only emerge at first order. It seems plausible that this will always hold if there

exists a stationary distribution for v and if v is independent of the Lévy process Y ;

(iii) Case (iii) in the proposition corresponds to the standard exponential Lévy case (without time-change).

We now use Proposition 3.19 to highlight the first-order differences in the large-maturity forward smile (2.17)

and the corresponding spot smile. If v follows (3.21) then a Taylor expansion of v∞1 in (2.16) around t = 0 gives

v∞1 (t, k)−v∞1 (0, k) =
8v∞0 (k)2

4k2 − v∞0 (k)2
V (u∗(k))

(
ξ2vV (u∗(k))

2θ2κ2
+ 1− v

θ

)
t+O(t2), for all k ∈ R\{V ′

(0), V
′
(1)}.

Using simple properties of v∞0 discussed below (2.16) and V we see that the large-maturity forward smile is

lower than the corresponding spot smile for k ∈ (V
′
(0), V

′
(1)) (which always include the at-the-money) if v ≥ θ.

The forward smile is higher than the corresponding spot smile for k ∈ R\(V ′
(0), V

′
(1)) (OTM options) if v ≤ θ,

and these differences are increasing in ξ/κ and t. This effect is illustrated in Figure 4 and k ∈ (V
′
(0), V

′
(1))

corresponds to strikes in the region (0.98, 1.02) in the figure.

If v follows (3.22) then a simple Taylor expansion of v∞1 (·, k) in (2.16) around t = 0 gives

v∞1 (t, k)− v∞1 (0, k) =
8v∞0 (k)2

4k2 − v∞0 (k)2
φ(u∗(k)) [λ(d− αv) + vφ(u∗(k))]

αλ− φ(u∗(k))
t+O(t2), for all k ∈ R \ {Ṽ ′(0), Ṽ ′(1)}.

Similarly we deduce that the large-maturity forward smile is lower than the corresponding spot smile for k ∈
(Ṽ ′(0), Ṽ ′(1)) if v ≥ d/α. The forward smile is higher than the corresponding spot smile for k ∈ R\(Ṽ ′(0), Ṽ ′(1))

(OTM options) if v ≤ d/α, and these differences are increasing in t.

If v follows (3.21)((3.22)) then the stationary distribution is a gamma distribution with mean θ (d/α),

see [14, page 475 and page 487]. The above results seem to indicate that the differences in level between the

large-maturity forward smile and the corresponding spot smile depend on the relative values of v0 and the

mean of the stationary distribution of the process v. This is also similar to Remark 3.4(ii) and the analysis

below Remark 3.9 for the Heston forward smile. These observations are also independent of the choice of φ

indicating that the fundamental quantity driving the non-stationarity of the large-maturity forward smile over

the corresponding spot implied volatility smile is the choice of time-change.
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As an example of a Lévy process satisfying the assumptions of Proposition 3.19, consider the Variance-Gamma

model, defined by

φ(u) = µu+ C log

(
GM

(M − u) (G+ u)

)
, for all u ∈ (−G,M),

with C > 0, G > 0,M > 1 and µ := −C log
(

GM
(M−1)(G+1)

)
ensures that (eXt)t≥0 is a true martingale (φ(1) = 0).

We immediately obtain

φ′(u) =
C(G−M + 2u) + µ(G+ u)(M − u)

(G+ u)(M − u)
and φ′′(u) =

C
(
(G+M)2 + (2u+G−M)2

)
2(G+ u)2(M − u)2

,

for u ∈ (−G,M), so that φ is essentially smooth and strictly convex on (−G,M). It is also infinitely differentiable

on (−G,M) with {0, 1} ⊂ (−G,M) and Proposition 3.19 applies. For Proposition 3.19(iii) we can compute

u∗ : R → (−G,M) through (2.5) in closed-form. The solutions to φ′(u∗(k)) = k are u∗(µ) = (M −G)/2 and

u∗±(k) =
−2C − (G−M)(k − µ)±

√
4C2 + (G+M)2(k − µ)2

2(k − µ)
for all k 6= µ.

The sign condition (M − u) (G+ u) > 0 imposes −2C±
√
4C2 + (G+M)2(k − µ)2 > 0 for all k 6= µ. Hence u∗+

(continuous on the whole real line) is the only valid solution and the rate function is then given in closed-form

as Λ∗(k) = ku∗+(k)− φ(u∗+(k)) for all real k.
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(a) Feller time-change: forward smile vs spot smile v > θ.
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(b) Feller time-change: forward smile vs spot smile v < θ.

Figure 4. Circles represent t = 0 and τ = 2 and squares represent t = 1/2 and τ = 2 using

a Variance-Gamma model time-changed by a Feller diffusion and the asymptotic in Proposi-

tion 3.19. In (a) the parameters are C = 58.12, G = 50.5, M = 69.37, κ = 1.23, θ = 0.9,

ξ = 1.6, v = 1 and (b) uses the same parameters but with θ = 1.1.

4. Numerics

We compare here the true forward smile in various models and the asymptotics developed in Propositions 2.12

and 2.14. We calculate forward-start option prices using the inverse Fourier transform representation in [41,

Theorem 5.1] and a global adaptive Gauss-Kronrod quadrature scheme. We then compute the forward smile σt,τ

and compare it to the zeroth, first and second order asymptotics given in Propositions 2.12 and 2.14 for various

models. In Figure 5 we compare the Heston diagonal small-maturity asymptotic in Proposition 3.2 with the

true forward smile. Figure 6 tests the accuracy of the Heston large-maturity asymptotic from Proposition 3.8.

In order to use this proposition we require ρ− ≤ ρ ≤ min (ρ+, κ/ξ) with ρ± defined in (3.11). For the parameter
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choice in the figure we have ρ− = −0.65 and the condition is satisfied. Finally in Figure 7 we consider the

Variance Gamma model time-changed by a Γ-OU process using Proposition 3.19. Results are in line with

expectations and the higher the order of the asymptotic the closer we match the true forward smile.
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(a) Heston diagonal small-maturity vs Fourier inversion.
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Figure 5. In (a) circles, squares and diamonds represent the zeroth, first and second order

asymptotics respectively in Proposition 3.2 and triangles represent the true forward smile us-

ing Fourier inversion. In (b) we plot the differences between the true forward smile and the

asymptotic. We use t = 1/2 and τ = 1/12 and the Heston parameters v = 0.07, θ = 0.07,

κ = 1, ξ = 0.34, ρ = −0.8.
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Figure 6. In (a) circles, squares and diamonds represent the zeroth, first and second order

asymptotics respectively in Proposition 3.8 and triangles represent the true forward smile us-

ing Fourier inversion. In (b) we plot the differences between the true forward smile and the

asymptotic. We use t = 1 and τ = 5 and the Heston parameters v = 0.07, θ = 0.07, κ = 1.5,

ξ = 0.34, ρ = −0.25.
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(a) Γ-OU time-change large-maturity vs Fourier inver-

sion.
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Figure 7. In (a) circles, squares and diamonds represent the zeroth, first and second order

asymptotics respectively in proposition 3.19 and triangles represent the true forward smile using

Fourier inversion for a variance gamma model time-changed by a Γ-OU process. In (b) we plot

the differences between the true forward smile and the asymptotic. We use t = 1 and τ = 3

with the parameters C = 6.5, G = 11.1, M = 33.4, v = 1, α = 0.6, d = 0.6, λ = 1.8.

5. Proofs

5.1. Proofs of Section 2. We define a change of measure by

dQk,ε

dP
= exp

(
u∗(k)Xε

ε
− Λε (u

∗(k))

ε

)
,(5.1)

with u∗(k) defined in (2.5). By Lemma 2.4(i), u∗(k) ∈ Do
0,0 for all k ∈ R. Since Do

0,0 ⊆ D0
ε this means that

Λε (u
∗(k)) < ∞. Also dQk,ε/dP is almost surely strictly positive and by the very definition E (dQk/dP) = 1.

Therefore (5.1) is a valid measure change for all k ∈ R. We define the random variable

Zk,ε := (Xε − k) /
√
ε(5.2)

and set the characteristic function ΦZk,ε
: R → C of Zk,ε in the Qk,ε-measure as follows

ΦZk,ε
(u) = EQk,ε

(
eiuZk,ε

)
.(5.3)

Recall from Section 2 that for ease of exposition Λi,l := Λi,l (u
∗(k)) with Λi,l defined in (2.4). This notation

will be used throughout the section. We now have the following important technical lemma.

Lemma 5.1. The following expansion holds for the characteristic function ΦZk,ε
defined in (5.3) as ε→ 0:

log ΦZk,ε
(u) = −1

2
Λ0,2u

2 + η1(u)
√
ε+ η2(u)ε+ η3(u)ε

3/2 +O
(
ε2
)
,

where the functions ηi, i = 1, 2, 3 are defined in (5.4).

Remark 5.2. By Lévy’s Convergence Theorem [52, Page 185, Theorem 18.1], Zk,ε defined in (5.2) converges

weakly to a normal random variable with mean 0 and variance Λ0,2 in the Qk,ε-measure as ε tends to zero.
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Proof. By Lemma 2.4, u∗(k) ∈ Do
0,0, therefore using the definition of the Qk,ε-measure in (5.1) we have

log ΦZk,ε
(u) = logEP

(
dQk,ε

dP
eiuZk,ε

)
= logEP

[
exp

(
u∗(k)Xε

ε
− Λε(u

∗(k))

ε

)
exp

(
iu

√
ε

(
Xε

ε

)
− iku√

ε

)]
= −1

ε
Λε (u

∗(k))− iuk√
ε
+ logEP

[
exp

((
Xε

ε

)(
iu

√
ε+ u∗(k)

))]
= −iuk√

ε
+

1

ε

(
Λε

(
iu

√
ε+ u∗(k)

)
− Λε (u

∗(k))
)

= −iuk√
ε
+

1

ε

∞∑
n=1

1

n!

(
Λ0,n + εΛ1,n + ε2Λ2,n +O

(
ε3
)) (

iu
√
ε
)n
,

where the last equality holds by the differentiation and expansion properties in Assumption 2.1. We now write

log ΦZk,ε
(u) = −iuk√

ε
+

iΛ0,1u√
ε

− 1

2
Λ0,2u

2 +
1

ε

( ∞∑
n=3

1

n!
Λ0,n

(
iu

√
ε
)n

+
∞∑

n=1

1

n!

(
εΛ1,n + ε2Λ2,n +O

(
ε3
)) (

iu
√
ε
)n)

= −1

2
Λ0,2u

2 +

∞∑
n=1

1

n!

((
n!

(n+ 2)!
Λ0,n+2 (iu)

2
+ Λ1,n

)
+ εΛ2,n +O

(
ε2
)) (

iu
√
ε
)n

= −1

2
Λ0,2u

2 + η1(u)
√
ε+ η2(u)ε+ η3(u)ε

3/2 +O
(
ε2
)
,

where we used (2.5) from Lemma 2.4 and where

(5.4)

η1(u) := iuΛ1,1 −
1

6
iu3Λ0,3,

η2(u) := −1

2
u2Λ1,2 +

1

24
u4Λ0,4,

η3(u) := iuΛ2,1 −
1

6
iu3Λ1,3 +

1

120
iu5Λ0,5.

�

Proof of Theorem 2.6. For j = 1, 2, 3, let us define the functions gj : R2
+ → R+ by

gj(x, y) :=


(x− y)+, if j = 1,

(y − x)+, if j = 2,

min(x, y), if j = 3.

Using the definition of the Qk,ε-measure in (5.1) we can re-write the option price as

E
[
gj

(
eXεf(ε), ekf(ε)

)]
= e

1
εΛε(u

∗(k))EQk,ε

[
e−

u∗(k)
ε Xεgj

(
eXεf(ε), ekf(ε)

)]
= e−

1
ε [ku

∗(k)−Λε(u
∗(k))]EQk,ε

[
e−

u∗(k)
ε (Xε−k)gj

(
eXεf(ε), ekf(ε)

)]
.

By the rescaled mgf expansion in Assumption 2.1 and Equality (2.6) we immediately have

exp

(
−1

ε
(ku∗(k)− Λε (u

∗(k)))

)
= exp

(
−1

ε
Λ∗ (k) + Λ1,0 + Λ2,0 ε+O

(
ε2
))

.(5.5)

From the definition of the random variable Zk,ε in (5.2) we have

EQk,ε

[
e−

u∗(k)
ε (Xε−k)gj

(
eXεf(ε), ekf(ε)

)]
= ekf(ε)EQk,ε [g̃j(Zk,ε)] ,

where for j = 1, 2, 3, we define the modified payoff functions g̃j : R → R+ by

g̃j(z) := e−u∗(k)z/
√
εgj

(
ez

√
εf(ε), 1

)
.
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For a function f ∈ L2(R) denote its Fourier transform by (Ff)(u) :=
∫
R eiuzf(z)dz, for any u ∈ R. Assuming

(for now) that g̃j ∈ L2(R), we have for any u ∈ R,

(F g̃j) (u) =
∫ ∞

−∞
exp

(
−u

∗(k)z√
ε

)
gj

(
ez

√
εf(ε), 1

)
eiuzdz, for j = 1, 2, 3.

For j = 1 we can write

∫ ∞

−∞
g̃1(z)e

iuzdz =

exp
(
z (

√
εf (ε)− u∗(k)/

√
ε+ iu)

)
√
εf (ε)− u∗(k)/

√
ε+ iu

∞

0

−

exp
(
z (−u∗(k)/

√
ε+ iu)

)
−u∗(k)/

√
ε+ iu

∞

0

=
ε3/2f(ε)

(u∗(k)− iu
√
ε) (u∗(k)− εf(ε)− iu

√
ε)
,

which is valid for u∗(k) > εf (ε). For ε sufficiently small and by the definition of f in (2.7) this holds for

u∗(k) > c. For j = 2 we can write

∫ ∞

−∞
g̃2(z)e

iuzdz =

exp
(
z (−u∗(k)/

√
ε+ iu)

)
−u∗(k)/

√
ε+ iu

0

−∞

−

exp
(
z (

√
εf (ε)− u∗(k)/

√
ε+ iu)

)
√
εf (ε)− u∗(k)/

√
ε+ iu

0

−∞

=
ε3/2f(ε)

(u∗(k)− iu
√
ε) (u∗(k)− εf(ε)− iu

√
ε)
,

which is valid for u∗(k) < 0 as ε tends to zero. Finally, for j = 3 we have

∫ ∞

−∞
g̃3(z)e

iuzdz =

∫ 0

−∞
e
−u∗(k)√

ε
z
g3

(
ez

√
εf(ε), 1

)
eiuzdz +

∫ ∞

0

e
−u∗(k)√

ε
z
g3

(
ez

√
εf(ε), 1

)
eiuzdz

=

exp
(
z (

√
εf (ε)− u∗(k)/

√
ε+ iu)

)
√
εf (ε)− u∗(k)/

√
ε+ iu

0

−∞

+

exp
(
z (−u∗(k)/

√
ε+ iu)

)
−u∗(k)/

√
ε+ iu

∞

0

= − ε3/2f(ε)

(u∗(k)− iu
√
ε) (u∗(k)− εf(ε)− iu

√
ε)
,

which is valid for 0 < u∗(k) < εf (ε). For ε sufficiently small and by the assumption on f in (2.7) this is true for

0 < u∗(k) < c. In this context u∗(k) comes out naturally in the analysis as a classical dampening factor. Note

that in order for these strips of regularity to exist we require that {0, c} ⊂ Do
0,0, as assumed in the theorem. By

the differentiability property in Assumption 2.1 and the strict convexity and essential smoothness property in

Assumption 2.3 we have

(5.6)

0 < u∗(k) < c if and only if Λ0,1(0) < k < Λ0,1(c),

u∗(k) < 0 if and only if k < Λ0,1(0),

u∗(k) > c if and only if k > Λ0,1(c).

For ε sufficiently small and the strips of regularity defined above, the modified payoffs g̃j are in L2(R). By

Remark 5.2, Zk,ε converges weakly to a zero-mean Gaussian random variable as ε tends to zero and the Gaussian
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density is in L2(R). For ε sufficiently small we can apply Parseval’s Theorem [29, Theorem 13E] to write

EQk,ε [g̃j(Zk,ε)] =



1

2π

∫
R

ε3/2f(ε)ΦZk,ε
(u)du

(u∗(k) + iu
√
ε) (u∗(k)− εf(ε) + iu

√
ε)
, if j = 1, u∗(k) > c,

1

2π

∫
R

ε3/2f(ε)ΦZk,ε
(u)du

(u∗(k) + iu
√
ε) (u∗(k)− εf(ε) + iu

√
ε)
, if j = 2, u∗(k) < 0,

− 1

2π

∫
R

ε3/2f(ε)ΦZk,ε
(u)du

(u∗(k) + iu
√
ε) (u∗(k)− εf(ε) + iu

√
ε)
, if j = 3, 0 < u∗(k) < c,

(5.7)

where we have used that

ε3/2f(ε)

(u∗(k)− iu
√
ε) (u∗(k)− εf(ε)− iu

√
ε)

=
ε3/2f(ε)

(u∗(k) + iu
√
ε) (u∗(k)− εf(ε) + iu

√
ε)
,

with a denoting the complex conjugate for a ∈ C. Now using Lemma 5.1 we write

(5.8)

∫
R

ε3/2f(ε)Φ(u)du

(u∗(k) + iu
√
ε) (u∗(k)− εf(ε) + iu

√
ε)

=

∫
R
exp

(
−Λ0,2u

2

2

)
H (ε, u) du,

where the function H : R+ × R → C is defined as

H(ε, u) :=
exp

(
η1(u)

√
ε+ η2(u)ε+ η3(u)ε

3/2 +O
(
ε2
))

(u∗(k) + iu
√
ε) (u∗(k)− εf(ε) + iu

√
ε)

f(ε)ε3/2,

with ηi (i = 1, 2, 3) defined in (5.4). A Taylor expansion of H around ε = 0 for c = 0 yields

H (ε, u) =
f(ε)ε3/2

u∗(k)2

(
1 + h1(u, 0)

√
ε+ h2(u, 0)ε+ h3(u, 0)ε

3/2 +
f(ε)ε

u∗(k)
− 3iuε3/2f(ε)

u∗(k)
+O

(
ε2
) )

(
1 + η1(u)

√
ε+

(
1

2
η1(u)

2 + η2(u)

)
ε+

(
1

6
η1(u)

3 + η2(u)η1(u) + η3(u)

)
ε3/2 +O

(
ε2
) )

=
f(ε)ε3/2

u∗(k)2

(
1 + h̄1(u, 0)

√
ε+ h̄2(u, 0)ε+ h̄3(u, 0)ε

3/2 +
εf(ε)

u∗(k)
+

(
η1(u)

u∗(k)
− 3iu

u∗(k)2

)
ε3/2f(ε) +O

(
ε2
))

,

where we define the following functions:

h1(u, c) :=
iu

u∗(k)− c

(
c

u∗(k)
− 2

)
, h2(u, c) := −

u2
(
c2 − 3cu∗(k) + 3u∗(k)2

)
u∗(k)2 (u∗(k)− c)

2 ,

(5.9)

h3(u, c) : =
iu3

(
4u∗(k)3 − c3 + 4c2u∗(k)− 6cu∗(k)2

)
u∗(k)3 (u∗(k)− c)

3 , h̄1(u, c) := η1(u) +
iu (c− 2u∗(k))

u∗(k) (u∗(k)− c)
,

h̄2(u, c) :=
η21(u)

2
+ η2(u)−

u2
(
c2 − 3cu∗(k) + 3 (u∗(k))

2
)

u∗(k)2 (u∗(k)− c)
2 +

iuη1(u)

u∗(k)− c

(
c

u∗(k)
− 2

)
h̄3(u, c) :=

η31(u)

6
+ η1(u)η2(u) + η3(u) +

iu3

u∗(k)3
− u2η1(u)

u∗(k)2
+

iu3

(u∗(k)− c)
3

− iu

u∗(k)− c

(
η21(u)

2
+ η2(u)−

iuη1(u)

u∗(k)
− u2

u∗(k)2

)
+

iu3 − u2u∗(k)η1(u)

u∗(k) (u∗(k)− c)
2 − iu

u∗(k)

(
η21(u)

2
+ η2(u)

)
,
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with the ηi for i = 1, 2, 3, defined in (5.4). A Taylor expansion of H around ε = 0 for c > 0 yields

H(ε, u) =

c
√
ε

u∗(k) (u∗(k)− c)

{
1 + η1(u)

√
ε+

(
η21(u)

2
+ η2(u)

)
ε+

(
η31(u)

6
+ η2(u)η1(u) + η3(u)

)
ε3/2 +O

(
ε2
)}

{
1 + h1(u, c)

√
ε+ h2(u, c)ε+ h3(u, c)ε

3/2 +
u∗(k)(εf(ε)− c)

c (u∗(k)− c)
− 2iu

√
ε(εf(ε)− c)u∗(k)

c (u∗(k)− c)
2 +O

(
ε2
)}

=
c
√
ε

u∗(k) (u∗(k)− c)

{
1 + h̄1(u, c)

√
ε+ h̄2(u, c)ε+ h̄3(u, c)ε

3/2 +
u∗(k)(εf(ε)− c)

c (u∗(k)− c)

+
u∗(k)

√
ε(εf(ε)− c)

c (u∗(k)− c)

(
η1(u)−

2iu

u∗(k)− c

)
+O

(
ε2
)}

,

with the hi, h̄i defined in (5.9) and the ηi defined in (5.4). We will shortly be integrating H against a zero-

mean Gaussian characteristic function over R and as such all odd powers of u will have a null contribution. In

particular we note that the polynomials

h̄1, h̄3,

(
η1(u)

u∗(k)
− 3iu

(u∗(k))
2

)
ε3/2f(ε) and

u∗(k)
√
ε(εf(ε)− c)

c (u∗(k)− c)

(
η1(u)−

2iu

u∗(k)− c

)
are odd functions of u and hence have zero contribution. The major quantity is h̄2, which we can rewrite as

(5.10) h̄2(u, c) = h̄2,1(c)u
2 + h̄2,2(c)u

4 −
Λ2
0,3u

6

72
,

where

h̄2,1(c) :=
2Λ1,1

u∗(k)− c
− cΛ1,1

u∗(k) (u∗(k)− c)
−

Λ2
1,1 + Λ1,2

2
− c2 − 3cu∗(k) + 3u∗(k)2

u∗(k)2 (u∗(k)− c)
2 ,

h̄2,2(c) :=
cΛ0,3

6u∗(k) (u∗(k)− c)
− Λ0,3

3 (u∗(k)− c)
+

Λ1,1Λ0,3

6
+

Λ0,4

24
.

Let

φε(c) ≡
c
√
ε11{c>0} + ε3/2f(ε)11{c=0}

u∗(k) (u∗(k)− c)
.

Using simple properties of moments of a Gaussian random variable we finally compute the following∫
R
exp

(
−Λ0,2u

2

2

)
H (ε, u) du

= φε(c)

∫
R
e−

1
2Λ0,2u

2

(
1 + h̄2,1(c)u

2 + h̄2,2(c)u
4 −

Λ2
0,3u

6

72
+
u∗(k)(εf(ε)− c)

c (u∗(k)− c)
11{c>0} +

εf(ε)

u∗(k)
11{c=0} +O

(
ε2
))

du

= φε(c)

√
2π

Λ0,2

(
1 +

h̄2,1(c)

Λ0,2
+

3h̄2,2(c)

Λ2
0,2

−
5Λ2

0,3

24Λ3
0,2

+
u∗(k)(εf(ε)− c)

c (u∗(k)− c)
11{c>0} +

εf(ε)

u∗(k)
11{c=0} +O

(
ε2
))

.

In the second line we have dropped all odd powers of u and have used (5.10). Combining this with (5.8), (5.7)

and (5.5) with the property (5.6), the proposition follows. �

In [25] Gao and Lee have obtained representations for asymptotic implied volatility for small and large-

maturity regimes in terms of the assumed asymptotic behaviour of certain unspecified option prices, outlining

the general procedure for transforming option price asymptotics into implied volatility asymptotics.

The same methodology can be followed to transform our forward-start option asymptotics (Corollary 2.8

and Corollary 2.10) into forward smile asymptotics. In the proofs of Proposition 2.12 and Proposition 2.14
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we therefore assume for brevity the existence of an ansatz for the forward smile asymptotic and solve for the

coefficients. We refer the reader to [25] for the complete methodology.

Proof of Proposition 2.12. Using Λ0,1(0) = 0 and substituting the ansatz σ2
εt,ετ (k) = v0(k, t, τ) + v1(k, t, τ)ε +

v2(k, t, τ)ε
2 +O

(
ε3
)
into Corollary 2.9, we get that forward-start option prices have the asymptotics

E
[(

eX
(εt)
ετ − ek

)+]
11{k>0} + E

[(
ek − eX

(εt)
ετ

)+]
11{k<0}

= exp

(
− k2

2τv0(k, t, τ)ε
+

k2v1(k, t, τ)

2τv0(k, t, τ)2
+
k

2

)
(v0(k, t, τ)ετ)

3/2

k2
√
2π

(
1 + γ(k, t, τ)ε+O

(
ε2
))
,

where we set

γ(k, t, τ) := −τv0(k, t, τ)
(

3

k2
+

1

8

)
+

k2v2(k, t, τ)

2τv0(k, t, τ)2
− k2v1(k, t, τ)

2

2τv0(k, t, τ)3
+

3v1(k, t, τ)

2v0(k, t, τ)
.

The result follows after equating orders with the general formula in Corollary 2.8. �

Proof of Proposition 2.14. Substituting the ansatz

(5.11) σ2
t,τ (k) = v∞0 (k, t) + v∞1 (k, t)/τ + v∞2 (k, t)/τ2 +O

(
1/τ3

)
,

into Corollary 2.11 we obtain the following asymptotic expansions for forward-start options:

E
[(

eX
(t)
τ − ekτ

)+]
11A − E

[
eX

(t)
τ ∧ ekτ

]
11B + E

[(
ekτ − eX

(t)
τ

)+]
11C

= exp

(
−τ
(

k2

2v0(k, t)
− k

2
+
v0(k, t)

8

)
+
v1(k, t)k

2

2v0(k, t)2
− v1(k, t)

8

)
4τ−1/2v0(k, t)

3/2

(4k2 − v0(k, t)2)
√
2π

(
1 +

γ∞(k, t)

τ
+O

(
1

τ2

))
,

where

(5.12) A :=

{
k >

1

2
σ2
t,τ (k)

}
, B :=

{
−1

2
σ2
t,τ (k) < k <

1

2
σ2
t,τ (k)

}
, C :=

{
k < −1

2
σ2
t,τ (k)

}
,

γ∞(k, t) :=

(
12k2 + v20(k, t)

) (
4k2v1(k, t)− v20(k, t) (v1(k, t) + 8)

)
2v0(k, t) (v20(k, t)− 4k2)

2 − v21(k, t)k
2

2v30(k, t)
+
v2(k, t)k

2

2v20(k, t)
− v2(k, t)

8
.

We obtain the expressions for v∞1 and v∞2 by equating orders with the formula in Corollary 2.10. However it is

not clear which is the correct root for the zeroth order term v∞0 . In order to do so, we have to match the domains

in (5.12) and in Corollary 2.10. Indeed, suppose that we choose the roots according to v∞0 in (2.16). For τ

sufficiently large the condition k > σ2/2 is equivalent to k > v∞0 (k, t)/2. Now for k > Λ0,1(1) or k < Λ0,1(0),

the definition of v∞0 in (2.16) implies

(5.13) k > σ2/2 if and only if

√
(Λ∗(k)− k)

2
+ k (Λ∗(k)− k) > Λ∗(k)− k,

which is always true since Λ∗(k) > k by Lemma 2.4(iii). Now, for k ∈ (Λ0,1(0),Λ0,1(1)), the definition of v∞0

in (2.16) implies

(5.14) k > σ2/2 if and only if −
√
(Λ∗(k)− k)

2
+ k (Λ∗(k)− k) > Λ∗(k)− k,

which never holds. By the assumption in the proposition 2.14 and Assumption 2.1 we have {0, 1} ⊂ Do
0,0 and

Λ0,0(0) = Λ0,0(1) = 0. The differentiability and strict convexity of Λ0,0 (Assumptions 2.3 and 2.1) then imply
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Λ0,1(0) < 0 and Λ0,1(1) > 0. Since v∞0 > 0 we can ignore the case k < Λ0,1(0) < 0 and hence k > σ2/2 if and

only if k > Λ0,1(1). Similarly the definition of v∞0 in (2.16) implies that for τ large enough τ ,

−σ2/2 < k < σ2/2 if and only if Λ0,1(0) < k < Λ0,1(1) and k < −σ2/2 if and only if k < Λ0,1(0).

This lines up the domains in (5.12) with the domains in Corollary 2.10. Had we specified the roots in any other

way, it is easy to check that a contradiction would have occurred. �

5.2. Proofs of Section 3.1. For a stochastic process (Xt)t≥0 we define the forward mgf of the process by

(5.15) Λ(u) := logE
(
euX

(t)
τ

)
, for all u ∈ DΛ,

where DΛ := {u ∈ R : |Λ(u)| < ∞} and X
(t)
τ is defined in (2.11). We now let (Xt)t≥0 be the Heston process

satisfying the SDE (3.1). By a straightforward application of the tower property for expectations (see also [34]),

the forward mgf defined in (5.15) is given by

(5.16) Λ(u) = A (u, τ) +
B (u, τ)

1− 2βtB (u, τ)
ve−κt − 2κθ

ξ2
log (1− 2βtB (u, τ)) , for all u ∈ DΛ,

where

(5.17)
A (u, τ) :=

κθ

ξ2

(
(κ− ρξu− d(u)) τ − 2 log

(
1− γ(u) exp (−d(u)τ)

1− γ(u)

))
,

B(u, τ) :=
κ− ρξu− d(u)

ξ2
1− exp (−d(u)τ)

1− γ(u) exp (−d(u)τ)
,

and d, γ and β were introduced in (3.13). In the next two sections we develop the tools needed to apply

Propositions 2.12 and 2.14 to the Heston model.

5.2.1. Proofs of Section 3.1.1. We consider here the Heston diagonal small-maturity process
(
X

(εt)
ετ

)
ε>0

with X

defined in (3.1) and
(
X

(t)
τ

)
τ>0

in (2.11). The forward rescaled mgf Λε in (2.1) is easily determined from (5.16).

Lemma 5.3. For the Heston diagonal small-maturity process we have D0,0 = Dt,τ and 0 ∈ Do
0,0 with Dt,τ

defined in (3.3) and D0,0 and Do
0,0 defined in Assumption 2.1.

Proof. For any t > 0, the random variable Vt in (3.1) is distributed as βt times a non-central chi-square random

variable with q = 4κθ/ξ2 > 0 degrees of freedom and non-centrality parameter λ = ve−κt/βt > 0. It follows

that the corresponding mgf is given by

(5.18) ΛV
t (u) := E

(
euVt

)
= exp

(
λβtu

1− 2βtu

)
(1− 2βtu)

−q/2
, for all u <

1

2βt
.

The re-normalised Heston forward mgf is then computed as

Λε(u)

ε
= E

[
e

u
ε (Xεt+ετ−Xεt)

]
= E

[
E
(
e

u
ε (Xεt+ετ−Xεt)|Fεt

)]
= E

(
eA(

u
ε ,ετ)+B(u

ε ,ετ)Vεt

)
= eA(

u
ε ,ετ)ΛV

εt (B (u/ε, ετ)) ,

which agrees with (5.16). This only makes sense in some effective domain Dεt,ετ ⊂ R. The mgf for Vεt

is well-defined in DV
εt := {u ∈ R : B (u/ε, ετ) < 1

2βεt
}, and hence Dεt,ετ = DV

εt ∩ DH
ετ , where DH

ετ is the

effective domain of the (spot) Heston mgf. Let us first consider DH
ετ for small ε. From [3, Proposition 3.1] if

ξ2(u/ε− 1)u > (κ− ξρu/ε)2 then the explosion time τ∗(u) := sup{t ≥ 0 : E(euXt) <∞} of the Heston mgf is

τ∗H

(u
ε

)
=

2√
ξ2(u/ε− 1)u/ε− (κ− ρξu/ε)2

(
π11{ρξu/ε−κ<0} + arctan

(√
ξ2(u/ε− 1)u/ε− (κ− ρξu/ε)2

ρξu/ε− κ

))
.
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Recall the following Taylor series expansions, for x close to zero:

arctan

(
1

ρξu/x− κ

√
ξ2
(u
x
− 1
) u
x
−
(
κ− ξρ

u

x

)2)
= sgn(u) arctan

(
ρ̄

ρ

)
+O (x) , if ρ 6= 0,

arctan

(
− 1

κ

√
ξ2
(u
x
− 1
) u
x
− κ2

)
= −π

2
+O(x), if ρ = 0.

As ε tends to zero ξ2(u/ε− 1)u/ε > (κ− ρξu/ε)2 is satisfied since ξ2 > ξ2ρ2 and hence

τ∗H (u/ε) =


ε

ξ|u|

(
π11{ρ=0} +

2

ρ̄

(
π11{ρu≤0} + sgn(u) arctan

(
ρ̄

ρ

))
11{ρ6=0} +O(ε)

)
, if u 6= 0,

∞, if u = 0.

Therefore, for ε small enough, we have τ∗H
(
u
ε

)
> ετ for all u ∈ (u−, u+), where

u− :=
2

ρ̄ξτ
arctan

(
ρ̄

ρ

)
11{ρ<0} −

π

ξτ
11{ρ=0} +

2

ρ̄ξτ

(
arctan

(
ρ̄

ρ

)
− π

)
11{ρ>0},

u+ :=
2

ρ̄ξτ

(
arctan

(
ρ̄

ρ

)
+ π

)
11{ρ<0} +

π

ξτ
11{ρ=0} +

2

ρ̄ξτ
arctan

(
ρ̄

ρ

)
11{ρ>0}.

So as ε tends to zero, DH
ετ shrinks to (u−, u+). Regarding DV

εt, we have (see (5.22) for details on the expansion

computation) βεtB (u/ε, ετ) = ξ2t
4v Λ (u, 0, τ) + O(ε) for any u ∈ (u−, u+), with Λ defined in (3.2). Therefore

limε↘0 DV
εt = {u ∈ R : Λ (u, 0, τ) < 2v

ξ2t} and hence limε↘0 Dεt,ετ = {u ∈ R : Λ (u, 0, τ) < 2v
ξ2t} ∩ (u−, u+). It

is easily checked that Λ (u, 0, τ) is strictly positive except at u = 0 where it is zero, Λ′ (u, 0, τ) > 0 for u > 0,

Λ′ (u, 0, τ) < 0 for u < 0 and that Λ (u, 0, τ) tends to infinity as u approaches u±. Since v and ξ are strictly

positive and t ≥ 0 it follows that {u ∈ R : Λ (u, 0, τ) < 2v
ξ2t} ⊆ (u−, u+) with equality only if t = 0. So D0,0 is

an open interval around zero and the lemma follows with D0,0 = Dt,τ . �

Remark 5.4. For u ∈ R∗ the inequality 0 < Λ(u, 0, τ) < 2v
ξ2t is equivalent to Λ(u, t, τ) ∈ (0,∞), where Λ is

defined in (3.2). In Lemma 5.5 below we show that Λ is the limiting mgf of the rescaled Heston forward mgf

and so the condition for the limiting forward domain is equivalent to ensuring that the limiting forward mgf

does not blow up and is strictly positive except at u = 0 where it is zero.

Lemma 5.5. For any t ≥ 0, τ > 0, u ∈ Dt,τ , the following expansion holds as ε tends to zero:

Λε(u) = Λ(u, t, τ) + L(u, t, τ)ε+O
(
ε2
)
,

where Dt,τ , Λ and L are defined in (3.3), (3.2) and (3.4) and Λε is the rescaled mgf in Assumption 2.1 for the

Heston diagonal small-maturity process
(
X

(εt)
ετ

)
ε>0

.

Remark 5.6. For any u ∈ Dt,τ , Lemma 5.3 implies that Λε(u) is a real number for any ε > 0. Therefore L

defined in (3.4) and used in Lemma 5.5 is a real-valued function on Dt,τ .

Proof. All expansions below for d, γ and βt defined in (3.13) hold for any u ∈ Dt,τ :

d (u/ε) =
1

ε

(
κ2ε2 + uε (ξ − 2κρ)− u2ξ2ρ̄

)1/2
=

iu

ε
d0 + d1 +O(ε),

γ (u/ε) =
κε− ρξu− iud0 − d1ε+O

(
ε2
)

κε− ρξu+ iud0 + d1ε+O (ε2)
= g0 −

iε

u
g1 +O

(
ε2
)
,

βεt =
1

4
ξ2tε− 1

8
κξ2t2ε2 +O

(
ε3
)
,(5.19)
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where we have set

d0 := ρ̄ξ sgn(u), d1 :=
i (2κρ− ξ) sgn(u)

2ρ̄
, g0 :=

iρ− ρ̄ sgn(u)

iρ+ ρ̄ sgn(u)
g1 :=

(2κ− ξρ) sgn(u)

ξρ̄ (ρ̄+ iρ sgn(u))
2 ,(5.20)

where sgn(u) = 1 if u ≥ 0 and -1 otherwise. From the definition of A in (5.17) we obtain

A (u/ε, ετ) =
κθ

ξ2

(
(κ− ρξu/ε− d(u/ε)) ετ − 2 log

(
1− γ(u/ε) exp (−d(u/ε)ετ)

1− γ(u/ε)

))
(5.21)

=
κθ

ξ2
((
κε− ρξu− iud0 − εd1 +O(ε2)

)
τ

−2 log

(
1−

(
g0 − iεg1/u+O(ε2)

)
exp

(
−iud0τ − εd1τ +O(ε2)

)
1− (g0 − iεg1/u+O(ε2))

))
= L0(u, τ) +O(ε),

where L0 is defined in (3.5). Substituting the asymptotics for d and γ above we further obtain

1− exp (−d(u/ε)ετ)
1− γ(u/ε) exp (−d(u/ε)ετ)

=
1− exp

(
−iud0τ − εd1τ +O(ε2)

)
1− (g0 − iεg1/u+O(ε2)) exp (−iud0τ − εd1τ +O(ε2))

,

and therefore using the definition of B in (5.17) we obtain

B(u/ε, ετ) =
κ− ρξu/ε− d(u/ε)

ξ2
1− exp (−d (u/ε) ετ)

1− γ (u/ε) exp (−d (u/ε) ετ)
(5.22)

= −ρξu+ iud0
εξ2

1− exp (−iud0τ)
1− g0 exp (−iud0τ)

+ L1(u, τ) +O(ε)

=
Λ(u, 0, τ)

vε
+ L1(u, τ) +O(ε),

with L1 defined in (3.5) and Λ in (3.2). Combining (5.19) and (5.22) we deduce

(5.23) βεtB (u/ε, ετ) =
ξ2tΛ(u, 0, τ)

4v
+

(
L1(u, τ)ξ

2t

4
− Λ(u, 0, τ)κξ2t2

8v

)
ε+O(ε2),

and therefore as ε tends to zero,

εB(u/ε, ετ)ve−κεt

1− 2βεtB(u/ε, ετ)
=

[
Λ(u, 0, τ) + vL1(u, τ)ε+O

(
ε2
)] (

1− tκξ +O(ε2)
)

1− ξ2tΛ(u, 0, τ)/2v + (Λ(u, 0, τ)κξ2t2/4v − L1(u, τ)ξ2t/2) ε+O (ε2)

= Λ(u, t, τ) +

(
Λ(u, t, τ)2

(
vL1(u, τ)

Λ(u, 0, τ)2
− κξ2t2

4v

)
− κtΛ(u, t, τ)

)
ε+O(ε2).(5.24)

Again using (5.23) we have

−2κθε

ξ2
log (1− 2βεtB (u/ε, ετ)) = −2κθ

ξ2
log

(
1− Λ(u, 0, τ)ξ2t

2v

)
ε+O(ε2).(5.25)

Recalling that

Λε(u) = εA (u/ε, ετ) +
εB (u/ε, ετ)

1− 2βεtB (u/ε, ετ)
ve−κεt − 2κθε

ξ2
log (1− 2βεtB (u/ε, ετ)) ,

the lemma follows by combining (5.21), (5.24) and (5.25). �

Lemma 5.7. For all t ≥ 0, τ > 0, Λ (given in (3.2)) is convex and essentially smooth on Dt,τ , defined in (3.3).
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Proof. The first derivative of Λ is given by

∂Λ (u, t, τ)

∂u
=

−v
ρξ + 1

2ξ
2tu− ρ̄ξ cot

(
1
2ξρ̄τu

) + uv
(

ξ2t
2 + 1

2ξ
2ρ̄2τ csc2

(
1
2ξρ̄τu

))
(
−ξρ− 1

2ξ
2tu+ ξρ̄ cot

(
1
2ξρ̄τu

))2
=

Λ(u, t, τ)

u

(
1 +

Λ (u, t, τ)

v

(
ξ2t

2
+

1

2
ξ2ρ̄2τ csc2

(
1

2
ρ̄ξτu

)))
.

Any sequence tending to the boundary satisfies Λ (u, 0, τ) → 2v/ξ2t which implies Λ(u, t, τ) ↗ ∞ from Re-

mark 5.4 and hence |∂Λ(u, t, τ)/∂u| ↗ ∞. Therefore Λ(·, t, τ) is essential smooth. Now,

∂2Λ(u, t, τ)

∂u2
=

2uv
(
− ξ2t

2 − 1
2ξ

2ρ̄2τ csc2(ψu)
)2

(
−ξρ− 1

2ξ
2tu+ ρ̄ξ cot(ψu)

)3 +
ξ2tv + ρ̄2ξ2τv (1− ψu cot(ψu)) csc

2(ψu)(
−ρξ − 1

2ξ
2tu+ ρ̄ξ cot(ψu)

)2
=
ξ2

2
Λ(u, t, τ)

(
t+ ρ̄2τ csc2(ψu)

)2(
ρ+ 1

2ξtu− ρ̄ cot(ψu)
)2 +

v + ρ̄2τv (1− ψu cot(ψu)) csc
2(ψu)(

ρ+ 1
2ξtu− ρ̄ cot(ψu)

)2 .

where ψu := 1
2 ρ̄ξτu. For u ∈ Dt,τ \ {0}, we have Λ(u, t, τ) > 0 and Λ(0, t, τ) = 0 from Remark 5.4. Also we

have the identity that 1− θ/2 cot (θ/2) ≥ 0 for θ ∈ (−2π, 2π), so that Λ is strictly convex on Dt,τ . �

Proof of Corollary 3.3. We first look for a Taylor expansion of u∗(k) around k = 0 using Λ′(u∗(k), t, τ) = k.

Differentiating this equation iteratively and setting k = 0 (and using u∗(0) = 0) gives an expansion for u∗ in

terms of the derivatives of Λ. In particular, Λ′′(0, t, τ)u∗
′
(0) = 1 and Λ′′′(0, t, τ)(u∗

′
(0))2+Λ′′(0, t, τ)u∗

′′
(0) = 0,

which implies that u∗
′
(0) = 1/Λ′′(0, t, τ) and u∗

′′
(0) = −Λ′′′(0, t, τ)/Λ′′(0, t, τ)3. From the explicit expression

of Λ in (3.2), we then obtain

u∗(k) =
k

τv
− 3ξρ

4τv2
k2 +

ξ2
((
19ρ2 − 4

)
τ − 12t

)
24τ2v3

k3 +
5ξ3ρ

(
48t+

(
16− 37ρ2

)
τ
)

192τ2v4
k4

+
ξ4
(
1080t2 +

(
2437ρ4 − 1604ρ2 + 112

)
τ2 − 180

(
27ρ2 − 4

)
τt
)

1920τ3v5
k5 +O(k6).

Using this series expansion and the fact that Λ∗(k) = u∗(k)k−Λ(u∗(k), t, τ), the corollary follows from tedious

but straightforward Taylor expansions of v0 and v1 defined in (2.14). �

Lemma 5.8. Under the stopped-share-price measure (2.18) the forward Heston mgf defined in (5.15) reads

Λ(u) = A(u, τ) +
B(u, τ)

1− 2β̃tB(u, τ)
ve−κ̃t − 2κθ

ξ2
log
(
1− 2β̃tB(u, τ)

)
, for all u ∈ DΛ,

where A and B are defined in (5.17),

β̃t :=
ξ2

4κ̃
(1− e−κ̃t) and κ̃ := κ− ξρ.(5.26)

Proof. Under the stopped-share-price measure (2.18) the Heston dynamics are given by

(5.27)

dXu =
(
−1

2Vu + Vu11u≤t

)
du+

√
VudWu, X0 ∈ R,

dVu = (κθ − κVu + ρξVu11u≤t) du+ ξ
√
VudZu, V0 = v > 0,

d 〈W,Z〉u = ρdu.

We now compute

Ẽ
(
eu(Xt+τ−Xt)

)
= Ẽ

(
Ẽ
(
eu(Xt+τ−Xt)|Ft

))
= Ẽ

(
eA(u,τ)+B(u,τ)Vt

)
(5.28)

= eA(u,τ)Ẽ
(
eB(u,τ)Vt

)
= eA(u,τ)Λ̃V

t (B(u, τ)),(5.29)
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where

(5.30) Λ̃V
t (u) = exp

(
β̃tuλ̃

1− 2β̃tu

)(
1− 2β̃tu

)−q/2

for all u <
1

2β̃t
,

with q := 4κθ/ξ2, λ̃ := ve−κ̃t/β̃t. Over (t, t + τ ] the Heston dynamics in (5.27) remain the same as under the

risk-neutral measure and so we can apply the standard spot Heston mgf in (5.28). On [0, t] we use the modified

chi-squared mgf in (5.30) to obtain (5.29), corresponding to the modified Heston process in (5.27) on [0, t]. �

5.2.2. Proofs of Section 3.1.2. In this section we shall use the standing assumption that κ > ρξ. Let ε = τ−1

and consider the Heston process
(
τ−1X

(t)
τ

)
τ>0

with (Xt)t defined in (3.1) and
(
X

(t)
τ

)
τ
defined in (2.11).

Specifically Λε defined in (2.1) is then given by Λε(u) = τ−1E
(
euX

(t)
τ

)
, and for ease of notation we set

Λ(t)
τ (u) = Λε(u) for all u ∈ Dε.(5.31)

The following lemma [20, page 13] recalls some elementary facts about the function V in (3.12), which will be

used throughout the section. We then proceed with two technical results needed in the proof of Proposition 5.13.

Lemma 5.9. The function V defined in (3.12) is infinitely differentiable, strictly convex, essentially smooth on

the open interval (u−, u+) with u± defined in (3.8) and

V (u−) := lim
u↘u−

V (u) =
κθ (2κ− ρξ + ρη)

2ξ2 (1− ρ2)
<∞,

V (u+) := lim
u↗u+

V (u) =
κθ (2κ− ρξ − ρη)

2ξ2 (1− ρ2)
<∞,

with u− < 0, u+ > 1 and V (0) = V (1) = 0. Furthermore, it has a unique minimum at ξ−2ρκ−ρη
2ξ(1−ρ2) ∈ (0, 1).

Lemma 5.10. Let ρ± be defined as in (3.11), βt in (3.13), and recall the standing assumption ρ < κ/ξ.

Assume further that t > 0 and define the functions g+ and g− by

g±(ρ) := (2κ− ρξ)± ρ

√
ξ2 (1− ρ2) + (2κ− ρξ)

2 − ξ2(1− ρ2)

βt
.

(i) The inequality −1 < ρ− < 0 always holds and if κ/ξ > ρ+ then 1/2 < ρ+ < 1;

(ii) the inequality g+(ρ) > 0 holds if and only if ρ ∈ (ρ+, 1) and κ/ξ > ρ+;

(iii) the inequality g−(ρ) > 0 holds if and only if ρ ∈ (−1, ρ−).

Remark 5.11. From the proof, we have the equality ρ− = −1 if and only if t = 0. Also if κ > ρ+ξ, then

ρ+ = 1 if and only if t = 0.

Proof. We first prove Lemma 5.10(i) and consider the inequality −1 < ρ− < 0. Using the definition of ρ−

in (3.11) this is equivalent to proving that

ξ − (8κ+ ξ)e2κt

eκt + 1
< −

√
16κ2e2κt + ξ2 (1− eκt)

2
< ξ

(
1− eκt

)
=
ξ(1− e2κt)

1 + eκt
.

The upper bound then follows trivially. Also we can write√
16κ2e2κt + ξ2 (1− eκt)

2
=

√
(ξ − (8κ+ ξ)e2κt)

2

(eκt + 1)
2 − 16κe2κt (eκt − 1) (κ+ ξ + ξeκt + 3κeκt)

(eκt + 1)
2 ,
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and the lower bound follows. We now prove that ρ+ > 1/2. From (3.11) this is equivalent to√
16κ2e2κt + ξ2 (1− eκt)

2
>

4ξ + (κ− 4ξ)e2κt

4 (eκt + 1)
.

Tedious rearrangements show that the left-hand side can be written as√
16κ2e2κt + ξ2 (1− eκt)

2
=

√
(4ξ + (κ− 4ξ)e2κt)

2

16 (eκt + 1)
2 +

κe2κt (8ξ (e2κt − 1) + κ (512eκt + 255e2κt + 256))

16 (eκt + 1)
2 ,

and the result follows. We now prove that the upper bound ρ+ < 1 holds if κ/ξ > ρ+. Assume that κ/ξ > ρ+.

Since eκt+1
3eκt+1 is always strictly smaller than 1/2, we immediately obtain the inequality

eκt + 1

3eκt + 1
<
κ

ξ
.(5.32)

Using the definition of ρ+ in (3.11) the statement ρ+ < 1 is equivalent to√
16κ2e2κt + ξ2 (1− eκt)

2
<
ξ + (8κ− ξ)e2κt

eκt + 1
,

which can be written as

(5.33)

√
(ξ + (8κ− ξ)e2κt)

2

(eκt + 1)
2 − 16κe2κt (eκt − 1) (κ− ξ (eκt + 1) + 3κeκt)

(eκt + 1)
2 <

ξ + (8κ− ξ)e2κt

eκt + 1
.

This statement is true if κ − ξ (eκt + 1) + 3κeκt > 0 and if the rhs is positive. The former inequality is

precisely (5.32), and immediately implies the positivity condition. Therefore ρ+ < 1.

We now prove Lemma 5.10(ii). The equation g+(ρ) = 0 implies (by squaring and rearranging the terms):

(5.34) 4κ(ρ2 − 1)
(
4κe2κtρ2 + ξ(1− e2κt)ρ− κ(1 + 2eκt + e2κt)

)
= 0.

The roots of this equation are ±1 and ρ± defined in (3.11). Clearly some of these solutions are extraneous. The

two possible positive roots are {ρ+, 1} and the two possible negative ones are {ρ−,−1}. Clearly g+(−1) = 0.

Straightforward computations show that g′+(−1) < 0 and g′+(0) > 0. Since g+ is continuous on (−1, 0) with

g+(0) < 0, it cannot have a single root in this interval, and ρ− ∈ (−1, 0) (by Lemma 5.10(i)) is hence not a valid

root. Consider now ρ ∈ (0, κ/ξ). From Lemma 5.10(i) the only possible roots are ρ ∈ {1, ρ+}. If ρ = 1 then

clearly κ/ξ > 1 by the standing assumption. But g+(1) = 2κ− ξ +
√
(2κ− ξ)2 is null if and only if κ/ξ < 1/2,

which is a contradiction. Therefore the only possible positive solution is ρ+. Now, on (0, κ/ξ) we have

g′+(ρ) = −ξ − 2κξρ√
4κ2 − 4κξρ+ ξ2

+
√

4κ2 − 4κξρ+ ξ2 +
8κρ

1− e−κt

> −ξ − 2κξρ√
4κ2 − 4κξ (κ/ξ) + ξ2

+
√
4κ2 − 4κξ (κ/ξ) + ξ2 +

8κρ

1− e−κt

=
8κρ

1− e−κt
− 2κρ > 0.

In summary, g+ is strictly increasing on (0, κ/ξ) with a unique zero at ρ+ satisfying κ > ρ+ξ. On the inter-

val (−1, κ/ξ), g+(ρ) > 0 if and only if ρ ∈ (ρ+, 1) and ρ+ξ < κ. The proof of (iii) is analogous to the proof

of (ii) and we omit it for brevity.

�

Lemma 5.12. Let ρ± and u∗± be as in (3.11) and (3.8) and t > 0. Then u∗+ > 1 if ρ ≤ ρ−, and u
∗
− < 0 if

ρ ≥ ρ+.
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Proof. From (3.9) write ν =
√
z(ρ), where

z(ρ) := ξ2 − 2eκt
(
8κ2 − 4κξρ+ ξ2

)
+ e2κt(ξ − 4κρ)2.

The two numbers u∗− and u∗+ in (3.8) are well-defined in R if and only if z(ρ) ≥ 0 and t > 0. The two roots

of this quadratic polynomial are given by χ± := 1
4κ

[
e−κt

(
ξ(eκt − 1)± 4κeκt/2

)]
. We now claim that ρ− ≤ χ−

and ρ+ ≥ χ+. From the expression of ρ− given in (3.11), the inequality ρ− ≤ χ− can be rearranged as

−
√
ξ2 + 16κ2e2κt − 2ξ2eκt + ξ2e2κt ≤ ξ − 2ξeκt + ξe2κt − 8κe

3κt
2

eκt + 1
.

Noting the the square root term is equal to

√
ξ2 + 16κ2e2κt − 2ξ2eκt + ξ2e2κt =

√√√√√4eκt (eκt − 1)
2
(
ξ + 2κe

κt
2

)2
(eκt + 1)

2 +

(
ξ − 2ξeκt + ξe2κt − 8κe

3κt
2

)2
(eκt + 1)

2 ,

proves the claim. Analogous manipulations imply the other claim ρ+ ≥ χ+, and hence z(ρ) is a well-defined

real number for ρ ∈ [−1, ρ−] ∪ [ρ+, 1].

The claim u∗− < 0 is equivalent to −
√
ξ2 − 2eκt (8κ2 − 4κξρ+ ξ2) + e2κt(ξ − 4κρ)2 < ξ (1− eκt) + 4κρeκt,

which holds as soon as ξ (1− eκt)+4κρeκt > 0, or ρ > ξ
4κ (1− e−κt). Therefore the claim follows for any ρ ≥ ρ+

if and only if ρ+ > ξ
4κ (1− e−κt). This inequality simplifies to

√
ξ2 + 16κ2e2κt − 2ξ2eκt + ξ2e2κt >

ξ (eκt − 1)
2

eκt + 1
,

which can be written as√√√√4eκt
(
4κ2eκt (eκt + 1)

2
+ ξ2 (eκt − 1)

2
)

(eκt + 1)
2 +

ξ2 (eκt − 1)
4

(eκt + 1)
2 >

ξ (eκt − 1)
2

eκt + 1
,

which is always true.

Now straightforward manipulations show that the inequality u∗+ > 1 is equivalent to√
(ξ (eκt − 1) + 4κρeκt)

2 − 16κeκt (κ+ ξρ (eκt − 1)) > ξ
(
eκt − 1

)
+ 4κρeκt,

which is true if ρ < − κ

ξ (eκt − 1)
or ρ < −ξ (1− e−κt)

4κ
. And of course the claim

(
u∗+ > 1 if ρ ≤ ρ−

)
shall hold if

ρ− < − κ

ξ (eκt − 1)
(5.35)

or ρ− < −ξ (1− e−κt)

4κ
.(5.36)

Consider (5.35). This inequality, which can be re-written as

−

√√√√16κ2e3κt
(
ξ2 (eκt − 1)

2
(eκt + 1)− 4κ2eκt

)
ξ2 (e2κt − 1)

2 +

(
ξ2(1− eκt)(1− e2κt) + 8κ2e2κt

ξ(eκt + 1)(1− eκt)

)2

<
ξ2(1− eκt)(1− e2κt) + 8κ2e2κt

ξ(eκt + 1)(1− eκt)
,

holds if ξ2 (eκt − 1)
2
(eκt + 1)− 4κ2eκt > 0, or

(eκt−1)
2
(1+e−κt)
4 > κ2

ξ2 . Quick manipulations turn (5.36) into

−

√√√√4eκt
(
4κ2eκt (eκt + 1)

2 − ξ2 (eκt − 1)
2
(2eκt + 1)

)
(eκt + 1)

2 +
ξ2 (2eκt − 3e2κt + 1)

2

(eκt + 1)
2 <

ξ
(
2eκt − 3e2κt + 1

)
eκt + 1

.
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Again this trivially holds if 4κ2eκt (eκt + 1)
2 − ξ2 (eκt − 1)

2
(2eκt + 1) > 0, which is in turn equivalent to κ2

ξ2 >

(eκt−1)
2
(2+e−κt)

4(eκt+1)2
. Since the inequality

(eκt−1)
2
(2+e−κt)

4(eκt+1)2
<

(eκt−1)
2
(1+e−κt)
4 , is clearly true, it follows that for any

valid choice of parameters either (5.35) or (5.36) (or both) hold, and the claim follows. �

Proposition 5.13. Let ε = τ−1 and consider the large-maturity Heston forward process
(
τ−1X

(t)
τ

)
τ>0

with Xt

defined in (3.1) and X
(t)
τ defined in (2.11). Then D0,0 = D∞ and {0, 1} ⊂ Do

0,0 with D∞, D0,0 and Do
0,0 defined

in (3.10) and in Assumption 2.1.

Proof. We write

E
(
eu(Xt+τ−Xt)

)
= E

[
E
(
eu(Xt+τ−Xt)|Ft

)]
= E

(
eA(u,τ)+B(u,τ)Vt

)
= eA(u,τ)E

(
eB(u,τ)Vt

)
.

For any fixed t ≥ 0 we require that

E
(
eu(Xt+τ−Xt)|Ft

)
<∞ for all τ > 0.(5.37)

Andersen and Piterbarg [3, Proposition 3.1] proved that if the following conditions are satisfied

κ > ρξu,(5.38)

(κ− ρξu)
2
+ u (1− u) ξ2 ≥ 0,(5.39)

then the explosion time is infinite and (5.37) is satisfied. In [20] the authors proved that these conditions are

equivalent to κ > ρξ and u ∈ [u−, u+], with u− < 0 and u+ > 1 (u± defined in (3.8)). Further we require that

E
(
eB(u,τ)Vt

)
<∞, for all τ > 0.(5.40)

Now denote

DV := {u ∈ R : E
(
eB(u,τ)Vt

)
<∞, for all τ > 0}.

Then the limiting forward mgf domain is given by D∞ = [u−, u+] ∩ DV and κ > ρξ. The condition (5.40) is

equivalent to B (u, τ) < 1/(2βt) for all τ > 0, where

B (u, τ) := ξ−2 (κ− ρξu− d (u))
1− exp (−d (u) τ)

1− γ (u) exp (−d (u) τ)
,

and where d and γ are given in (3.13). Now a simple calculation gives B (0, τ) = 0 and B (1, τ) = 0 for all τ > 0.

Furthermore for u ∈ (0, 1), and given Conditions (5.38) and (5.39), we have d (u) > κ − ρξu and γ (u) < 0.

This implies that B (u, τ) is strictly negative for u ∈ (0, 1) and τ > 0. In particular [0, 1] ⊂ D∞ (recall that the

process is a martingale). For a fixed u ∈ R we calculate

∂B (u, τ)

∂τ
=

2u(u− 1)d(u)2ed(u)τ(
κ− κed(u)τ + ξρu

(
ed(u)τ − 1

)
− d(u)

(
ed(u)τ + 1

))2 ,
so that for any u 6∈ [0, 1], B (u, ·) is strictly increasing. Therefore the limiting domain is given by

D∞ =

{
u ∈ R : lim

τ→∞
B (u, τ) <

1

2βt

}
∩ [u−, u+] ,

with [0, 1] ⊂ D∞. We first concentrate on the first condition and check at the end that our solution always

contains [0, 1]. We have limτ→∞B (u, τ) = ξ−2 (κ− ρξu− d (u)) = V (u)/(κθ), with V defined in (3.12). So the

condition is equivalent to κ− ρξu− d(u) < 2κ/(1− e−κt). If ρ ≤ 0 (ρ ≥ 0) and u ≤ 0 (u ≥ 0) then

κ− ρξu− d(u) ≤ κ− ρξu ≤ κ <
2κ

1− e−κt
,
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and the condition is always satisfied. So if ρ = 0 the domain is given by [u−, u+] . If ρ < 0 (ρ > 0), the

domains contain [u−, 0] ([0, u+]). Now suppose that ρ < 0 and u > 0. The condition above is equivalent to

V (u) < κθ/(2βt). From Lemma 5.9, on (0, u+], the function V attains its maximum at u+ with

V (u+) =
κθ (2κ− ρξ − ρη)

2ξ2 (1− ρ2)
.

Using the properties in Lemma 5.9, there exists u∗+ ∈ (1, u+) solving the equation

V (u∗+)

κθ
=

1

2βt
,(5.41)

if and only if (2κ− ρξ) − ρ

√
ξ2 (1− ρ2) + (2κ− ρξ)

2
> ξ2

(
1− ρ2

)
/βt. This condition has been shown in

Lemma 5.10 to be equivalent to −1 < ρ < ρ− and t > 0. The solution to (5.41) has two roots u∗− and u∗+ defined

in (3.8), and the correct solution in this case is u∗+ since from Lemma 5.12 we know that u∗+ > 1 and u∗− < 0.

So if ρ− ≤ ρ < 0 then the effective limiting domain is [u−, u+] . If −1 < ρ < ρ− and t > 0 then the effective

limiting domain is given by
[
u−, u

∗
+

)
. Following a similar procedure we can show for 0 < ρ ≤ min (κ/ξ, ρ+) the

effective limiting domain is given by [u−, u+] . If ρ+ < ρ < min (κ/ξ, 1), t > 0 and κ > ρ+ξ then the effective

limiting domain is given by
(
u∗−, u+

]
, with u− < u∗− < 0. �

Lemma 5.14. The following expansion holds for the forward mgf Λ
(t)
τ defined in (5.31):

Λ(t)
τ (u) = V (u) +

H(u)

τ

(
1 +O

(
e−d(u)τ

))
, for all u ∈ D∞, as τ tends to infinity,

where the functions V , H, d and the interval D∞ are defined in (3.12), (3.13) and (3.10).

Remark 5.15. For any u ∈ D∞, d(u) > 0. Indeed D∞ ⊆ [u−, u+] by Proposition 5.13. Furthermore since

κ > ρξ, u ∈ [u−, u+] implies (5.39) which in turn implies d(u) > 0.

Remark 5.16. We note in particular that the exponential decay in the remainder implies that for all u ∈ D∞,

Λ
(t)
τ (u) = V (u) +H(u)/τ +O

(
1/τ3

)
for τ large enough, which is used in the proof of Proposition 3.8.

Proof of Lemma 5.14. From the definition of Λ
(t)
τ in (5.31) and the Heston forward mgf given in (5.16) we

immediately obtain the following asymptotics as τ tends to infinity:

A (u, τ) = τV (u)− 2κθ

ξ2
log

(
1

1− γ(u)

)
+O

(
e−d(u)τ

)
, B (u, τ) =

V (u)

κθ
+O

(
e−d(u)τ

)
,

where A and B are defined in (5.17), V in (3.12) and d and γ in (3.13). In particular this implies that

B (u, τ)

1− 2βtB (u, τ)
=

V (u)

θκ− 2βtV (u)
+O

(
e−d(u)τ

)
,

log (1− 2βtB (u, τ)) = log

(
1− 2βtV (u)

θκ

)
+O

(
e−d(u)τ

)
,

which are well-defined for all u ∈ D∞. We therefore obtain

H(u) =
V (u)

κθ − 2βtV (u)
ve−κt − 2κθ

ξ2
log

(
1− 2βtV (u)

κθ

)
− 2κθ

ξ2
log

(
1

1− γ(u)

)
,

and the lemma follows from straightforward simplifications. �
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5.3. Proofs of Section 3.2. For ease of notation here, the subscript i for a function or a variable shall refer

to the i-th Heston model, for which we can readily use the results of Section 3.1. For instance the function Λi

shall refer to the function Λ evaluated using the parameters in the i-th Heston model.

Lemma 5.17. In the n-dimensional multivariate Heston model (3.15) the forward mgf defined in (5.15) reads

Λ(u) = logE
(
euX

(t)
τ

)
=

n∑
i=1

Λi(u), for all u ∈
n∩

i=1

DΛi
,

where Λi and DΛi are defined in (5.16).

Proof. Conditioning on the filtration (Ft)t≥0 and using the tower property, we obtain

Λ(u) = logE
(
E
(
euX

(t)
τ |Ft

))
=

n∑
i=1

Ai(u, τ) + logE
(
e
∑n

i=1 Bi(u,τ)V
(i)
t

)
,

using the mgf of the standard Heston model. By independence of the variance processes, we obtain

Λ(u) =
n∑

i=1

Ai(u, τ) + logE
(
e
∑n

i=1 Bi(u,τ)V
(i)
t

)
=

n∑
i=1

Λi(u), for all u ∈
n∩

i=1

DΛi .

�

5.4. Proofs of Section 3.3. Consider the following functions:

A(u, τ) := A1(u, τ) +
2κ2θ2(χ(u)− d(u))

d(u)3ξ2

χ(u) (d(u)τ − 2) + d(u) (d(u)τ − 1) + 2e−d(u)τ
2χ(u) + d(u)2−2χ(u)2

χ(u)+d(u) e−d(u)τ

1− γ(u)e−2d(u)τ

 ,

(5.42)

A1(u, τ) :=
1

2
(χ(u)− d (u)) τ − 1

2
log

(
1− γ (u) exp (−2d (u) τ)

1− γ (u)

)
,

B1(u, τ) :=
4κθ

ξ2
χ(u)− d(u)

d(u)

(1− exp (−d(u)τ))2

1− γ(u) exp (−2d(u)τ)
, B2(u, τ) :=

2(χ(u)− d(u))

ξ2
1− exp (−2d (u) τ)

1− γ (u) exp (−2d (u) τ)
,

and

M(r, p, q) :=
1

2

(
p2r2

1− 2rq
− log (1− 2rq)

)
, βt :=

ξ2

8κ

(
1− e−2κt

)
, µt :=

√
ve−κt + θ

(
1− e−κt

)
,(5.43)

d(u) :=
(
χ(u)2 + (1− u)

u

4
ξ2
)1/2

, γ(u) :=
χ(u)− d (u)

χ(u) + d (u)
and χ(u) := κ− ρξu

2
.

Note that although in some cases we use the same variables and functions as in the Heston analysis they

may have a different definition in this section. In our analysis we require the following lemma which is a direct

consequence of [4, Equation 29.6].

Lemma 5.18. If Z ∼ N (0, 1) and p and q are two constants, then, for M defined in (5.43),

logE
(
eu(pZ+qZ2)

)
=M(u, p, q), whenever uq < 1/2.

Lemma 5.19. In the Schöbel-Zhu model (3.18) the forward mgf defined in (5.15) is given by

Λ(u) = A(u, τ) +B1(u, τ)µt +B2(u, τ)µ
2
t +M

(
1, B1(u, τ)

√
βt + 2B2(u, τ)

√
βtµt, B2(u, τ)βt

)
,

for all u ∈ DΛ, where all the functions and variables are defined in (5.42) and (5.43).
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Proof. Conditioning on the filtration (Ft)t≥0 and using the tower property we find

Λ(u) = logE
[
E
(
euX

(t)
τ |Ft

)]
= A(u, τ) + logE

[
exp

(
B1(u, τ)σt +B2(u, τ)σ

2
t

)]
,

where we have used the standard Schöbel-Zhu mgf from [37] and the functions defined in (5.42). Since σt is

Gaussian with mean µt and variance βt (given in (5.43)), we obtain

Λ(u) = A(u, τ) + logE
(
eB1(u,τ)σt+B2(u,τ)σ

2
t

)
= A(u, τ) +B1(u, τ)µt +B2(u, τ)µ

2
t + logE

(
e(B1(u,τ)

√
βt+2B2(u,τ)

√
βtµt)Z+(B2(u,τ)βt)Z

2
)
,

with Z ∼ N (0, 1), and the lemma follows directly from Lemma 5.18. �

5.5. Proofs of Section 3.4. Let φ be the Lévy exponent of the Lévy process Y . If v follows (3.21), by a

straightforward application of the tower property for expectations, the forward mgf defined in (5.15) is given by

(5.44) Λ(u) = A(φ(u), τ) +
B(φ(u), τ)

1− 2βtB(φ(u), τ)
ve−κt − 2κθ

ξ2
log (1− 2βtB(φ(u), τ)) , for all u ∈ DΛ,

where

A(u, τ) :=
κθ

ξ2

(
(κ− d(u)) τ − 2 log

(
1− γ(u) exp (−d(u)τ)

1− γ(u)

))
,(5.45)

B(u, τ) :=
κ− d(u)

ξ2
1− exp (−d(u)τ)

1− γ(u) exp (−d(u)τ)
,

d(u) :=
(
κ2 − 2uξ2

)1/2
, γ(u) :=

κ− d(u)

κ+ d(u)
and βt :=

ξ2

4κ

(
1− e−κt

)
.(5.46)

Similarly if (vt)t≥0 follows (3.22) the forward mgf defined in (5.15) is given by

(5.47) Λ(u) = A(φ(u), τ) +B(φ(u), τ)ve−λt + d log

(
B(φ(u), τ)− etλα

etλ(B(φ(u), τ)− α)

)
, for all u ∈ DΛ,

where

(5.48) A(u, τ) :=
λd

αλ− u

[
uτ + α log

(
1− u

αλ

(
1− e−λτ

))]
and B(u, τ) :=

u

λ

(
1− e−λτ

)
.

Proof of Proposition 3.19. We show that Proposition 2.14 is applicable given the assumptions of Proposi-

tion 3.19. Consider case (i). The expansion for Λ
(t)
τ defined in (5.31) is straightforward and analogous to

Lemma 5.14. In particular we establish that

Λ(t)
τ (u) = V (u) +

H(u)

τ

(
1 +O

(
e−d(u)τ

))
, for all u ∈ D̂∞, as τ tends to infinity,

where the functions V , H, d and the domain D̂∞ are defined in (3.23), (5.46) and (3.25). Since φ is essentially

smooth and strictly convex on Dφ and D̂∞ ⊆ Dφ, then the limiting mgf Λ0,0 = V is essentially smooth and

strictly convex on D̂∞. Also Λ
(t)
τ is infinitely differentiable on D̂∞ since φ is of class C∞ on D̂∞. Since φ(1) = 0

we have that V (1) = 0 and {0, 1} ⊂ D̂o
∞. It remains to be checked that the limiting domain is in fact given

by D̂∞. We first note that that by conditioning on (Vu)t≤u≤t+τ and using the independence of the time-change

and the Lévy process we have E
(
eu(Xt+τ−Xt)

)
= E

(
eφ(u)

∫ t+τ
t

vsds
)
and so any u in the limiting domain must

satisfy φ(u) <∞. Using [14, page 476] and the tower property we compute

(5.49) E
(
eu(Xt+τ−Xt)

)
= E

[
E
(
eφ(u)

∫ t+τ
t

vsds|Ft

)]
= E

(
eA(φ(u),τ)+B(φ(u),τ)vt

)
= eA(φ(u),τ)E

(
eB(φ(u),τ)vt

)
,
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with A and B defined in (5.45). Further from (5.18) we have

logE (euvt) =
uve−κt

1− 2βtu
− 2κθ

ξ2
log (1− 2βtu) , for all u <

1

2βt
.

Following a similar argument to the proof of Proposition 5.13 we can show that for any t ≥ 0, B(φ(u), τ) <

1/(2βt) is always satisfied for each τ > 0. This follows from the independence of the Lévy process Y and the time-

change. We also require that for any t ≥ 0, E
(
e
∫ t+τ
t

vsdsφ(u)|Ft

)
<∞, for every τ > 0. Here we use [3][Corollary

3.3] with zero correlation to find that we require φ(u) ≤ κ2/(2ξ2). It follows that D̂∞ =
{
u : φ(u) ≤ κ2/(2ξ2)

}
.

Regarding case (ii), arguments analogous to case (i) hold and we focus on showing that the limiting domain

is D̃∞. Using [14, page 488] Equality (5.49) also holds with A and B defined in (5.48). Since we require that

for any t ≥ 0, E
(
e
∫ t+τ
t

vsdsφ(u)|Ft

)
<∞, for every τ > 0 we have φ(u) < αλ. Using [14, page 482] we also have

logE (euvt) = uve−λt + d log

(
u− αeλt

(u− α)eλt

)
, for all u < α.

But it is straightforward to show that φ(u) < αλ implies B(φ(u), τ) < α for any τ > 0 and it follows that

D̃∞ = {u : φ(u) < αλ}. Case (iii) is straightforward and omitted. �
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[1] E. Alòs, J. León and J. Vives. On the short-time behavior of the implied volatility for jump-diffusion models with stochastic

volatility. Finance & Stochastics, 11: 571-589, 2007.

[2] L.B.G. Andersen and A. Lipton. Asymptotics for exponential Lévy processes and their volatility smile: survey and new results.
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[22] M. Forde, A. Jacquier and A. Mijatović. Asymptotic formulae for implied volatility in the Heston model. Proceedings of the

Royal Society A, 466 (2124): 3593-3620, 2010.

[23] J.P. Fouque, G. Papanicolaou, R. Sircar and K. Solna. Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit

Derivatives. CUP, 2011.

[24] P. Friz, S. Gerhold, A. Gulisashvili and S. Sturm. Refined implied volatility expansions in the Heston model. Quantitative

Finance, 11 (8): 1151-1164, 2011.

[25] K. Gao and R. Lee. Asymptotics of Implied Volatility to Arbitrary Order. SSRN:1768383, 2011.

[26] J. Gatheral. The Volatility Surface: A Practitioner’s Guide. John Wiley & Sons, 2006.

[27] J. Gatheral and A. Jacquier. Convergence of Heston to SVI. Quantitative Finance, 11 (8): 1129-1132, 2011.

[28] P. Glasserman and Q. Wu. Forward and Future Implied Volatility. Internat. Journ. of Theor. and App. Fin., 14(3), 2011.

[29] R.R. Goldberg. Fourier Transforms. CUP, 1970.

[30] A. Gulisashvili. Asymptotic formulas with error estimates for call pricing functions and the implied volatility at extreme strikes.

SIAM Journal on Financial Mathematics, 1: 609-641, 2010.

[31] A. Gulisashvili and E. Stein. Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic

Volatility Models. Applied Mathematics & Optimization, 61 (3): 287-315, 2010.

[32] P. Henry-Labordère. Analysis, geometry and modeling in finance. Chapman and Hill/CRC, 2008.

[33] S. Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The

Review of Financial Studies, 6(2): 327-342, 1993.

[34] G. Hong. Forward Smile and Derivative Pricing. globalriskguard.com/resources/deriv/fwd3.pdf, 2004.

[35] A. Jacquier and A. Mijatović. Large deviations for the extended Heston model: the large-time case. arXiv:1203.5020, 2012.

[36] A. Jacquier, M. Keller-Ressel and A. Mijatović. Implied volatility asymptotics of affine stochastic volatility models with jumps.

Forthcoming in Stochastics, 2012.

[37] C. Kahl and R. Lord. Complex Logarithms in Heston-Like Models. Mathematical Finance, 20 (4): 671-694, 2010.

[38] I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus. Springer-Verlag, 1997.

[39] S. Karlin and H. Taylor. A Second Course in Stochastic Processes. Academic Press, 1981.

[40] M. Keller-Ressel. Moment Explosions and Long-Term Behavior of Affine Stochastic Volatility Models. Mathematical Finance,

21 (1): 73-98, 2011.

[41] R.W. Lee. Option Pricing by Transform Methods: Extensions, Unification and Error Control. Journal of Computational

Finance, 7 (3): 51-86, 2004.

[42] R.W. Lee. The Moment Formula for Implied Volatility at Extreme Strikes. Mathematical Finance, 14 (3), 469-480, 2004.

[43] V. Lucic. Forward-start options in stochastic volatility models. Wilmott Magazine, September, 2003.

[44] R. Merton. The Theory of Rational Option Pricing. Bell Journal of Economics and Management Science, 4(1): 141-183, 1973.
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