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Abstract

This paper proposes a new modelling framework for electricity forward markets based on so–
calledambit fields. The new model can capture many of the stylised facts observed in energy
markets and is highly analytically tractable. We give a detailed account on the probabilistic prop-
erties of the new type of model, and we discuss martingale conditions, option pricing and change
of measure within the new model class. Also, we derive a modelfor the typically stationary spot
price, which is obtained from the forward model through a limiting argument.
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1 Introduction

This paper introduces a new type of model for electricity forward prices, which is based onambit
fieldsandambit processes. Ambit stochastics constitutes a general probabilistic framework which is
suitable for tempo–spatial modelling. Ambit processes aredefined as stochastic integrals with respect
to a multivariate random measure, where the integrand is given by a product of a deterministic kernel
function and a stochastic volatility field and the integration is carried out over anambit setdescribing
the sphere of influence for the stochastic field.

Due to their very flexible structure, ambit processes have successfully been used for modelling
turbulence in physics and cell growth in biology, see Barndorff-Nielsen & Schmiegel (2004, 2007,
2008a,b,c, 2009), Vedel Jensen et al. (2006). The aim of this paper is now to develop a new modelling
framework for (electricity) forward markets based on the ambit concept.

Over the past two decades, the markets for power have been liberalised in many areas in the world.
The typical electricity market, like for instance the Nordic Nord Pool market or the German EEX
market, organises trade in spot, forward/futures contracts and European options on these. Although
these assets are parallel to other markets, like traditional commodities or stock markets, electricity
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has its own distinctive features calling for new and more sophisticated stochastic models for risk
management purposes, see Benth,Šaltytė Benth & Koekebakker (2008).

The electricity spot cannot be stored directly except via reservoirs for hydro–generated power, or
large and expensive batteries. This makes the supply of power very inelastic, and prices may rise
by several magnitudes when demand increases, due to temperature drops, say. Since spot prices are
determined by supply and demand, some form of mean–reversion or stationarity can be observed.
The spot prices have clear deterministic patterns over the year, week and intra–day. The literature has
focused on stochastic models for the spot price dynamics, which take some of the various stylised facts
into account. Recently, a very general, yet analytically tractable class of models has been proposed in
Barndorff-Nielsen et al. (2010), based on Lévy semistationary processes, which are special cases of
ambit processes.

One of the fundamental problems in power market modelling isto understand the formation of
forward prices. Non–storability of the spot makes the usualbuy–and–hold hedging arguments break
down, and the notion of convenience yield is not relevant either. There is thus a highly complex
relationship between spot and forwards.

A way around this would be to follow the so–called Heath–Jarrow–Morton approach, which has
been introduced in the context of modelling interest rates,see Heath et al. (1992), and model the
forward price dynamics directly (rather than modelling thespot price and deducing the forward price
from the conditional expectation of the spot at delivery). There are many challenging problems con-
nected to this way of modelling forward prices.

Firstly, standard models for the forward dynamics generally depend on the current time and the
time to maturity. However, power market trades in contractswhich deliver power over adelivery
period, introducing a new dimension in the modelling. Hence comprehensive forward price models
should be functions of bothtime toand length ofdelivery, which calls for random field models in
time and space. Furthermore, since the market trades in contracts with overlapping delivery peri-
ods, specific no–arbitrage conditions must be satisfied which essentially puts restrictions on the space
structure of the field. So far, the literature is not very richon modelling power forward prices ap-
plying the Heath–Jarrow–Morton approach, presumably due to the lack of analytical tractability and
empirical knowledge of the price evolution.

Empirical studies, see Frestad et al. (2010), have shown that the logarithmic returns of forward
prices are non–normally distributed, with clear signs of (semi-) heavy tails. Also, a principal com-
ponent analysis by Koekebakker & Ollmar (2005) indicates a high degree of idiosyncratic risk in
power forward markets. This strongly points towards randomfield models which, in addition, allow
for stochastic volatility. Moreover, the structure determining the interdependencies between different
contracts is by far not properly understood. Some empiricalstudies, see Andresen et al. (2010), sug-
gest that the correlations between contracts are decreasing with time to maturity, whereas the exact
form of this decay is not known. But how to take ‘length of delivery’ into account in modelling these
interdependencies has been an open question. A first approach on how to tackle these problems will
be presented later in this paper.

Ambit processes provide a flexible class of random field models, where one has a high degree
of flexibility in modelling complex dependencies. These maybe probabilistic coming from a driv-
ing Levy basis and the stochastic volatility, or functionalfrom a specification of an ambit set or the
deterministic kernel function.

Our focus will be on ambit processes which arestationaryin time. As such, our modelling frame-
work differs from the traditional models, where stationaryprocesses are (if at all) reached by limiting
arguments. Modelling directly in stationarity seems in fact to be quite natural in various applica-
tions and is e.g. done in physics in the context of modelling turbulence, see e.g. Barndorff-Nielsen
& Schmiegel (2007, 2009). Here we show that such an approach has strong potential in finance, too,
when we are concerned with modelling commodity markets. In particular, we will argue that en-
ergy spot prices are typically well–described by stationary processes, see e.g. Barndorff-Nielsen et al.
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(2010) for a detailed discussion on that aspect, and in orderto achieve stationarity in the spot price
it makes sense to model the corresponding forward price alsoin stationarity. The precise relation
between the spot and the forward price will be established later in the paper.

Due to their general structure, ambit processes easily incorporate leptokurtic behaviour in returns,
stochastic volatility and leverage effects and the observed Samuelson effect in the volatility. Note
that theSamuelson effect, see Samuelson (1965), refers to the finding that, when the time to maturity
approaches zero, the volatility of the forward increases and converges to the volatility of the underlying
spot price (provided the forward price converges to the spotprice).

Although many stylised facts of energy markets can easily beincorporated in an ambit framework,
one may question whether ambit processes are not in facttoo general to be a good building block
for financial models. In particular, one property — the martingale property — is often violated by
general ambit processes. However, we can and will formulateconditions which ensure that an ambit
process is in fact a martingale. So, if we wish to stay within the martingale framework, we can do
so by using a restricted subclass of ambit processes. On the other hand, in modelling terms, it is
actually not so obvious whether weshould stay within the martingale framework if our aim is to
model electricity forward contracts. Given the illiquidity of electricity markets, it cannot be taken
for granted that arbitrage opportunities arising from forward prices outside the martingale framework
can be exercised. Also, we know from recent results in the mathematical finance literature, see e.g.
Guasoni et al. (2008), Pakkanen (2011), that subclasses of non–(semi)–martingales can be used to
model financial assets without necessarily giving rise to arbitrage opportunities in markets which
exhibit market frictions, such as e.g. transaction costs.

Next, we will not work with the most general class of ambit processes since we are mainly inter-
ested in the time–stationary case as mentioned before.

Last but not least we will show that the ambit framework can shed some light on the connection
between electricity spot and forward prices. Understanding the interdependencies between these two
assets is crucial in many applications, e.g. in the hedging of exotic derivatives on the spot using
forwards. A typical example in electricity markets is so–called user–time contracts, giving the holder
the right to buy spot at a given price on a predefined number of hours in a year, say.

The outline for the remaining part of the paper is as follows.Section 2 gives an overview of
the standard models used for forward markets. Section 3 reviews basic traits of the theory of ambit
fields and processes. In Section 4, we introduce the new modelling framework for electricity forward
markets, study its key properties and highlight the most relevant model specifications. In Section 5,
we show how some of the traditional models for forward pricesrelate to ambit processes. Section 6
presents the martingale conditions for our new model and discusses option pricing. Moreover, since
we do the modelling under the risk neutral measure, we discuss how a change of measure can be
carried out to get back to the physical probability measure,see Section 7. Next we show what kind
of spot model is implied by our new model for the forward price, and we discuss that, under certain
conditions, the implied spot price process equals in law a L´evy semistationary process, see Section
8. In order to get also a visual impression of the new models for the term structure of forward prices,
we present a simulation algorithm for ambit fields in Section9 and highlight the main theoretical
properties of the modelling framework graphically. Section 10 deals with extensions of our new
modelling framework: While we mainly focus on arithmetic models for forward prices in this paper,
we discuss briefly how geometric models can be constructed. Also, we give an outlook on how ambit
field based models can be used to jointly model time and periodof delivery. Finally, Section 11
concludes and Appendix A contains the proofs of our main results and some technical results on the
correlation structure of the new class of models and extensions to the multivariate framework.
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2 Overview on approaches to modelling forward prices

Before introducing ambit fields, let us review the exisitingliterature on direct modelling of forward
prices in commodity markets, i.e. the approach where one is not starting out with a specification of
the underlying spot dynamics.

Although commodity markets have very distinct features, most models for energy forward con-
tracts have been inspired by instantaneous forward rates models in the theory for the term structure of
interest rates, see Koekebakker & Ollmar (2005) for an overview on the similarities between electricity
forward markets and interest rates.

Hence, in order to get an overview on modelling concepts which have been developed in the
context of the term structure of interest rates, but which can also be used in the context of electricity
markets, we will now review these examples from the interestrate literature. However, later we will
argue that, in order to account for the particular stylised facts of power markets, there is a case for
leaving these models behind and focusing instead on ambit fields as a natural class for describing
energy forward markets.

Throughout the paper, we denote byt ∈ R the current time, byT ≥ 0 the timeof maturity of a
given forward contract, and byx = T − t the corresponding timeto maturity. We useFt(T ) to denote
the price of a forward contract at timet with time of maturityT . Likewise, we usef for the forward
price at timet with time to maturityx = T − t, when we work with the Musiela parameterisation, i.e.
we definef by

ft(x) = ft(T − t) = Ft(T ).

2.1 Multi–factor models

Motivated by the classical Heath et al. (1992) framework, the dynamics of the forward rate under the
risk neutral measure can be modelled by

dft(x) =

n∑

i=1

σ
(i)
t (x)dW

(i)
t , for t ≥ 0,

for n ∈ IN and whereW (i) are independent standard Brownian motions andσ(i)(x) are independent
positive stochastic volatility processes fori = 1, . . . , n. The advantage of using these multi–factor
models is that they are to a high degree analytically tractable. Extensions to allow for jumps in such
models have also been studied in detail in the literature. However, a principal component analysis
by Koekebakker & Ollmar (2005) has indicated that we need in fact many factors (largen) to model
electricity forward prices. Hence it is natural to study extensions to infinite factor models which are
also called random field models.

2.2 Random field models for the dynamics of forward rates

In order to overcome the shortcomings of the multifactor models, Kennedy (1994) has pioneered the
approach of using random field models, in some cases called stochastic string models, for modelling
the term structure of interest rates. Random field models have a continuum of state variables (in our
case forward prices for all maturities) and, hence, are alsocalled infinite factor models, but they are
typically very parsimonious in the sense that they do not require many parameters. Note that finite–
factor models can be accommodated by random field models as degenerate cases.

Kennedy (1994) proposed to model the forward rate by a centered, continuous Gaussian random
field plus a continuous deterministic drift. Furthermore hespecified a certain structure of the co-
variance function of the random field which ensured that it had independent increments in the time
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direction t (but not necessarily in the time to maturity directionx). Such models include as spe-
cial cases the classical Heath et al. (1992) model when both the drift and the volatility functions are
deterministic and also two–parameter models, such as models based on Brownian sheets. Kennedy
(1994) derived suitable drift conditions which ensure the martingale properties of the corresponding
discounted zero coupon bonds.

In a later article, Kennedy (1997) revisited the continuousGaussian random field models and he
showed that the structure of the covariance function of suchmodels can be specified explicitly if one
assumes a Markov property. Adding an additional stationarity condition, the correlation structure of
such processes is already very limited and Kennedy (1997) proved that, in fact, under a strong Markov
and stationarity assumption the Gaussian field is necessarily described by just three parameters.

The Gaussian assumption was relaxed later and Goldstein (2000) presented a term structure model
based on non–Gaussian random fields. Such models incorporate in particular conditional volatil-
ity models, i.e. models which allow for more flexible (i.e. stochastic) behaviour of the (conditional)
volatilities of the innovations to forward rates (in the traditional Kennedy approach such variances
were just constant functions of maturity), and, hence, are particularly relevant for empirical applica-
tions. Also, Goldstein (2000) points out that one is interested in verysmoothrandom field models in
the context of modelling the term structure of interest rates. Such a smoothness (e.g. in the time to
maturity direction) can be achieved by usingintegrated random fields, e.g. he proposes to integrate
over an Ornstein–Uhlenbeck process. Goldstein (2000) derived drift conditions for the absence of
arbitrage for such general non–Gaussian random field models.

While such models are quite general and, hence, appealing inpractice, Kimmel (2004) points out
that the models defined by Goldstein (2000) are generally specified as solutions to a set of stochastic
differential equations, where it is difficult to prove the existence and uniqueness of solutions. The
Goldstein (2000) models and many other conditional volatility random field models are in fact com-
plex and often infinite dimensional processes, which lack the key property of the Gaussian random
field models introduced by Kennedy (1994): that the individual forward rates are low dimensional dif-
fusion processes. The latter property is in fact important for model estimation and derivative pricing.
Hence, Kimmel (2004) proposes a new approach to random field models which allows for conditional
volatility and which preserves the key property of the Kennedy (1994) class of models: the class ofla-
tent variable term structure models. He proves that such models ensure that the forward rates andthe
latent variables (which are modelled as a joint diffusion) follow jointly a finite dimensional diffusion.

A different approach to generalising the Kennedy (1994) framework is proposed by Albeverio
et al. (2004). They suggest to replace the Gaussian random field in the Kennedy (1994) model by a
(pure jump) Lévy field. Special cases of such models are e.g.the Poisson and the Gamma sheet.

Finally, another approach for modelling forward rates has been proposed by Santa-Clara & Sor-
nette (2001) who build their model onstochastic string shocks. We will review that class of models
later in more detail since it is related (and under some assumptions even a special case) of the new
modelling framework we present in this paper.

2.3 Intuitive description of an ambit field based model for forward prices

After we have reviewed the traditional models for the term structure of interest rates, which are (par-
tially) also used for modelling forward prices of commodities, we wish to give an intuitive description
of the new framework we propose in this paper before we present all the mathematical details.

As in the aforementioned models, we also propose to use a random field to account for the two
temporal dimensions of current time and time to maturity. However, the main difference of our new
modelling framework compared to the traditional ones is that we model the forward pricedirectly.
This direct modelling approach is in fact twofold: First, we model the forward prices directly rather
than the spot price, which is in line with the Heath et al. (1992) framework. Second, we do not specify
thedynamicsof the forward price as the solution of an evolution equation, but we specify a random
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field, an ambit field, which explicitly describes the forwardprice. In particular, we propose to use
random fields given by stochastic integrals of type

∫

At(x)
h(ξ, s, x, t)σs(ξ)L(dξ, ds), (1)

as a building block for modellingft(x). A natural choice forL — motivated by the use of Lévy pro-
cesses in the one–dimensional framework — is the class ofLévy bases, which are infinitely divisible
random measures as described in more detail below. Here the integrand is given by the product of a
deterministic kernel functionh and a random fieldσ describing the stochastic volatility.

We will describe in more detail below, how stochastic integrals of type (1) have to be understood.
Note here that we integrate over a setAt(x), theambit set, which can be chosen in many different
ways. We will discuss the choice of such sets later in the paper.

An important motivation for the use of ambit processes is that we wish to work with processes
which arestationaryin time, i.e. int, rather than formulating a model whichconvergesto a stationary
process. Hence, we work with stochastic integrals startingfrom−∞ in the temporal dimension, more
precisely, we choose ambit sets of the formAt(x) = {(ξ, s) : −∞ < s ≤ t, ξ ∈ It(s, x)}, where
It(s, x) is typically an interval includingx, rather than integrating from0, which is what the traditional
models do which are constructed as solutions of stochastic partial differential equations (SPDEs). (In
fact, many traditional models coming from SPDEs can be included in an ambit framework when
choosing the ambit setAt(x) = [0, t]×{x}, see Barndorff-Nielsen, Benth & Veraart (2011) for more
details.)

In order to obtain models which are stationary in the time componentt, but not necessarily in the
time to maturity componentx, we assume that the kernel function depends ont ands only through
the differencet− s, so having thath is of the formh(ξ, s, x, t) = k(ξ, t − s, x), thatσ is stationary
in time and thatAt(x) has a certain structure, as described below. Then the specification (1) takes the
form

∫

At(x)
k(ξ, t− s, x)σs(ξ)L(dξ, ds). (2)

Note that Hikspoors & Jaimungal (2008), Benth (2011) and Barndorff-Nielsen et al. (2010) pro-
vide empirical evidence that spot and forward prices are influenced by astochastic volatilityfield σ.
Here we assume thatσ describes the volatility of the forward market as a whole. More precisely, we
will assume that the volatility of the forward depends on previous states of the volatility both in time
and in space, where the spatial dimension reflects the time tomaturity. We will come back to that in
Section 4.2.3.

The general structure of ambit fields makes it possible to allow for generaldependencies be-
tween forward contracts. In the electricity market, a forward contract has a close resemblance with
its neighbouring contracts, meaning contracts which are close in maturity. Empirics (by principal
component analysis) suggest that the electricity markets need many factors, see e.g. Koekebakker &
Ollmar (2005), to explain the risk, contrary to interest rate markets where one finds 3–4 sources of
noise as relevant. Since electricity is a non–storable commodity, forward looking information plays
a crucial role in settling forward prices. Different information at different maturities, such as plant
maintenance, weather forecasts, political decisions etc., give rise to a high degree of idiosyncratic risk
in the forward market, see Benth & Meyer-Brandis (2009). These empirical and theoretical findings
justify a random field model in electricity and also indicatethat there is a high degree of dependency
around contracts which are close in maturity, but much weaker dependence when maturities are far-
ther apart. The structure of the ambit field and the volatility field which we propose in this paper will
allow us to “bundle” contracts together in a flexible fashion.
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3 Ambit fields and processes

This section reviews the concept of ambit fields and ambit processes which form the building blocks
of our new model for the electricity forward price. For a detailed account on this topic see Barndorff-
Nielsen, Benth & Veraart (2011) and Barndorff-Nielsen & Schmiegel (2007). Throughout the paper,
we denote by(Ω,F , P ∗) our probability space. Note that we use the∗ notation since we will later
refer to this probability measure as a risk neutral probability measure.

3.1 Review of the theory of ambit fields and processes

The general framework for defining an ambit process is as follows. LetY = {Yt (x)} with Yt(x) :=
Y (x, t) denote a stochastic field in space–timeX × R and letτ (θ) = (x (θ) , t (θ)) denote a curve
in X × R. The values of the field along the curve are then given byXθ = Yt(θ) (x (θ)). Clearly,
X = {Xθ} denotes a stochastic process. In most applications, the spaceX is chosen to beRd for
d = 1, 2 or 3. Further, the stochastic field is assumed to be generated by innovations in space–time
with valuesYt (x) which are supposed to depend only on innovations that occur prior to or at time
t and in general only on a restricted set of the corresponding part of space–time. I.e., at each point
(x, t), the value ofYt (x) is only determined by innovations in some subsetAt (x) of X × Rt (where
Rt = (−∞, t]), which we call theambit setassociated to(x, t). Furthermore, we refer toY andX as
anambit fieldand anambit process, respectively.

In order to use such general ambit fields in applications, we have to impose some structural as-
sumptions. More precisely, we will defineYt (x) as a stochastic integral plus a smooth term, where
the integrand in the stochastic integral will consist of a deterministic kernel times a positive random
variate which is taken to embody thevolatility of the fieldY . More precisely, we think of ambit fields
as being of the form

Yt (x) = µ+

∫

At(x)
h (ξ, s, x, t) σs (ξ)L (dξ,ds) +

∫

Dt(x)
q (ξ, s, x, t) as (ξ) dξds, (3)

whereAt (x), andDt (x) are ambit sets,h andq are deterministic functions,σ ≥ 0 is a stochastic field
referred to asvolatility, a is also a stochastic field, andL is aLévy basis. Throughout the paper we
will assume that the volatility fieldσ is independent of the Lévy basisL for modelling convenience.

The corresponding ambit processX along the curveτ is then given by

Xθ = µ+

∫

A(θ)
h(ξ, s, τ(θ))σs(ξ)L(dξ, ds) +

∫

D(θ)
q(ξ, s, τ(θ))as(ξ)dξds, (4)

whereA(θ) = At(θ)(x(θ)) andD(θ) = Dt(θ)(x(θ)).
Of particular interest in many applications are ambit processes that are stationary in time and

nonanticipative. More specifically, they may be derived from ambit fieldsY of the form

Yt (x) = µ+

∫

At(x)
h (ξ, t− s, x)σs (ξ)L (dξ,ds) +

∫

Dt(x)
q (ξ, t− s, x) as (ξ) dξds. (5)

Here the ambit setsAt (x) andDt (x) are taken to behomogeneousandnonanticipativei.e.At (x) is
of the formAt (x) = A + (x, t) whereA only involves negative time coordinates, and similarly for
Dt (x). We assume further thath(ξ, u, x) = q(ξ, u, x) = 0 for u ≤ 0.

Due to the structural assumptions we made to define ambit fields, we obtain a class of random
fields which is highly analytically tractable. In particular, we can derive moments and the correlation
structure explicitly, see the Appendix A.4 for detailed results.

In any concrete modelling, one has to specify the various components of the ambit field, and we
do that for electricity forward prices in Section 4.1.

7



3 AMBIT FIELDS AND PROCESSES

3.2 Background on Ĺevy bases

LetS denote theδ–ring of subsets of an arbitrary non–empty setS, such that there exists an increasing
sequence{Sn} of sets inS with ∪nSn = S, see Rajput & Rosinski (1989). Recall from e.g. Rajput &
Rosinski (1989), Pedersen (2003), Barndorff-Nielsen (2011) that a Lévy basisL = {L(B), B ∈ S}
defined on a probability space(Ω,F , P ) is an independently scattered random measure with Lévy–
Khinchin representation

C{v ‡ L(B)} = log (E(exp(ivL(B))) ,

given by

C{v ‡ L(B)} = iva(B)− 1

2
v2b(B) +

∫

R

(
eivr − 1− ivrI[−1,1](r)

)
l(dr,B), (6)

wherea is a signed measure onS, b is a measure onS, l(·, ·) is the generalised Lévy measure such
thatl(dr,B) is a Lévy measure onR for fixedB ∈ S and a measure onS for fixeddr. Without loss of
generality we can assume that the generalised Lévy measurefactorises asl(dr, dη) = U(dr, η)µ(dη),
whereµ is a measure onS. Concretely, we takeµ to be thecontrol measure, see Rajput & Rosinski
(1989), defined by

µ(B) = |a|(B) + b(B) +

∫

R

min(1, r2)l(dr,B), (7)

where| · | denotes the total variation. Further,U(dr, η) is a Lévy measure for fixedη.
Note thata andb are absolutely continuous with respect toµ and we can writea(dη) = ã(η)µ(dη),

andb(dη) = b̃(η)µ(dη).
Forη ∈ S, letL′(η) be an infinitely divisible random variable such that

C{v ‡ L′(η)} = log
(
E(exp(ivL′(η))

)
,

with

C{v ‡ L′(η)} = ivã(η)− 1

2
v2b̃(η) +

∫

R

(
eivr − 1− ivrI[−1,1](r)

)
U(dr, η), (8)

then we have

C{v ‡ L(dη)} = C{v ‡ L′(η)}µ(dη). (9)

In the following, we will (as in Barndorff-Nielsen (2011)) refer toL′(η) as theLévy seedof L at η.
If U(dr, η) does not depend onη, we calll andL factorisable. If L is factorisable, withS ⊂ R

n

and if ã(η), b̃(η) do not depend onη and ifµ is proportional to the Lebesgue measure, thenL is called
homogeneous. So in the homogeneous case, we have thatµ(dη) = c leb(dη) for a constantc. In order
to simplify the exposition we will throughout the paper assume that the constant in the homogeneous
case is given byc = 1.

3.3 Integration concepts with respect to a Ĺevy basis

Since ambit processes are defined as stochastic integrals with respect to a Lévy basis, we briefly
review in this section in which sense this stochastic integration should be understood. Throughout
the rest of the paper, we work with stochastic integration with respect to martingale measures as
defined by Walsh (1986), see also Dalang & Quer-Sardanyons (2011) for a review. We will review
this theory here briefly and refer to Barndorff-Nielsen, Benth & Veraart (2011) for a detailed overview
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on integration concepts with respect to Lévy bases. Note that the integration theory due to Walsh can
be regarded as Itô integration extended to random fields.

In the following we will present the integration theory on a bounded domain and comment later
on how one can extend the theory to the case of an unbounded domain.

Let S denote a bounded Borel set inX = R
d for ad ∈ N and let(S,S, leb) denote a measurable

space, whereS denotes the Borelσ–algebra onS andleb is the Lebesgue measure.
LetL denote a Lévy basis onS × [0, T ] ∈ B(Rd+1) for someT > 0. Note thatB(Rd+1) refers to

the Borel sets generated byRd+1 andBb(·) refers to the bounded Borel sets generated byS.
For anyA ∈ Bb(S) and0 ≤ t ≤ T , we define

Lt(A) = L(A, t) = L(A× (0, t]).

HereLt(·) is a measure–valued process, which for a fixed setA ∈ Bb(S),Lt(A) is an additive process
in law.

In the following, we want to use theLt(A) as integrators as in Walsh (1986). In order to do that,
we work under the square–integrability assumption, i.e.:

Assumption (A1): For eachA ∈ Bb(S), we have thatLt(A) ∈ L2(Ω,F , P ∗).

Note that, in particular, assumption (A1) excludesα–stable Lévy bases forα < 2.

Remark 1. Note that the square integrability assumption is needed forstudying certain dynamic prop-
erties of ambit fields, such as martingale conditions. Otherwise one could work with the integration
concept introduced by Rajput & Rosinski (1989) (provided the stochastic volatility fieldσ is indepen-
dent of the Lévy basisL), which would in particular also work for the case whenL is a stable Lévy
basis.

Next, we define the filtrationFt by

Ft = ∩∞
n=1F0

t+1/n, where F0
t = σ{Ls(A) : A ∈ Bb(S), 0 < s ≤ t} ∨ N , (10)

and whereN denotes theP–null sets ofF . Note thatFt is right–continuous by construction.
In the following, we will unless otherwise stated, work without loss of generality under the zero–

mean assumption onL, i.e.

Assumption (A2): For eachA ∈ Bb(S), we have thatE(Lt(A)) = 0.

One can show that under the assumptions (A1) and (A2),Lt(A) is a (square–integrable)mar-
tingale with respect to the filtration(Ft)0≤t≤T . Note that these two properties together with the
fact thatL0(A) = 0 a.s. ensure that(Lt(A))t≥0,A∈B(Rd) is a martingale measurewith respect to
(Ft)0≤t≤T in the sense of Walsh (1986). Furthermore, we have the following orthogonality property:
If A,B ∈ Bb(S) with A ∩ B = ∅, thenLt(A) andLt(B) are independent. Martingale measures
which satisfy such an orthogonality property are referred to asorthogonal martingale measuresby
Walsh (1986), see also Barndorff-Nielsen, Benth & Veraart (2011) for more details.

For such measures, Walsh (1986) introduces theircovariance measureQ by

Q(A× [0, t]) = < L(A) >t, (11)

for A ∈ B(Rd). Note thatQ is a positive measure and is used by Walsh (1986) when defining
stochastic integration with respect toL.

Walsh (1986) defines stochastic integration in the following way. Letζ(ξ, s) be anelementary
random fieldζ(ξ, s), i.e. it has the form

ζ(ξ, s, ω) = X(ω)I(a,b](s)IA(ξ) , (12)

9
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where0 ≤ a < t, a ≤ b, X is bounded andFa–measurable, andA ∈ S. For such elementary
functions, the stochastic integral with respect toL can be defined as

∫ t

0

∫

B
ζ(ξ, s)L(dξ, ds) := X (Lt∧b(A ∩B)− Lt∧a(A ∩B)) , (13)

for everyB ∈ S. It turns out that the stochastic integral becomes a martingale measure itself inB (for
fixed a, b,A). Clearly, the above integral can easily be generalised to allow for integrands given by
simplerandom fields, i.e. finite linear combinations of elementaryrandom fields. LetT denote the set
of simple random fields and let thepredictableσ–algebraP be theσ–algebra generated byT . Then
we call a random fieldpredictableprovided it isP–measurable. The aim is now to define stochastic
integrals with respect toL where the integrand is given by a predictable random field.

In order to do that Walsh (1986) defines a norm‖ · ‖L on the predictable random fieldsζ by

‖ζ‖2L := E

[∫

[0,T ]×S
ζ2(ξ, s)Q(dξ, ds)

]
, (14)

which determines the Hilbert spacePL := L2(Ω × [0, T ] × S,P, Q), and he shows thatT is dense
in PL. Hence, in order to define the stochastic integral ofζ ∈ PL, one can choose an approxi-
mating sequence{ζn}n ⊂ T such that‖ζ − ζn‖L → 0 asn → ∞. Clearly, for eachA ∈ S,∫
[0,t]×A ζn(ξ, s)L(dξ, ds) is a Cauchy sequence inL2(Ω,F , P ), and thus there exists a limit which is

defined as the stochastic integral ofζ.
Then, this stochastic integral is again a martingale measure and satisfies the followingItô–type

isometry:

E



(∫

[0,T ]×A
ζ(ξ, s)L(dξ, ds)

)2

 = ‖ζ‖2L , (15)

see (Walsh 1986, Theorem 2.5) for more details.

Remark 2. In order to use Walsh–type integration in the context of ambit fields, we note the follow-
ing:

• General ambit setsAt(x) are not necessarily bounded. However, the stochastic integration
concept reviewed above can be extended to unbounded ambit sets using standard arguments, cf.
Walsh (1986, p. 289).

• For ambit fields with ambit setsAt(x) ⊂ X × (−∞, t], we define Walsh–type integrals for
integrands of the form

ζ(ξ, s) = ζ(ξ, s, x, t) = IAt(x)(ξ, s)h(ξ, s, x, t)σs(ξ). (16)

• The original Walsh’s integration theory covers integrandswhich do not depend on the time
index t. Clearly, the integrand given in (16) generally exhibitst–dependence due to the choice
of the ambit setAt(x) and due to the deterministic kernel functionh. In order to allow for time
dependence in the integrand, we can define the integrals in the Walsh sense for anyfixedt. Note
that in the case of havingt–dependence in the integrand, the resulting stochastic integral is, in
general, not a martingale measure any more. We will come backto this issue in Section 6.

In order to ensure that the ambit fields (as defined in (3)) are well–defined (in the Walsh–sense),
throughout the rest of the paper, we will work under the following assumption:

10



3 AMBIT FIELDS AND PROCESSES

Assumption (A3): Let L denote a Lévy basis onS × (−∞, T ], whereS denotes a not necessarily
bounded Borel setS in X = R

d for somed ∈ IN . We extend the definition of the measureQ,
see (11), to an unbounded domain and, next, we define a HilbertspacePL with norm || · ||L as
in (14) (extended to an unbounded domain) and, hence, we havean Itô isometry of type (15)
extended to an unbounded domain. We assume that, for fixedx andt,

ζ(ξ, s) = IAt(x)(ξ, s)h(ξ, s, x, t)σs(ξ)

satisfies

1. ζ ∈ PL,

2. ||ζ||2L = E

[∫
R×X ζ

2(ξ, s)Q(dξ, ds)
]
<∞.

Note that in our forward price model we will discard the driftterm from the general ambit field
defined in (3) and hence we do not add an integrability condition for the drift.

With a precise notion of integration established, let us return to the derivation of characteristic ex-
ponents, which will become useful later. It holds that (see also Rajput & Rosinski (1989, Proposition
2.6))

C

{
v ‡
∫
fdL

}
= log

(
E

(
exp

(
iv

∫
fdL

)))
=

∫
log
(
E(exp(ivf (η)L′(η)))

)
µ(dη)

=

∫
C{vf(η) ‡ L′(η)}µ(dη), (17)

for a deterministic functionf which is integrable with respect to the Lévy basis.
In order to be able to compute moments of integrals with respect to a Lévy basis, we invoke a

generalised Lévy–Itô decomposition, see Pedersen (2003). Corresponding to the generalised Lévy–
Khintchine formula, (6), the Lévy basis can be written as

L(B) = a(B) +
√
b(B)W (B) +

∫

{|y|<1}
y(N(dy,B)− ν(dy,B)) +

∫

{|y|≥1}
yN(dy,B)

= a(B) +
√
b(B)W (B) +

∫

{|y|<1}
y(N − ν)(dy,B) +

∫

{|y|≥1}
yN(dy,B),

for a Gaussian basisW and a Poisson basisN with intensityν.
Now we have all the tools at hand which are needed to compute the conditional characteristic

function of ambit fields defined in (3) whereσ andL are assumed independent and where we condition
on the path ofσ.

Theorem 1. Let Cσ denote the conditional cumulant function when we conditionon the volatility
fieldσ. The conditional cumulant function of the ambit field definedby (3) is given by

Cσ

{
v ‡
∫

At(x)
h(ξ, s, x, t)σs(ξ)L(dξ, ds)

}

= log

(
E

(
exp

(
iv

∫

At(x)
h(ξ, s, x, t)σs(ξ)L(dξ, ds)

)∣∣∣∣∣σ
))

=

∫

At(x)
C
{
vh(ξ, s, x, t)σs(ξ) ‡ L′(ξ, s)

}
µ(dξ, ds),

(18)

whereL′ denotes the Ĺevy seed andµ is the control measure associated with the Lévy basisL, cf. (8)
and (7).
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The proof of the Theorem is straightforward given the previous results and is hence omitted.
Note that in the homogeneous case, equation (18) simplifies to

Cσ

{
v ‡
∫

At(x)
h(ξ, s, x, t)σs(ξ)L(dξ, ds)

}
=

∫

At(x)
C
{
vh(ξ, s, x, t)σs(ξ) ‡ L′

}
dξds.

3.4 Lévy Semistationary Processes (LSS)

After having reviewed the basic traits of ambit fields, we briefly mention the null–spatial case of semi–
stationary ambit fields, i.e. the case when we only have a temporal component and when the kernel
function depends ont ands only through the differencet − s. This determines the class of Lévy
semistationary processes (LSS), see Barndorff-Nielsen et al. (2010). Specifically, letZ = (Zt)t∈R
denote a general Lévy process onR. Then, we writeY = {Yt}t∈R, where

Yt = µ+

∫ t

−∞
k(t− s)ωs−dZs +

∫ t

−∞
q(t− s)asds, (19)

whereµ is a constant,k andq are nonnegative deterministic functions onR, with k (t) = q (t) = 0
for t ≤ 0, andω anda are càdlàg, stationary processes. The reason for here denoting the volatility by
ω rather thanσ will become apparent later. In abbreviation the above formula is written as

Y = µ+ k ∗ ω • Z + q ∗ a • leb, (20)

whereleb denotes Lebesgue measure. In the case thatZ is a Brownian motion, we callY aBrownian
semistationary(BSS) process, see Barndorff-Nielsen & Schmiegel (2009).

In the following, we will often, for simplicity, work withinthe set–up that bothµ = 0 andq ≡ 0,
hence

Yt =

∫ t

−∞
k(t− s)ωs−dZs. (21)

For integrability conditions onω andk, we refer to Barndorff-Nielsen et al. (2010). Note that the
stationary dynamics ofY defined in (21) is a special case of a volatility modulated Lévy–driven
Volterra process, which has the form

Yt =

∫ t

−∞
h(t, s)ωs− dZs , (22)

whereZ is a Lévy process andh is a real–valued measurable function onR
2, such that the integral

with respect toZ exists.

4 Modelling the forward price under the risk neutral measure

After having reviewed the basic definitions of ambit fields and the stochastic integration concept due
to Walsh (1986), we proceed now by introducing a general model for (deseasonalised) electricity
forward prices based on ambit fields.

We consider a probability space(Ω,F , P ∗), whereP ∗ denotes the risk neutral probability mea-
sure.

Remark 3. Since we model directly under the risk neutral measure, we will ignore any drift terms in
the following, but work with a zero–mean specification of theambit field, which we later derive the
martingale conditions for.
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4 MODELLING THE FORWARD PRICE UNDER THE RISK NEUTRAL MEASURE

We setR+ = [0,∞) and define a Lévy basisL = (L(A, s))A∈B(R+),s∈R and a stochastic volatility
field σ = (σs(A))A∈B(R+),s∈R, which is independent ofL. Throughout the remaining part of the
paper, we define the filtration{Ft}t∈R by

Ft = ∩∞
n=1F0

t+1/n, where F0
t = σ{L(A, s) : A ∈ B(R+), s ≤ t} ∨ N , (23)

and whereN denotes theP–null sets ofF . Note thatFt is right–continuous by construction. Also,
we define the enlarged filtration{F t}t∈R by

F t = ∩∞
n=1F

0
t+1/n, where F0

t = σ{(L(A, s), σs(A)) : A ∈ B(R+), s ≤ t} ∨ N . (24)

4.1 The model

Under the risk neutral measure, the new model type for the forward priceft(x) is defined for fixed
t ∈ R and forx ≥ 0 by

ft(x) =

∫

At(x)
k(ξ, t− s, x)σs(ξ)L(dξ, ds), (25)

where

(i) the Lévy basisL is square integrable and has zero mean (this is an extension of assumptions
(A1) and (A2) to an unbounded domain);

(ii) the stochastic volatility fieldσ is assumed to be adapted to{Ft}t∈R and independent of the Lévy
basisL and in order to ensure stationarity in time, we assume thatσs(ξ) is stationary ins;

(iii) the kernel functionk is assumed to be non–negative and chosen such thatk(ξ, u, x) = 0 for
u < 0;

(iv) the convolutionk ⋆ σ is integrable w.r.t.L, i.e. it satisfies (A3);

(v) the ambit set is chosen to be

At(x) = At = {(ξ, s) : ξ ≥ 0, s ≤ t}, (26)

for t ∈ R, x ≥ 0, see Figure 1. Note that the ambit set is of the typeAt(x) = A0(x) + (0, t)
for A0(x) = {(ξ, s) : ξ ≥ 0, s ≤ 0}. In the following, we will drop the(x) in the notation of
the ambit set, i.e.At(x) = At, since the particular choice of the ambit set defined in (26) does
not depend on the spatial componentx.

b T=t+x

b t

ξ

s

b t
b
x0

Figure 1: The ambit setAt(x) = At.

13



4 MODELLING THE FORWARD PRICE UNDER THE RISK NEUTRAL MEASURE

Note thatft(x) is a stochastic process in time for each fixedx. Also, it is important to note that
for fixedx, ft(x) is stationary int, more preciselyft(·) is a stationary field in time. However, as soon
as we replacex by a function oft, x(t) say, in our case byx(t) = T − t, ft(x(t)) is generally not
stationary any more. This is consistent with forward pricesderived from stationary spot models (see
Barndorff-Nielsen et al. (2010)).

In order to construct a specific model for the forward price, we need to specify the kernel function
k, the stochastic volatility fieldσs(ξ) andL.

It is important to note that, when working with general ambitprocesses as defined in (25), in
modelling terms we can play around with both the ambit set, the weight functionk, the volatility field
σ and the Lévy basis in order to achieve a dependence structure we want to have. As such there is
generally not a unique choice of the ambit set or the weight function or the volatility field to achieve
a particular type of dependence structure and the choice will be based on stylised features, market
intuition and considerations of mathematical/statistical tractability.

In order to make the model specification easier in practice, we have decided to work with the
encompassing ambit set defined in (26).

Remark 4. We have chosen to model the forward price in (25) as an arithmetic model. One could of
course interpretft(x) in (25) as thelogarithmicforward price, and from time to time in the discussion
below this is the natural context. However, in the theoretical considerations, we stick to the arithmetic
model, and leave the analysis of the geometric case to Section 10.1. We note that Bernhardt et al.
(2008), Garcia et al. (2010) proposed and argued statistically for an arithmetic spot price model for
Singapore electricity data. An arithmetic spot model will naturally lead to an arithmetic dynamics for
the forward price. Benth et al. (2007) proposed an arithmetic model for spot electricity, and derived
an arithmetic forward price dynamics. In Benth, Cartea & Kiesel (2008) arithmetic spot and forward
price models are used to investigate the risk premium theoretically and empirically for the German
EEX market.

Remark 5. Note that the forward price at time0 implied by the model is given as

f0(x) =

∫

A0

k(ξ,−s, x)σs(ξ)L(dξ, ds). (27)

Hence, we view theobservedforward price as a realisation of the random variablef0(x) given in
(27), contrary to most other models wheref0(x) is considered as deterministic andput equal tothe
observed price.

The ambit field specification we are working with here is highly analytical tractable and its con-
ditional cumulant function is given as follow.

Theorem 2. LetL be a homogeneous Lévy basis1. Then

Cσ {ζ ‡ ft (x)} =

∫ t

−∞

∫ ∞

0
C
{
ζk (ξ, t− s, x) σs (ξ) ‡ L′

}
dξds, (28)

whereL′ is the Ĺevy seed associated withL. Further, in the Gaussian case, we have

C
{
ζk (ξ, t− s, x)σs (ξ) ‡ L′

}
= −1

2
ζ2k2 (ξ, t− s, x) σ2s (ξ) .

The proof of the theorem is straightforward and hence omitted.

1Recall that for every homogeneous Lévy basis the control measure is proportional to the Lebesgue measure. Here we
implicitly assume that the proportionality constant is standardised to 1.
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4 MODELLING THE FORWARD PRICE UNDER THE RISK NEUTRAL MEASURE

4.2 Examples of model specifications

A forward model based on an ambit field has a very general structure and, hence, we would like to
point out some concrete model specifications which might be useful in practice. In any particular
application, the concrete specification should be determined in a data–driven fashion and we will
comment on model estimation and inference in Section 10.2.

Since we have chosen the ambit set to be the encompassing set defined in (26), there are three
components of the model which we still need to specify: The L´evy basisL, the kernel functionk and
the stochastic volatility fieldσ.

4.2.1 Specification of the Ĺevy basis

Recall that we have defined our model based on a Lévy basis which is square integrable and has zero
mean. Extensions to allow for non–zero mean are straightforward and, hence, omitted.

In principal, we can choose any infinitely divisible distribution satisfying these two assumptions.
A very natural choice would be the Gaussian Lévy basis whichwould result in a smooth random field.

Alternative interesting choices include the Normal Inverse Gaussian (NIG) Lévy basis, see Exam-
ple 1 below, and a tempered stable Lévy basis.

In an arithmetic modelling set up, if one wants to ensure price positivity, one would need to relax
the zero–mean assumption for the Lévy basis and could then e.g. choose a Gamma or Inverse Gaussian
Lévy basis.

4.2.2 Specification of the kernel function

Note that the kernel functionk plays a key role in our model due to the following three reasons.

1. The kernel function completely determines the tempo–spatial autocorrelation structure of a
zero–mean ambit field, see Section A.4.

2. It also characterises the Samuelson effect as we will see in Theorem 7.

3. It determines whether the forward price is indeed a martingale, see Theorem 3 and Corollary 1.

Recall that the kernelk is a function in three variablesξ, t − s, x, wheret− s refers to the temporal
andξ, x to the spatial dimension.

A rather natural approach for specifying a kernel function is to assume a factorisation.
We will present two different types here, which are important in different contexts as we will see

later.
First, we study a factorisation into a temporal and a spatialkernel. In particular, we assume that

the kernel function factorises as follows:

Factorisation 1

k(ξ, t− s, x) = φ(ξ, x)ψ(t − s), (29)

for a suitable functionψ representing the temporal part andφ representing the spatial part.

In a next step, we can study specifications ofφ andψ separately.
The choice of the temporal kernelψ can be motivated by Ornstein–Uhlenbeck processes, which

imply an exponential kernel, or more generally by CARMA processes, see Brockwell (2001a,b).
In empirical work, it will be particularly interesting to focus in more detail on the question of how

to model thespatial kernel functionφ, which determines the correlation between various forward
contracts. In principal, one could choose similar (or the same) types of functions for the temporal and
the spatial dimension. However, we will see in Section 8 thatparticular choices ofφ will lead to a
rather natural relation between forward and implied spot prices.

Let us briefly study an example which is included in our new modelling framework.
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Example 1. Let L be a homogeneous symmetric normal inverse Gaussian (NIG) Lévy basis, more
specifically having Ĺevy seedL′, see Section 3.2, with density

π−1δ|y|−1γK1(γ|y|),
whereK denotes the modified Bessel function of the second kind and whereδ, γ > 0, see Barndorff-
Nielsen (1998). Then

C{θ ‡ L′} = δγ − δ
(
γ2 + θ2

)1/2
.

If the kernel functionk factorises as in (29) and ifσs(ξ) ≡ 1, then

log(E(ivft(x))) =

∫

At

C{vk(ξ, t− s, x) ‡ L′}dξds

=

∫

At

[
δγ − δ

(
γ2 + (φ(ξ, x)ψ(t − s))2

)1/2]
dξds.

For particular choices of the kernel function, this integral can be computed explicitly. E.g. forα > 0,
let φ(ξ, x) = exp(−α(ξ + x)) andψ(t− s) = exp(−α(t− s)). Then,

k(ξ, t− s, x) = exp(−α(ξ − s)) exp(−αT ),
for α > 0. Then

log(E(ivft(x))) =

∫

At

C{vk(ξ, t− s, x) ‡ L′}dξds

= δγ

∫ t

−∞

∫ ∞

0

(
1−

√
1 + c2 exp(−2α(ξ − s))

)
dξds,

for c = v exp(−2αT )/γ. This integral can be expressed in terms of standard functions, see Section
A.1 in the Appendix.

An alternative factorisation of the kernel function is given as follows.

Factorisation 2

k(ξ, t− s, x) = Φ(ξ)Ψ(t− s, x), (30)

for suitable functionsΨ andΦ.

Although Factorisation 2 does not look very natural at first sight, it is in fact also a very important
one since it naturally includes cases wheret cancels out in the sense thatΨ(t−s, x) = Ψ̃(t−s+x) =
Ψ̃(T − s) for a suitable functioñΨ. This property is crucial when we want to formulate martingale
conditions for the forward price, see Section 6. Let us look at some more specific examples for that
case in the following.

Example 2. Motivated by the standard OU models, we choose

Ψ(t− s, x) = exp(−α(t− s+ x)),

for someα > 0. The choice ofΨ can also be motivated from continuous–time ARMA (CARMA)
processes, see Brockwell (2001a,b). Specifically, forαi > 0, i = 1, . . . , p, p ≥ 1, introduce the matrix

A =

[
0 Ip−1

−αp −αp−1 · · · − α1

]
, (31)

whereIn denotes then × n identity matrix. For0 < p < q, define thep–dimensional vectorb′ =
(b0, b1, . . . , bp−1), wherebq = 1 andbj = 0 for q < j < p, and introduce

Ψ(t− s, x) = b
′ exp(A(t− s+ x)ep ,

with ek being thekth canonical unit vector inRp.
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Another interesting example which does not belong to the class of linear models is given as fol-
lows.

Example 3. Bjerksund et al. (2010) propose a geometric Brownian motionmodel for the electricity
forward price with kernel function given byη(t, T ) = a/(T − t+ b) for a, b two positive constants.
They argue that the Samuelson effect in electricity marketsare much steeper than in other commodity
markets, defending the choice of a hyperbolic function rather than exponential. The volatilityη(t, T )
motivates the choice (forx = T − t),

Ψ(t− s, x) =
a

t− s+ x+ b
=

a

T − s+ b
.

We will come back to the latter example later on, when we focusin more detail on the Samuelson
effect.

4.2.3 Specification of the volatility

The question of how to model the stochastic volatility fieldσt(x) in the ambit field specification is a
very important and interesting one, and, hence, we will discuss several relevant choices in more detail
in the following.

There are essentially two approaches which can be used for constructing a relevant stochastic
volatility field: Either one specifies the stochastic volatility field directly as a random field (e.g. as
another ambit field), or one starts from a purely temporal stochastic volatility process and then gen-
eralises the stochastic process to a random field in a suitable way. In the following, we will present
examples for both types of construction.

First, we focus on the modelling approach where we directly specify a random field for the volatil-
ity field. A natural starting point for modelling the volatility is given by kernel–smoothing of a Lévy
basis – possibly combined with a (nonlinear) transformation to ensure positivity. For instance, let

σ2t (x) = V

(∫

Aσ
t
(x)
j(ξ, t − s, x)Lσ(dξ, ds)

)
, (32)

whereLσ is a Lévy basis independent ofL, j is an integrable kernel function satisfyingj(ξ, u, x) = 0
for u < 0 andV : R → R+ is a continuous, nonnegative function. Further, the ambit set has the
structureAσ

t (x) = Aσ
0 (x) + (0, t) and is therefore homogeneous and nonanticipative. For simplicity,

we could chooseAσ
t (x) = At(x) as defined in (26).

Note thatσ2 defined by (32) with the ambit set defined by (26) is stationaryin the temporal
dimension.

Let us look at some more concrete examples:

1. A rather simple specification is given by choosingLσ to be a standard normal Lévy basis and
V (x) = x2. Thenσ2s(ξ) would be positive and pointwiseχ2–distributed with one degree of
freedom.

2. One could also work with a general Lévy basis, in particular Gaussian, andV given by the
exponential function, see e.g. Barndorff-Nielsen & Schmiegel (2004) and Schmiegel et al.
(2005).

3. A non–Gaussian example would be to chooseLσ as an inverse Gaussian Lévy basis andV to
be the identity function.
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Regarding the choice of the kernel functionj of the volatility field, we should note that it deter-
mines the tempo–spatial autocorrelation structure of the volatility field.

For simplicity, we might want to start off with kernel functions which have no spatial component,
e.g.j(ξ, t − s, x) = exp(−λ(t− s)) for λ > 0 mimicking the Ornstein–Uhlenbeck–based stochastic
volatility models, see e.g. Barndorff-Nielsen & Schmiegel(2004). In a next step (if necessary in the
particular application), we could then add spatial correlation.

Second, we show how to construct a stochastic volatility field by extending a stochastic processes
by a spatial dimension. Note that our objective is to construct a stochastic volatility field which is
stationary (at least in the temporal direction). Clearly, there are many possibilities on how this can be
done and we focus on a particularly relevant one in the following, namely theOrnstein–Uhlenbeck–
type volatility field(OUTVF). The choice of using an OU process as the stationary base component
is motivated by the fact that non–Gaussian OU–based stochastic volatility models, as e.g. studied in
Barndorff-Nielsen & Shephard (2001), tend to perform fairly well in practice, at least in the purely
temporal case.

Suppose now that̃Y is a positive OU type process with rate parameterλ > 0 and generated by a
Lévy subordinatorY , i.e.

Ỹt =

∫ t

−∞
e−λ(t−s)dYs,

We call a stochastic volatility fieldσ2t (x) on R+ × R an Ornstein–Uhlenbeck–type volatility field
(OUTVF), if it is defined as follows

τt (x) = σ2t (x) = e−µxỸt +

∫ x

0
e−µ(x−ξ)dZξ|t, (33)

whereµ > 0 is the spatial rate parameter and whereZ =
{
Z·|t

}
t∈R+

is a family of Lévy processes,
which we define more precisely in the next but one paragraph.

Note that in the above construction, we start from an OU process in time. In particular,τt(0) is
an OU process. The spatial structure is then introduced by two components: First, we we add an
exponential weighte−µx in the spatial direction, which reaches its maximal forx = 0 and decays the
further away we get from the purely temporal case. Second, anintegral is added which resembles an
OU–type process in the spatial variablex. However, note here that the integration starts from0 rather
than from−∞, and hence the resulting component is not stationary in the spatial variablex.

Let us now focus in more detail on how to define the family of Lévy processesZ. Suppose

X̃ =
{
X̃t

}
t∈R

is a stationary, positive and infinitely divisible process on R. Next we defineZ|· =
{
Zx|·

}
x∈R+

as the so–calledLévy supra–processgenerated bỹX , that is
{
Zx|·

}
x∈R+

is a family of
stationary processes such thatZ|· has independent increments, i.e. for any0 < x1 < x2 < · · · < xn
the processesZx1|·, Zx2|·−Zx1|·, ..., Zxn|·−Zxn−1|·

are mutually independent, and such that for each

x the cumulant functional ofZx|· equalsx times the cumulant functional of̃X , i.e.

C{m ‡ Zx|·} = xC{m ‡ X̃},

where
C{m ‡ X̃} = log E

{
eim(X̃)

}
,

with m
(
X̃
)
=
∫
X̃sm (ds), m denoting an ‘arbitrary’ signed measure onR. Then at anyt ∈ R the

valuesZx|t of Z·|· at timet asx runs throughR+ constitute a Lévy process that we denote byZ·|t.
This is the Lévy process occurring in the integral in (33).

Note thatτ is stationary inτ and thatτt (x) → Ỹt asx→ 0.
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4 MODELLING THE FORWARD PRICE UNDER THE RISK NEUTRAL MEASURE

Example 4. Now suppose, for simplicity, that̃X is an OU process with rate parameterκ and gener-
ated by a Ĺevy processX. Then

Cov{τt (x) , τt′
(
x′
)
} =

1

2

(
Var{Y1}λ−1e−λ(|t−t′|)−µ(x+x′) +Var{X̃0}µ−1e−κ|t−t′|−µ|x−x′|

−Var{X̃0}µ−1e−κ|t−t′|−µ(x+x′)
)
.

If, furthermore,Var{Y1} = Var{X̃0} andκ = λ = µ then for fixedx andx′ the autocorrelation
function ofτ is

Cor{τt (x) , τt′
(
x′
)
} = e−κ|t−t′|e−κ|x−x′|.

This type of construction can of course be generalised in a variety of ways, including dependence
betweenX andY and also superposition of OU processes.

Note that the processτt(x) is in general not predictable, which is disadvantageous given that we
want to construct Walsh–type stochastic integrals. However, if we chooseX̃ to be of OU type, then
we obtain a predictable stochastic volatility process.

Let us conclude this section with two further important remarks.

Remark 6. Note that if we work with a non–Gaussian Lévy basis in the volatility specification (32),
then we do not obtain a continuous volatility field. If smoothness is a concern, then one could inte-
grate the random field again, see Santa-Clara & Sornette (2001) for a similar approach, to obtain the
necessary smoothness. The same argument also holds for smoothness of the forward price model.

Remark 7. So far we have only focused on one method for introducing stochastic volatility in a
model based on a kernel–smoothed Lévy basis. An alternative approach would be to use extended
subordination as introduced in Barndorff-Nielsen (2010) and Barndorff-Nielsen & Pedersen (2011),
which we will study in more detail in future research.

4.3 Autocorrelation and cross–correlation

It is important to note that our new model does not only model one particular forward/futures contract,
but it models the entire forward curve at once. Hence it is interesting to study the correlation structure
for various forward contracts implied by our new modelling framework. The detailed results are
relegated to the Appendix, see Section A.4, but we wish to highlight our main findings here: We
see that the correlation structure is determined by three factors: the intersection of the corresponding
ambit sets, the kernel function and the autocorrelation structure of the stochastic volatility field. More
precisely, for the particular model defined in (25), where weadditionally assume that the Lévy basis
is homogeneous (satisfying Assumption (H) in the Appendix), we have fort ∈ R, h ≥ 0 and for
x, x′ ≥ 0 that for the ambit set defined in (26), we haveAt(x) ∩At+h(x

′) = At(x) = At and hence

Cor(ft(x), ft+h(x
′))

=

∫
[0,∞)×[0,∞) k(ξ, u, x)k(ξ, u + h, x′)E

(
σ20(ξ)

)
dξdu,

√∫
[0,∞)×[0,∞) k

2(ξ, u, x)E
(
σ20(ξ)

)
dξdu

∫
[0,∞)×[0,∞) k

2(ξ, u′, x′)E
(
σ20(ξ)

)
dξdu′

.

Furthermore, one could think of modelling various commodity forward or futures contracts, such as
electricity and natural gas futures simultaneously. In such a situation it becomes even more clear
how flexible the ambit set–up is: We can specify different ambit sets, kernel function, stochastic
volatility fields and Lévy bases and obtain a rather flexiblecorrelation structure. The details of these
multivariate extensions can be found in the Appendix in Section A.5.
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5 RELATING TRADITIONAL MODEL CLASSES TO THE AMBIT FRAMEWORK

5 Relating traditional model classes to the ambit framework

As already mentioned, the use of ambit fields for constructing models for forward prices is entirely
new to the literature and extends the use of correlated random fields to allow for both functional and
statistical dependence, as described in more detail below.

In the following, we will describe how some of the traditional models can be related to the ambit
framework.

5.1 Heath–Jarrow–Morton model

In thegeometricHeath et al. (1992) framework, the dynamics of the logarithmic forward price under
the risk neutral measure are modelled by

d log(ft(x)) = σt(x)dWt, for t ≥ 0,

whereW is a standard Brownian motion andσ is a positive stochastic volatility process. Note that we
start at time 0 here. Hence, the explicit formula for the forward price is given by

ft(x) = f0(x) exp

(∫ t

0
σs(x)dWs −

1

2

∫ t

0
σ2s(x)ds

)
.

Clearly, such a model is a special case of an ambit field definedin (3), whereAt(x) = [0, t]× {x}, L
is a Gaussian Lévy basis and the kernel functionh satisfiesh ≡ 1.

5.2 Random field models

Ambit processes embed the Gaussian and Lévy field models proposed in Albeverio et al. (2004),
Kennedy (1994, 1997). To see that note that we can setσ ≡ 1 and we can chooseAt(x) to be an
interval.

If we allow for a non–trivial kernel functionh or stochastic volatility fieldσ we can obtain some
of the conditional volatility models proposed in Goldstein(2000), Kimmel (2004).

5.3 Stochastic string shock model

Also, thestochastic string shockmodel by Santa-Clara & Sornette (2001), which was designed to
model the term structure of interest rates, is related to theambit framework. Their modelling frame-
work is given as follows. The dynamics of the forward rate is given by

dtft(x) = αt(x)dt+ σt(x)dtZ(t, x),

for adapted processesa andσ and a stochastic string shockZ. Note here that the notationdt is
taken from Santa-Clara & Sornette (2001) and refers to the fact that we look at the differential op-
erator w.r.t.t. A string shock is defined as a random field(Z(t, x))t,x≥0 which is continuous in
both t andx and is a martingale int. Furthermore the variance of thet–increments has to equal
the time change, i.e.V ar(dtZ(t, x)) = dt for all x ≥ 0, and the correlation of thet–increments,
i.e.Cor(dtZ(t, x), dtZ(t, y)), does not depend ont. Santa-Clara & Sornette (2001) show that such
stochastic strings can be obtained as solutions to second order linear stochastic partial differential
equations (SPDEs). It is well–known that such SPDEs have a unique solution (under some boundary
conditions), see Morse & Feshbach (1953) and the referencesin Barndorff-Nielsen, Benth & Veraart
(2011), and the solution is representable in terms of an integral, often of convolution type, of a Green
function with respect to the random noise. The class of stochastic strings given by solutions to SPDEs
is large and includes in particular (rescaled) Brownian sheets and Ornstein–Uhlenbeck sheets. Simi-
larly to the procedure presented in Goldstein (2000), Santa-Clara & Sornette (2001) argue that it might
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5 RELATING TRADITIONAL MODEL CLASSES TO THE AMBIT FRAMEWORK

also be useful to smoothen the string shocks further, so thatthey are particularly smooth in direction
of time to deliveryx. Again, this can be achieved by integrating a stochastic string shock with respect
to its second component. Stochastic string shock models aretrue generalisations of the Heath et al.
(1992) framework which do not lose the parsimonious structure of the original HJM model. Also, due
to their general structure, string models can give rise to a variety of different correlation functions and,
hence, are very flexible tools for modelling various stylised facts without needing many parameters.

The main element in the stochastic string model, see Santa-Clara & Sornette (2001, p. 159), is the
term

∫ t

0
σv(T − v)dvZ(v, T − v) =

∫ t

0

∫ ∞

0
σs(T − s)G(T − s, z)η(s, z)dzds, (34)

whereZ is a stochastic string shock,η is white noise,σ is an adapted process andG is the correspond-
ing Green function. The derivation by Santa-Clara & Sornette (2001) is partly heuristic. However,
rigorous mathematical meaning can be given to the integral in (34) by the Walsh (1986) concept of
martingale measures, see Section 3.3.

This may be compared to a special case of our ambit process where the integration is carried out
with respect to a Gaussian Lévy basis, i.e. by choosing

∫ t

0
σv(T − v)dvZ(v, T − v) =

∫ t

0

∫ ∞

0
σs(T − s)G(T − s, z)dsWs(dz).

So, for a deterministic functionσ the product ofσ andG is what we can model by the functionh in
the ambit framework, i.e.

h(ξ, s, T ) = σs(T − s)G(T − s, ξ).

The main difference between the approach advocated in the present paper and the stochastic string
shock approach lies in the fact that the ambit fields focused on here are constructed as stationary
processes in time where the integration of the temporal component starts at−∞ and not at0 and,
also, we consider general Lévy bases with a wide range of infinitely divisible distributions and do
not restrict ourselves to the continuous Gaussian case. Finally, we provide a mathematically rigorous
framework for defining the fields of forward prices.

5.4 Audet et al. (2004) model

Consider the model by Audet et al. (2004) written in the Musiela parameterisation. They study the
electricity market on a finite time horizon[0, T ∗] and model the dynamics of the forward priceft(x)
by

dft(x) = ft(x)e
−αxσx+tdBx+t(t),

for a deterministic, bounded volatility curveσ : [0, T ∗] → R+, a constantα > 0 and whereBx+t

denotes a Brownian motion for the forward price with time of maturityx+ t. Further, the correlation
structure between the Brownian motions is given by

corr(dBx′(t), dBx(t)) = exp(−ρ(x− x′)) dt = exp(−ρ|T − T ′|) dt, for all 0 ≤ x, x′ ≤ T ∗ − t,
(35)

wherex′ = T ′ − t, x = T − t. Such a model implies that the volatility of the forward price is lower
than the volatility of the spot price, an effect which is described by the parameterα. Also, forward
contracts which are close in maturity can be modelled to be strongly correlated, an effect which is
reflected by the choice of the parameterρ.

We observe that the above model for the logarithmic forward price is in fact another special case
of an ambit process, with deterministic volatility and an ambit setAt(x) = [0, t]×{x}, and the Lévy
basis being a Gaussian random field which is Brownian in time and has a spatial correlation structure
in space as specified in (35).
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6 Martingale conditions and option pricing

We have introduced the model for the forward price under the risk neutral probability measure. We
have already mentioned that a martingale condition for an electricity forward contract is not absolutely
necessary. In fact, there are at least two arguments which can be brought forward to support the choice
of more general classes of stochastic processes than (semi-) martingales.

First, in the energy context it might not be as crucial thatft(T − t) is a martingale as it is in the
context of modelling interest rates. In fact, as already indicated in the Introduction, one can argue
that from a liquidity point of view, it would be possible to use non–martingales for modelling forward
prices since in many emerging electricity markets, one may not be able to find any buyer to get rid
of a forward, nor a seller when one wants to enter into one. Hence, the illiquidity prevents possible
arbitrage opportunities from being exercised.

Second, independently of the particular structure of energy markets, the recent literature in math-
ematical finance, see e.g. Schachermayer (2004), Guasoni etal. (2008) has highlighted that some
classes of non–semimartingales, in particular, stochastic processes with conditional full support, do
not necessarily give raise to arbitrage opportunities whenmore realistic market characteristics, such as
the existence of transaction costs, are taken into account.In the null–spatial setting Pakkanen (2011)
has shown thatBSS processes have in fact conditional full support. In future research it will hence
be interesting to study extensions of this result to the (Gaussian) ambit framework.

However, the question of establishing martingale conditions for ambit fields is nevertheless inter-
esting and will be studied in the following so that we can get abetter understanding which classes of
ambit fields form a subclass of models suitable for classicalmodelling of general forward prices (not
necessarily restricted to electricity forward contracts).

6.1 Martingale conditions

We need to formulate conditions which ensure that the forward price under the risk–neutralP ∗–
measure becomes a (local) martingale. In the standard HJM framework in interest rate theory the
martingale condition is stated as a drift condition on the dynamics. However, here we have an ex-
plicit dynamics, and the (semi-) martingale property is connected to the regularity of the input in the
stochastic integral.

First, we will formulate the martingale conditions for moregeneral ambit fields as defined in (3),
where the ambit setAt(x) = At is chosen as in (26). Next, we show how such conditions simplify in
the new modelling framework described in (25).

Note that all proofs will be given in the appendix.

Theorem 3. Letx = T − t for someT > 0 and for a fixedt ∈ R write

Yt(x) = Yt(T − t) =

∫

At

h(ξ, s, T − t, t)σs(ξ)L(dξ, ds), whereAt = {(ξ, s) : ξ > 0, s ≤ t},

for a deterministic kernel functionh, an adapted, non–negative random fieldσ and a Ĺevy basis
L satisfying both Assumptions (A1) and (A2) on an unbounded domain and (A3), see Section 3.3.
Furtherσ andL are assumed to be independent.

Then(Yt(T − t))t∈R is a martingale w.r.t.{Ft}t∈R if and only if for allξ > 0, s ≤ t ≤ T we have

h(ξ, s, T − t, t) = h̃(ξ, s, T ), (36)

for some deterministic kernel functioñh.

Remark 8. If we would like to work with Lévy basesL which do not have zero mean, then the
martingale conditions have to be extended by an additional drift condition.
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6 MARTINGALE CONDITIONS AND OPTION PRICING

Corollary 1. In the special case of the new model defined in (25), we get that(ft(T − t))t∈R is a
martingale w.r.t.{Ft}t∈R if and only if for all ξ > 0, s ≤ t ≤ T we have

k(ξ, t− s, T − t) = k̃(ξ, T − s) , (37)

for a deterministic kernel functioñk. This is a special case of Factorisation 2, see (30).

Remark 9. Note that we have stated the martingale property for allt on the real line (which does not
include−∞). We refer to Basse-O’Connor et al. (2010) for a study on martingale properties at−∞.

However, in practical terms, we are mainly interested in themartingale property fort ≥ 0 since
this is when the market is active. Negative times areonlya modelling device in order to have stationary
models.

Clearly, the martingale condition is rather strong and it ishence necessary to check whether there
are actually any relevant cases left, which are not excludedby condition (37). Hence, let us study
some examples.

First we show that the condition (37) covers the standard Heath et al. (1992) models, that come
from stochastic partial differential equations.

Example 5. The traditional way to model the forward dynamics using the Musiela parameterisation
with x = T − t, is given by

dft(x) =
∂ft
∂x

(x) dt + h(x, t) dWt ,

where, for simplicity, we disregard any spatial dependencyin the Gaussian fieldW so that it is indeed
a Brownian motion. Under appropriate (weak) conditions, the mild solution of this stochastic partial
differential equation (SPDE) is given by

ft(x) = Stf0(x) +

∫ t

0
St−sh(x, s) dWs ,

whereSt is the right–shift operator,Stg(x) = g(x + t), see Carmona & Tehranchi (2006), Da Prato
& Zabczyk (1992) for more details. Hence,

ft(x) = f0(x+ t) +

∫ t

0
h(s, (t+ x)− s) dWs = ft(T − t) = f0(T ) +

∫ t

0
h(s, T − s) dWs.

Thus, we see that the martingale condition (37) is satisfied.

Another important example is motivated by the Audet et al. (2004) model.

Example 6. In our modelling framework defined in (25), we choosek to be of the form

k(ξ, t− s, x) = k(ξ, t− s, T − t) = exp(−α((ξ + x) + (t− s))) = exp(−α((ξ + T − s))),

for someα > 0. Then the martingale condition is clearly satisfied. Note that this choice of the kernel
function belongs to both the class of Factorisation 1 and of Factorisation 2.

Further important examples of kernel functions which satisfy the martingale condition can be
constructed as follows.

Example 7. We can focus on kernel functionsk which factorise as in (30), i.e.

k(ξ, t− s, x) = Ψ(t− s, x)Φ(ξ).

Clearly, the choice of the functionΦ does not have any impact on the question whether the ambit field
is a martingale. This is determined by the choice of the function Ψ.
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6 MARTINGALE CONDITIONS AND OPTION PRICING

As mentioned in Section 4, every choice of the formΨ(t−s, T−t) = ψ̃(t−s+T−t) = ψ̃(T −s)
satisfies the martingale condition. Motivated from the Bjerksund et al. (2010) model, see also Example
3, we could choose

Ψ(t− s, x) =
a

t− s+ x+ b
=

a

T − s+ b
,

for a, b > 0.
Moreover, motivated by the CARMA models discussed in Example 2, the following choice ofΨ is

also interesting:

Ψ(t− s, x) = b
′ exp(A(t− s+ x)ep ,

for thep–dimensional vectorb′ = (b0, b1, . . . , bp−1), wherebq = 1 andbj = 0 for q < j < p, with
ek being thekth canonical unit vector inRp and where the matrixA is defined as in (31).

So we have seen that it is possible to formulate martingale conditions for ambit fields and we
have studied some relevant examples of forward price modelswhich satisfy the martingale condition,
which implies that we cannot havet–dependence in the kernel function.

6.2 Option pricing

We review briefly how to price options based on forward contracts with a price dynamics given by an
ambit field. To this end, suppose we place ourselves in the risk-neutral context, and assume that the
forward price at timet ≥ 0 of a contract maturing at timeT ≥ t is

ft(T − t) =

∫ t

−∞

∫ ∞

0
k(ξ, t− s, T − t)σs(ξ)L(dξds),

with the kernel functionk satisfying the martingale condition of Thm. 3. Given a measurable function
g : R 7→ R, consider the problem of pricing a European option which pays g(Fτ (T )) at exercise time
τ ≤ T . From the arbitrage theory, we find that the price of this option at timet ≤ τ is

C(t) = e−r(τ−t)
E [g(fτ (T − τ)) | Ft] . (38)

Here, the constantr > 0 is the risk–free interest rate. ForC to be well–defined, we must suppose that
g(Fτ (T − τ)) is integrable.

Since the cumulant function of the ambit field is available (see Thm. 1), the Fourier–based pricing
method is an attractive approach (see Carr & Madan (1998)). If g, ĝ ∈ L1(R), with ĝ being the Fourier
transform ofg, we can express the price of the option as

C(t) =
1

2π

∫

R

ĝ(z)E
[
eizfτ (T−τ) | Ft

]
dz. (39)

Here, we make use of the integral representation of the inverse Fourier transform, see Folland (1984).
Thus, to findC(t), we must compute the conditional cumulant function ofY .

First, we split the ambit field to get

fτ (T − τ) =

∫ t

−∞

∫ ∞

0
k(ξ, τ − s, T − τ)σs(ξ)L(dξds)+

∫ τ

t

∫ ∞

0
k(ξ, τ − s, T − τ)σs(ξ)L(dξds).

The first integral on the right hand side isFt-measurable. Hence,

E

[
eizfτ (T−τ) | Ft

]
= exp

(
iz

∫ t

−∞

∫ ∞

0
k(ξ, τ − s, T − τ)σs(ξ)L(dξds)

)

× E

[
exp

(
iz

∫ τ

t

∫ ∞

0
k(ξ, τ − s, T − τ)σs(ξ)L(dξds)

)
| Ft

]
.
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The conditional expectation can be expressed analogously as in Thm. 1. Note that the option price
will not depend explicitly onft(T − t).

Many relevant payoff functionsg will not be inL1(R). For example, the payoff of a call option
g(x) = max(x − K, 0) will fail to satisfy this condition. In such circumstances,one can dampen
the payoff function by some exponential, and use the same procedure as above (see Carr & Madan
(1998) for more details, including examples). In case of geometric forward price models, we apply
the machinery above to the payoff functionh(x) = g(exp(x)).

7 Change of measure

If our forward price model is formulated under a risk–neutral pricing measure, it is of interest to
understand how to get back to the physical measure in order tohave a model for the observed prices.
We will introduce an Esscher transform to accommodate this.

Throughout this section we will assume that the Lévy basis is homogeneousto simplify the nota-
tion.

In order to define the change of measure we work on a market withfinite time horizonT ∗ > 0,
hence we define our model onRT ∗ = (−∞, T ∗] rather than onR.

Theorem 4. Define the process

Mθ
t = exp

(∫

At

θ(s, ξ)L(dξ, ds)−
∫

At

C{−iθ(s, ξ) ‡ L′} dξ ds
)
, (40)

whereC{· ‡ L′} is the characteristic exponent of the seed ofL (and related toC{· ‡ L} through
equation (9)). The deterministic functionθ : At 7→ RT ∗ is supposed to be integrable with respect to
the Ĺevy basisL in the sense of Walsh. Assume that

E

(
exp

(∫

At

C{−iθ(s, ξ) ‡ L′} dξ ds
))

<∞, for all t ∈ RT ∗ . (41)

ThenMθ
t is a martingale with respect toFt withE[Mθ

0 ] = 1.

The proof of the previous theorem is straightforward and, hence, omitted. We use that result now
in order to define an equivalent probabilityP by

dP

dP ∗

∣∣∣
Ft

=Mθ
t , (42)

for t ≥ 0. Hence, we have a change of measure from the risk neutral probability P ∗ under which
the forward price is defined to a real world probabilityP . In effect, the functionθ is an additional
parameter to be modelled and estimated, and it will play the role as themarket price of risk, as it
models the difference between the risk–neutral and objective price dynamics.

We compute the characteristic exponent of an integral ofL underP .

Theorem 5. For anyv ∈ R, and Walsh–integrable functionf with respect toL, it holds that

CP

{
v ‡
∫

At

f(s, ξ)L(dξ, ds)

}
= logEP

[
exp(iv

∫

At

f(s, ξ)L(dξ, ds)

]

= logE

[
exp

(∫

At

(ivf(s, ξ) + θ(s, ξ))L(dξ, ds)

)]
exp

(
−
∫

At

C{−iθ(s, ξ)) ‡ L′} dξ ds
)

=

∫

At

(
C{vf(s, ξ)− iθ(s, ξ) ‡ L′} − C{−iθ(s, ξ) ‡ L′}

)
dξ ds .

Note that the transform above is a simple generalization of the Esscher transform of Lévy pro-
cesses, see Shiryaev (1999), Benth,Šaltytė Benth & Koekebakker (2008) and Barndorff-Nielsen&
Shiryaev (2010) for more details on this aspect.
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8 Constructing the spot model from the forward model

After having studied the new model for the forward price, we investigate in detail the nature of the
spot price model implied by our new modelling framework for the forward price.

Note that this study should be understood as a theoretical exercise for now, since we typically do
notobserve convergence of the electricity forward price to theelectricity spot price. However, Section
8.4 will explain how the results in this Section can be adapted to the corresponding empirical findings.

By the no–arbitrage assumption, the forward price for a contract which matures in zero time,
x = 0, has to be equal to the spot price, that is,ft(0) = St. Thus,

St =

∫ t

−∞

∫ ∞

0
k(ξ, t− s, 0)σs(ξ)L(dξ, ds). (43)

We have the following Lemma:

Lemma 1. Suppose that

lim
x↓0

∫ t

−∞

∫ ∞

0
(k(ξ, t− s, x)− k(ξ, t− s, 0))2E[σ2s(ξ)] dξds = 0,

thenft(x) → St in L2(P ∗) as time to maturityx tends to zero.

Proof. This follows readily by appealing to the Itô-type isometryfor Walsh integrals, see (15).

The Lemma gives us that the forward price will tend continuously in variance to the spot price as
time to maturity decreases to zero. Note that wheneverσs(ξ) is a stationary field, the condition in the
Lemma is translated to a convergence ofk(·, ·, x) to k(·, ·, 0) in L2(R2

+).

8.1 The general case

Note that the spot price process implied by our ambit field–based forward price model is driven by a
tempo–spatial Lévy base, more precisely by a two–parameter random field and not just by a Brownian
motion or a Lévy process. In fact,St is a superposition ofLSS spot models, in the same sense as
superposition of OU processes. Furthermore,St is a stationary process ifσs(ξ) is stationary in the
temporal dimensions.

Similarly to the result for the forward price, see Theorem 2,we can derive the conditional cumu-
lant function for the implied spot price:

Theorem 6. LetL be a homogeneous Lévy basis. Then, forSt as defined by (43),

Cσ {ζ ‡ St} =

∫ t

−∞

∫ ∞

0
C
{
ζk (ξ, t− s, 0) σs (ξ) ‡ L′

}
dξds, (44)

whereL′ is the Ĺevy seed associated withL.

8.2 The Gaussian case

A case of some special interest is the situation where the driving Lévy basis of the ambit field is a
homogeneous Gaussian Levy basis. Then we get the following result.

Corollary 2. In the Gaussian case, whereC{ζ ‡ L′} = −1
2ζ

2.

Cσ {ζ ‡ St} = −1

2
ζ2
∫ t

−∞

∫ ∞

0
k2 (ξ, t− s, 0) σ2s (ξ) dξds.
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8 CONSTRUCTING THE SPOT MODEL FROM THE FORWARD MODEL

If k factorises as in (29), then

Cσ {ζ ‡ St} = −1

2
ζ2
∫ t

−∞
ψ2 (t− s)ω2

sds, where ω2
s =

∫ ∞

0
φ2(ξ, 0)σ2s (ξ)dξ.

This implies that

St
law
=

∫ t

−∞
ψ2(t− s)ωs−dWs, (45)

whereW is a Brownian motion. The latter is indeed anLSS process, or more precisely, a Brownian
semistationary (BSS) process. Such processes have been used as a model for energyspot prices in
Barndorff-Nielsen et al. (2010).

8.2.1 A concrete example

Let us assume that the kernel function factorises as in Factorisation 1, see (29). Then, in particular,
we have

k2(ξ, t− s, x) = φ2(ξ, x)ψ2(t− s). (46)

Now, letW in (25) be a standard Brownian motion and assume thatσ is continuous atξ = 0. In
the case thatφ2(ξ, x)dx converges weakly to the delta measure at 0, we expect to have

Cσ {ζ ‡ St} = −1

2
ζ2
∫ t

−∞
ψ2 (t− s)σ2s(0)ds,

and hence

St
law
=

∫ t

−∞
ψ2(t− s)σs−(0)dWs. (47)

That is the forward price implies anBSS–based model for the spot price. Here we should recall
that if e.g. the stochastic volatility field in the forward price is given by an an OUTVF defined in (33),
whereσs(ξ) → σs(0) with σ2s(0) being an Ornstein–Uhlenbeck process, then the stochastic volatility
of the spot price process would be given by an Ornstein–Uhlenbeck process.

As a concrete example, suppose that

ψ(t− s) = αe−α(t−s), φ(ξ, x) = p(ξ;x, γ),

where
p(ξ;x, γ) =

γx√
2π
eγ

2xξ−3/2e−
1
2
γ2(x2ξ−1+ξ)

i.e. the inverse Gaussian density with meanx and variancexγ−2

Then, we get the forward–spot relation described above and,further, we obtain an explicit formula
for the correlation between forward contracts with different times to deliveryx andx̃:

Cor(ft(x), ft(x̃)) =

∫ ∞

0
[p(ξ;x, γ)p(ξ; x̃, γ)]1l2 dξ

=
γ
√
xx̃√
2π

e
1
2
γ2(x+x̃)

∫ ∞

0
ξ−3/2e−

1
4
γ2((x2+x̃2)ξ−1+2ξ)dξ

=
γ
√
xx̃√
2π

e
1
2
γ2(x+x̃)

∫ ∞

0
ξ−3/2e−

1
2
γ2(x

2+x̃
2

2
ξ−1+ξ)dξ

=
γ
√
xx̃√
2π

e
1
2
γ2(x+x̃)

√
2π

γ
√

x2+x̃2

2

e−γ2
√

x2+x̃2

2

=

√
xx̃√

x2+x̃2

2

e−
1
2
γ2(2

√
x2+x̃2

2
−(x+x̃)).
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9 SIMULATION STUDY

Note that for any fixedx this expression tends to0 both for x̃ → ∞ and forx̃ → 0. Hence, the
forward priceft(x) is uncorrelated with the forward price in the long end of the curve,ft(∞), as well
as with the spot (corresponding tõx = 0). As is well–known in electricity markets, there exists no
spot–forward relationship derived from a buy–and–hold strategy due to non–storability. This model
may serve as an extreme case of such a situation, where forward and spot are perfectly uncorrelated
statistically.

8.3 Relation to the Samuelson effect

Recall that the Samuelson effect describes the empirical fact that the volatility of the forward price
increases and converges to the volatility of the spot price when the time to maturity approaches zero.

This finding is in fact naturally included in our modelling framework which we will show in the
following.

Theorem 7. Assume that the functionx 7→ k(ξ, u, x) is monotonically non–decreasing inx ≥ 0 for
every(ξ, u) ∈ R

2
+. Then the conditional variance of the forward priceft(x), given by

υt(x) := c

∫ t

−∞

∫ ∞

0
k2(ξ, t− s, x)σ2s(ξ)dξds,

is monotonically non–decreasing inx, for t ≥ 0. Here,c is a suitable constantc = b+ κ2 defined in
the Appendix.

The proof is given in the Appendix. Note that the conditionalvariance of the spot is given by
υt(0), and it follows from the Theorem above thatvt(x) ≤ vt(0). As a monotonically increasing
sequence being bounded byvt(0), there exist a limitlimx↓0 vt(x) ≤ vt(0). Under the condition in
Lemma 1, this limit will beυt(0), the spot price conditional variance. That is, we have a Samuelson
effect. Note that we have this effect also for non–stationary models, since we do not requireσs(ξ) to
be stationary, for example.

8.4 Accounting for the fact that the electricity forward typ ically does not converge to
the spot

We have previously discussed how a spot model can be constructed from our general forward model.
However, it is well–known that there is no convergence of electricity forward prices to the spot as time
to start of deliveryapproaches. That is, if the delivery period is[T1, T2], T1 < T2, then the forward
priceFt(T1, T2) at timet does not converge to the spot price ast → T1. One could mimic such a
behaviour with the model class we study here, by choosing the‘delivery time’ T as the mid–point,
say, in the delivery interval[T1, T2], T = (T1 + T2)/2. Then we can still associate a spot price to
the forward dynamicsft(x), but we will never actually observe the convergence in the market since
at start of delivery we havex = (T2 − T1)/2. On the other hand, we will get a model where there
is an explicit connection between the forward at ”maturity”t = T1 and the spotYT1. This opens for
modelling spot and forward jointly, taking into account their dependency structure.

9 Simulation study

In this section, we will discuss how to simulate an ambit field. Recall that the (deseasonalised) forward
price is modelled as

Yt(x) := ft(x) =

∫ t

−∞

∫ ∞

0
k(ξ, t− s, x)σs(ξ)L(dξ, ds),
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9 SIMULATION STUDY

where

σ2t (x) = V

(∫ t

−∞

∫ ∞

0
j(ξ, t− s, x)Lσ(dξ, ds)

)
,

where all quantities are as defined above.
In the following, we will describe how such an ambit field can be simulated.
Note that we describe the simulation for a fixedt and fixedx. An extension to the case, where one

simulates the entire forward curve for various values oft andx is then straightforward.

9.1 Simulation algorithm

We note that we integrate over the ambit setAt(x) = (−∞, t]× [0,∞), which is unbounded. Hence,
in a first step we need to truncate the ambit set, and we define the corresponding ambit field by

Y trunc
t (x) =

∫ t

M1

∫ M2

0
k(ξ, t− s, x)σs(ξ)L(dξ, ds),

for constantsM1 < t andM2 > 0. Note that lettingM1 tend to−∞ andM2 to +∞, Y trunc
t (x) will

converge toYt(x).
Next, we construct a grid for the interval[M1, t] × [0,M2] by dividing the temporal dimension

[M1, t] into n equidistant intervals of length(t − M1)/n, where we writet = t1 > t2 > · · · >
tn =M1, and by dividing the spatial dimension[0,M2] intom equidistant intervals of lengthM2/m,
where we write0 = x1 < x2 < · · · < xm =M2, for n,m ∈ IN .

1. Simulate the stochastic volatility field on the grid points (ti, xj) for i = 1, . . . , n and j =
1, . . . ,m. We obtain the valuesσti(xj). In the absence of stochastic volatility, we setσti(xj) =
1 for all i, j.

2. Simulaten ·m i.i.d. random variablesZi+j
d
= L(∆), wherei = 1, . . . , n, j = 1, . . . ,m and

∆ := ∆(n,m,M1,M2) =
(t−M1)

n

M2

m
.

3. We approximateY trunc
t (x) by

Ŷ trunc
t (x) :=

n−1∑

i=1

m−1∑

j=1

k(xj , t− ti, x)σti(xj)Zi+j .

The last step, Step 3, of the simulation algorithm makes use of the definition of the stochastic
integral in the sense of Walsh for simple processes. This allows us to represent the stochastic integral
of Y trunc

t (x) asŶ trunc
t (x) in a discretized form, ensuring convergence when∆ goes to zero.

Remark 10. Note that∆ is the area of each rectangular[ti, ti+1]×[xj, xj+1] for i = 1, . . . , n−1, j =
1, . . . ,m− 1 on the grid. (Hence, we implicitly work with the Lebesgue measure in the specification
of the ambit field. In the case thatL = W is a Gaussian Lévy basis, with characteristic triplet
(µ leb(), c2 leb(), 0), we simulateZi+j ∼ i.i.d. N(µ∆, c2∆). In the case thatL is an NIG Lévy basis
we simulateZi+j ∼ i.i.d. NIG(α, β, µ∆, δ∆).

In the presence of stochastic volatility, we need to use the same procedure as described above for
simulating the stochastic volatility field first. I.e. for each grid point(ti, xj) we define a truncated
interval for the ambit set of the volatility field by[M1(i), ti] × [0,M2(j)] for constantsM1(i) <
ti, 0 < M2(j). Next, we divide the temporal dimension[M1(i), t(i)] into n(i) equidistant intervals
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9 SIMULATION STUDY

of length(t(i)−M1(i))/n(i), where we writeti = τ1(i) > · · · > τn(i)(i) = M1(i), and by dividing
the spatial dimension[0,M2(j)] into m(j) equidistant intervals of lengthM2(j)/m(j), where we
write 0 = ξ1(j) < · · · < ξm(j)(j) =M2(j), for n(i),m(j) ∈ IN .

Then, we approximate

σ̂2ti(xj) = V




n(i)−1∑

ν=1

m(j)−1∑

ν′=1

j(ξν′(j), t − τν(i), xj)Z
σ
ν+ν′


 ,

whereZν+ν′
d
= Lσ(∆).

With these general simulation algorithms at hand, let us consider two specific examples: First,
suppose that the kernel functionk is a weighted sum of two exponential functions, i.e.

k(ξ, t− s, x) = k(ξ + t− s+ x) = w exp(−λ1(ξ + t− s+ x)) + (1− w) exp(−λ2(ξ + t− s+ x)),

for w ∈ [0, 1] andλ1, λ2 > 0. Note thatk satisfies the martingale condition. This choice of kernel
function is motivated by the empirical studies in Barndorff-Nielsen et al. (2010), where such a specifi-
cation in anLSS–model was shown to fit spot price data collected from the German power exchange
EEX. In the same study, one found that a NIG Lévy process was asuccessful choice, and inspired by
this we suppose thatL is a NIG Lévy basis. Finally, suppose thatV is equal to one, which means that
we do not have any volatility process in our ambit field specification.

Due to the specification of the kernel function, we can split the ambit field into two parts,

Yt(x) = wY 1
t (x) + (1− w)Y 2

t (x),

where

Y i
t (x) =

∫ t

−∞

∫ ∞

0
e−λi(ξ+t−s+x) L(dξds) = e−λi(t+x)

∫ t

−∞

∫ ∞

0
e−λi(ξ−s) L(dξds),

for i = 1, 2. We immediately see that, for∆t > 0,

Y i
t+∆t

(x) = e−λi∆tY i
t (x) + e−λi∆te−λi(t+x)

∫ t+∆t

t

∫ ∞

0
e−λi(ξ−s) L(dξds).

For small∆t, the last integral can be approximated by

∫ t+∆t

t

∫ ∞

0
e−λi(ξ−s) L(dξds) ≈ eλit

∫ ∞

0
e−λiξ L(dξ ×∆t),

to get the iterative Euler–like time–stepping scheme

Y i
t+∆t

(x) ≈ e−λi∆tY i
t (x) + e−λi(x+∆t)

∫ ∞

0
e−λiξ L(dξ ×∆t). (48)

The integral overξ can be computed numerically by a Riemann–like approximation as in the general
case above. We note that we can iterate numerically over space as well, since for∆x we have the
equality

Y i
t (x+∆x) = e−λi∆xY i

t (x). (49)

We make use of (48) and (49) to implement efficient numerical schemes for the simulation of the
whole fieldYt(x).

In an example, letλ1 = 0.012, λ2 = 0.226, andw = 0.07 in the kernel function specification.
The NIG Lévy basis has parametersδ = 0.7, α = 0.0556, µ = β = 0 (using the standard notation for
the parameters in the NIG distribution). These figures are taken from the estimates of theLSS spot

30



10 EXTENSIONS

0
50

100
150

0

50

100

−20

−10

0

10

20

30

Time to maturityTime

Figure 2: Simulated ambit field based on an NIG Lévy basis without stochastic volatility.

price model for EEX data found in Barndorff-Nielsen et al. (2010). We initializeY i
0 (0) by simulating

backwards in time sufficiently long in order to reach stationarity. In Fig. 2 we show a simulated
realization of the ambit field. Along the time axis forx = 0 one identifies a sample path of the
implied spot dynamics from the model, whereas in thetime–to–maturityaxisx we see that the field is
very smooth.

In our second example, we include a stochastic volatility inthe ambit field specification ofYt(x),
and exchange the NIG Lévy basis with a Gaussian basis,L =W . More specifically, we suppose that
Lσ is an IG Lévy basis,V being the identity function andj being the exponential function, i.e.j(ξ, t−
s, x) = exp(−λσ(ξ + t− s + x)) for λσ > 0. Since the kernel functionj is of exponential type, we
can use the same considerations as above to obtain a time and space iterative scheme for simulation
of σt(x). A realization of the ambit field is shown in Fig 3, where we have usedγ = α, and the decay
rateλσ = 0.5 as an example. Note that this stochastic volatility processis a spatial generalization
of a so–called BNS model for the volatility processσ2t , defined as the stationary solution of an IG–
Lévy process driven OU dynamics. The choice of speed of meanreversion equal to0.5 will in that
context yield a half–life ofln 2/0.5 ≈ 1.4, meaning that the volatility is fast mean reverting. This is
in accordance with the empirical results found in Barndorff-Nielsen et al. (2010).

As we observe, the stochastic volatility case generates much higher variation in prices. This is due
to the integration over the volatility in space, that creates a higher variation than the NIG ambit field
model.

10 Extensions

We consider various extensions of our model, in particular,a geometric forward model and the ques-
tion of how to model forwards with delivery period.
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Figure 3: Simulated ambit field based on a Gaussian Lévy basis with a stochastic volatility component
based on an IG Lévy basis.

10.1 Geometric modelling framework

So far, we have worked with an arithmetic model for the forward price since this is a very natural
model choice and is in line with the traditional random field based models where the forward rate
is directly modelled by e.g. a Gaussian random field. However, standard critical arguments include
that such models can in principal produce negative prices and hence might not be realistic in practice.
One way to overcome that problem would be to work with positive Lévy bases (recall that the kernel
function and the stochastic volatility component in the ambit field are by definition positive). Clearly,
in such a set–up we would have to relax the zero–mean assumption. But this is straightforward to
do. An alternative and more traditional approach would be towork with geometric models, i.e. we
model the forward price as the exponential of an ambit processes. Most of the results we derived
before can be directly carried over to the geometric set–up.E.g. when we study the link between
the forward price and the spot price, this has to be interpreted as the link between the logarithmic
forward price and the logarithmic spot price. Likewise, when looking at probabilistic properties such
as the moments and cumulants of the processes, they can be regarded as the moments/cumulants of
the logarithmic forward price.

The only result, which indeed needs some adjustment, is in fact the martingale property. The
condition on the kernel functionh stays the same as in Theorem 3 when we go to the geometric model
framework, but on top of that there will be an additional drift condition. In order to keep the exposition
as simple as possible, we will focus onhomogeneousLévy bases, see Section 3.2, in this section.

Before we formulate the martingale condition, we specify anadditional integrability assumption.

Assumption (A4) Let Y be defined as in (3), where we assume thatL is ahomogeneousLévy basis
andh satisfies the condition of Theorem 3. We assume that

E

(
exp

(∫

At

C{−ih̃(ξ, s, T )σs(ξ) ‡ L′}dξds
))

<∞, for all t ∈ R.

Now we can formulate the martingale conditions for the geometric forward price model.
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Theorem 8. LetAt = {(ξ, s) : s ≤ t;x ≥ 0}. Further, we assume that the integrability condition
(A4) is satisfied. Then, the forward price at timet with delivery at timet ≤ T , ft(T ) = (ft(T ))t≤T

with

ft(T ) = exp

(∫

At

h̃(ξ, s, T )σs(ξ)L(dξ, ds) −
∫

At

C{−ih̃(ξ, s, T )σs(ξ) ‡ L′}dξds
)
,

is a martingale with respect to{Ft}t∈R.

Consider the example of a Gaussian Lévy basis:

Example 8. In the special case thatL = W is a standardised, homogeneous Gaussian Lévy basis
and that (A4) is satisfied, we have that

ft(T ) = exp

(∫

At

h̃(ξ, s, T )σs(ξ)W (dξ, ds) − 1

2

∫

At

h̃2(ξ, s, T )σ2s(ξ)dξds

)
,

is a martingale with respect to{Ft}t∈R.

10.2 Inference

In this section, we will sketch how to estimate the new model for the forward price based on an ambit
field. A more detailed analysis is relegated to future research.

10.2.1 The case of constant volatility

In the absence of stochastic volatility, the estimation procedure for an ambit field is rather straightfor-
ward and can be carried out in two steps, as described in Jónsdóttir et al. (2011, Section 6).

First, we use the fact that the autocorrelation function of an ambit field defined in (25), but with-
out stochastic volatility, is completely determined by thekernel functionk, see Section A.4 in the
Appendix for more details. Hence, given a concrete parametric specification for the kernel function
k, one can estimate the corresponding parameters from the variogram of the observed random field,
see Cressie (1993) for more details.

After having estimated the parameters of the kernel function, one can then proceed and estimate
the parameters of a parametric specification of the Lévy basis, see Jónsdóttir et al. (2011) for more
details.

Remark 11. Note that the estimation method described above works for a fully specified parametric
model. However, one might also be interested in non–parametric estimation techniques – of the
kernel function in particular. Brockwell et al. (2011a,b) have developed such a method for estimating
the kernel function for continuous–time moving average processes. In future research, it will be
interesting to study how such techniques can be extended to the tempo–spatial framework of ambit
fields.

10.2.2 The case of stochastic volatility

As soon as we have a trulystochasticvolatility field σ in the ambit field specification, inference
becomes significantly more involved and the detailed estimation theory is beyond the scope of this
paper. However, we still wish to state the main points which have to be addressed.

Note that in order to ensure the identifiability of the model we need to formulate restrictions for
k, σ andL.

As before, we can use the variogram to estimate the autocorrelation function. However, in the
general case thatσ is stochastic, both the second moment ofσ and its autocorrelation function enter
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in the autocorrelation function of the ambit field, see Theorem 9 in the Appendix. This makes it more
difficult to identify the kernel functionk. Additional assumptions (such as zero mean of the Lévy
basisL and a simple parametric form of the second moment ofσ) will help to solve that problem.

In a next step, one needs to estimate the stochastic volatility and the Lévy basis. A natural ap-
proach to tackle this problem would be to construct a non–parametric estimator of the stochastic
volatility field, similar to realised quadratic variation for semimartingales in the null–spatial case, see
e.g. Barndorff-Nielsen & Shephard (2002) and Barndorff-Nielsen, Corcuera & Podolskij (2011a,b).
Then one can estimate the volatility parameters separatelybased on a non–parametric proxy, as it was
done in the one–dimensional case in Todorov (2009), Veraart(2011). In order to follow this approach,
it might be helpful to focus on the class of ambit fields which are indeed martingales first so that stan-
dard theory on quadratic variation is applicable. In a next step, extensions to the ambit fields which
are not semimartingales can be studied.

10.3 Outlook on how to include period of delivery into the modelling framework

So far, we have focused on forward prices with fixed delivery time, i.e. onft(x) = ft(T−t). However,
in energy markets, there is not just a time of deliveryT , but typically adelivery period, i.e. at time of
deliveryT = T1 a certain amount of electricity, say, gets delivered until timeT2 for someT2 ≥ T1, see
e.g. Benth,̌Saltytė Benth & Koekebakker (2008, Chapter 6) and Barth & Benth (2010). The forward
priceFt(T1, T2) at timet with delivery period[T1, T2] is defined by (see e.g. Benth,Šaltytė Benth &
Koekebakker (2008))

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

ft(u− t)du.

Hence, given an ambit model offt(x), we simply average it over the delivery period in order to have
the forward price for a contract with delivery period.

Alternatively, we could think of modellingFt(T1, T2) directly – by an ambit field. The main idea
here is to include the length of the delivery periodτ := T2 − T1 as an additional spatial component.
E.g. we could think of using

∫

At(x,τ)
k(ξ, χ, t− s, τ, x)σs(ξ, χ)L(dξ, dχ, ds),

as a building block forFt(T1, T2). The main obstacle in building such models is the no–arbitrage
condition between contracts with overlapping delivery periods. In fact, any model forFt(T1, T2)
must satisfy (see Benth,Šaltytė Benth & Koekebakker (2008))

Ft(T1, T2) =
1

T2 − T1

∫ T2

T1

Ft(τ, τ) dτ ,

which puts serious restrictions on the degrees of freedom inmodelling.
It will be interesting to study the analytical properties ofsuch models in more detail in future

research.

11 Conclusion

This paper presents a new modelling framework for electricity forward prices. We propose to use
ambit fields which are special types of tempo–spatial randomfields as the building block for the new
modelling class. Ambit fields are constructed by stochasticintegration with respect to Lévy bases and
we have argued in favour of the integration concept of Walsh (1986) in the context of financial ap-
plications since it enables us to derive martingale conditions for the forward prices. Furthermore, we
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have shown that forward and spot prices can be linked to each other within the ambit field framework.
Also, we have discussed relevant examples of model specifications within the new modelling frame-
work and have related them to the traditional modelling concepts. In addition, we have discussed how
a change of measure between the risk–neutral and physical probability measure can be carried out,
so that our model can be used both for option pricing purposesand for statistical studies under the
physical measure.

A natural next step to take is to test our new model empirically and to study statistical aspects
related to our ambit–field models, such as model estimation and model specification tests etc.. We
plan to address these issues in detail in future research.

Another interesting aspect, which we leave for future research, is to adapt our modelling frame-
work for applications to the term structure of interest rates.

A Proofs and some further results

A.1 Explicit results for Example 1

Note that

∫ ∞

0

(
1−

√
1 + c2 exp(−2α(ξ − s))

)
dξ = − 1

2α

[(
2
√

1 + c2 exp(2αs) − 2
)

+


2 log(2)− log




(√
1 + c2 exp(2αs) + 1

)
c2 exp(2αs)

√
1 + c2 exp(2αs) − 1






 .

Hence, we get

−8α2

δγ
log(E(ivft(x))) = −8 + 8 ln (2)− 4 ln

(
c2
)
− 2 (ln (2))2 + 4 ln (2) ln

(
c2
)

+ 8
√

1 + c2e2 tα + 4 ln
(
−1 +

√
1 + c2e2 tα

)
− 4 ln

(
1 +

√
1 + c2e2 tα

)

+
(
ln
(
−1 +

√
1 + c2e2 tα

))2
+ 4 dilog

(
1/2 + 1/2

√
1 + c2e2 tα

)

− 4 ln
(
−1 +

√
1 + c2e2 tα

)
ln (2) + 2 ln

(
−1 +

√
1 + c2e2 tα

)
ln
(
1 +

√
1 + c2e2 tα

)

−
(
ln
(
1 +

√
1 + c2e2 tα

))2
− 8 tα+ 8 ln (2) tα−

(
ln
(
c2e2 tα

))2
,

where the dilogarithm function is defined by dilog(t) =
∫ t
1

log(x)
1−x dx for t > 1.

A.2 Presence of the Samuelson effect

Proof of Theorem 7:Forx ≥ 0, we have

υt(x) = c

∫ t

−∞

∫ ∞

0
k2(ξ, t− s, x)σ2s(ξ)dξds,

wherec := (b+ κ2) with b, κ2 defined as in Section A.4. Now let0 ≤ x ≤ x′, then

υt(x
′)− υt(x) =

∫ t

−∞

∫ ∞

0

(
k2(ξ, t− s, x′)− k2(ξ, t− s, x)

)
σ2sdξds ≥ 0,

due to the fact thatk(ξ, t− s, x) is non–decreasing inx.
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A.3 Proof of the martingale condition

Proof of Theorem 3.In addition to measurability and integrability (which is straightforward here), we
have to show that

E[Yt(T − t) | Ft̃] = Yt̃(T − t̃) , for all t̃ ≤ t .

Note that for̃t ≤ t, we have thatAt̃ ⊆ At. Using the independence property ofσ andL and the fact
thatL is a zero mean process, we find

E[Yt(T − t) | Ft̃]

= E

[∫

A
t̃

h(ξ, s, T − t, t)σs(ξ)L(dξ, ds) +

∫

At\At̃

h(ξ, s, T − t, t)σs(ξ)L(dξ, ds)

∣∣∣∣∣ Ft̃

]

=

∫

A
t̃

h(ξ, s, t, T − t)σs(ξ)L(dξ, ds) = Yt̃(T − t̃) + It̃(T − t̃),

where

It̃(T − t̃) =

∫

A
t̃

{
h(ξ, s, T − t, t)− h(ξ, s, T − t̃, t̃)

}
σs(ξ)L(dξ, ds) .

Without loss of generality we assume thatV ar(L) = 1. SinceL is a Lévy basis with zero mean, we
know thatE(It̃(T − t̃)) = 0, and from the Itô isometry we therefore get that

V ar(It̃(T − t̃)) =

∫

A
t̃

{
h(ξ, s, T − t, t)− h(ξ, s, T − t̃, t̃)

}2
E(σ2s(ξ))Q(dξ, ds).

Thus, in order to obtainIt̃(T − t̃) = 0, we need that for all0 ≤ ξ, s ≤ t̃ ≤ t ≤ T

h(ξ, s, t, T − t) = h(ξ, s, t̃, T − t̃) . (50)

When we look at condition (50) more closely, then we observe that there is in fact only one class of
functions, which satisfy such a condition, i.e. functions of the form

h(ξ, s, T − t, t) = h̃(ξ, s, T ),

for all ξ ≥ 0, s ≤ t̃ ≤ t ≤ T for some deterministic kernel functioñh.

Proof of Theorem 8.We show thatM = (Mt)t∈R with Mt = exp(Yt(T − t) − dt) is a martingale
with respect to{Ft}t∈R where

Yt(T − t) =

∫

At

h̃(ξ, s, T )σs(ξ)L(ds, dξ), dt =

∫

At

C{−ih̃(ξ, s, T )σs(ξ) ‡ L′}dξds,

whereAt = {(ξ, s) : s ≤ t;x ≥ 0}. Clearly,M is measurable with respect to{Ft}t∈R and also
integrable due to the integrability assumption (A4). Further, for all t̃ ≤ t, we have that

E(Mt|Ft̃) = E (exp(Yt(T − t)− dt)| Ft̃

)

= E

(
exp

(∫

A
t̃

h̃(ξ, s, T )σs(ξ)L(ds, dξ) +

∫

At\At̃

h̃(ξ, s, T )σs(ξ)L(ds, dξ) − dt̃ + dt̃ − dt

)∣∣∣∣∣Ft̃

)

=Mt̃ E

(
exp

(∫

At\At̃

h̃(ξ, s, T )σs(ξ)L(ds, dξ) − (dt − dt̃)

)∣∣∣∣∣Ft̃

)
.
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Using the formula for the characteristic functions of integrals with respect to Lévy bases, see Rajput
& Rosinski (1989) and Section 3.2, we get

E

(
exp

(∫

At\At̃

h̃(ξ, s, T )σs(ξ)L(ds, dξ)

)∣∣∣∣∣Ft̃

)

= E

(
E

(
exp

(∫

At\At̃

h̃(ξ, s, T )σs(ξ)L(dξ, ds)

)∣∣∣∣∣F t̃

)∣∣∣∣∣Ft̃

)

= E

(
exp

(∫

At\At̃

C{h̃(ξ, s, T )σs(ξ) ‡ L′}dξds
)∣∣∣∣∣Ft̃

)
= E

(
exp

(
dt − dt̃

)∣∣Ft̃

)
.

Hence the result follows.
In the special case thatL is a standardised, homogeneous Gaussian Lévy basis, the drift is given

by

dt =
1

2

∫

At

h̃2(ξ, s, T )σ2s (ξ)dξds.

A.4 Second order structure of ambit fields

We provide some results on the probabilistic properties of the ambit fields which are useful in mod-
elling.

For ease of exposition, we will focus on ambit fields based onhomogeneousLévy bases.

A.4.1 Results

Now we study the second order properties of a general ambit field given by

Yt(x) =

∫

At(x)
h(s, ξ, t, x)σs(ξ)L(ds, dξ), (51)

for a homogeneous Lévy basisL (not necessarily with zero mean), a homogeneous ambit setAt(x)
(as defined above) and a processσ which is independent ofL and whereh denotes a damping function
(ensuring that the integral exists). In order to compute various moments of the ambit field, we work
with the Lévy–Itô decomposition:

Yt(x) =

∫

At(x)
h(s, ξ, t, x)σs(ξ)

√
bW (dξ, ds) +

∫

At(x)

∫

{|y|≤1}
yh(s, ξ, t, x)σs(ξ)(N − ν)(dy, ds, dξ)

+

∫

At(x)

∫

{|y|≥1}
yh(s, ξ, t, x)σs(ξ)N(dy, ds, dξ),

whereb ≥ 0 andN is a Poisson random measure with compensatorν. Hence,N(A) ∼ Poisson(ν(A))
and, in particular,

E(N(A)) = ν(A) = V ar(N(A)), E((N(A)2) = ν(A) + ν(A)2.

Furthermore, we know that

E (N(A)− ν(A)) = 0, V ar(N(A)− ν(A)) = E(N(A)− ν(A))2 = ν(A).

Assumption (H) In the following, we work under the assumptions that
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• The generalised Lévy measureν is factorisable, i.e.ν(dy, dη) = U(dy)µ(dη), for η = (ξ, s),

• the measureµ is homogeneous, i.e.µ(dη) = cdη, for a constantc ∈ R. For ease of exposition,
we choosec = 1. Hence, we haveν(dy, ds, dξ) = U(dy)dsdξ.

Furthermore, we use the following notation. Letκ1 =
∫
{|y|≥1} yU(dy) andκ2 =

∫
R
y2U(dy) (as-

suming they exist!) and define a functionρ : R4 → R by

ρ(s, s̃, ξ, ξ̃) = E

(
σs(ξ)σs̃(ξ̃)

)
− E (σs(ξ))E

(
σs̃(ξ̃)

)
, (52)

for s, s̃, ξ, ξ̃ ≥ 0.

Theorem 9. Let t, t̃, x, x̃ ≥ 0 and letYt(x) be an ambit field as defined in (51) and assume that
assumption (H) holds. The second order structure is then as follows. The means are given by

E (Yt(x)| σ) = κ1

∫

At(x)
h(s, ξ, t, x)σs(ξ)dsdξ,

E (Yt(x)) = κ1

∫

At(x)
h(s, ξ, t, x)E (σs(ξ)) dsdξ.

The variances are given by

V ar (Yt(x)| σ) = (b+ κ2)

∫

At(x)
h2(s, ξ, t, x)σ2s (ξ)dsdξ,

V ar (Yt(x)) = (b+ κ2)

∫

At(x)
h2(s, ξ, t, x)E

(
σ2s(ξ)

)
dsdξ

+ κ21

∫

At(x)

∫

At(x)
h(s, ξ, t, x)h(s̃, ξ̃, t, x)ρ(s, s̃, ξ, ξ̃)dsdξds̃dξ̃.

The covariances are given by

Cov (Yt(x), Yt̃(x̃)| σ) = (b+ κ2)

∫

At(x)∩At̃
(x̃)
h(s, ξ, t, x)h(s, ξ, t̃, x̃)σ2s(ξ)dξds,

Cov (Yt(x), Yt̃(x̃)) = (b+ κ2)

∫

At(x)∩At̃
(x̃)
h(s, ξ, t, x)h(s, ξ, t̃, x̃)E

(
σ2s(ξ)

)
dξds

+ κ21

∫

At(x)

∫

A
t̃
(x̃)
h(s, ξ, t, x)h(s̃, ξ̃, t̃, x̃)ρ(s, s̃, ξ, ξ̃)ds̃dξ̃dsdξ.

Corollary 3. The conditional correlation is given by

Cor (Yt(x), Yt̃(x̃)| σ) =
∫
At(x)∩At̃

(x̃) h(s, ξ, t, x)h(s, ξ, t̃, x̃)σ
2
s(ξ)dξds√∫

At(x)
h2(s, ξ, t, x)σ2s (ξ)dξds

∫
A

t̃
(x̃) h

2(s̃, ξ̃, t̃, x̃)σ2s̃(ξ̃)dξ̃ds̃
.

For κ1 = 0, the unconditional correlation is given by

Cor (Yt(x), Yt̃(x̃)) =

∫
At(x)∩At̃

(x̃) h(s, ξ, t, x)h(s, ξ, t̃, x̃)E
(
σ2s(ξ)

)
dξds

√∫
At(x)

h2(s, ξ, t, x)E (σ2s(ξ)) dξds
∫
A

t̃
(x̃) h

2(s̃, ξ̃, t̃, x̃)E
(
σ2s̃(ξ̃)

)
dξ̃ds̃

.
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A.4.2 Proofs of the second order properties

Proof of Theorem 9.Recall thatκ1 =
∫
|y|≥1 yU(dy) andκ2 =

∫
R
y2U(dy). Then

E (Yt(x)| σ) =
∫

At(x)

∫

{|y|≥1}
yh(s, ξ, t, x)σs(ξ)U(dy)dsdξ = κ1

∫

At(x)
h(s, ξ, t, x)σs(ξ)dsdξ,

E (Yt(x)) = κ1

∫

At(x)
h(s, ξ, t, x)E (σs(ξ)) dsdξ.

For the second moment, we get

E
(
Yt(x)

2
∣∣σ
)
= (b+ κ2)

∫

At(x)
h2(s, ξ, t, x)σ2s (ξ)dsdξ + κ21

(∫

At(x)
h(s, ξ, t, x)σs(ξ)dsdξ

)2

,

E
(
Yt(x)

2
)
= (b+ κ2)

∫

At(x)
h2(s, ξ, t, x)E

(
σ2s(ξ)

)
dsdξ

+ κ21

∫

At(x)

∫

At(x)
h(s, ξ, t, x)h(s̃, ξ̃, t, x)E

(
σs(ξ)σs̃(ξ̃)

)
dsdξds̃dξ̃.

The conditional and unconditional variance is then given by

V ar (Yt(x)| σ) = (b+ κ2)

∫

At(x)
h2(s, ξ, t, x)σ2s (ξ)dsdξ,

V ar (Yt(x)) = E (V ar (Yt(x)| σ)) + V ar (E (Yt(x)| σ))

= (b+ κ2)

∫

At(x)
h2(s, ξ, t, x)E

(
σ2s(ξ)

)
dsdξ

+ κ21

∫

At(x)

∫

At(x)
h(s, ξ, t, x)h(s̃, ξ̃, t, x)ρ(s, s̃, ξ, ξ̃)dsdξds̃dξ̃.

Next, we compute the covariance. In order to do that, we use throughout that fory, ỹ ∈ R and
(s, ξ), (s̃, ξ̃) ∈ At(x) ∩At̃(x̃):

E

(
N(dy, ds, dξ)N(dỹ, ds̃, dξ̃)

)
= ν(dy, ds, dξ)ν(dỹ, ds̃, dξ̃) + ν(dmin(y, ỹ), dmin(s, s̃), dmin(ξ, ξ̃)),

and

E

(
(N − ν)(dy, ds, dξ)(N − ν)(dỹ, ds̃, dξ̃)

)
= ν(dmin(y, ỹ), dmin(s, s̃), dmin(ξ, ξ̃)).

For the product, we get

E (Yt(x)Yt̃(x̃)| σ) = (b+ κ2)

∫

At(x)∩At̃
(x̃)
h(s, ξ, t, x)h(s, ξ, t̃, x̃)σ2s(ξ)dξds

+ κ21

∫

At(x)

∫

A
t̃
(x̃)
h(s, ξ, t, x)h(s̃, ξ̃, t̃, x̃)σs(ξ)σs̃(ξ̃)ds̃dξ̃dsdξ,

E (Yt(x)Yt̃(x̃)) = (b+ κ2)

∫

At(x)∩At̃
(x̃)
h(s, ξ, t, x)h(s, ξ, t̃, x̃)E

(
σ2s(ξ)

)
dξds

+ κ21

∫

At(x)

∫

A
t̃
(x̃)
h(s, ξ, t, x)h(s̃, ξ̃, t̃, x̃)E

(
σs(ξ)σs̃(ξ̃)

)
ds̃dξ̃dsdξ.
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Therefore, the covariance is given by

Cov (Yt(x), Yt̃(x̃)| σ) = (b+ κ2)

∫

At(x)∩At̃
(x̃)
h(s, ξ, t, x)h(s, ξ, t̃, x̃)σ2s(ξ)dξds,

Cov (Yt(x), Yt̃(x̃)) = (b+ κ2)

∫

At(x)∩At̃
(x̃)
h(s, ξ, t, x)h(s, ξ, t̃, x̃)E

(
σ2s(ξ)

)
dξds

+ κ21

∫

At(x)

∫

A
t̃
(x̃)
h(s, ξ, t, x)h(s̃, ξ̃, t̃, x̃)ρ(s, s̃, ξ, ξ̃)ds̃dξ̃dsdξ.

A.5 Multivariate extension and cross correlation

For practical applications it is often necessary to extend the current modelling framework to a multi-
variate set–up. E.g. one could think of modelling various commodity forwards or futures simultane-
ously. Such a task can be tackled by using the ambit concept.

In order to simplify the notation, we will focus on thebivariatecase in the following. Extensions
to then–dimensional case forn ∈ IN are then straightforward.

Let us assume we have a pair of ambit fields, i.e.

Y
(i)
t (x) =

∫

A
(i)
t

(x)
h(i)(s, ξ, t, x)σ(i)s (ξ)L(i)(ds, dξ),

for i = 1, 2, whereh(i), σ(i) andL(i) are defined as above. The corresponding Lévy–Itô decomposi-
tion is then given by

Y
(i)
t (x) =

∫

A
(i)
t

(x)
h(i)(s, ξ, t, x)σ(i)s (ξ)

√
b(i)W (i)(dξ, ds)

+

∫

A
(i)
t

(x)

∫

{|y|≤1}
yh(i)(s, ξ, t, x)σ(i)s (ξ)(N (i) − ν(i))(dy, ds, dξ)

+

∫

At(x)(i)

∫

{|y|≥1}
yh(i)(s, ξ, t, x)σ(i)s (ξ)N (i)(dy, ds, dξ),

wherebI) > 0 andN (i) is a Poisson random measure with compensatorν(i).
The key issue is now how this two ambit fields are related to each other. A natural way of doing

a multivariate modelling is to assume thatL := (L(1), L(2)) is a vector–valued homogeneous Lévy
basis, where the Gaussian part satisfies

Cov
(
W (1)(dξ, ds),W (2)(dξ, ds)

)
= ρdξds,

for −1 ≤ ρ ≤ 1 and the generalised Lévy measure is given by

ν(y1, y2, s1, s2, ξ1, ξ2) = U(y1, y2)µ(s1, s2, ξ1, ξ2).

Since we only consider homogeneous Lévy bases, we get

ν(dy1, dy2, ds1, ds2, dξ1, dξ2) = U(dy1, dy2)ds1ds2dξ1dξ2,

where we set the proportionality constant to 1.
So we see that correlations between the two Lévy bases can beincorporated either through the

Gaussian part or the jump part or a combination of both.
In order to shorten the exposition slightly, we focus on the Gaussian and pure–jump cases sepa-

rately.
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Theorem 10(Gaussian Lévy base). LetL(i) be a Gaussian Ĺevy base fori = 1, 2 and letρ denote
the corresponding correlation coefficient, i.e.ρdξds = Cov

(
W (1)(dξ, ds),W (2)(dξ, ds)

)
. Under

the assumptions above, we get the following covariation functions:

Cov
(
Y

(1)
t (x), Y

(2)

t̃
(x̃)
∣∣∣ σ(1), σ(2)

)

= ρ
√
b(1)b(2)

∫

A
(1)
t

(x)∩A
(2)

t̃
(x̃)
h(1)(s, ξ, t, x)h(2)(s, ξ, t̃, x̃)σ(1)s (ξ)σ(2)s (ξ)dsdξ.

The unconditional covariation is given by

Cov
(
Y

(1)
t (x), Y

(2)

t̃
(x̃)
)
= ρ
√
b(1)b(2)

∫

A
(1)
t

(x)∩A
(2)

t̃
(x̃)
h(1)(s, ξ, t, x)h(2)(s, ξ, t̃, x̃)Υ(s, ξ)dsdξ,

where

Υ(s, ξ) = E

(
σ(1)s (ξ)σ(2)s (ξ)

)
− E

(
σ(1)s (ξ)

)
E

(
σ(2)s (ξ)

)
.

Likewise, we get the following result in the pure jump case.

Theorem 11( The pure jump case). LetL(i) be a pure jump Ĺevy base fori = 1, 2 and letκ1,1 =∫
|y|≥1

∫
|y′|≥1 yy

′U(dy, dy′). Then (under the assumptions above), we get the following covariation
functions:

Cov
(
Y

(1)
t (x), Y

(2)

t̃
(x̃)
∣∣∣ σ(1), σ(2)

)

=
(
κ1,1 − κ

(1)
1 κ

(2)
1

)∫

A
(1)
t

(x)∩A
(2)

t̃
(x̃)
h(1)(s, ξ, t, x)h(2)(s, ξ, t̃, x̃)σ(1)s (ξ)σ(2)s (ξ)dsdξ.

The unconditional covariance is then given by

Cov
(
Y

(1)
t (x), Y

(2)

t̃
(x̃)
)
=

∫

A
(1)
t

(x)∩A
(2)

t̃
(x̃)
h(1)(s, ξ, t, x)h(2)(s, ξ, t̃, x̃)Υ̃(s, s, ξ, ξ)dsdξ

+

∫

A
(1)
t

(x)

∫

A
(2)
t

(x)
h(1)(s, ξ, t, x)h(2)(s̃, ξ̃, t̃, x̃)Υ̃(s, s̃, ξ, ξ̃)ds̃dξ̃dsdξ,

where

Υ̃(s, s̃, ξ, ξ̃) = κ1,1E
(
σ(1)s (ξ)σ

(2)
s̃ (ξ̃)

)
− κ

(1)
1 κ

(2)
1 E

(
σ(1)s (ξ)

)
E

(
σ
(2)
s̃ (ξ̃)

)
.

Note that from a modelling point of view there are many possibilities in modelling the joint Lévy
measureU . E.g. one could work with classical multivariate Lévy measures. Another possibility would
be to apply Lévy copulas, see e.g. Cont & Tankov (2004), to model the dependence structure.

Acknowledgement

Financial support by the Center for Research in EconometricAnalysis of Time Series, CREATES,
funded by the Danish National Research Foundation is gratefully acknowledged by the third author.
The second author acknowledges financial support from the Norwegian Research Council through the
project ”Energy markets: modelling, optimization and simulation” (EMMOS), eVita 205328.

41



REFERENCES

References

Albeverio, S., Lytvynov, E. & Mahning, A. (2004), ‘A model ofthe term structure of interest rates
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