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INTEGRABILITY ESTIMATES FOR GAUSSIAN ROUGH DIFFERENTIAL

EQUATIONS

THOMAS CASS, CHRISTIAN LITTERER, AND TERRY LYONS

Abstract. We derive explicit tail-estimates for the Jacobian of the solution flow for stochastic
differential equations driven by Gaussian rough paths. In particular, we deduce that the Jacobian
has finite moments of all order for a wide class of Gaussian process including fractional Brownian
motion with Hurst parameter H > 1/4. We remark on the relevance of such estimates to a
number of significant open problems.

1. Introduction

Gaussian processes that are not necessarily semimartingales arise in modeling a large variety of
natural phenomena. The range of their applications reaches from fluid dynamics (e.g. randomly
forced Navier-Stokes systems [17]) via the modeling of financial markets under transaction costs
([15]) to the study of internet traffic through queueing models based on fractional Brownian motion
(fBm) [16]. These applications motivate the study of stochastic differential equations of the form

(1.1) dYt = V (Yt)dXt, Y (0) = y0

driven by Gaussian signals. Over the past decade extensive progress has been made understanding
the behaviour of solutions to such equations. In particular, for the case of fBm with Hurst parameter
H > 1/4 the work of Cass and Friz [3] shows the existence of the density for (1.1) under Hörmander’s
condition; Hairer et al. [1], [18] have shown the smoothness of this density and established ergodicity
under the regime H > 1/2.

Various recent works (Coutin-Qian [5], Ledoux-Qian-Zhang [24], Friz-Victoir [10], Lyons-Hambly
[20]) have explored the use of rough paths to understand differential equations driven by non-
semimartingale noise processes. Within this framework we can make sense of the solutions to (1.1)
driven by a broader class of Gaussian noises (which includes fBm H > 1/4) than classical analysis
based on Young integration. Thus, if we consider the flow UX

t←0 (y0) ≡ Yt of the RDE (1.1) then
under sufficient regularity on V, the map UX

t←0 (·) is a differentiable function (see, for example,
[10]) and its derivative (”the Jacobian”):

JX

t←0(y0) ≡ DUX

t←0 (·) |·=y0
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satisfies path-by-path an RDE of linear growth driven by X.

A careful reading of the diverse applications in [1], [18] reveals a surprisingly generic common
obstacle to the extensions of such results to the rough path regime. This obstacle eventually boils
down to the need for sharp estimates on the integrability of the Jacobian of the flow JX

t←0(y0) of an
RDE. Cass, Lyons [2] and Inahama [22] establish such integrability for the Brownian rough path
but only by using the independence of the increments; for more general Gaussian processes a more
careful analysis is needed. To understand the difficulty of this problem, we note from [10] that the
standard deterministic estimate on JX

t←0(y0) gives

(1.2) |Jx

t←0(y0)| ≤ C exp
(
C ||x||pp-var;[0,T ]

)
.

But in the case where X is a Gaussian rough path and p > 2 (i.e. Brownian-type paths or rougher)
the Fernique-type estimates of [8] give only that ||X||p-var;[0,T ] has a Gaussian tail, hence the right

hand side of (1.2) is not integrable in general. Worse still, the work Oberhauser and Friz [7]
shows that the inequality (1.2) can actually be saturated for a (deterministic) choice of differential
equation and driving rough path. However, for random paths that have enough structure to them
(in particular for Gaussian paths) only a set of small (or zero) measure comes close to equality in
(1.2). What is therefore needed (and what we provide!) is to recast the deterministic estimate in
a form that allows us to more strongly interrogate the underlying probabilistic structure

Our results will allows us to deduce the existence of moments of all orders for Jx

t←0(y0) for RDEs
driven by a class of Gaussian processes (including, but not restricted to, fBm with Hurst index
H > 1/4). In fact, our main estimate shows much more than simple moment estimates, namely
that the logarithm of the Jacobian has a tail that decays faster than an exponential (to be a little
more precise: we will show that

(1.3) P

(
log

[
sup

t∈[0,T ]

∣∣JX

t←0(y0)
∣∣
]
> x

)
. exp (−xr)

for any r < r0 ∈ (1, 2], and we describe r0 in terms of the regularity properties of the Gaussian
path.)

The results are relevant to a number of important problems. Firstly, they are a necessary ingre-
dient if one wants to extend the work of [17] and [18] on the ergodicity of non-Markovian systems.
Secondly, they are also an important ingredient in a Malliavin calculus proof on the smoothness of
the density for RDEs driven by rough Gaussian noise in the elliptic setting. Furthermore, it allows
one to achieve an analogue of Hörmander’s Theorem on the smoothness of the density for Gaussian
RDEs in conjunction with a suitable version of Norris’s Lemma (see [29],[30]). In this context, we
remark that Hu and Tindel [21] have recently obtained a Norris Lemma for fBm with H > 1/3 and
proved smoothness-of-density results for a class of nilpotent RDEs. Hairer and Pillai [19] have also
proved Hörmander-type theorems for a general class of RDEs; their results are predicated on the
assumption that the Jacobian has finite moments of all order. Hence, one application of this paper
is to use the tail estimate (1.3) together with the results in [21] or [19] to conclude that for t > 0 the
law of Yt (the solution to (1.1) ) will, under Hörmander’s condition, have a smooth density w.r.t.
Lebesgue measure on R

e for a rich classes of Gaussian processes X including fBm H > 1/3 . All
of these problems (and many more besides) require, in one way or another, the Lq integrability of
the Malliavin covariance matrix of the Wiener functional Y (ω) , which is itself expressed in terms
of the Jacobian.
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The techniques developed in this paper are relevant to the study of more general RDEs and not
just the one solved by the Jacobian. For example, the deterministic estimates we derive can also
be obtained in the following cases (cf. Friz, Victoir [10]):

(1) RDEs driven along linear vector fields of the form Vi(z) = Aiz + bi for e × e matrices Ai

and bi in R
e;

(2) Higher order derivatives of the flow (subject to suitably enhance regularity on the vector
fields defining the flow);

(3) The inverse of the Jacobian of the flow;
(4) Situations where one wants to control the distance between two RDE solution in the (in-

homogeneous) rough path metric (for example in stochastic fixed point theorems)

Recent work ([14] )has extended the class of linear-growth RDEs for which we have non-explosion
and there may be scope to extend our results to this setting. In this paper we focus only on the
Jacobian because of its central role in the wide range of problems we have outlined.

We finally remark that the recent preprint [9] (The authors have informed us that there is a gap
in their argument that they are presently dealing with.) is also concerned with finiteness of the
moments in the special case of linear RDEs. Our analysis can be adapted to establish the moment
bounds in [9] for this linear case with the Gaussian driving noises considered in our paper.

We now outline the structure of the paper. In section 2 we introduce some important notation
and concepts on the theory of rough paths. Because this is now standard and there are many
references available (e.g., [25], [26], [10], [27]) we keep the detail to a minimum. In section 3 we
derive a quantitative bound on the growth of Jx

t←0; the estimates we derive here are based very
closely on [10]. We end up with a control on Jx

t←0 in terms of a function on the space on (rough) path
space which we (suggestively) name the accumulated α local p-variation (denoted by Mα,I,p (·)).
When X is taken to be a Gaussian rough path the integrability properties of Mα,I,p (X) are not
immediately obvious or easy to study therefore, we spend section 4 deriving a relationship between
Mα,I,p (·) and another function on path space- which we denote Nα,p,I (·) (the analysis at this stage
remains entirely deterministic). Section 5 records some facts about Gaussian rough paths including
the crucial embedding theorems for the associated Cameron-Martin spaces that have been derived
in [10]. We then present the main tail estimate on Nα,p,I (X) – our analysis is based on Gaussian
isoperimetry (more specifically Borell’s inequality, which we recall). Once this is achieved we can
use the relationship between JX

t←0 and Nα,p,I (X) to exhibit the stated tail behaviour of JX

t←0, which
then constitutes our main result.

2. Rough path concepts and notation

There are now many articles and texts providing an overview on rough path theory (for example
[26] and [10] to name just two) so we will focus on establishing the notation we need for the current
application. We will study continuous R

d−valued paths x parameterised by time on a compact
interval I (sometimes I will be taken to be [0, T ]) and we denote the space of such functions by
C
(
I,Rd

)
.We write xs,t = xt−xs as a shorthand for the increments of a path and for x in C

(
I,Rd

)

we have

|x|∞ := sup
t∈I

|xt| , |x|p-var;I :=



 sup
D[I]=(tj)

∑

j:tj∈D[I]

∣∣xtj ,tj+1

∣∣p



1/p

,

for p ≥ 1 (we refer to these quantities both symbolically and by name, i.e. the uniform norm and the
p-variation semi-norm). We denote by Cp−var

(
I,Rd

)
the linear subspace of C

(
I,Rd

)
consisting of
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path of finite p−variation. In the case where x is in Cp−var
(
I,Rd

)
and p is in [1, 2), the iterated

integrals of x are canonically defined by Young integration and the collection of all these iterated
integrals together gives the signature: for s < t in I

S (x)s,t := 1 +
∞∑

k=1

∫

s<t1<t2<....<tk<t

dxt1 ⊗ dxt2 ⊗ ...⊗ dxtk ∈ T
(
R

d
)
.

By writing S (x)inf I,· we can regard the signature as a path (on I) with values in the tensor algebra;
similarly, the truncated signature

SN (x)s,t := 1 +

N∑

k=1

∫

s<t1<t2<....<tk<t

dxt1 ⊗ dxt2 ⊗ ...⊗ dxtk ∈ TN
(
R

d
)

is a path in the truncated tensor algebra TN
(
R

d
)
. It is a well-known fact that the path SN (x)inf I,·

takes values in the step-N free nilpotent group with d generators, which we denote GN
(
R

d
)
. More

generally, if p ≥ 1 we can consider the set of such group-valued paths

xt =
(
1,x1

t , ...,x
⌊p⌋
t

)
∈ G⌊p⌋

(
R

d
)
.

The advantage this offers is that the group structure provides a natural notion of increment, namely
xs,t := x−1s ⊗xt, and we can describe the set of ”norms” on G⌊p⌋

(
R

d
)
which are homogeneous with

respect to the natural scaling operation on the tensor algebra (see [10] for definitions and details).
One such example is the Carnot-Caratheodory norm (see [10]), which we denote by ||·||CC . The
subset of these so-called homogeneous norms which are symmetric and sub-additive ( [10]) give rise
to genuine metrics on G⌊p⌋

(
R

d
)
, which in turn give rise to a notion of homogenous p-variation

metrics dp-var on the G⌊p⌋
(
R

d
)
-valued paths. Let

(2.1) ||x||CC,p-var;[0,T ] = max
i=1,...,⌊p⌋



 sup
D[0,T ]=(tj)

∑

j:tj∈D[0,T ]

∣∣∣∣xtj ,tj+1

∣∣∣∣p
CC




1/p

and note that if (2.1) is finite then ωCC (s, t) := ||x||pCC,p-var;[s,t] is a control (i.e. it is a continuous,

non-negative, super-additive function on the simplex ∆T = {(s, t) : 0 ≤ s ≤ t ≤ T } which vanishes
on the diagonal.)

The space of weakly geometric p−rough paths (denote WGΩp

(
R

d
)
) is the set of paths (param-

eterised over I, although this is often implicit) with values in G⌊p⌋
(
R

d
)
such that (2.1) is finite. A

refinement of this notion is the space of geometric p−rough paths (denoted GΩp

(
R

d
)
) which is the

closure of {
S⌊p⌋ (x)inf I,· : x ∈ C1−var

(
I,Rd

)}

with respect to dp−var.
We will often end up considering an RDE driven by a path x in WGΩp

(
R

d
)
along a collection

of vector fields V =
(
V 1, ..., V d

)
on R

e. And from the point of view of existence and uniqueness
results, the appropriate way to measure the regularity of the Vis results turns out to be the notion
of Lipschitz-γ (short: Lip-γ) in the sense of Stein (see [10] and [26] and note the contrast with
classical Lipschitzness). This notion provides a norm on the space of such vector fields (the Lip-γ
norm), which we denote |·|Lip−γ , and for the collection of vector fields V we will often make use of
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the shorthand

|V |Lip−γ = max
i=1,...,d

|Vi|Lip−γ ,

and refer to the quantity |V |Lip−γ as the Lip−γ norm of V.

3. The derivative of the flow for ODEs and RDEs

Consider a solution to an ODEs driven by a path x in C1−var
(
[0, T ] ,Rd

)
along some vector

fields V = (V1, ..., Vd) in R
e, viz.

(3.1) dyt = V (yt) dxt, y (0) = y0,

we call the map y0 7→ Ux
·←0 (y0) ≡ y· ∈ C ([0, T ] ,Re) the (solution) flow. If the vector fields are

sufficiently smooth then the map y0 7→ Ux
t←0 (y0) is differentiable for every t in I, moreover the

derivative Jx
t←0 (y0) (”the Jacobian of flow”) is a path in C ([0, T ] ,Re×e) which satisfies the ODE

obtained by formal differentiating (3.1) w.r.t. y0. Taken together with the solution to (3.1) this
gives a path zt = (yt, J

x
t←0 (y0)) ∈ R

e ⊕ R
e×e, which is the solution to

dzt = V̂ (zt) dxt, z (0) = (y0, I) ,

where
(
V̂i

)

1≤i≤d
is a collection of vector fields on R

e ⊕ R
e×e defined by

V̂i (y, J) = (Vi (y) , DVi (y)J) .

We now prove the necessary technical results that will allow us to obtain growth estimates for
the Jacobian of the flow for an RDE; the culmination of this effort will be Lemma 3.1 which then
forms the bedrock for the subsequent work. To describe the context for these results suppose we
are interested in driving an RDE by a path x in WGΩp

(
R

d
)
parameterised over I. Then, for any

fixed a sub-interval [s, t] ⊂ I Chow’s Theorem (chapter 2 of [28]) shows the existence of a path xs,t

in C1−var
(
[s, t] ,Rd

)
whose signature matches the increments of x over (s, t), i.e.

(3.2) xs,t = S⌊p⌋
(
xs,t
)
s,t

.

Motivated by the discussion in [10] and [6], we can then consider the solution to the RDE over
[s, t] by the solution of the ODE driven by xs,t; the advantage in doing this is that (3.2) ensures
that the ⌊p⌋th-order Euler approximations to these two solutions agree, and therefore one can
reasonably expect the two solutions to be close over small time intervals. Furthermore, Chen’s
identity (Theorem 2.9 of [26]) allows us to relate the signatures of xs,t and xt,uover two consecutive
intervals [s, t] and [t, u] via

S⌊p⌋
(
xs,t ∗ xt,u

)
s,u

= S⌊p⌋
(
xs,t
)
s,t

⊗ S⌊p⌋
(
xt,u

)
t,u

= xs,t ⊗ xt,u = xs,u

(here ∗ denotes concatenation), preserving the relationship between the signature of the concate-
nation over [s, u] and the increment xs,u. The following lemma, although classical, is an important
step in making these ideas more precise. It provides quantitative error estimates for the approxi-
mation of a classical Jacobian ODE via its Euler scheme, and it should be compared to Proposition
10.3 of [10] which achieves something similar for ODEs driven along bounded vector fields.
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Lemma 3.1. Let 1 ≤ p < γ < ⌊p⌋ + 1 and x ∈ C1−var
(
[0, T ] ,Rd

)
be a continuous path of finite

1−variation on a compact interval I. Suppose that V = (Vi)
d
i=1 is collection of Lip-γ vector fields

on R
e, that y is the solution to the ODE

dyt = V (yt) dxt, y (0) = y0

and let Jx
t←0 (y0) be the Jacobian of the corresponding flow. Then the path zt = (yt, J

x
t←0 (y0)) ∈

R
e ⊕ R

e×e is the solution to the ODE

dzt = V̂ (zt) dxt, z (0) = (y0, I) ,

where
(
V̂i

)

1≤i≤d
is a collection of vector fields on R

e ⊕ R
e×e defined by

(3.3) V̂i (y, J) = (Vi (y) , DVi (y)J) .

Moreover, if I : Re ⊕ R
e×e → R

e ⊕ R
e×e is the identity function and the ⌊p⌋-th level Euler approx-

imation is denoted by

ξ(V̂ )
(
zs, S⌊p⌋ (x)

)
s,t

=

⌊p⌋∑

k=1

∑

i1,...,ik∈{1,...,d}

V̂i1 V̂i1 ....V̂ikI (y)S⌊p⌋ (x)i1,....,ik ,

then for some finite constant c (depending only on p) we have that
(3.4)∣∣∣zs,t − ξ(V̂ )

(
zs, S⌊p⌋ (x)

)
s,t

∣∣∣ ≤ c (1 + |zs|)
(
|V |Lip−γ |x|1−var;[s,t]

)γ
exp

(
c |V |Lip−γ |x|1−var;[s,t]

)
.

Proof. The cis will denote constants depending on p and γ . The fact that z solves the stated ODE
is classical. An elementary application of Gronwall’s inequality shows that for all 0 ≤ s < t ≤ T

(3.5) |Jx
·←0 (y0)|∞;[s,t] ≤ |Jx

s←0 (y0)| exp
(
c1 |V |Lip−γ |x|1−var;[s,t]

)
.

Using this together with standard ODE estimates gives for any u in [s, t]

|Jx
u←0 (y0)− Jx

s←0 (y0)| ≤ |V |Lip−γ |x|1−var;[s,t] |J
x
·←0 (y0)|∞;[s,t]

≤ |Jx
s←0 (y0)| |V |Lip−γ |x|1−var;[s,t] exp

(
c2 |V |Lip−γ |x|1−var;[s,t]

)
(3.6)

≤ |zs|
(
|V |Lip−γ |x|1−var;[s,t]

)γ−⌊γ⌋
exp

(
c3 |V |Lip−γ |x|1−var;[s,t]

)

and, at the same time, we observe that

(3.7) |yu − ys| ≤ |V |Lip−γ |x|1−var;[s,t] .

By imitating Proposition 10.3 of [10] we can obtain
∣∣∣zs,t − ξ(V̂ )

(
zs, S⌊p⌋ (x)

)
s,t

∣∣∣(3.8)

≤
∑

i1,...,i⌊p⌋∈{1,...,d}

∣∣∣∣∣

∫

s<u1<...<u⌊p⌋<t

[
V̂i1 ....V̂i⌊p⌋I (zu1

)− V̂i1 ....V̂i⌊p⌋I (zs)
]
dxi1

u1
...dx

i
⌊p⌋
u⌊p⌋

∣∣∣∣∣ ,

Using the Lip-γ regularity of the vector fields (Vi)
d
i=1, the linearity of

(
V̂i (y, ·)

)d
i=1

and the fact

that ⌊p⌋ = ⌊γ⌋, we can easily show that for all (y, J) in R
e ⊕R

e×e the function V̂i1 ....V̂i⌊p⌋I (y, J) is
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(γ − ⌊γ⌋)−Hölder in y and linear in J, with both the Hölder constant and norm of the linear map
bounded by c4 |V |⌊γ⌋

Lip−γ . We therefore deduce immediately that

(3.9)∣∣∣V̂i1 ....V̂i⌊p⌋I
(
ỹ, J̃

)
− V̂i1 ....V̂i⌊p⌋I (y, J)

∣∣∣ ≤ c4 |V |⌊γ⌋

Lip−γ

[
(1 + |(y, J)|) |y − ỹ|γ−⌊γ⌋ +

∣∣∣J − J̃
∣∣∣
]
.

Finally, we can use (3.6), (3.7) and (3.9) to bound the integrand in (3.8) uniformly over [s, t] by

c4 |V |γLip−γ (1 + |zs|) |x|
γ−⌊γ⌋
1−var;[s,t] exp

(
c5 |V |Lip−γ |x|1−var;[s,t]

)
,

the result follows by classical estimates on the integral in (3.8). �

We now prepare the ground for the main growth estimate on the Jacobian Jx

t←0 (y0) of a RDE
flow. In [10] the authors derive the bound

|Jx

·←0 (y0)|∞;[0,T ] ≤ C exp
(
C ||x||pCC,p-var;[0,T ]

)

but, as we remarked in the introduction, this is not useful for addressing the problem of the
integrability of the Jacobian because, when x is replaced by a Gaussian rough path X, the random
variable ||X||p-var;[0,T ] only has a Gaussian tail. Nonetheless, the next theorem shows how we can

use this as an initial estimate to bootstrap our way back to some bound which, as we will see, is
more sensitive to the fine structure of the path.

Theorem 3.2. For some γ > p ≥ 1 suppose that x is a weakly geometric p-rough path over [0, T ]
and V =

(
V 1, ..., V d

)
a collection of Lip-γ vector fields on R

e. Then there is a unique solution to
the RDE:

(3.10) dyt = V (yt) dxt, y (0) = y0

which induces a differentiable flow Ux

·←0 : Re → Cp−var ([0, T ] ,Re) such that Ux

·←0 (y0) = y. If the
derivative of this flow is denoted Jx

·←0 (y0) then zt = (yt, J
x

·←0 (y0)) satisfies the non-explosive RDE

dzt = V̂ (zt) dxt, z (0) = (y0, I) ,

where
(
V̂i

)

1≤i≤d
is the collection of vector fields on R

e ⊕ R
e×e defined by

V̂i (y, J) = (Vi (y) , DVi (y)J) .

Moreover, if ωCC is the control ωCC (s, t) ≡ ||x||pCC,p-var;[s,t] then for any α > 0 the Jacobian

satisfies the growth estimate
(3.11)

|Jx

·←0 (y0)|∞;[0,T ] =: |πRe×ez|∞;[0,T ] ≤ C exp


C |V |pLip−γ sup

D[0,T ]=(ti),

ωCC(ti,ti+1)≤|V |
−p

Lip−γ
α

∑

i:ti∈D

ωCC (ti, ti+1)




for some constant C depending only on p, γ and α.

Proof. The differentiability under the hypothesis of Lip-γ regularity on V is proved in [10]; they
also prove that zt = (yt, J

x

t←0 (y0)) satisfies (locally) the RDE

(3.12) dzt = V̂ (zt) dxt, z (0) = (y0, I) .
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The fact, that the (a priori only local) solution is global can be seen from the estimate

|Jx

·←0 (y0)|∞;[0,T ] ≤ C exp
(
C ||x||pCC,p-var;[0,T ]

)
,

for C > 1, which follows from Exercise 11.10 of [10] and which precludes (3.12) from having explosive
solutions.

To improve this growth estimate and arrive at (3.11) we first note that if

(3.13) R := C exp
[
C
(
1 ∨ ||x||pCC,p-var;[0,T ]

)]

then we can localise the vector fields so that

V̂ ≡ Ŵ on R
e ×

{
A ∈ R

e×e : |A| ≤ R2
}

for some (globally!) Lip-(γ − 1) vector fields Ŵ . It follows that z is a solution to the RDE

dzt = Ŵ (zt) dxt.

We now proceed as in the proof of Lemma 10.52 of [10]. Thus, for each s < t in [0, T ] let xs,t

denote a path in C1−var
(
[0, T ] ,Rd

)
such that

(3.14) S⌊p⌋
(
xs,t
)
s,t

= xs,t and
∣∣xs,t

∣∣
1−var;[s,t]

≤ c1 ||x||
p
CC,p-var;[s,t]

for c1 depending only on p (the existence of such paths follows from Proposition 7.64 of [10]). By
defining

Γs,t := zs,t − z
(s,t)
s,t

where z(s,t) is the solution to the ODE

dz(s,t)u = V̂
(
z(s,t)u

)
dxs,t

u , z(s,t)s = zs

we can mimic the proof of Lemma 10.52 of [10], replacing applications of their Lemma Alinear with
our Lemma 3.1. But we need to record some changes to the proof given there; firstly, the simple
Gronwall estimate (3.5) together with (3.14) shows (at the cost of possibly increasing the constant
C in (3.13)) ∣∣∣πRe×ez

(s,t)
·

∣∣∣
∞;[s,t]

≤ |zs| exp
(
c |V |Lip−γ |x|1−var;[s,t]

)
≤ R2.

Thus, on [s, t] we have that z(s,t) also solves the ODE

dz(s,t)u = Ŵ
(
z(s,t)u

)
dxs,t

u , z(s,t)s = zs.

The estimates in Theorem 10.14 of [10] then show that

|Γs,t| ≤ c2

(∣∣∣Ŵ
∣∣∣
Lip−(γ−1)

||x||CC,p-var;[s,t]

)γ

=: ω̂ (s, t)
γ/p

and hence

(3.15) lim
r→0

sup
s<t,ω̂(s,t)≤r

|Γs,t|

r
= 0.

It is crucial to note that the control ω̂ is only used to verify (3.15) and does not feature in the
final estimate. We can deduce the required estimate by applying Remark 10.64 of [10] once the
argument there has been adapted to consider partitions with |V |pLip−γ ωCC (s, t) truncated at level
α rather than at 1. Since these details are straight forward we omit them. �
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Remark 3.3. By reading very carefully the proof of Lemma 10.63 and Remark 10.64 of [10] it
is possible to be a little more precise about the dependence of the constant C on the truncation
parameter α. In fact we can show that

|Jx

·←0 (y0)|∞;[0,T ] ≤ C1 exp


C2 |V |pLip−γ sup

D[0,T ]=(ti),

ωCC(ti,ti+1)≤|V |
−p

Lip−γ
α

∑

i:ti∈D

ωCC (ti, ti+1)




for two finite constant C1 and C2, where C1 depends on p and γ and C2 depends on p, γ and α in
such a way that

(3.16) C2 (p, γ, α) = C3 (p, γ)max
(
1, α−1

)

for some finite C3 (p, γ) > 1. By replacing α by |V |pLip−γ α this gives rise to the estimate

|Jx

·←0 (y0)|∞;[0,T ] ≤ C1 exp


C2 max

(
|V |pLip−γ ,

1

α

)
sup

D[0,T ]=(ti),
ωCC(ti,ti+1)≤α

∑

i:ti∈D

ωCC (ti, ti+1)




for all α > 0.

It will be convenient later on to use the estimates of the previous theorem with reference to
controls other than those derived from p-variation norm based on the CC-metric. The following is
simple corollary of Theorem 3.2 and Remark 3.3, it gathers together the appropriate assumptions
we will need in subsequent sections.

Corollary 3.4. Let the assumptions of Theorem 3.2 hold. Suppose ω : ∆[0,T ] → R+ is a control
which, for some finite D > 1, is equivalent to ωCC in the sense that

(3.17) D−1ω (s, t) ≤ ωCC (s, t) ≤ Dω (s, t) .

Then we have the following growth estimate for the Jacobian:

(3.18) |Jx

·←0 (y0)|∞;[0,T ] ≤ C exp


Cmax

(
D |V |pLip−γ ,

1

α

)
sup

D[0,T ]=(ti),
ω(ti,ti+1)≤α

∑

i:ti∈D

ω (ti, ti+1)




for any α > 0 and some constant C which depends only on p and γ.

Proof. From Theorem 3.2 and Remark 3.3 we already have that for any β > 0

(3.19) sup
0≤t≤T

|Jx

t←0 (y0)| ≤ C1 exp


C2 max

(
|V |pLip−γ ,

1

β

)
sup

D[0,T ]=(ti),
ωCC(ti,ti+1)≤β

∑

i:ti∈D

ωCC (ti, ti+1)




Therefore if we let α > 0 and set β = Dα, we see from (3.17) that if ωCC (s, t) ≤ β then ω (s, t) ≤ α.
Hence applying (3.19) it is easy to deduce (3.18). �
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Remark 3.5. One control that satisfies the equivalence condition (3.17) and hence bounds the
Jacobian in the manner described above is

(3.20) ωx,p (s, t) = ||x||pp−var;[s,t] :=

⌊p⌋∑

i=1

sup
D[s,t]=(tj)

∑

j:tj∈D[s,t]

∣∣∣xi
tj ,tj+1

∣∣∣
p/i

(Rd)⊗i
.

To see this we can exploit the fact that all homogenous norms on GN
(
R

d
)
are equivalent (refer to

[10] and note that this is an intrinsically finite dimensional result). This, in particular gives that
for some c > 0

c−1 max
i=1,...,N

|πig|
1/i

(Rd)⊗i ≤ ||g||CC ≤ c max
i=1,...,N

|πig|
1/i

(Rd)⊗i

for all g in GN
(
R

d
)
. For any dissection {tj : j = 1, 2, ..., n} of [s, t] we then have on the one hand

that

∑

j:tj∈D[s,t]

∣∣∣∣xtj ,tj+1

∣∣∣∣p ≤ c
∑

j:tj∈D[s,t]

max
i=1,...,⌊p⌋

∣∣∣xi
tj ,tj+1

∣∣∣
p/i

(Rd)⊗i

≤ c

⌊p⌋∑

i=1

∑

j:tj∈D[s,t]

∣∣∣xi
tj ,tj+1

∣∣∣
p/i

(Rd)⊗i

≤ cωx,p (s, t) .(3.21)

On the other hand for every i = 1, 2, ..., ⌊p⌋

∑

j:tj∈D[s,t]

∣∣∣∣xtj ,tj+1

∣∣∣∣p ≥ c−1
∑

j:tj∈D[s,t]

max
i=1,...,⌊p⌋

∣∣∣xi
tj ,tj+1

∣∣∣
p/i

(Rd)⊗i

≥ c−1
∑

j:tj∈D[s,t]

∣∣∣xi
tj ,tj+1

∣∣∣
p/i

(Rd)⊗i
.

Taking the supremum over all dissections of [s, t] and summing over i = 1, 2, ..., ⌊p⌋ we get

(3.22) ⌊p⌋ωCC (s, t) ≥ c−1ωx,p (s, t) .

The desired relation follows from (3.21) and (3.22).

We will use the control ωx,p extensively in the ensuing calculations. It therefore makes sense to
distinguish it amongst the family of controls which are related to x.

Definition 3.6. Let x be a weakly geometric p-rough path over [0, T ] . Define the control ωx,p and
the function ||·||p−var : WGΩp

(
R

d
)
→ R+ by

ωx,p (s, t) = ||x||pp−var;[s,t] :=

⌊p⌋∑

i=1

sup
D=(tj)

∑

j:tj∈D

∣∣∣xi
tj ,tj+1

∣∣∣
p/i

(Rd)⊗i
.

And refer to ωx,p as the control induced by x.

Remark 3.7. The fact that ωx,p induced in this way is a control is standard and can be found in
several references (for example in Lyons, Caruana, Levy [26], p.6)
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4. Deterministic estimates for solutions to RDEs

In this section we will develop the pathwise estimate obtained in the previous section. To assist
with the clarity of the presentation it will be important to first introduce some definitions of the
main objects featuring in our discussion.

Definition 4.1. Let α > 0, p ≥ 1 and I ⊆ R be a compact interval. We define the accumulated

α−local p−variation to be the non-negative function Mα,I,p acting on weakly geometric p−rough
paths (parameterised over I) by

(4.1) Mα,I,p (x) = sup
D(I)=(ti),

ωx,p(ti,ti+1)≤α

∑

i:ti∈D

ωx,p (ti, ti+1) .

Remark 4.2. Mα,I,p is well-defined because the super-additivity of the control ωx,p ensures that

Mα,I,p (x) ≤ ||x||pp−var;I < ∞

for any weakly geometric rough path x (again, parameterised over I). The function is increasing
in α, equals ωx,p for α ≥ ||x||pp−var;I and is continuous in α on (0,∞) . Finally for p = 1 Mα,I,p

coincides with ωx,p.

From Theorem 3.2 it is already evident that the structure of Mα,I,p makes it particularly suited
to controlling differential equations in Gronwall-type estimates. The following lemma exhibits the
key relationship between Mα,I,p (x) and |Jx

·←0 (y0)|∞;I .

Lemma 4.3. Let γ > p ≥ 1 and suppose x is a weakly geometric p−rough path over I = [0, T ] .
Let V =

(
V 1, ..., V d

)
be a collection of Lip-γ vector fields on R

e and Jx

t←0 (·) be the derivative of
the solution flow of the RDE driven by x along V. For any y0 in R

e and α > 0 there exists a finite
constant C > 0, which depends only on p and γ, such that

sup
0≤t≤T

|Jx

t←0 (y0)| ≤ C exp

[
Cmax

(
|V |pLip−γ ,

1

α

)
Mα,I,p (x)

]
.

Proof. This can be deduced immediately from Corollary 3.4 and the Remark following it. �

We have successfully shown how we can control the derivative of the flow by using the function
Mα,I,p (·) . But it is still not obvious how to get a handle on the tail behaviour of Mα,I,p (·) when
we evaluate it at a Gaussian p-rough path. To expose the structure further, we will now consider
another function Nα,I,p (·) on WGΩp

(
R

d
)
which is closely related to Mα,I,p (·). To this end let x ∈

WGΩp

(
R

d
)
and inductively define a non-decreasing sequence of times (τi (α, p,x))

∞
i=0 = (τi (α))

∞
i=0

in I by letting

τ0 (α) = inf I(4.2)

τi+1 (α) = inf
{
t : ||x||pp−var;[τi,t] ≥ α, τi (α) < t ≤ sup I

}
∧ sup I,

with the convention that inf ∅ = +∞. For τi (α) < sup I and ||x||pp−var;[τi(α),sup I] ≥ α, τi+1 (α)

is intuitively the first time ||x||pp−var;[τi(α),·] reaches α (recall that the p−variation is a continuous

function). We then let Nα,I,p : WGΩp

(
R

d
)
→ R+ be given by

(4.3) Nα,I,p (x) := sup {n ∈ N ∪ {0} : τn (α) < sup I}
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and we note that Nα,I,p describes the size of the non-trivial part of the sequence (τi (α))
∞
i=0 , i.e.

the number of distinct terms in the sequence (τi (α))
∞
i=0 equals Nα,I,p (x) + 1. The partition of the

interval given by the times (τi (α))
Nα,I,p(x)+1
i=0 can now heuristically be thought of as a ”greedy”

approximation to the supremum in identity (4.1) in the definition of the accumulated α−local
p−variation.

Lemma 4.4. For any α > 0, p ≥ 1 and any compact interval I the function N α,I,p : WGΩp

(
R

d
)
→

R+ is well defined; that is, Nα,I,p (x) < ∞ whenever x is in WGΩp

(
R

d
)
.

Proof. From the continuity of ||x||p−var;[s,·] we can deduce that

||x||pp−var;[τi−1(α),τi(α)]
= α for i = 1, 2, ..., Nα,I,p (x) .

Thus, the super-additivity of ωx,p implies that if x is in WGΩp

(
R

d
)
then

αNα,I,p (x) =

Nα,I,p(x)∑

i=1

ωx,p (τi−1 (α) , τi (α)) ≤ ωx,p

(
0, τNα,I,p(x) (α)

)
≤ ||x||pp−var;[0,T ] < ∞.

�

Corollary 4.5. Let x be a path in WGΩp

(
R

d
)
and suppose α > 0. Define the sequence (τi (α))

∞
i=0

by (4.2) and let Nα,I,p (x) be given by (4.3). Then the set

Dτ = {τi (α) : i = 0, 1, ..., Nα,I,p (x) + 1}

is a dissection of I.

Proof. This now follows immediately from the definition of (τi (α))
∞
i=0 and the fact that Nα,I,p (x)

is finite. �

Proposition 4.6. Let p ≥ 1 and suppose x is a path in WGΩp

(
R

d
)
parameterised over the compact

interval I, then for every α > 0

Mα,I,p (x) ≤ (2Nα,I,p (x) + 1)α

Proof. Let D = {ti : i = 0, 1..., n} be any dissection of I with the property that

(4.4) ωx,p (ti−1, ti) ≤ α for all i = 1, ..., n.

Corollary 4.5 ensures that Dτ is a dissection of [0, T ]. We re-label the points in D with reference
to the dissection Dτ by writing ti = tlj for i = 1, 2, ..., n, where l indicates which of disjoint
subintervals {(τi (α) , τi+1 (α)] : i = 0, 1, ..., Nα,I,p (x)} contains ti, and j orders the tis within each
of these subintervals. More precisely, l ∈ {0, 1, ..., Nα,I,p (x)} is the unique natural number such
that

τl (α) < ti ≤ τl+1 (α) ;

and then j ≥ 1 is well-defined by

j = i− max
tr≤τl(α)

r.

For each l ∈ {0, 1, ...Nα,I,p (x)} let nl denote the number of elements of D in (τl (α) , τl+1 (α)].

Suppose now for a contradiction that nl = 0. In this case, tl−1nl−1
and tl+1

1 are two consecutive points
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of D with tl−1nl−1
≤ τl (α) < τl+1 (α) < tl+1

1 and since the (τi (α))
∞
i=0 are defined to be maximal (recall

(4.2)) we have

ωx,p

(
tl−1nl−1

, tl+1
1

)
> ωx,p (τl (α) , τl+1 (α)) = α.

This contradicts the assumptions on D (4.4) and we deduce that nl ≥ 1.
We observe that if nl ≥ 2 then the super-additivity of ωx,p results in

nl−1∑

j=1

ωx,p

(
tlj , t

l
j+1

)
≤ ωx,p

(
tl1, t

l
nl

)
for l = 0, 1, ..., Nα,I,p (x) ;

thus, by a simple calculation we have

n∑

j=1

ωx,p (tj−1, tj)

≤

Nα,I,p(x)−1∑

l=0

{[
ωx,p

(
tlnl

, tl+1
1

)
+ ωx,p

(
tl+1
1 , tl+1

nl+1

)]
1{nl+1≥2} + ωx,p

(
tlnl

, tl+1
nl+1

)
1{nl+1=1}

}

+ ωx,p

(
0, t0n0

)
.(4.5)

To conclude the proof we note that ωx,p

(
tl+1
1 , tl+1

nl+1

)
≤ α and ωx,p

(
0, t0n0

)
≤ α by the definition of

the sequence
(
tlj
)
, and ωx,p

(
tlnl

, tl+1
1

)
≤ α because tlnl

and tl+1
1 are two consecutive points in D.

Hence, we may deduce from (4.5) that

n∑

j=1

ωx,p (tj−1, tj) ≤ (2Nα,I,p (x) + 1)α.

Because the right hand side of the last inequality does not depend on D, optimising over all such
dissections gives the stated result. �

5. Gaussian Rough Paths

The previous section developed the key pathwise estimate on Jx

t←0 (y0) in terms of NT (x) ,
but the importance of controlling Jx

t←0 (y0) using this, as opposed to simpler alternatives, is best
appreciated when the driving rough path is taken to be random (we distinguish situations where
the path is random by writing it in upper-case: X). Of special interest is when X is the lift of
some continuous R

d−valued Gaussian process (Xt)t∈I (by lifting X we mean that the projection
of X to the first tensor level is X). A theory of such Gaussian rough paths has been developed by
a succession of authors ([5],[12],[4][8]) and we will mostly work within their framework.

To be more precise, we will assume that Xt =
(
X1

t , ..., X
d
t

)
is a continuous, centred (i.e. mean

zero) Gaussian process with independent and identically distributed components. Let R : I×I → R

denote the covariance function of any component, i.e.:

R (s, t) = E
[
X1

sX
1
t

]
.

Throughout we will assume that this process is realised on the abstract Wiener space (W ,H, µ)
where W = C0

(
I,Rd

)
(the space of continuous Rd-valued functions on I); more precisely we mean

that X is the canonical process on W , i.e. Xt (ω) = ω (t) , and (Xt)t∈I has the required Gaussian
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distribution under µ. We recall the notion of the ”rectangular increments of R” from [13], these are
defined by

R

(
s, t
u, v

)
:= E

[(
X1

t −X1
s

) (
X1

v −X1
u

)]
.

The existence of a lift for X is guaranteed by insisting on a sufficient rate of decay on the correlation
of the increments. And this is captured, in a very general way, by the following two-dimensional
ρ−variation constant on the covariance function.

Condition 1. There exists of 1 ≤ ρ < 2 such that R has finite ρ-variation in the sense

(5.1) Vρ (R; I × I) :=


 sup

D=(ti)∈D(I)

D′=(t′j)∈D(I)

∑

i,j

∣∣∣∣R
(

ti, ti+1

t′j , t
′
j+1

)∣∣∣∣
ρ




1
ρ

< ∞.

Remark 5.1. Under Condition 1 Theorem 35 of [12] shows that (Xt)t∈[0,T ] lifts to a geometric

p-rough path for any p > 2ρ. Moreover, there is a unique natural lift which is the limit (in the
dp−var-induced rough path topology) of the canonical lift of piecewise linear approximations to X.

The following theorem appears in [12] as Proposition 17 (cf. also the recent note [13]); it shows

how the assumption Vρ

(
R; [0, T ]2

)
< ∞ allows us to embed H in the space of continuous paths

with finite ρ variation. As the result is stated in [12] the proof applies to one dimensional Gaussian
processes, but the generalisation to arbitrary finite dimensions is straight forward and we will not
elaborate on the proof.

Theorem 5.2 ([12]). Let (Xt)t∈I =
(
X1

t , ..., X
d
t

)
t∈I

be a continuous, mean-zero Gaussian process

with independent and identically distributed components. Let R denote the covariance function of
(any) one of the components. Then if R is of finite ρ-variation for some ρ ∈ [1, 2) we can embed
H in the space Cρ−var

(
I,Rd

)
, in fact

(5.2) |h|H ≥
|h|ρ−var;I√
Vρ (R; I × I)

.

Remark 5.3 ([11]). Writing HH for the Cameron-Martin space of fBm for H in (1/4, 1/2), the
variation embedding in [11] gives the stronger result that

HH →֒ Cq-var
(
I,Rd

)
for any q > (H + 1/2)

−1
.

Once we have established a lift X of X we will often want to make sense of X (ω + h). The main
technique used for achieving this is to relate it to the translated rough path Thx (the definition is
standard see, for example, [10] or [27]). We recall that if x =

(
1,x1, ...,x⌊p⌋

)
is a weakly geometric

p rough path and h is in Cq−var
(
I,Rd

)
such that p−1 + q−1 > 1 then the terms of Thx at the first

two non-trivial tensor levels are given by

(Thx)
1=x1 + h

(Thx)
2=x2 +

∫
h⊗ dx1 +

∫
x1 ⊗ dh+

∫
h⊗ dh.
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The higher order terms become increasingly tiresome to write down, we will not go beyond the level(
R

d
)⊗3

so we simply record for reference that this can be written as

(Thx)
3
s,t = x3

s,t +

∫ t

s

∫ v

s

hs,u ⊗ dhu ⊗ dhv

+

∫ t

s

x2
s,u ⊗ dhu +

∫ t

s

∫ v

s

x1
s,u ⊗ dhu ⊗ dx1

v −

∫ t

s

hs,u ⊗ dx2
u,t(5.3)

+

∫ t

s

∫ v

s

hs,u ⊗ dx1
u ⊗ dhv +

∫ t

s

∫ v

s

x1
s,u ⊗ dhu ⊗ dhv +

∫ t

s

∫ v

s

hs,u ⊗ dhu ⊗ dx1
v

The the following result appeared in [4] and demonstrates that X (ω + h) and ThX (ω) are in
fact equal for all h in H on a set of µ−full measure under certain conditions.

Lemma 5.4. Let (Xt)t∈I =
(
X1

t , ..., X
d
t

)
t∈I

be a mean-zero Gaussian process with i.i.d. com-

ponents. If X has a natural lift to a geometric p−rough path and H →֒ Cq-var
(
I,Rd

)
such that

1/p+ 1/q > 1 then

µ {ω : ThX (ω) = X (ω + h) for all h ∈ H} = 1.

From the different choices of the parameters p and q (such that X lifts path in GΩp

(
R

d
)
and

H continuously embeds in Cq-var
(
I,Rd

)
) it will often prove useful to work with a particular choice

that satisfy certain constraints. The purpose of the next lemma is to show that these constraints
can always be satisfied (for some choice of p and q) for the examples of Gaussian processes that will
interest us most.

Lemma 5.5. Let (Xt)t∈I =
(
X1

t , ..., X
d
t

)
t∈I

be a continuous, mean-zero Gaussian process with

i.i.d. components on (W ,H, µ) . Suppose that at least one of the following holds:

(1) For some ρ in [1, 3
2 ) the covariance function of X has finite ρ-variation in the sense of

Condition 1 .
(2) X is a fractional Brownian motion for H in (1/4, 1/2) .

Then there exist real numbers p, q such that the following three statements are true simultaneously:

(1) X has a natural lift to a geometric p-rough path;
(2) H →֒ Cq-var

(
I,Rd

)
where 1/p+ 1/q > 1;

(3) p > q ⌊p⌋ .

Proof. If Condition 1 is satisfied with ρ ∈ [1, 3/2) then (taking 1
0 = ∞)

2ρ < 3 <
ρ

ρ− 1
,

thus if we take q = ρ and choose p in (2q, 3) Remark 5.1 guarantees the existence of a natural lift
for X ; furthermore, Theorem 5.2 ensures that H →֒ Cq-var

(
I,Rd

)
and we also have p > q ⌊p⌋ = 2q.

In the case where X is fBm note first that if H ∈ (1/3, 1/2) then (H + 1/2)
−1

< 1/ (2H) so any
choice of p and q satisfying

2

(
H +

1

2

)−1
< 2q <

1

H
< p < 3

will do the job by using Remark 5.1 and Remark 5.3. Finally, if H ∈ (1/4, 1/3] then we notice

1

3H
< H−1

(
1 +

1

2H

)−1
=

(
H +

1

2

)−1
<

4

3
.
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Hence, by choosing p and q such that

3

(
H +

1

2

)−1
< 3q < p < 4

we can verify each of the conclusions by once more referring to Remark 5.1, Remark 5.3 or by direct
calculation as appropriate. �

6. The tail behaviour of Nα,I,p (X (·)) via Gaussian isoperimetry

We continue to work in the setting of an abstract Wiener space (W ,H, µ). If K denotes the unit
ball in H then for any A ⊆ W we can consider the Minkowski sum:

A+ rK := {x+ ry : x ∈ A, y ∈ K} .

We then recall the following isoperimetric inequality of C.Borell (cf. Theorem 4.3 of [23]).

Theorem 6.1 (Borell). Let (W ,H, µ) be an abstract Wiener space and K denote the unit ball in
H. Suppose A is a Borel subset of W such that µ (A) ≥ Φ (a) for some real number a. Then, for
every r ≥ 0

µ∗ (A+ rK) ≥ Φ (a+ r) ,

where µ∗ is the inner measure of µ and Φ denotes the standard normal cumulative distribution
function.

Theorem 6.2. Let (Xt)t∈I =
(
X1

t , ..., X
d
t

)
t∈I

be a continuous, mean-zero Gaussian process, pa-

rameterised over a compact interval I on the abstract Wiener space (W ,H, µ). Suppose that p and
q are real numbers such that p < 4 and

(1) X has a natural lift to a geometric p-rough path X;
(2) H →֒ Cq-var

(
I,Rd

)
where 1/p+ 1/q > 1;

(3) p > q ⌊p⌋ .

Then there exists a set E ⊆ W, of µ−full measure with the property that, for all ω in E, h in H
and α > 0, if

||X (ω − h)||p−var;I ≤ α

then

|h|q−var;I ≥
α

(2cp,q)
2Nα̃,I,p (X (ω))

1/q
,

where α̃ = 3 (2α)
p
, cp,q = 2 · 41/p+1/qζ

(
1
p + 1

q

)
and ζ is the classical Riemann zeta function.

Remark 6.3. Lemma 5.5 ensures that if X satisfies Condition 1 or if X is fBm with Hurst index
H in (1/4, 1/2) , then it is always possible to find real numbers p and q satisfying (simultaneously)
condition 1-3 in Theorem 6.2.

Proof. From the definition of the sequence (τi (α̃))
∞
i=0 and the integer Nα̃,I,p (X (ω)) we have for

i = 0, 1, 2, ...., Nα̃,I,p (X (ω))− 1
(6.1)

||X (ω)||p-var;[τi(α̃),τi+1(α̃)]
=



⌊p⌋∑

j=1

sup
D=(tl)∈D[τi(α̃),τi+1(α̃)]

∑

l:tl∈D

∣∣∣Xj (ω)tl,tl+1

∣∣∣
p/j

(Rd)⊗j




1/p

= 31/p2α,
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which implies (recall: p < 4) for some integer ki ∈ {1, 2, ..., ⌊p⌋} that

(6.2) sup
D=(tl)∈D[τi(α̃),τi+1(α̃)]

∑

l:tl∈D

∣∣∣Xki (ω)tl,tl+1

∣∣∣
p/ki

(Rd)⊗ki
≥ (2α)

p
.

We fix ki by taking it to be the least such integer. Consider the subset of W

E := {ω ∈ W : ThX (ω) = X (ω + h) ∀h ∈ H}

(recall from Lemma 5.4 that µ (E) = 1) and for every ω in E define a subset of H by

Fα,ω :=
{
h ∈ H : ||X (ω − h)||p−var;I ≤ α

}
.

For each ω in E we will show that

(6.3) |h|q−var;[τi(α̃),τi+1(α̃)]
≥

α

(2cp,q)
2 for all i = 0, 1, ..., Nα̃,I,p (X (ω))− 1 and h ∈ Fα,ω;

the required result will then follow from the calculation

|h|qq−var;I ≥

Nα̃,I,p(X(ω))−1∑

i=0

|h|qq−var;[τi(α̃),τi+1(α̃)]
≥

αq

(2cp,q)
2qNα̃,I,p (X (ω)) .

We now prove that (6.3) holds by studying three separate cases. Thus, let ω be in E and h in
Fα,ω then we have:

Case 1: ki = 1 Under this assumption

sup
D=(tl)∈D[τi(α̃),τi+1(α̃)]

∑

l:tl∈D

∣∣∣X1 (ω)tl,tl+1

∣∣∣
p

≥ (2α)
p
.

Since ThX (·) = X (·+ h) on E we have

|h|q−var;[τi(α̃),τi+1(α̃)]
≥ |h|p−var;[τi(α̃),τi+1(α̃)]

≥
∣∣X1 (ω)

∣∣
p−var;[τi(α̃),τi+1(α̃)]

−
∣∣X1 (ω)− h

∣∣
p−var;[τi(α̃),τi+1(α̃)]

≥ 2α− ||X (ω − h)||p−var;[τi(α̃),τi+1(α̃)]

≥ α

≥
α

(2cp,q)
2 .

Case 2: ki = 2 This can only happen when p ≥ 2. Let {uj : j = 0, 1, ...,m} be a dissection
of [τi (α̃) , τi+1 (α̃)] . Exploiting (again) the fact that ThX (ω) = X (ω + h) we have for any r ∈
{1, 2....,m}

∫ ur

ur−1

hur−1,s ⊗ dhs

(6.4)

= X2 (ω)ur−1,ur
−X2 (ω − h)ur−1,ur

+

∫ ur

ur−1

hur−1,s ⊗ dX1 (ω)s +

∫ ur

ur−1

X1 (ω)ur−1,s
⊗ dhs;
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the cross-integrals are well-defined Young integrals by the hypotheses on p and q. We consider
the terms on both sides of equation (6.4): on the one hand Young’s inequality ([26]) and the
super-additivity of the q−variation provides the upper bound

m∑

r=1

∣∣∣∣∣

∫ ur

ur−1

hur−1,s ⊗ dhs

∣∣∣∣∣

p/2

Rd⊗Rd

≤ cp/2p,q

m∑

r=1

|h|pq−var;[ur−1,ur]

≤ cp/2p,q

(
m∑

r=1

|h|qq−var;[ur−1,ur]

)p/q

≤ cp/2p,q |h|pq−var;[τi(α̃),τi+1(α̃)]
.(6.5)

On the other hand, we have have the lower bound



m∑

r=1

∣∣∣∣∣

∫ ur

ur−1

hur−1,s ⊗ dhs

∣∣∣∣∣

p/2

Rd⊗Rd




2/p

(6.6)

≥

(
m∑

r=1

∣∣∣X2 (ω)ur−1,ur

∣∣∣
p/2

Rd⊗Rd

)2/p

−

(
m∑

r=1

∣∣∣X2 (ω − h)ur−1,ur

∣∣∣
p/2

Rd⊗Rd

)2/p

−




m∑

r=1

∣∣∣∣∣

∫ ur

ur−1

hur−1,s ⊗ dX1 (ω)s +

∫ ur

ur−1

X1 (ω)ur−1,s
⊗ dhs

∣∣∣∣∣

p/2

Rd⊗Rd




2/p

.

We the estimate the terms on the right hand side of this inequality by noticing

(6.7)

(
m∑

r=1

∣∣∣X2 (ω − h)ur−1,ur

∣∣∣
p/2

Rd⊗Rd

)2/p

≤ ||X (ω − h)||2p−var;[τi(α̃),τi+1(α̃)]
≤ α2

and, using Young’s inequality,
∣∣∣∣∣

∫ ur

ur−1

hur−1,s ⊗ dX1 (ω)s +

∫ ur

ur−1

X1 (ω)ur−1,s
⊗ dhs

∣∣∣∣∣
Rd⊗Rd

≤ 2cp,q |h|q-var;[ur−1,ur]

∣∣X1 (ω)
∣∣
p-var;[ur−1,ur]

Since ki is defined to be the least integer for which we have (6.2) we must have
∣∣X1 (ω)

∣∣
p-var;[ur−1,ur]

≤ =

2α. Using this together with p > 2q we arrive at

m∑

r=1

∣∣∣∣∣

∫ ur

ur−1

hur−1,s ⊗ dX1 (ω)s +

∫ ur

ur−1

X1 (ω)ur−1,s
⊗ dhs

∣∣∣∣∣

p/2

Rd⊗Rd

≤ (4αcp,q)
p/2

m∑

r=1

|h|
p/2
q-var;[ur−1,ur ]

≤ (4αcp,q)
p/2 |h|

p/2
q−var;[τi(α̃),τi+1(α̃)]

.(6.8)

Substituting (6.7), (6.8) into (6.6), taking the supremum over all dissections of [τi (α̃) , τi+1 (α̃)] and
using the fact that

sup
D=(ur)∈D[τi(α̃),τi+1(α̃)]

(
∑

l:ur∈D

∣∣∣X2 (ω)ur−1,ur

∣∣∣
p/2

Rd⊗Rd

)1/p

≥ 2α
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gives
(6.9)

sup
D=(ur)∈D[τi(α̃),τi+1(α̃)]




∑

r:ur∈D

∣∣∣∣∣

∫ ur

ur−1

hur−1,s ⊗ dhs

∣∣∣∣∣

p/2

Rd⊗Rd




2/p

≥ 3α2−4αcp,q |h|q−var;[τi(α̃),τi+1(α̃)]
.

Using this in (6.5) gives

cp,q |h|
2
q−var;[τi(α̃),τi+1(α̃)]

≥ 3α2 − 4αcp,q |h|q−var;[τi(α̃),τi+1(α̃)]

and by re-arranging we see that

[
|h|q−var;[τi(α̃),τi+1(α̃)]

+ 2α
]2

≥ (2α)2 +
3α2

cp,q
.

Because cp,q > 1 and |h|q−var;[τi(α̃),τi+1(α̃)] ≥ 0 we can deduce that

|h|q−var;[τi(α̃),τi+1(α̃)]
≥ 2α

(
−1 +

√
1 +

3

4cp,q

)
≥

2α

2
(
1 + 3

4cp,q

)1/2
3

4cp,q
≥

α

(2cp,q)
2 .

Case 3: ki = 3 In this case we must have 3 ≤ p < 4.We recall the form of the third level of the

translation (ThX (ω))
3
from (5.3) and proceed as in Case 2. First, using Young’s inequality we have

that

m∑

i=1

∣∣∣∣∣

∫ ur

ur−1

∫ u

ur−1

hur−1,s ⊗ dhs ⊗ dhs

∣∣∣∣∣

p/3

(Rd)⊗3

≤ c2p/3p,q

m∑

i=1

|h|pq−var;[ur−1,ur ]

≤ c2p/3p,q |h|pq−var;[τi(α̃),τi+1(α̃)]
.

Then using Young’s inequality repeatedly we can show
∣∣∣∣∣

∫ ur

ur−1

X2 (ω)ur−1,u
⊗ dhu +

∫ ur

ur−1

∫ u

ur−1

X1 (ω)ur−1,s
⊗ dhs ⊗ dX1 (ω)u −

∫ ur

ur−1

hur−1,u ⊗ dX2 (ω)u,ur

∣∣∣∣∣
(Rd)⊗3

≤ 2cp,q
∣∣X2 (ω)

∣∣
p−var;[ur−1,ur]

|h|q−var;[ur−1,ur]
+ c2p,q

∣∣X1 (ω)
∣∣2
p−var;[ur−1,ur]

|h|q−var;[ur−1,ur]

≤ 3c2p,q (2α)
2 |h|q−var;[ur−1,ur]

and, similarly,
∣∣∣∣∣

∫ ur

ur−1

∫ u

ur−1

(
hur−1,s ⊗ dX1 (ω)s +X1 (ω)ur−1,s

⊗ dhs

)
⊗ dhu +

∫ ur

ur−1

∫ u

ur−1

hur−1,s ⊗ dhs ⊗ dX1 (ω)u

∣∣∣∣∣
(Rd)⊗3

= 3c2p,q |h|
2
q−var;[ur−1,ur ]

∣∣X1 (ω)
∣∣
p−var;[τi(α̃),τi+1(α̃)]

≤ 3c2p,q (2α) |h|
2
q−var;[ur−1,ur]

Using the fact that p > 3q we deduce
(

m∑

r=1

|h|
p/3
q−var;[ur−1,ur ]

)3/p

≤ |h|q−var;[τi(α̃),τi+1(α̃)]
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and also (
m∑

r=1

|h|
2p/3
q−var;[ur−1,ur]

)3/p

≤ |h|2q−var;[τi(α̃),τi+1(α̃)] .

Under the assumption that ki = 3 we have that

sup
D=(ur)∈D[τi(α̃),τi+1(α̃)]

(
∑

l:ur∈D

∣∣∣X3 (ω)ur−1,ur

∣∣∣
p/3

(Rd)⊗3

)1/p

≥ 2α

and hence

c2p,q |h|
3
q−var;[τi(α̃),τi+1(α̃)]

≥ 7α3 − 3c2p,q (2α)
2 |h|q−var;[τi(α̃),τi+1(α̃)] − 3c2p,q (2α) |h|

2
q−var;[τi(α̃),τi+1(α̃)]

.

By rearranging this we see that
[
|h|3q−var;[τi(α̃),τi+1(α̃)]

+ 2α
]3

≥ (2α)
3
+

7α3

c2p,q
,

thus by a simple calculation

|h|q−var;[τi(α̃),τi+1(α̃)]
≥ 2α

(
−1 + 3

√
1 +

7

8c2p,q

)
≥

2α

3
(
1 + 7

8c2p,q

)2/3
7

8c2p,q
≥

α

(2cp,q)
2

and the proof is complete. �

By using these estimates in concert with Borell’s inequality we are lead directly to the following
theorem which describes the needed tails estimate on the random variable Nα̃,I,p (X (·)) .

Theorem 6.4. Let (Xt)t∈I =
(
X1

t , ..., X
d
t

)
t∈I

be a continuous, mean-zero Gaussian process with

i.i.d. components on the abstract Wiener space (W ,H, µ). Let cp,q = 2 · 41/p+1/qζ
(

1
p + 1

q

)
, where

ζ is the Riemann zeta function. If:

(1) For some ρ in [1, 3
2 ) the covariance function of X has finite ρ-variation in the sense of

Condition 1 , then for any p in (2ρ, 3) the natural lift X of X to a geometric p−rough path
satisfies

(6.10) µ {ω : Nα̃,I,p (X (ω)) > n} ≤ C1 exp

[
−α2n2/ρ

27c4p,ρVρ (R; I × I)

]

for all n ≥ 1, α > 0 and where α̃ = 3 (2α)
p
. The constant C1, which depends only on α, is

given explicitly by

(6.11) C1 = exp
[
2Φ−1 (µ (Aα))

2
]
,

where Φ−1 is the inverse of the standard normal cumulative distribution function and

Aα :=
{
ω ∈ W : ||X (ω)||p−var;I ≤ α

}
.

(2) X is a fractional Brownian motion for H in (1/4, 1/2), then for any two real numbers p
and q in simultaneously satisfying the inequalities
(a) p > H−1

(b)
(
H + 1

2

)−1
< q < min

(
p
⌊p⌋ ,

p
p−1

)
= p
⌊p⌋
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the natural lift X of X to a geometric p−rough path satisfies

µ {ω : Nα̃,I,p (X (ω)) > n} ≤ C1 exp

[
−

α2n2/q

27c4p,qC
2
2

]

for all n ≥ 1, α > 0 and where α̃ = 3 (2α)p . The constant C1 defined by (6.11) and C2 > 0
depends only on q.

Proof. We deal with case 1. Notice from Lemma 5.5 that q = ρ and p satisfy the hypotheses of
Theorem 6.2. Hence by applying Theorem 6.2 together with Theorem 5.2 we can deduce that

(6.12) {ω : Nα̃,I,p (X (ω)) > n} ∩ E ⊂ W\ (Aα + rnK)

where E ⊆ W with µ (E) = 1 and

rn :=
αn1/ρ

(2cp,ρ)
2√

Vρ (R; I × I)
.

Noticing that µ (Aα) =: Φ (aα) is in (0, 1) (i.e. aα is in (−∞,∞)) an application of Borell’s
inequality then gives that

(6.13) µ {ω : Nα̃,I,p (X (ω)) > n} ≤ 1− Φ (aα + rn) ≤ exp

[
−
(aα + rn)

2

2

]
.

If aα > −rn/2 then (6.13) implies

µ {ω : Nα̃,I,p (X (ω)) > n} ≤ exp

(
−
r2n
8

)
,

alternatively if aα ≤ −rn/2 then a2α+2aαrn ≥ −r2n, and also (obviously) r2n ≤ 4a2α so we have that

µ {ω : Nα̃,I,p (X (ω)) > n} ≤ exp

(
−
a2α + 2aαrn

2

)
exp

(
−
r2n
2

)
≤ exp

(
2a2α

)
exp

(
−
r2n
2

)
.

Since aα = Φ−1 (µ (Aα)) we have shown the required estimate (6.10).
The fractional Brownian case is similar; from Remark 5.3 we see that for p and q as stated we

have

|h|q−var;I ≤ C2 |h|H

for some C2 = C2 (q). Then we can conclude by observing that

{ω : Nα̃,I,p (X (ω)) > n} ∩E ⊂ W\ (Aα + snK) ,

where this time

sn :=
αn1/q

(2cp,q)
2
C2

,

and applying Borell’s inequality exactly as in the first case. �

Remark 6.5. Note that under the assumption of finite ρ−variation on the covariance, the tail
estimates just proved lead to moment estimates on Nα,I,p (X (ω)) in the usual way. More exactly,
for any α > 0 and η satisfying

η <
α2/p

32/p29c4p,ρVρ (R; I × I)
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a simple calculation shows that

(6.14)

∫

W

exp
[
ηNα,I,p (X (ω))

2/ρ
]
µ (dω) < ∞.

For the Brownian rough path (ρ = 1) this shows that Nα,I,p (X (ω)) has a Gaussian tail (since

log
∣∣∣JX(ω)

t←0 (y0)
∣∣∣ . Nα,I,p (X (ω)), rudimentary Itô or Stratonovich calculus tells us that we cannot

expect the tail of Nα,I,p (X (ω)) to decay any faster than Gaussian). By a similar argument we can
show that for any r < 2/ρ

exp [Nα,I,p (X (·))r] is in ∩
q>0

Lq (µ) ;

and we can perform similar calculations in the fractional Brownian setting too.

Theorem 6.6 (Moment estimates on the Jacobian). Let (Xt)t∈[0,T ] =
(
X1

t , ..., X
d
t

)
t∈[0,T ]

be a con-

tinuous, mean-zero Gaussian process with i.i.d. components on the abstract Wiener space (W ,H, µ).
If for some p ≥ 1, X lifts to a geometric p−rough path X then for any collection of Lip−γ vector
fields V =

(
V 1, ..., V d

)
on R

e with γ > p the solution to the RDE

dYt = V (Y ) dX, Y (0) = y0

induces a flow U
X(ω)
t←0 (y0) which is differentiable. When the derivative exists let

J
X(ω)
t←0 (y0) · a :=

{
d

dε
U

X(ω)
t←0 (y0 + εa)

}

ε=0

and let M
(y0,V )
X(·) : W → R+ denote the function

M
(y0,V )
X(·) (ω) = M

(y0,V )
X(ω) := sup

t∈[0,T ]

∣∣∣JX(ω)
t←0 (y0)

∣∣∣ .

Suppose that for some ρ in [1, 3
2 ) the covariance function of X has finite ρ-variation (in the sense

of Condition 1). Then, for any p in (2ρ, 3) , the natural lift of X to a geometric p-rough path X is
such that for all r < 2/ρ and γ > p

exp
[(

logM
(y0,V )
X(·)

)r]
is in ∩

q>0
Lq (µ) ,

for all y0 in R
e and all collections of Lip−γ vector fields V =

(
V 1, ..., V d

)
on R

e.

Proof. Fix p > 2ρ then Remark 5.1 guarantees the existence of a unique natural lift X for X.
Furthermore, we know that if V =

(
V 1, ..., V d

)
is any collection of Lip-γ vector fields (and γ > p)

then the solution flow obtained by driving X along V is differentiable. Lemma 4.3 and Proposition
4.6 together show that that for any α > 0 and y0 in R

e

M
(y0,V )
X(·) ≤ c1 exp [c1Nα,I,p (X (ω))]

where I = [0, T ] and c1 is a non-random constant which depends on α, p, γ and |V |Lip-γ . Without

loss of generality we take c1 > 1 then for two further (again non-random) constants c2 and c3 an
easy calculation gives (

logM
(y0,V )
X(·)

)r
≤ c2 + c3Nα,I,p (X (ω))

r
.

Hence, we have

(6.15) exp
[(

logM
(y0,V )
X(·)

)r]
≤ c4 exp [c4Nα,I,p (X (ω))

r
] ;
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and by Theorem 6.4 and the remark following it the random variable on the right hand side of this
inequality is Lq (µ) for all q > 0 provided r < 2/ρ . �

The above result applies (in particular) to fractional Brownian motion, H > 1/3, but we can
state an alternative version of the theorem based on the second part of Theorem 6.4 which works
specifically for fBm and applies when H > 1/4.

Theorem 6.7 (Fractional Brownian motion). Let (Xt)t∈[0,T ] =
(
X1

t , ..., X
d
t

)
t∈[0,T ]

be fractional

Brownian motion on the abstract Wiener space (W ,H, µ) with Hurst parameter H > 1/4. For
some p > 1/H, X lifts to a geometric p−rough path X and for any collection of Lip−γ vector fields
V =

(
V 1, ..., V d

)
on R

e with γ > p the solution to the RDE

dYt = V (Y ) dX, Y (0) = y0

induces a flow U
X(ω)
t←0 (y0) which is differentiable. When the derivative exists let

J
X(ω)
t←0 (y0) · a :=

{
d

dε
U

X(ω)
t←0 (y0 + εa)

}

ε=0

and let M
(y0,V )
X(·) : W → R+ denote the function

M
(y0,V )
X(·) (ω) = M

(y0,V )
X(ω) := sup

t∈[0,T ]

∣∣∣JX(ω)
t←0 (y0)

∣∣∣ .

If H is in (1/3, 1/2) then, for any p in
(
H−1, 3

)
,the natural lift of X to a geometric p-rough path

X is such that for all r < 2H + 1 and γ > p

exp
[(

logM
(y0,V )
X(·)

)r]
is in ∩

q>0
Lq (µ)

for all y0 in R
e and all collections of Lip−γ vector fields V =

(
V 1, ..., V d

)
on R

e. On the other
hand, if H is in (1/4, 1/3] then the same conclusion holds for any p satisfying

3 (H + 1/2)
−1

< p < 4

and any γ > p.

Proof. The argument is the same as the last theorem; we perform the same estimates used there
but instead use the second conclusion in Theorem 6.4. Let us explain the origin of the constraint
on the value of r. Firstly, if H is in (1/3, 1/2) then we can apply the second part of Theorem 6.4
for p as given and any q satisfying

1

H + 1/2
< q <

1

2H
.

to deduce that for any such r < 2/q the random variable

(6.16) exp [Nα,I,p (X (ω))
r
]

is µ−integrable. Similarly, if H is in (1/4, 1/3] then for any p in
(
3 (H + 1/2)

−1
, 4
)
we can apply

Theorem 6.4 for any q satisfying
1

H + 1/2
< q <

p

3

to deduce again that for any r < 2/q the random variable (6.16) is µ−integrable. The result then
follows from the relation(6.15). �
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Remark 6.8. In particular these results imply (under the stated conditions) that supt∈[0,T ]

∣∣∣JX(ω)
t←0 (y0)

∣∣∣
has finite moments of all order.
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