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Abstract

This paper proposes a new modelling framework for eletyrforward markets based on so—
calledambit fields The new model can capture many of the stylised facts obdernvenergy
markets and is highly analytically tractable. We give a iledeaccount on the probabilistic prop-
erties of the new type of model, and we discuss martingalditions, option pricing and change
of measure within the new model class. Also, we derive a mfmi¢he typically stationary spot
price, which is obtained from the forward model through atiing argument.
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1 Introduction

This paper introduces a new type of model for electricityvard prices, which is based ambit
fieldsandambit processesAmbit stochastics constitutes a general probabilisacriework which is
suitable for tempo—spatial modelling. Ambit processegdafned as stochastic integrals with respect
to a multivariate random measure, where the integrand enddy a product of a deterministic kernel
function and a stochastic volatility field and the integratis carried out over aambit setdescribing
the sphere of influence for the stochastic field.

Due to their very flexible structure, ambit processes haeeessfully been used for modelling
turbulence in physics and cell growth in biology, see Barfieddielsen & Schmiegel (2004, 2007,
2008&,b,c, 2009), Vedel Jensen et al. (2006). The aim of this papenistaoaevelop a new modelling
framework for (electricity) forward markets based on theb@armoncept.

Over the past two decades, the markets for power have begallged in many areas in the world.
The typical electricity market, like for instance the Nardilord Pool market or the German EEX
market, organises trade in spot, forward/futures corgrantl European options on these. Although
these assets are parallel to other markets, like traditiooramodities or stock markets, electricity
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has its own distinctive features calling for new and morehsgijtated stochastic models for risk
management purposes, see Beélimyté Benth & Koekebakker (2008).

The electricity spot cannot be stored directly except vigereoirs for hydro—generated power, or
large and expensive batteries. This makes the supply of pegrg inelastic, and prices may rise
by several magnitudes when demand increases, due to tdmpedaops, say. Since spot prices are
determined by supply and demand, some form of mean—revecsistationarity can be observed.
The spot prices have clear deterministic patterns overdhe yeek and intra—day. The literature has
focused on stochastic models for the spot price dynamicshtlike some of the various stylised facts
into account. Recently, a very general, yet analyticatigtimble class of models has been proposed in
Barndorff-Nielsen et al. (2010), based on Lévy semistetiy processes, which are special cases of
ambit processes.

One of the fundamental problems in power market modelling isnderstand the formation of
forward prices. Non-storability of the spot makes the usugl-and—hold hedging arguments break
down, and the notion of convenience yield is not relevarttegit There is thus a highly complex
relationship between spot and forwards.

A way around this would be to follow the so—called Heath-a@l@#Morton approach, which has
been introduced in the context of modelling interest raseg Heath et al. (1992), and model the
forward price dynamics directly (rather than modelling sipet price and deducing the forward price
from the conditional expectation of the spot at deliverypetie are many challenging problems con-
nected to this way of modelling forward prices.

Firstly, standard models for the forward dynamics gengrddéipend on the current time and the
time to maturity. However, power market trades in contractsch deliver power over aelivery
period introducing a new dimension in the modelling. Hence comensive forward price models
should be functions of bottime toandlength ofdelivery, which calls for random field models in
time and space. Furthermore, since the market trades imactstwith overlapping delivery peri-
ods, specific no—arbitrage conditions must be satisfiediwdssentially puts restrictions on the space
structure of the field. So far, the literature is not very rash modelling power forward prices ap-
plying the Heath—Jarrow—Morton approach, presumably dubkd lack of analytical tractability and
empirical knowledge of the price evolution.

Empirical studies, see Frestad et al. (2010), have showrthtedogarithmic returns of forward
prices are non—normally distributed, with clear signs ehfs) heavy tails. Also, a principal com-
ponent analysis by Koekebakker & Ollmar (2005) indicatesgh liegree of idiosyncratic risk in
power forward markets. This strongly points towards randiefd models which, in addition, allow
for stochastic volatility. Moreover, the structure detarimg the interdependencies between different
contracts is by far not properly understood. Some empistiadies, see Andresen et al. (2010), sug-
gest that the correlations between contracts are decgeasin time to maturity, whereas the exact
form of this decay is not known. But how to take ‘length of dety’ into account in modelling these
interdependencies has been an open question. A first appooacow to tackle these problems will
be presented later in this paper.

Ambit processes provide a flexible class of random field ngmydehere one has a high degree
of flexibility in modelling complex dependencies. These nbayprobabilistic coming from a driv-
ing Levy basis and the stochastic volatility, or functiofr@m a specification of an ambit set or the
deterministic kernel function.

Our focus will be on ambit processes which atationaryin time. As such, our modelling frame-
work differs from the traditional models, where stationprgcesses are (if at all) reached by limiting
arguments. Modelling directly in stationarity seems intfecbe quite natural in various applica-
tions and is e.g. done in physics in the context of modellumpulence, see e.g. Barndorff-Nielsen
& Schmiegel (2007, 2009). Here we show that such an approasisthong potential in finance, too,
when we are concerned with modelling commodity markets. drtigular, we will argue that en-
ergy spot prices are typically well-described by statignaocesses, see e.g. Barndorff-Nielsen et al.

Electronic copy available at: http://ssrn.com/abstract=1938704



1 INTRODUCTION

(2010) for a detailed discussion on that aspect, and in dodachieve stationarity in the spot price
it makes sense to model the corresponding forward priceialstationarity. The precise relation
between the spot and the forward price will be establishiexat ia the paper.

Due to their general structure, ambit processes easilypocate leptokurtic behaviour in returns,
stochastic volatility and leverage effects and the obskSamuelson effect in the volatility. Note
that theSamuelson effecsee Samuelson (1965), refers to the finding that, whenrtetth maturity
approaches zero, the volatility of the forward increasescamverges to the volatility of the underlying
spot price (provided the forward price converges to the pgog).

Although many stylised facts of energy markets can easiipd@porated in an ambit framework,
one may question whether ambit processes are not irntdaayeneral to be a good building block
for financial models. In particular, one property — the nmagéile property — is often violated by
general ambit processes. However, we can and will form@atglitions which ensure that an ambit
process is in fact a martingale. So, if we wish to stay withia inartingale framework, we can do
so by using a restricted subclass of ambit processes. Orntltee loand, in modelling terms, it is
actually not so obvious whether vahould stay within the martingale framework if our aim is to
model electricity forward contracts. Given the illiquigiof electricity markets, it cannot be taken
for granted that arbitrage opportunities arising from farevprices outside the martingale framework
can be exercised. Also, we know from recent results in thdnemaatical finance literature, see e.g.
Guasoni et al. (2008), Pakkanen (2011), that subclassesmsf(semi)-martingales can be used to
model financial assets without necessarily giving rise tut@ge opportunities in markets which
exhibit market frictions, such as e.g. transaction costs.

Next, we will not work with the most general class of ambitqgesses since we are mainly inter-
ested in the time—stationary case as mentioned before.

Last but not least we will show that the ambit framework caedssome light on the connection
between electricity spot and forward prices. Understapndie interdependencies between these two
assets is crucial in many applications, e.g. in the hedgingxotic derivatives on the spot using
forwards. A typical example in electricity markets is sdterhuser—time contracts, giving the holder
the right to buy spot at a given price on a predefined numbeowfsin a year, say.

The outline for the remaining part of the paper is as follov&ection 2 gives an overview of
the standard models used for forward markets. Section 8wsvbasic traits of the theory of ambit
fields and processes. In Section 4, we introduce the new tiragd&amework for electricity forward
markets, study its key properties and highlight the mostveait model specifications. In Section 5,
we show how some of the traditional models for forward pricgate to ambit processes. Section 6
presents the martingale conditions for our new model anclidies option pricing. Moreover, since
we do the modelling under the risk neutral measure, we dishosr a change of measure can be
carried out to get back to the physical probability meassee, Section 7. Next we show what kind
of spot model is implied by our new model for the forward pyiaed we discuss that, under certain
conditions, the implied spot price process equals in laveaylSemistationary process, see Section
8. In order to get also a visual impression of the new modelghterm structure of forward prices,
we present a simulation algorithm for ambit fields in Sect@ooand highlight the main theoretical
properties of the modelling framework graphically. Sect0 deals with extensions of our new
modelling framework: While we mainly focus on arithmetic deds for forward prices in this paper,
we discuss briefly how geometric models can be constructesih, ve give an outlook on how ambit
field based models can be used to jointly model time and pefadklivery. Finally, Section 11
concludes and Appendix A contains the proofs of our mainlt®suid some technical results on the
correlation structure of the new class of models and extesdio the multivariate framework.
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2 Overview on approaches to modelling forward prices

Before introducing ambit fields, let us review the exisitiitgrature on direct modelling of forward
prices in commodity markets, i.e. the approach where onetistarting out with a specification of
the underlying spot dynamics.

Although commodity markets have very distinct featuressimoodels for energy forward con-
tracts have been inspired by instantaneous forward ratdelsm the theory for the term structure of
interest rates, see Koekebakker & Ollmar (2005) for an aearen the similarities between electricity
forward markets and interest rates.

Hence, in order to get an overview on modelling concepts lwihiave been developed in the
context of the term structure of interest rates, but whighalao be used in the context of electricity
markets, we will now review these examples from the interat#t literature. However, later we will
argue that, in order to account for the particular stylisscts of power markets, there is a case for
leaving these models behind and focusing instead on amlus faes a natural class for describing
energy forward markets.

Throughout the paper, we denote by R the current time, by” > 0 the timeof maturity of a
given forward contract, and by = T — ¢ the corresponding time maturity. We use;(7") to denote
the price of a forward contract at timtevith time of maturity?'. Likewise, we usef for the forward
price at timet with time to maturityz = T — t, when we work with the Musiela parameterisation, i.e.
we definef by

fi(x) = fi(T —t) = F(T).

2.1 Multi-factor models

Motivated by the classical Heath et al. (1992) framework,dfinamics of the forward rate under the
risk neutral measure can be modelled by

dfy(x Zaj yaw®,  fort >0,

for n € IV and wherdV () are independent standard Brownian motions @fit{z) are independent
positive stochastic volatility processes foe 1,...,n. The advantage of using these multi—factor
models is that they are to a high degree analytically trdetabxtensions to allow for jumps in such
models have also been studied in detail in the literaturewdyer, a principal component analysis
by Koekebakker & Ollmar (2005) has indicated that we needat fnany factors (large) to model
electricity forward prices. Hence it is natural to studyemdions to infinite factor models which are
also called random field models.

2.2 Random field models for the dynamics of forward rates

In order to overcome the shortcomings of the multifactor el®dkennedy (1994) has pioneered the
approach of using random field models, in some cases cabietlagttic string models, for modelling
the term structure of interest rates. Random field models hasontinuum of state variables (in our
case forward prices for all maturities) and, hence, are edfled infinite factor models, but they are
typically very parsimonious in the sense that they do notiiregmany parameters. Note that finite—
factor models can be accommodated by random field modelggaseate cases.

Kennedy (1994) proposed to model the forward rate by a cemit@ontinuous Gaussian random
field plus a continuous deterministic drift. Furthermoredpecified a certain structure of the co-
variance function of the random field which ensured that @ imalependent increments in the time
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direction ¢ (but not necessarily in the time to maturity directioh Such models include as spe-
cial cases the classical Heath et al. (1992) model when betldrift and the volatility functions are
deterministic and also two—parameter models, such as sibdskd on Brownian sheets. Kennedy
(1994) derived suitable drift conditions which ensure thertingale properties of the corresponding
discounted zero coupon bonds.

In a later article, Kennedy (1997) revisited the continu@aissian random field models and he
showed that the structure of the covariance function of sonotels can be specified explicitly if one
assumes a Markov property. Adding an additional statibpaondition, the correlation structure of
such processes is already very limited and Kennedy (199¥gdrthat, in fact, under a strong Markov
and stationarity assumption the Gaussian field is necgssgascribed by just three parameters.

The Gaussian assumption was relaxed later and Goldsteéd@)pesented a term structure model
based on non—Gaussian random fields. Such models incaporgtarticular conditional volatil-
ity models, i.e. models which allow for more flexible (i.eodtastic) behaviour of the (conditional)
volatilities of the innovations to forward rates (in thediteoonal Kennedy approach such variances
were just constant functions of maturity), and, hence, aréqularly relevant for empirical applica-
tions. Also, Goldstein (2000) points out that one is interdsn verysmoothrandom field models in
the context of modelling the term structure of interestgat8uch a smoothness (e.g. in the time to
maturity direction) can be achieved by usimgegrated random fields.g. he proposes to integrate
over an Ornstein—Uhlenbeck process. Goldstein (2000yetbwmlrift conditions for the absence of
arbitrage for such general non—-Gaussian random field models

While such models are quite general and, hence, appealimgatice, Kimmel (2004) points out
that the models defined by Goldstein (2000) are generallgifépe as solutions to a set of stochastic
differential equations, where it is difficult to prove theisggnce and unigueness of solutions. The
Goldstein (2000) models and many other conditional vatgatitandom field models are in fact com-
plex and often infinite dimensional processes, which laekky property of the Gaussian random
field models introduced by Kennedy (1994): that the indigidorward rates are low dimensional dif-
fusion processes. The latter property is in fact importantriodel estimation and derivative pricing.
Hence, Kimmel (2004) proposes a new approach to random fiettels which allows for conditional
volatility and which preserves the key property of the Kahngl994) class of models: the clasdaf
tent variable term structure modelsle proves that such models ensure that the forward ratethand
latent variables (which are modelled as a joint diffusiasiloiiv jointly a finite dimensional diffusion.

A different approach to generalising the Kennedy (1994in&ravork is proposed by Albeverio
et al. (2004). They suggest to replace the Gaussian randadrirfithe Kennedy (1994) model by a
(pure jump) Lévy field. Special cases of such models areteeg?oisson and the Gamma sheet.

Finally, another approach for modelling forward rates hesrbproposed by Santa-Clara & Sor-
nette (2001) who build their model @tochastic string shockdMe will review that class of models
later in more detail since it is related (and under some ap8ans even a special case) of the new
modelling framework we present in this paper.

2.3 Intuitive description of an ambit field based model for faward prices

After we have reviewed the traditional models for the terracitire of interest rates, which are (par-
tially) also used for modelling forward prices of commoektj we wish to give an intuitive description
of the new framework we propose in this paper before we ptedkine mathematical details.

As in the aforementioned models, we also propose to use amafidld to account for the two
temporal dimensions of current time and time to maturitywieeer, the main difference of our new
modelling framework compared to the traditional ones id #a model the forward pricdirectly.
This direct modelling approach is in fact twofold: First, we model theward prices directly rather
than the spot price, which is in line with the Heath et al. @3F8amework. Second, we do not specify
the dynamicsof the forward price as the solution of an evolution equattmt we specify a random
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field, an ambit field, which explicitly describes the forwagrdce. In particular, we propose to use
random fields given by stochastic integrals of type

/ h(E, s, ) (€)L(dE, ds), 1)
A¢(x)

as a building block for modelling;(x). A natural choice fol, — motivated by the use of Lévy pro-
cesses in the one—dimensional framework — is the clak&wf baseswhich are infinitely divisible
random measures as described in more detail below. Heratédgrand is given by the product of a
deterministic kernel functioh and a random field describing the stochastic volatility.

We will describe in more detail below, how stochastic inédgiof type (1) have to be understood.
Note here that we integrate over a sg{x), the ambit set which can be chosen in many different
ways. We will discuss the choice of such sets later in thepape

An important motivation for the use of ambit processes i$ @ wish to work with processes
which arestationaryin time, i.e. int, rather than formulating a model whiclonvergedo a stationary
process. Hence, we work with stochastic integrals staftmg —oc in the temporal dimension, more
precisely, we choose ambit sets of the fafy(z) = {(&,s) : —00 < s < t,& € I(s,z)}, where
I,(s, x) is typically an interval including:, rather than integrating fro which is what the traditional
models do which are constructed as solutions of stochaatt@pdifferential equations (SPDES). (In
fact, many traditional models coming from SPDEs can be gwdluin an ambit framework when
choosing the ambit set;(z) = [0, ¢] x {z}, see Barndorff-Nielsen, Benth & Veraart (2011) for more
details.)

In order to obtain models which are stationary in the time ponentt, but not necessarily in the
time to maturity component, we assume that the kernel function depends ands only through
the difference — s, so having that is of the formh(¢, s, x,t) = k(&,t — s, x), thato is stationary
in time and that4,(z) has a certain structure, as described below. Then the speidfi (1) takes the
form

/ B(E,t — 5, 2)0, (€)L(dE, ds). @
A¢(x)

Note that Hikspoors & Jaimungal (2008), Benth (2011) andhBarff-Nielsen et al. (2010) pro-
vide empirical evidence that spot and forward prices areémited by atochastic volatilityfield o.
Here we assume thatdescribes the volatility of the forward market as a whole.rprecisely, we
will assume that the volatility of the forward depends orvjes states of the volatility both in time
and in space, where the spatial dimension reflects the timeatarity. We will come back to that in
Section 4.2.3.

The general structure of ambit fields makes it possible towafior generaldependencies be-
tween forward contractsin the electricity market, a forward contract has a closemblance with
its neighbouring contracts, meaning contracts which aseecin maturity. Empirics (by principal
component analysis) suggest that the electricity marketsl many factors, see e.g. Koekebakker &
Ollmar (2005), to explain the risk, contrary to intereseratarkets where one finds 3—-4 sources of
noise as relevant. Since electricity is a non—storable codity) forward looking information plays
a crucial role in settling forward prices. Different infoation at different maturities, such as plant
maintenance, weather forecasts, political decisionsgite rise to a high degree of idiosyncratic risk
in the forward market, see Benth & Meyer-Brandis (2009). sehempirical and theoretical findings
justify a random field model in electricity and also indic#tiat there is a high degree of dependency
around contracts which are close in maturity, but much wed&pendence when maturities are far-
ther apart. The structure of the ambit field and the volgtfigld which we propose in this paper will
allow us to “bundle” contracts together in a flexible fashion
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3 Ambit fields and processes

This section reviews the concept of ambit fields and ambitgsses which form the building blocks
of our new model for the electricity forward price. For a diehaccount on this topic see Barndorff-
Nielsen, Benth & Veraart (2011) and Barndorff-Nielsen & 8dbgel (2007). Throughout the paper,
we denote by(Q2, F, P*) our probability space. Note that we use thaotation since we will later
refer to this probability measure as a risk neutral prolighiheasure.

3.1 Review of the theory of ambit fields and processes

The general framework for defining an ambit process is aeviall LetY = {Y; (z)} with Yi(z) :=

Y (x,t) denote a stochastic field in space—tiliex R and letr () = (z () ,¢(#)) denote a curve
in X x R. The values of the field along the curve are then givenXy= Y, ) (z (¢)). Clearly,

X = {Xy} denotes a stochastic process. In most applications, tloe sppas chosen to b&? for

d = 1,2 or 3. Further, the stochastic field is assumed to be generateghioyations in space—time
with valuesY; () which are supposed to depend only on innovations that oator §o or at time

t and in general only on a restricted set of the correspondargqgs space—time. l.e., at each point
(z,t), the value ofY; (x) is only determined by innovations in some subdefx) of X x R, (where
R; = (—o0, t]), which we call theambit setassociated téz, t). Furthermore, we refer tv and X as
anambit fieldand anambit processrespectively.

In order to use such general ambit fields in applications, e lo impose some structural as-
sumptions. More precisely, we will defig (x) as a stochastic integral plus a smooth term, where
the integrand in the stochastic integral will consist of gedainistic kernel times a positive random
variate which is taken to embody thelatility of the fieldY". More precisely, we think of ambit fields
as being of the form

Yiw) =u+ [

Ai(x)

h(€,s,0.0) 0y (€) L (dE, ds) + / ¢(Es.mt)as (€)deds, ()

Dy¢(x)

whereA, (z), andD; (x) are ambit sets; andq are deterministic functions; > 0 is a stochastic field

referred to awolatility, a is also a stochastic field, anidis aLévy basis Throughout the paper we

will assume that the volatility field is independent of the Lévy basisfor modelling convenience.
The corresponding ambit proceisalong the curve is then given by

Xo=pt [ b s @@L + [ g6 sm@)a©deds @
A(6) D(6)
whereA(0) = Ayg)(2(6)) andD(0) = Dy (z(0)).
Of particular interest in many applications are ambit psses that are stationary in time and
nonanticipative. More specifically, they may be derivedrframbit fieldsY” of the form

Viw)=u+ [

At(z)

h(£>t_87$) Os (g)L(d£>ds)+/ q({,t—s,x)as (f)dfds (5)

D¢(x)

Here the ambit setd, (x) and D, (x) are taken to bbomogeneouandnonanticipativei.e. A; (x) is
of the form A, (z) = A + (z,t) where A only involves negative time coordinates, and similarly for
D (z). We assume further tha({, u, z) = ¢(&, u,z) = 0 foru < 0.

Due to the structural assumptions we made to define ambitfield obtain a class of random
fields which is highly analytically tractable. In particylave can derive moments and the correlation
structure explicitly, see the Appendix A.4 for detailedules

In any concrete modelling, one has to specify the variouspmmants of the ambit field, and we
do that for electricity forward prices in Section 4.1.
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3.2 Background on Lévy bases

LetS denote thé—ring of subsets of an arbitrary non—empty Sesuch that there exists an increasing
sequencg S, } of sets inS with U,,.S,, = S, see Rajput & Rosinski (1989). Recall from e.g. Rajput &
Rosinski (1989), Pedersen (2003), Barndorff-Nielsen 2@at a Lévy basid. = {L(B),B € S}
defined on a probability spadé€?, 7, P) is an independently scattered random measure with Lévy—
Khinchin representation

C{v{ L(B)} = log (E(exp(ivL(B))),

given by

C{viL(B)} =iva(B) — %v2b(B) —I—/ (e —1— wrl_y41(r)) l(dr, B), (6)
R

wherea is a signed measure @) b is a measure o8, [(-, -) is the generalised Lévy measure such

that/(dr, B) is a Lévy measure oR for fixed B € S and a measure aifor fixed dr. Without loss of

generality we can assume that the generalised Lévy metmsuioeises a$(dr, dn) = U (dr,n)u(dn),

wherey is a measure o8. Concretely, we take to be thecontrol measurgsee Rajput & Rosinski

(1989), defined by

w(B) = |a|(B) + b(B) + /Rmin(l,rz)l(dr, B), (7)

where| - | denotes the total variation. Furthéf(dr,n) is a Lévy measure for fixeq.

Note thatz andb are absolutely continuous with respecfitand we can write(dn) = a(n)u(dn),
andb(dn) = b(n)u(dn).

Forn € S, let L' (n) be an infinitely divisible random variable such that

C{v1L'(n)} =log (E(exp(ivL'(n))),

with

C{vtL'(n)} =iva(n) — %vzb(n) + /]R (e — 1 —ivrli_y 3y(r)) U(dr,n), (8)
then we have

C{v i L(dn)} = C{v i L'(n)}u(dn). 9)

In the following, we will (as in Barndorff-Nielsen (2011)¢fer toL’(n) as theLévy seedf L at.

If U(dr,n) does not depend ap we calll and L factorisable If L is factorisable, withS C R”
and ifa(n), b(n) do not depend on and if . is proportional to the Lebesgue measure, thes called
homogeneousSo in the homogeneous case, we haveliét) = c leb(dn) for a constant. In order
to simplify the exposition we will throughout the paper assuthat the constant in the homogeneous
case is given by = 1.

3.3 Integration concepts with respect to a Evy basis

Since ambit processes are defined as stochastic integrdisregpect to a Lévy basis, we briefly
review in this section in which sense this stochastic iratign should be understood. Throughout
the rest of the paper, we work with stochastic integratiothwespect to martingale measures as
defined by Walsh (1986), see also Dalang & Quer-Sardanydisl]Zor a review. We will review
this theory here briefly and refer to Barndorff-Nielsen, Bef Veraart (2011) for a detailed overview
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on integration concepts with respect to Lévy bases. Natktlie integration theory due to Walsh can
be regarded as Itd integration extended to random fields.

In the following we will present the integration theory on @ibded domain and comment later
on how one can extend the theory to the case of an unboundeaimiom

Let S denote a bounded Borel setin = R? for ad € N and let(S, S, leb) denote a measurable
space, wheré& denotes the Boret—algebra ort andleb is the Lebesgue measure.

Let L denote a Lévy basis afi x [0, 7] € B(R*+1) for someT" > 0. Note thatB(R%+1) refers to
the Borel sets generated B/+! andB,(-) refers to the bounded Borel sets generated by

ForanyA € B,(S) and0 < t < T', we define

Li(A) = L(A, 1) = L(A x (0,1]).

HereL,(-) is a measure—valued process, which for a fixediset5,(.S), L;(A) is an additive process
in law.

In the following, we want to use thg;(A) as integrators as in Walsh (1986). In order to do that,
we work under the square—integrability assumption, i.e.:

Assumption (Al): For eachA € B,(S), we have thaf.,(A) € L?(Q2, F, P*).

Note that, in particular, assumption (Al) excludesstable Lévy bases far < 2.

Remark 1. Note that the square integrability assumption is needestimlying certain dynamic prop-
erties of ambit fields, such as martingale conditions. Qifser one could work with the integration
concept introduced by Rajput & Rosinski (1989) (provideg $tochastic volatility field is indepen-
dent of the Lévy basid.), which would in particular also work for the case wheris a stable Lévy
basis.

Next, we define the filtratiotF; by
Fio =M1 Fiy 1 ns where  FP = o{Ls(A): A€ By(S),0<s <t} VN, (10)

and whereV denotes thé’—null sets ofF. Note thatF; is right—continuous by construction.
In the following, we will unless otherwise stated, work vdth loss of generality under the zero—
mean assumption aob, i.e.

Assumption (A2): For eachA € B, (S), we have thaE(L.(A)) = 0.

One can show that under the assumptions (Al) and (A2)A4) is a (square—integrablehar-

tingale with respect to the filtration{.F;)o<;<7. Note that these two properties together with the
fact thatLo(4) = 0 a.s. ensure thatLi(A));>0 acp(re) IS @ martingale measurevith respect to
(Ft)o<t<T in the sense of Walsh (1986). Furthermore, we have the follpwrthogonality property:
If A,B € By(S) with An B = (), thenL;(A) and L;(B) are independent. Martingale measures
which satisfy such an orthogonality property are refereddorthogonal martingale measurdxs/
Walsh (1986), see also Barndorff-Nielsen, Benth & Vera2®tl(l) for more details.

For such measures, Walsh (1986) introduces ttwrariance measuré by

Q(A x [0,t]) = < L(A) >, (12)

for A € B(R?). Note thatQ is a positive measure and is used by Walsh (1986) when defining
stochastic integration with respectfo

Walsh (1986) defines stochastic integration in the follgvwmay. Let{({,s) be anelementary
random field( (¢, s), i.e. it has the form

(€ sw) = X(w)ﬂ(a,b} (s)La(§) (12)

9



3 AMBIT FIELDS AND PROCESSES

where) < a < t, a < b, X is bounded andF,—measurable, and € S. For such elementary
functions, the stochastic integral with respeci.toan be defined as

/O /B C(€,5) L(dE,ds) = X (Luny(AN B) — Lina(AN B)) | (13)

for everyB € S. It turns out that the stochastic integral becomes a maf@éngeasure itself i8 (for
fixed a, b, A). Clearly, the above integral can easily be generalisedldw dor integrands given by
simplerandom fields, i.e. finite linear combinations of elementanydom fields. Lef denote the set
of simple random fields and let thedictablec—algebraP be thes—algebra generated l3y. Then
we call a random fielghredictableprovided it isP—measurable. The aim is now to define stochastic
integrals with respect té where the integrand is given by a predictable random field.

In order to do that Walsh (1986) defines a ndfml|, on the predictable random fieldy

I =E[/ C(¢.5) Qg ds) | | (14)
[0,T]xS

which determines the Hilbert spagg, := L2(Q2 x [0,7] x S,P,Q), and he shows thaf is dense
in Pr. Hence, in order to define the stochastic integral of P, one can choose an approxi-
mating sequenc¢¢,}, C T such that||¢ — (,||lz — 0 asn — oo. Clearly, for eachA € S,
f[O,t]M Ca(&,5) L(d€, ds) is a Cauchy sequence It (Q2, F, P), and thus there exists a limit which is
defined as the stochastic integral(of

Then, this stochastic integral is again a martingale meaand satisfies the followingdo—type

isometry
2
E {( / e, s)L(dg,ds>> ] — ¢, (15)
[0,7]x A

see (Walsh 1986, Theorem 2.5) for more details.

Remark 2. In order to use Walsh—type integration in the context of drirdids, we note the follow-
ing:

e General ambit setsl;(xz) are not necessarily bounded. However, the stochasticratteg
concept reviewed above can be extended to unbounded anshilséeg standard arguments, cf.
Walsh (1986, p. 289).

e For ambit fields with ambit setd;(x) C X x (—o0,t], we define Walsh-type integrals for
integrands of the form

C(gvs) = <(£>Sv$7t) = ]IAt(x)(f,s)h({,s,w,t)as(f). (16)

e The original Walsh’s integration theory covers integramdsch do not depend on the time
indext. Clearly, the integrand given in (16) generally exhibitslependence due to the choice
of the ambit setd,(x) and due to the deterministic kernel functibnin order to allow for time
dependence in the integrand, we can define the integrals Wehsh sense for arfixedt. Note
that in the case of having-dependence in the integrand, the resulting stochaségraltis, in
general, not a martingale measure any more. We will come toeitls issue in Section 6.

In order to ensure that the ambit fields (as defined in (3)) aié-defined (in the Walsh—sense),
throughout the rest of the paper, we will work under the felfmy assumption:

10



3 AMBIT FIELDS AND PROCESSES

Assumption (A3): Let L denote a Lévy basis ofi x (—oo,T], whereS denotes a not necessarily
bounded Borel sef in X = R? for somed € IN. We extend the definition of the measupe
see (11), to an unbounded domain and, next, we define a HipaceP;, with norm|| - ||1, as
in (14) (extended to an unbounded domain) and, hence, wedrait® isometry of type (15)
extended to an unbounded domain. We assume that, forfieedit,

€&, 8) = La, () (& 8)A(E, 5,2, )05 (8)
satisfies
1. (ePr,
2. [IC11E = E | fa C3(& 5)Q(dS, ds)| < .

Note that in our forward price model we will discard the dtétm from the general ambit field
defined in (3) and hence we do not add an integrability caolitor the drift.

With a precise notion of integration established, let usrreto the derivation of characteristic ex-
ponents, which will become useful later. It holds that (dee Rajput & Rosinski (1989, Proposition
2.6))

c {v i/ m} ~ log (E (exp (z‘v / m))) = [ 108 (Blexp(ivT o) () e

- / CLoF(n) £ L'(n)}u(dn), (17)

for a deterministic functiorf which is integrable with respect to the Lévy basis.

In order to be able to compute moments of integrals with reisfpea Lévy basis, we invoke a
generalised Lévy—Itd decomposition, see Pedersen J2@&responding to the generalised Lévy—
Khintchine formula, (6), the Lévy basis can be written as

L(B) = a(B) + VEBW(B) + / y(N(dy, B) - v(dy, B)) + / yN(dy, B)

{lyl<1} {ly|>1}
— a(B) + VB (B) + / y(N = v)(dy, B) + / yN(dy, B),
{lyl<1} {ly|>1}

for a Gaussian basig” and a Poisson basi§ with intensityv.

Now we have all the tools at hand which are needed to competedhditional characteristic
function of ambit fields defined in (3) wheseand are assumed independent and where we condition
on the path o#.

Theorem 1. Let C? denote the conditional cumulant function when we conditiarthe volatility
field 0. The conditional cumulant function of the ambit field defibgd3) is given by

0)) (18)

whereL’ denotes the &vy seed ang is the control measure associated with thevi, basis’, cf. (8)
and (7).

oot / h(E, 5,2, 8)04 (€)L(dE, ds)
A¢(x)

~ log <E <exp <w /A ( )h(g,s,x,t)as(g)L(dg,ds)>

= /A ( )C{vh(g,s,w,t)as(g) (e, 3)}u(d§,ds),

11



4 MODELLING THE FORWARD PRICE UNDER THE RISK NEUTRAL MEASURE

The proof of the Theorem is straightforward given the pragicesults and is hence omitted.
Note that in the homogeneous case, equation (18) simplifies t

e {v 1 /At(m) h(ﬁ,s,x,t)as(E)L(d&dS)} = /Atm C{vh(&, s, 2,t)05(€) $ L'} déds.

3.4 Lévy Semistationary Processe(SS)

After having reviewed the basic traits of ambit fields, wesBiyimention the null-spatial case of semi—
stationary ambit fields, i.e. the case when we only have adeshgomponent and when the kernel
function depends on ands only through the differencé — s. This determines the class of Lévy
semistationary processeS&S), see Barndorff-Nielsen et al. (2010). Specifically, #et= (Z;)ier
denote a general Lévy processRnThen, we writeY” = {Y;}, ., where

t t
Yi=p+ / k(t — s)ws—dZs + / q(t — s)asds, (19)

—00
wherey is a constanty andq are nonnegative deterministic functions Rnwith & (t) = ¢ (t) = 0
for ¢t <0, andw anda are cadlag, stationary processes. The reason for heatinigthe volatility by
w rather tharo will become apparent later. In abbreviation the above fdansiwritten as

Y=p+tkrxweZ+qgxaeleb, (20)

whereleb denotes Lebesgue measure. In the casefhsita Brownian motion, we call” a Brownian
semistationaryBSS) process see Barndorff-Nielsen & Schmiegel (2009).

In the following, we will often, for simplicity, work withirthe set—up that both = 0 andq = 0,
hence

t
Y = / k(t — s)ws—dZs. (21)
For integrability conditions o and &, we refer to Barndorff-Nielsen et al. (2010). Note that the
stationary dynamics of” defined in (21) is a special case of a volatility modulatedy=&riven
\olterra process, which has the form

t
Y, = / h(t,s)ws— dZs , (22)

—0o0

whereZ is a Lévy process antl is a real-valued measurable function®f, such that the integral
with respect taZ exists.

4 Modelling the forward price under the risk neutral measure

After having reviewed the basic definitions of ambit fieldd &ime stochastic integration concept due
to Walsh (1986), we proceed now by introducing a general infmite(deseasonalised) electricity
forward prices based on ambit fields.

We consider a probability spa¢€, 7, P*), where P* denotes the risk neutral probability mea-
sure.

Remark 3. Since we model directly under the risk neutral measure, vilegmiore any drift terms in
the following, but work with a zero—-mean specification of #rabit field, which we later derive the
martingale conditions for.

12



4 MODELLING THE FORWARD PRICE UNDER THE RISK NEUTRAL MEASURE

We sefR ;. = [0, c0) and define a Lévy basis = (L(A4, s)) 4ep(r, ),scr @and a stochastic volatility
field 0 = (05(A)) aeB(r,),scrs Which is independent of. Throughout the remaining part of the
paper, we define the filtratiof7; };cr by

Fi = m;;ozlffﬂ/n, where  F) =o{L(A,s): Ac B(Ry),s <t} VN, (23)

and whereV\ denotes theé”—null sets of 7. Note thatF; is right—continuous by construction. Also,
we define the enlarged filtratiogF; } ;cr by

Fi= 00 Foprym:  Where  F) =o{(L(A,s),05(A)): Ac BRy),s <t} VN. (24)

4.1 The model

Under the risk neutral measure, the new model type for thedat price f;(x) is defined for fixed
t € R and forx > 0 by

fulw) = /A B 5 oL, ), (25)

where

(i) the Lévy basisL is square integrable and has zero mean (this is an extens@ssomptions
(Al) and (A2) to an unbounded domain);

(i) the stochastic volatility field is assumed to be adapted{t6; },cr and independent of the Lévy
basisL and in order to ensure stationarity in time, we assumedh@) is stationary ins;

(iii) the kernel functionk is assumed to be non-negative and chosen suctkthat, ) = 0 for
u < 0;

(iv) the convolutionk x o is integrable w.r.tL, i.e. it satisfies (A3);

(v) the ambit set is chosen to be
At(l‘) = At = {(57 8) : g > 07 s < t}v (26)

fort € R, = > 0, see Figure 1. Note that the ambit set is of the typér) = Ag(x) + (0,¢)
for Ag(xz) = {(§,s) : £ > 0, s < 0}. In the following, we will drop thgx) in the notation of
the ambit set, i.ed;(z) = A, since the particular choice of the ambit set defined in (2&)sd
not depend on the spatial component

S
b T=t+Xx

T+

Figure 1: The ambit set;(z) = A;.
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4 MODELLING THE FORWARD PRICE UNDER THE RISK NEUTRAL MEASURE

Note thatf;(x) is a stochastic process in time for each fixedAlso, it is important to note that
for fixedz, fi(x) is stationary int, more preciselyf;(-) is a stationary field in time. However, as soon
as we replace: by a function oft, z(t) say, in our case by(t) = T —t, f;(z(t)) is generally not
stationary any more. This is consistent with forward pridegved from stationary spot models (see
Barndorff-Nielsen et al. (2010)).

In order to construct a specific model for the forward price,nged to specify the kernel function
k, the stochastic volatility fields(£) and L.

It is important to note that, when working with general anribcesses as defined in (25), in
modelling terms we can play around with both the ambit setwtbight functionk, the volatility field
o and the Lévy basis in order to achieve a dependence steuateiwant to have. As such there is
generally not a unique choice of the ambit set or the weighttfan or the volatility field to achieve
a particular type of dependence structure and the choidebeibased on stylised features, market
intuition and considerations of mathematical/statisticzctability.

In order to make the model specification easier in practice hewe decided to work with the
encompassing ambit set defined in (26).

Remark 4. We have chosen to model the forward price in (25) as an artibmedel. One could of
course interpref;(z) in (25) as thdogarithmicforward price, and from time to time in the discussion
below this is the natural context. However, in the theoaditonsiderations, we stick to the arithmetic
model, and leave the analysis of the geometric case to &etlid. We note that Bernhardt et al.
(2008), Garcia et al. (2010) proposed and argued statigticat an arithmetic spot price model for
Singapore electricity data. An arithmetic spot model wéturally lead to an arithmetic dynamics for
the forward price. Benth et al. (2007) proposed an arithometdel for spot electricity, and derived
an arithmetic forward price dynamics. In Benth, Cartea &g¢€ig2008) arithmetic spot and forward
price models are used to investigate the risk premium ttieatly and empirically for the German
EEX market.

Remark 5. Note that the forward price at tineimplied by the model is given as
fole) = | k&, =s,2)0.(O)L(dE.do) @7)
0
Hence, we view the@bservedforward price as a realisation of the random variafjér) given in

(27), contrary to most other models whefigx) is considered as deterministic apdt equal tothe
observed price.

The ambit field specification we are working with here is hjglihalytical tractable and its con-
ditional cumulant function is given as follow.

Theorem 2. Let L be a homogeneoustly basi$. Then
t o]
cictha = [ [T et — o @11 deds (28)
whereL’ is the Levy seed associated with Further, in the Gaussian case, we have

C{Ck (6t~ 5,000 (€ 1L} = 3R (61— 5,2) 02 (6).

The proof of the theorem is straightforward and hence onhitte

!Recall that for every homogeneous Lévy basis the contrelsme is proportional to the Lebesgue measure. Here we
implicitly assume that the proportionality constant isstardised to 1.
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4 MODELLING THE FORWARD PRICE UNDER THE RISK NEUTRAL MEASURE

4.2 Examples of model specifications

A forward model based on an ambit field has a very generaltstei@and, hence, we would like to
point out some concrete model specifications which might d&ful in practice. In any particular
application, the concrete specification should be detexchin a data—driven fashion and we will
comment on model estimation and inference in Section 10.2.

Since we have chosen the ambit set to be the encompassingfisetddin (26), there are three
components of the model which we still need to specify: TheybasisL, the kernel functiork and
the stochastic volatility field.

4.2.1 Specification of the levy basis

Recall that we have defined our model based on a Lévy bas@wigsquare integrable and has zero
mean. Extensions to allow for non—zero mean are straighfiat and, hence, omitted.

In principal, we can choose any infinitely divisible distrilon satisfying these two assumptions.
A very natural choice would be the Gaussian Lévy basis wiviatld result in a smooth random field.

Alternative interesting choices include the Normal Inee@aussian (NIG) Lévy basis, see Exam-
ple 1 below, and a tempered stable Lévy basis.

In an arithmetic modelling set up, if one wants to ensureeppigsitivity, one would need to relax
the zero—mean assumption for the Lévy basis and could tigent®ose a Gamma or Inverse Gaussian
Lévy basis.

4.2.2 Specification of the kernel function

Note that the kernel functioh plays a key role in our model due to the following three reason

1. The kernel function completely determines the tempdialpautocorrelation structure of a
zero—mean ambit field, see Section A.4.

2. It also characterises the Samuelson effect as we willrs&aeorem 7.

3. It determines whether the forward price is indeed a mgaitey see Theorem 3 and Corollary 1.

Recall that the kernet is a function in three variables t — s, z, wheret — s refers to the temporal
and¢, x to the spatial dimension.

A rather natural approach for specifying a kernel funct®toiassume a factorisation.

We will present two different types here, which are impattardifferent contexts as we will see
later.

First, we study a factorisation into a temporal and a spkéahel. In particular, we assume that
the kernel function factorises as follows:

Factorisation 1

k(&1 —s,2) = ¢(& 2)h(t — s), (29)
for a suitable function) representing the temporal part apidepresenting the spatial part.

In a next step, we can study specificationgp@nd separately.

The choice of the temporal kernglcan be motivated by Ornstein—Uhlenbeck processes, which
imply an exponential kernel, or more generally by CARMA msses, see Brockwell (208b).

In empirical work, it will be particularly interesting to éois in more detail on the question of how
to model thespatial kernel functiong, which determines the correlation between various forward
contracts. In principal, one could choose similar (or theegtypes of functions for the temporal and
the spatial dimension. However, we will see in Section 8 faticular choices of will lead to a
rather natural relation between forward and implied spigigst

Let us briefly study an example which is included in our new allitg framework.
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4 MODELLING THE FORWARD PRICE UNDER THE RISK NEUTRAL MEASURE

Example 1. Let L be a homogeneous symmetric normal inverse Gaussian (N#@) hasis, more
specifically having vy seed./, see Section 3.2, with density

1 ly| YK (]yl),

where K denotes the modified Bessel function of the second kind aaewh > 0, see Barndorff-

Nielsen (1998). Then
C{OT L} =06y —0 (42 +06%)"".

If the kernel functiork factorises as in (29) and #4(¢) = 1, then

log(E(ivfi(z))) = ; C{vk(&,t — s,x) 1 L'}déds

~ [ [5r-5 (2 + leonw— o) " acas.

For particular choices of the kernel function, this integcan be computed explicitly. E.g. far> 0,
letp(§, z) = exp(—a(§ + z)) andyp(t — s) = exp(—a(t — s)). Then,

k(&,t — s,2) = exp(—a({ — 5)) exp(—aT),
for o« > 0. Then

log(E(iv fy(z))) = / Clok(e,t — 5,2) 1 I/ }deds

Ay
= 0y /_l;O /000 (1 — /1 + Zexp(—2a(€ — s))) déds,

for ¢ = vexp(—2aT)/~. This integral can be expressed in terms of standard funstisee Section
A.lin the Appendix.

An alternative factorisation of the kernel function is givas follows.
Factorisation 2
k(& t—s,x) =P(E)P(t — s,x), (30)
for suitable functionsl and®.
Although Factorisation 2 does not look very natural at fiight it is in fact also a very important

one since it naturally includes cases whecancels out in the sense thiatt — s, z) = \T/(t— s+x) =
U(T — s) for a suitable functionl. This property is crucial when we want to formulate martiega
conditions for the forward price, see Section 6. Let us loogane more specific examples for that

case in the following.
Example 2. Motivated by the standard OU models, we choose
U(t—s,z) =exp(—a(t — s+ x)),

for somea > 0. The choice of can also be motivated from continuous—time ARMA (CARMA)
processes, see Brockwell (2@(4). Specifically, fory; > 0,7 = 1,...,p,p > 1, introduce the matrix

0 I,
_ap _ap—l e — al

A= (31)

wherel,, denotes ther x n identity matrix. For0 < p < ¢, define thep—dimensional vectob’ =
(bo,b1,...,bp—1), whereb, = 1 andb; = 0 for ¢ < j < p, and introduce
U(t—s,z) =Db exp(A(t — s+ x)e,p,

with e;, being thekth canonical unit vector ifR?.
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4 MODELLING THE FORWARD PRICE UNDER THE RISK NEUTRAL MEASURE

Another interesting example which does not belong to thesatd linear models is given as fol-
lows.

Example 3. Bjerksund et al. (2010) propose a geometric Brownian motimuel for the electricity
forward price with kernel function given by¢,T") = a/(T — t 4 b) for a, b two positive constants.
They argue that the Samuelson effect in electricity maketsnuch steeper than in other commodity
markets, defending the choice of a hyperbolic functioneathan exponential. The volatility(¢, T")
motivates the choice (far = T — t),

a _ a
t—s+ax+b T—s+b’

U(t—s,x) =

We will come back to the latter example later on, when we faousore detail on the Samuelson
effect.

4.2.3 Specification of the volatility

The question of how to model the stochastic volatility fieldz) in the ambit field specification is a
very important and interesting one, and, hence, we willldisseveral relevant choices in more detalil
in the following.

There are essentially two approaches which can be used f@trooting a relevant stochastic
volatility field: Either one specifies the stochastic vditgtifield directly as a random field (e.g. as
another ambit field), or one starts from a purely temporattsdstic volatility process and then gen-
eralises the stochastic process to a random field in a seitedy. In the following, we will present
examples for both types of construction.

First, we focus on the modelling approach where we diregcHy a random field for the volatil-
ity field. A natural starting point for modelling the volaty is given by kernel-smoothing of a Lévy
basis — possibly combined with a (honlinear) transfornmat@mensure positivity. For instance, let

ol(z)=V </ g€t —s,2) L7 (dE, ds)> , (32)
A7 ()

whereL? is a Lévy basis independent bf j is an integrable kernel function satisfyin¢t, v, z) =0
foru < 0andV : R — R, is a continuous, nonnegative function. Further, the andiihas the
structureA? (z) = A§(x) + (0,¢) and is therefore homogeneous and nonanticipative. Fotisityp
we could choosel! (z) = A;(z) as defined in (26).

Note thato? defined by (32) with the ambit set defined by (26) is statioriarshe temporal
dimension.

Let us look at some more concrete examples:

1. A rather simple specification is given by choosifkg to be a standard normal Lévy basis and
V(z) = 2. Theno?(¢) would be positive and pointwisg?—distributed with one degree of
freedom.

2. One could also work with a general Lévy basis, in pardic@baussian, and’” given by the
exponential function, see e.g. Barndorff-Nielsen & Schyalg(2004) and Schmiegel et al.
(2005).

3. A non—Gaussian example would be to chof8eas an inverse Gaussian Lévy basis &htb
be the identity function.
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4 MODELLING THE FORWARD PRICE UNDER THE RISK NEUTRAL MEASURE

Regarding the choice of the kernel functigmof the volatility field, we should note that it deter-
mines the tempo—spatial autocorrelation structure of dhatility field.

For simplicity, we might want to start off with kernel funatis which have no spatial component,
e.g.j(&,t —s,x) = exp(—A(t — s)) for A > 0 mimicking the Ornstein—Uhlenbeck-based stochastic
volatility models, see e.g. Barndorff-Nielsen & Schmief(®004). In a next step (if necessary in the
particular application), we could then add spatial cotreta

Second, we show how to construct a stochastic volatilitg figl extending a stochastic processes
by a spatial dimension. Note that our objective is to comsteustochastic volatility field which is
stationary (at least in the temporal direction). Cleatgre are many possibilities on how this can be
done and we focus on a patrticularly relevant one in the fallgwnamely theDrnstein—Uhlenbeck—
type volatility field(OUTVF). The choice of using an OU process as the stationasg lcomponent
is motivated by the fact that non—Gaussian OU-based stichatatility models, as e.g. studied in
Barndorff-Nielsen & Shephard (2001), tend to perform faislell in practice, at least in the purely
temporal case.

Suppose now thdt is a positive OU type process with rate parameter 0 and generated by a
Lévy subordinatoiy’, i.e. )

fft — / e—)\(t—s)d}/;7
We call a stochastic volatility field? (z) on R, x R an Ornstein—-Uhlenbeck-type volatility field
(OUTVF), if it is defined as follows

7 (z) = 02 (z) = e MY, + / e_“(m_g)ng‘t, (33)
0

wherey > 0 is the spatial rate parameter and where= {Z.|t}t€]R+
which we define more precisely in the next but one paragraph.
Note that in the above construction, we start from an OU m®de time. In particularr(0) is
an OU process. The spatial structure is then introduced byctvmponents: First, we we add an
exponential weight¢~#* in the spatial direction, which reaches its maximal#foe 0 and decays the
further away we get from the purely temporal case. Secondhtagral is added which resembles an
OU-type process in the spatial variableHowever, note here that the integration starts ftorather
than from—oco, and hence the resulting component is not stationary ingheas variabler.
Let us now focus in more detail on how to define the family ofy@rocessesZ. Suppose

X = {Xt}t " is a stationary, positive and infinitely divisible process. Next we definez|. =
€

is a family of Lévy processes,

{Z..}, cr, @S the so—calletlévy supra—procesgenerated byX, that iS{Zﬂc\}xeuh is a family of
stationary processes such tf#at has independent increments, i.e. for &y z; < zy <--- <y,
the processeg, .., Z, Ly Z Z, are mutually independent, and such that for each

1s Zaa|- = Lo o L) — Ly,

x the cumulant functional of . equalsz times the cumulant functional of,i.e.

where )
C{miX}=1logE {eim(X)} ,

with m (X’) =/ X.m (ds), m denoting an ‘arbitrary’ signed measure BnThen at any € R the

valuesZ,; of Z,. at timet asx runs throughR ;. constitute a Lévy process that we denotedy.
This is the Lévy process occurring in the integral in (33).
Note thatr is stationary inr and thatr; (z) — Y; asz — 0.
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Example 4. Now suppose, for simplicity, tha is an OU process with rate parameterand gener-
ated by a levy processX. Then

1 ! ! -~ / /
Cov{r (), (:13/)} =3 <var{yl}/\—1e—>\(lt—t =plz+a’) | Var{Xo}p_le_“‘t_t |- plz—a]

_Var{XvO}lu—le—n\t—t’\—u(w+m’)) ]

If, furthermore, Var{Y;} = Var{X,} andx = A\ = yu then for fixedr and z’ the autocorrelation
function ofr is
Cor{r (z),7v (2')} = e~ Rt gmrle—a’],

This type of construction can of course be generalised iniatyaof ways, including dependence
betweenX andY and also superposition of OU processes.

Note that the process(z) is in general not predictable, which is disadvantageousrgifiat we
want to construct Walsh—type stochastic integrals. Howeéfrere chooseX to be of OU type, then
we obtain a predictable stochastic volatility process.

Let us conclude this section with two further important reksa

Remark 6. Note that if we work with a non—Gaussian Lévy basis in thatitity specification (32),
then we do not obtain a continuous volatility field. If smawks is a concern, then one could inte-
grate the random field again, see Santa-Clara & SornettdJ200a similar approach, to obtain the
necessary smoothness. The same argument also holds fothsrmem of the forward price model.

Remark 7. So far we have only focused on one method for introducinghststic volatility in a
model based on a kernel-smoothed Lévy basis. An altematiproach would be to use extended
subordination as introduced in Barndorff-Nielsen (2010) 8arndorff-Nielsen & Pedersen (2011),
which we will study in more detail in future research.

4.3 Autocorrelation and cross—correlation

It is important to note that our new model does not only model jparticular forward/futures contract,
but it models the entire forward curve at once. Hence it srggting to study the correlation structure
for various forward contracts implied by our new modellirgriework. The detailed results are
relegated to the Appendix, see Section A.4, but we wish tbligigt our main findings here: We
see that the correlation structure is determined by threterst the intersection of the corresponding
ambit sets, the kernel function and the autocorrelatiaiciire of the stochastic volatility field. More
precisely, for the particular model defined in (25), whereaalditionally assume that the Lévy basis
is homogeneous (satisfying Assumption (H) in the Appendig have fort € R, h > 0 and for

z, 2’ > 0 that for the ambit set defined in (26), we hatgx) N A, (2") = Ai(z) = A, and hence

Cor(fi(x), feen(2"))
f[O,oo)X[O,oo) k(f’ u, w)k(fa u+h, x/)E (0(2] (5)) d€du,

\/ Jiou00)x[0r00) F2(6: 10, 2)E (03(8)) dEdu flg 1 10.00) F2(6: 0, 2)E (03 (6)) dedu’

Furthermore, one could think of modelling various commpditrward or futures contracts, such as
electricity and natural gas futures simultaneously. Inhsacsituation it becomes even more clear
how flexible the ambit set—up is: We can specify different #rabts, kernel function, stochastic

volatility fields and Lévy bases and obtain a rather flexdwerelation structure. The details of these
multivariate extensions can be found in the Appendix in iBacA.5.
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5 RELATING TRADITIONAL MODEL CLASSES TO THE AMBIT FRAMEWORK

5 Relating traditional model classes to the ambit framework

As already mentioned, the use of ambit fields for constrgctimodels for forward prices is entirely
new to the literature and extends the use of correlated raridds to allow for both functional and
statistical dependence, as described in more detail below.

In the following, we will describe how some of the traditibmaodels can be related to the ambit
framework.

5.1 Heath—-Jarrow—Morton model

In thegeometricHeath et al. (1992) framework, the dynamics of the logarnthiorward price under
the risk neutral measure are modelled by

dlog(fi(x)) = ou(z)dWy, fort >0,

whereW is a standard Brownian motion aads a positive stochastic volatility process. Note that we
start at time 0 here. Hence, the explicit formula for the famdvprice is given by

fi(@) = folz) exp ( /0 (@)W, — ; /0 t agmds) .

Clearly, such a model is a special case of an ambit field defin@&), whereA;(z) = [0,t] x {z}, L
is a Gaussian Lévy basis and the kernel functisatisfiesh = 1.

5.2 Random field models

Ambit processes embed the Gaussian and Lévy field modefoped in Albeverio et al. (2004),
Kennedy (1994, 1997). To see that note that we camwset 1 and we can choosd,(x) to be an
interval.

If we allow for a non—trivial kernel functioth or stochastic volatility fieldr we can obtain some
of the conditional volatility models proposed in Goldsté2900), Kimmel (2004).

5.3 Stochastic string shock model

Also, the stochastic string shockiodel by Santa-Clara & Sornette (2001), which was desigoed t
model the term structure of interest rates, is related tathbit framework. Their modelling frame-
work is given as follows. The dynamics of the forward rateiveg by

di fe(z) = ou(x)dt + o (z)d Z(t, ),

for adapted processesand o and a stochastic string shock Note here that the notatiody is
taken from Santa-Clara & Sornette (2001) and refers to tbetfet we look at the differential op-
erator w.r.t.t. A string shock is defined as a random fi¢ld(¢, z)); >0 which is continuous in
both ¢t and x and is a martingale in. Furthermore the variance of theincrements has to equal
the time change, i.&/ar(d;Z(t,x)) = dt for all z > 0, and the correlation of the-increments,
i.e.Cor(diZ(t,x),dZ(t,y)), does not depend an Santa-Clara & Sornette (2001) show that such
stochastic strings can be obtained as solutions to secalat bnear stochastic partial differential
equations (SPDESs). It is well-known that such SPDEs havecuersolution (under some boundary
conditions), see Morse & Feshbach (1953) and the referendgarndorff-Nielsen, Benth & Veraart
(2011), and the solution is representable in terms of agiateoften of convolution type, of a Green
function with respect to the random noise. The class of ststéhstrings given by solutions to SPDEs
is large and includes in particular (rescaled) Browniarethand Ornstein—Uhlenbeck sheets. Simi-
larly to the procedure presented in Goldstein (2000), S@tdea & Sornette (2001) argue that it might
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5 RELATING TRADITIONAL MODEL CLASSES TO THE AMBIT FRAMEWORK

also be useful to smoothen the string shocks further, sahiegtare particularly smooth in direction
of time to deliveryz. Again, this can be achieved by integrating a stochastiisgsghock with respect
to its second component. Stochastic string shock modelswaeneralisations of the Heath et al.
(1992) framework which do not lose the parsimonious stmectdi the original HIM model. Also, due
to their general structure, string models can give rise gty of different correlation functions and,
hence, are very flexible tools for modelling various stydisacts without needing many parameters.

The main element in the stochastic string model, see Sdata-& Sornette (2001, p. 159), is the
term

t t 00
/ oo(T —v)dpZ(v, T —v) = / / os(T — 8)G(T — s, z)n(s, z)dzds, (34)
0 0o Jo

whereZ is a stochastic string shockjs white noise¢ is an adapted process afids the correspond-
ing Green function. The derivation by Santa-Clara & Somé2001) is partly heuristic. However,
rigorous mathematical meaning can be given to the integré®4) by the Walsh (1986) concept of
martingale measures, see Section 3.3.

This may be compared to a special case of our ambit procese wieintegration is carried out
with respect to a Gaussian Lévy basis, i.e. by choosing

/Ot oo(T —v)dy Z(v, T —v) = /Ot /OOO os(T — $)G(T — s, 2)d; W,(dz).

So, for a deterministic function the product olr andG is what we can model by the functignin
the ambit framework, i.e.

h(,s,T) =o0s(T —s)G(T — s,€&).

The main difference between the approach advocated in #s2ipt paper and the stochastic string
shock approach lies in the fact that the ambit fields focusediare are constructed as stationary
processes in time where the integration of the temporal corapt starts at-co and not at) and,
also, we consider general Lévy bases with a wide range dfitelfy divisible distributions and do
not restrict ourselves to the continuous Gaussian casallfiwe provide a mathematically rigorous
framework for defining the fields of forward prices.

5.4 Audet et al. (2004) model

Consider the model by Audet et al. (2004) written in the Miasfgarameterisation. They study the
electricity market on a finite time horizdf, 7] and model the dynamics of the forward prit¢x)

by
dfi(x) = fi(z)e” " oy 1dBeyt(t),

for a deterministic, bounded volatility curve: [0,7*] — R4, a constanty > 0 and whereB,_;
denotes a Brownian motion for the forward price with time @ftority = + ¢. Further, the correlation
structure between the Brownian motions is given by

cor(dBy (t),dBy(t)) = exp(—p(z — 2')) dt = exp(—p|T —T'|)dt, forall0 <z,2’ <T* —t,
(35)

wherex’ = T" — t,x = T — t. Such a model implies that the volatility of the forward pris lower
than the volatility of the spot price, an effect which is d#sed by the parameter. Also, forward
contracts which are close in maturity can be modelled to tmngly correlated, an effect which is
reflected by the choice of the parameter

We observe that the above model for the logarithmic forwaitkds in fact another special case
of an ambit process, with deterministic volatility and anbéirset A;(x) = [0,¢] x {z}, and the Lévy
basis being a Gaussian random field which is Brownian in tinteleas a spatial correlation structure
in space as specified in (35).
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6 Martingale conditions and option pricing

We have introduced the model for the forward price under iglerreutral probability measure. We
have already mentioned that a martingale condition for ectetity forward contract is not absolutely
necessary. In fact, there are at least two arguments whichehrought forward to support the choice
of more general classes of stochastic processes than (seartingales.

First, in the energy context it might not be as crucial thaf" — t) is a martingale as it is in the
context of modelling interest rates. In fact, as alreadyciaetd in the Introduction, one can argue
that from a liquidity point of view, it would be possible toaison—martingales for modelling forward
prices since in many emerging electricity markets, one naybe able to find any buyer to get rid
of a forward, nor a seller when one wants to enter into one.ckletie illiquidity prevents possible
arbitrage opportunities from being exercised.

Second, independently of the particular structure of gnargrkets, the recent literature in math-
ematical finance, see e.g. Schachermayer (2004), Guasahi(€008) has highlighted that some
classes of non—semimartingales, in particular, stoahgsticesses with conditional full support, do
not necessarily give raise to arbitrage opportunities where realistic market characteristics, such as
the existence of transaction costs, are taken into acctuttie null-spatial setting Pakkanen (2011)
has shown thaBSS processes have in fact conditional full support. In futwesearch it will hence
be interesting to study extensions of this result to the §Siam) ambit framework.

However, the question of establishing martingale conastitor ambit fields is nevertheless inter-
esting and will be studied in the following so that we can gbetier understanding which classes of
ambit fields form a subclass of models suitable for classmadelling of general forward prices (not
necessarily restricted to electricity forward contracts)

6.1 Martingale conditions

We need to formulate conditions which ensure that the faiwarce under the risk—neutraP*—
measure becomes a (local) martingale. In the standard HdiMefwork in interest rate theory the
martingale condition is stated as a drift condition on theadyics. However, here we have an ex-
plicit dynamics, and the (semi-) martingale property israxted to the regularity of the input in the
stochastic integral.

First, we will formulate the martingale conditions for maeneral ambit fields as defined in (3),
where the ambit sed;(x) = A, is chosen as in (26). Next, we show how such conditions sfynipli
the new modelling framework described in (25).

Note that all proofs will be given in the appendix.

Theorem 3. Letx = T — ¢ for someT" > 0 and for a fixedt € R write
Yi(z) =Y(T —t) = / h(, s, T —t,t)os(§)L(dE, ds), whered; = {(£,s): &> 0,5 < t},
Ay

for a deterministic kernel function, an adapted, non—negative random fieldand a Levy basis
L satisfying both Assumptions (A1) and (A2) on an unbounda&dadoand (A3), see Section 3.3.
Further o and L are assumed to be independent.

Then(Y,(T —t))icr is a martingale w.rt{F; },cr if and only if for all§ > 0, s <t < T we have

hE, s, T —t,t) =h(E,s,T), (36)
for some deterministic kernel functién

Remark 8. If we would like to work with Lévy based. which do not have zero mean, then the
martingale conditions have to be extended by an additiomilcdndition.
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6 MARTINGALE CONDITIONS AND OPTION PRICING

Corollary 1. In the special case of the new model defined in (25), we get(th@f' — t)):cr is a
martingale w.r.t. { 7; }+cr if and only if for all§ > 0, s <t < T we have

k(£>t_s>T_t):]2(£7T_s)> (37)
for a deterministic kernel functioh. This is a special case of Factorisation 2, see (30).

Remark 9. Note that we have stated the martingale property for afl the real line (which does not
include —oc0). We refer to Basse-O’Connor et al. (2010) for a study on imgate properties atoc.

However, in practical terms, we are mainly interested inrtfatingale property fot > 0 since
this is when the market is active. Negative timesary a modelling device in order to have stationary
models.

Clearly, the martingale condition is rather strong and iteace necessary to check whether there
are actually any relevant cases left, which are not excllmedondition (37). Hence, let us study
some examples.

First we show that the condition (37) covers the standardiHeiaal. (1992) models, that come
from stochastic partial differential equations.

Example 5. The traditional way to model the forward dynamics using thesidla parameterisation
withx =T — ¢, is given by
Oft

dfi(z) = 835( z)dt + h(z,t) dWy,

where, for simplicity, we disregard any spatial dependdndhe Gaussian fieldll” so that it is indeed
a Brownian motion. Under appropriate (weak) conditions thild solution of this stochastic partial
differential equation (SPDE) is given by

fi(z) = Sufole /stsxs W,

wheresS; is the right—shift operatorS,g(z) = g(z + t), see Carmona & Tehranchi (2006), Da Prato
& Zabczyk (1992) for more details. Hence,

t t
fi(x) = folx + 1) —I—/ h(s,(t+z) —s)dWs = f(T —t) = fo(T) +/ h(s, T — s) dWs.
0 0
Thus, we see that the martingale condition (37) is satisfied.
Another important example is motivated by the Audet et @10 model.
Example 6. In our modelling framework defined in (25), we choége be of the form
k&t —s,2) = k(& t —s,T —t) = exp(—a((§ + 2) + (£ — 5))) = exp(—a((§ + T — 5))),

for somex > 0. Then the martingale condition is clearly satisfied. Not this choice of the kernel
function belongs to both the class of Factorisation 1 andaaftérisation 2.

Further important examples of kernel functions which $atike martingale condition can be
constructed as follows.

Example 7. We can focus on kernel functiohsvhich factorise as in (30), i.e.

k(& t —s,x) =Wt —s,2)P(E).

Clearly, the choice of the functiob does not have any impact on the question whether the amdit fiel
is a martingale. This is determined by the choice of the fancb.
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6 MARTINGALE CONDITIONS AND OPTION PRICING

As mentioned in Section 4, every choice of the flih—s, T —t) = Y (t —s+T—t) = (T —s)
satisfies the martingale condition. Motivated from the Bgaind et al. (2010) model, see also Example
3, we could choose

a a

\Pt— = =
=) = e 3 T T s b

fora,b > 0.
Moreover, motivated by the CARMA models discussed in ExaPhe following choice o¥ is
also interesting:

U(t—s,z) =Db exp(A(t — s+ x)e,,

for the p—dimensional vectob’ = (b, b1,...,b,—1), whereb, = 1 andb; = 0 for ¢ < j < p, with
ey, being thekth canonical unit vector ifRP? and where the matrix is defined as in (31).

So we have seen that it is possible to formulate martingatelibons for ambit fields and we
have studied some relevant examples of forward price meddglsh satisfy the martingale condition,
which implies that we cannot havedependence in the kernel function.

6.2 Option pricing

We review briefly how to price options based on forward cargravith a price dynamics given by an
ambit field. To this end, suppose we place ourselves in tkengsitral context, and assume that the
forward price at timg > 0 of a contract maturing at timé& > ¢ is

fr -1 = [ /0 T R(Et — 5. T — t)u(€) L(deds),

with the kernel functiork satisfying the martingale condition of Thm. 3. Given a meable function
g : R — R, consider the problem of pricing a European option whichspdy'- (7")) at exercise time
7 < T. From the arbitrage theory, we find that the price of thisaptt timet < 7 is

C(t)=e " IE[g(f(T - 1) | F] - (38)

Here, the constant > 0 is the risk—free interest rate. F6Yto be well-defined, we must suppose that
g(F-(T — 7)) is integrable.

Since the cumulant function of the ambit field is availabke($hm. 1), the Fourier—based pricing
method is an attractive approach (see Carr & Madan (1998))glc L'(R), with g being the Fourier
transform ofg, we can express the price of the option as

1
o

o) /R GE [0 | 7] d-. (39)

Here, we make use of the integral representation of thesevieourier transform, see Folland (1984).
Thus, to findC'(t), we must compute the conditional cumulant functioryof
First, we split the ambit field to get

f(T—1)= /_too /OOO k&, m—s,T—1)os(§)L(dds) +/tT /OOO k&, m—s,T—1)os(§)L(dEds).

The first integral on the right hand side#s-measurable. Hence,
t (o)
E 60| 7] = exp (iz / / k(&7 —5,T — T)Js(f)L(d5d8)>
—00 J0

<E [exp <iz /t ' /0 Tk r— 5T — T)Js(f)L(d5d8)> |}"t} .
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7 CHANGE OF MEASURE

The conditional expectation can be expressed analogossly Bhm. 1. Note that the option price
will not depend explicitly onf, (T — t).

Many relevant payoff functiong will not be in L'(R). For example, the payoff of a call option
g(x) = max(x — K,0) will fail to satisfy this condition. In such circumstancesje can dampen
the payoff function by some exponential, and use the sameedure as above (see Carr & Madan
(1998) for more details, including examples). In case ofngetmic forward price models, we apply
the machinery above to the payoff functibfr) = g(exp(x)).

7 Change of measure

If our forward price model is formulated under a risk—neluprecing measure, it is of interest to
understand how to get back to the physical measure in ordev® a model for the observed prices.
We will introduce an Esscher transform to accommodate this.

Throughout this section we will assume that the Lévy badimmogeneout simplify the nota-
tion.

In order to define the change of measure we work on a marketfinith time horizonT™ > 0,
hence we define our model @&y« = (—oo, T*| rather than orR.

Theorem 4. Define the process

Mf = exp < 0(s,&) L(d,ds) — /A C{—if(s,€) t L'} d¢ ds) , (40)

Ay

whereC{- t L'} is the characteristic exponent of the seedlofand related toC'{- { L} through
equation (9)). The deterministic functién: A; — Ry« is supposed to be integrable with respect to
the Lévy basisL in the sense of Walsh. Assume that

E <exp ( /A C{—if(s,&) 1 L'} d¢ ds>> < o0, forall t € Ry (41)

ThenM/ is a martingale with respect t&; with E[M{] = 1.

The proof of the previous theorem is straightforward anacke omitted. We use that result now
in order to define an equivalent probabiliy/by

dP
dP* | F,
for t > 0. Hence, we have a change of measure from the risk neutrahpititp P* under which
the forward price is defined to a real world probabili®y In effect, the functiord is an additional
parameter to be modelled and estimated, and it will play the as themarket price of riskas it
models the difference between the risk—neutral and obgeptiice dynamics.
We compute the characteristic exponent of an integrdl ohderP.

= MY, (42)

Theorem 5. For anyv € R, and Walsh—integrable functiofiwith respect td.,, it holds that
cefot [ 501 ) =touEn expliv [ fis.(as.ds)
Ay At
=logE [exp (/ (iwf(s,&) +0(s,§)) L(dg, ds)>} exp <—/ C{—if(s,&)) t L'} d¢ ds)
Ay At
= [ (Clof(s.6) = i8(5.) ') = Cloib(s,) £ ') dds.

Note that the transform above is a simple generalizatiomeflEsscher transform of Lévy pro-

cesses, see Shiryaev (1999), Berﬁhltyt'e Benth & Koekebakker (2008) and Barndorff-Nielsen
Shiryaev (2010) for more details on this aspect.
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8 Constructing the spot model from the forward model

After having studied the new model for the forward price, weestigate in detail the nature of the
spot price model implied by our new modelling framework foe forward price.

Note that this study should be understood as a theoretieatise for now, since we typically do
notobserve convergence of the electricity forward price todleetricity spot price. However, Section
8.4 will explain how the results in this Section can be adajptehe corresponding empirical findings.

By the no—arbitrage assumption, the forward price for areahtwhich matures in zero time,
x = 0, has to be equal to the spot price, thatfig)) = S;. Thus,

t o0
S, = /_ ) /0 k(€ — 5, 0)0(€) L(dE, ds). (43)

We have the following Lemma:

Lemma 1. Suppose that

t o)
i [ [ (6t si0) - K(E - 5, 0)PBlo2O)] dsds =0,
x —oo J0

thenf,(z) — S, in L?(P*) as time to maturityr tends to zero.

Proof. This follows readily by appealing to the Itd-type isomefioy Walsh integrals, see (15). O

The Lemma gives us that the forward price will tend contirglpin variance to the spot price as
time to maturity decreases to zero. Note that wheneyg) is a stationary field, the condition in the
Lemma is translated to a convergence:¢f -, z) to k(-, -, 0) in L?(R%).

8.1 The general case

Note that the spot price process implied by our ambit fieldeddorward price model is driven by a
tempo—spatial Lévy base, more precisely by a two—parameateom field and not just by a Brownian
motion or a Lévy process. In fac$; is a superposition o£SS spot models, in the same sense as
superposition of OU processes. Furthermdigis a stationary process if;(&) is stationary in the
temporal dimension.

Similarly to the result for the forward price, see Theorerw@&,can derive the conditional cumu-
lant function for the implied spot price:

Theorem 6. Let L. be a homogeneouly basis. Then, fo$; as defined by (43),

t [e%]
crictsh= [ [ cfokt—s0a @11} deds, (44)
—o00 J0
whereL' is the Leévy seed associated with

8.2 The Gaussian case

A case of some special interest is the situation where théndriévy basis of the ambit field is a
homogeneous Gaussian Levy basis. Then we get the followsgtr

Corollary 2. In the Gaussian case, whef&{( 1 L'} = —%Cz.

t [e8)
cicisy =5 [ [ Rt =500 das
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8 CONSTRUCTING THE SPOT MODEL FROM THE FORWARD MODEL

If k factorises as in (29), then

Cicist =3¢ [ @e-suihs, where  u= [ Re0mon

This implies that

t
s, law / V2 (t — 8)ws_dW,, (45)

wherelV is a Brownian motion. The latter is indeed A8 S process, or more precisely, a Brownian
semistationary 8SS) process. Such processes have been used as a model for spetgyices in
Barndorff-Nielsen et al. (2010).

8.2.1 A concrete example

Let us assume that the kernel function factorises as in Rsation 1, see (29). Then, in particular,
we have

K (&t —s,2) = ¢ (& m)0? (t — s). (46)

Now, let W in (25) be a standard Brownian motion and assumedhatcontinuous atf = 0. In
the case thap? (¢, x)dx converges weakly to the delta measure at 0, we expect to have

t
ey = —56 [ -9 o0
and hence
t
5 [ 0= s aw. @7)

That is the forward price implies afiSS—based model for the spot price. Here we should recall
that if e.g. the stochastic volatility field in the forwardqa is given by an an OUTVF defined in (33),
whereo (&) — o4(0) with 02(0) being an Ornstein—Uhlenbeck process, then the stochaxtitlity
of the spot price process would be given by an Ornstein—Uelek process.

As a concrete example, suppose that

¢(t— S) - ae_a(t_8)7 ¢(§,$) :p(§7w7’y)7
where _— s
) = 2T e=3/2— 5722271 HE)
p(&z,7) Wor: 3
i.e. the inverse Gaussian density with meaand variance:y 2
Then, we get the forward—spot relation described abovefartter, we obtain an explicit formula
for the correlation between forward contracts with diffarémes to delivery: andz:

Cor(fulz). (7)) = /0 T (s )plE: )2 de

_ v 33536572(“2) /OO 5—3/26—§~,2((x2+;i2)§*1+25)d£
V2

— ’vax ’y(x—i—:c/ 53/2 121ﬂ£1+£)d£
TV xaje%’ﬂ(w—i—i)i Vﬂ-e—»y \/@

V2T 2432
T2
_ VBT ey )

i
2
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9 SIMULATION STUDY

Note that for any fixed: this expression tends toboth forz — oo and forz — 0. Hence, the
forward pricef;(x) is uncorrelated with the forward price in the long end of theve, f;(c0), as well
as with the spot (corresponding fo= 0). As is well-known in electricity markets, there exists no
spot—forward relationship derived from a buy—and—holdtetyy due to non—storability. This model
may serve as an extreme case of such a situation, where tbamdrspot are perfectly uncorrelated
statistically.

8.3 Relation to the Samuelson effect

Recall that the Samuelson effect describes the empiricalttiat the volatility of the forward price
increases and converges to the volatility of the spot pricernmthe time to maturity approaches zero.

This finding is in fact naturally included in our modellingainework which we will show in the
following.

Theorem 7. Assume that the function— k(&, u, x) is monotonically non—decreasing in> 0 for
every(¢,u) € R%. Then the conditional variance of the forward pri¢gz), given by

t 00
= K2 (¢t — 2(¢)déd
Ut(x) C/;QQA (§7t S,I‘)O’S(g) g S,

is monotonically non—decreasing in for ¢ > 0. Here,c is a suitable constant = b + 9 defined in
the Appendix.

The proof is given in the Appendix. Note that the conditiomatiance of the spot is given by
v(0), and it follows from the Theorem above tha{z) < v,(0). As a monotonically increasing
sequence being bounded by(0), there exist a limiflim, o v¢:(z) < v,(0). Under the condition in
Lemma 1, this limit will bev;(0), the spot price conditional variance. That is, we have a $tson
effect. Note that we have this effect also for non—statipmaodels, since we do not requise(¢) to
be stationary, for example.

8.4 Accounting for the fact that the electricity forward typically does not converge to
the spot

We have previously discussed how a spot model can be cotestrirom our general forward model.
However, it is well-known that there is no convergence afteigty forward prices to the spot as time
to start of deliveryapproaches. That is, if the delivery period1§, 75], 71 < T3, then the forward
price Fy(11,T>) at timet does not converge to the spot pricetas> 7;. One could mimic such a
behaviour with the model class we study here, by choosingdilerery time’ T as the mid—point,
say, in the delivery intervdll}, T5], T = (11 + T»)/2. Then we can still associate a spot price to
the forward dynamicg;(x), but we will never actually observe the convergence in theketasince

at start of delivery we have = (7> — 71)/2. On the other hand, we will get a model where there
Is an explicit connection between the forward at "maturity= 77 and the spotr,. This opens for
modelling spot and forward jointly, taking into accountitrdependency structure.

9 Simulation study

In this section, we will discuss how to simulate an ambit fi&ecall that the (deseasonalised) forward
price is modelled as

Yila) = i) = [ /O T R(ELt — 5, 2)0(€) L(dE, ds),
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9 SIMULATION STUDY

where

o) =v ([ NECE L deds)).

where all quantities are as defined above.

In the following, we will describe how such an ambit field candimulated.

Note that we describe the simulation for a fixemhd fixedx. An extension to the case, where one
simulates the entire forward curve for various values afidz is then straightforward.

9.1 Simulation algorithm

We note that we integrate over the ambit detx) = (—o0, t] x [0, 00), which is unbounded. Hence,
in a first step we need to truncate the ambit set, and we defneotiesponding ambit field by

t Mo
yrune(z) — /M /O K&t — 5,2)04(€) LdE, ds),

for constants\/; < t and M, > 0. Note that letting)/; tend to—oo and M5 to +oo, Y,/"4"¢(x) will
converge tdv;(x).

Next, we construct a grid for the intervgl/y, t] x [0, M5] by dividing the temporal dimension
[Mi,1] into n equidistant intervals of lengtty — M;)/n, where we writet = t; > to > -+ >
t, = M, and by dividing the spatial dimensidf, 1] into m equidistant intervals of length/s /m,
where we writd) = o1 < 29 < -+ - < T, = My, forn,m € IN.

1. Simulate the stochastic volatility field on the grid psift;,z;) for i = 1,...,n andj =
1,...,m. We obtain the values;, (z;). In the absence of stochastic volatility, we sg{x;) =
1 forall 4, j.
2. Simulaten - m i.i.d. random variableg;  ; < L(A),wherei =1,...,n,7=1,...,mand
t — My) M-
A= A(n,m,Ml,MQ) = ui
n m
3. We approximat&’,/"“"¢(zx) by
R n—1m-—1
Yireme(z) =3 k(wy,t — ti, )00, (25) Zis .
i=1 j=1

The last step, Step 3, of the simulation algorithm makes fiskeodefinition of the stochastic
integral in the sense of Walsh for simple processes. Ttosvallis to represent the stochastic integral
of Yirune(z) asY,!""<(z) in a discretized form, ensuring convergence whegoes to zero.

Remark 10. Note thatA is the area of each rectangu(gf t; 1] x [z, zj41]fori =1,... ,n—1, j =
1,...,m — 1 onthe grid. (Hence, we implicitly work with the Lebesgue @& in the specification
of the ambit field. In the case thdt = W is a Gaussian Lévy basis, with characteristic triplet
(1 leb(), c® leb(), 0), we simulateZ;  ; ~ i.i.d. N(uA,c*A). In the case thak is an NIG Lévy basis
we simulateZ;  ; ~ i.i.d. NIG(a, B, pA,0A).

In the presence of stochastic volatility, we need to use dineesprocedure as described above for
simulating the stochastic volatility field first. |.e. foraagrid point(t;, ;) we define a truncated
interval for the ambit set of the volatility field by, (i),¢;] x [0, My(j)] for constantsiM; (i) <
ti, 0 < M (7). Next, we divide the temporal dimensi¢h/; (), t(z)] into n(:) equidistant intervals
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9 SIMULATION STUDY

of length(t(i) — Mi(i))/n(i), where we writet; = 71 (i) > - -+ > 7,3y (i) = M1(i), and by dividing
the spatial dimensiof0, M»(j)] into m(j) equidistant mtervals of length/,(j)/m(j), where we
write 0 = €1(j) < -+ < &) (7) = Ma(j), for (i), m(j) € IV.

Then, we approximate

n(i)—1m(j)—1
8t2L(‘TJ) 4 Z j - (Z) x])Zg—H/’ )

v'=1

whereZ, 4 L(A).
With these general simulation algorithms at hand, let usiclen two specific examples: First,
suppose that the kernel functiéris a weighted sum of two exponential functions, i.e.

k(& t—s,2)=k(+t—s+x)=wexp(—M({+t—s+2))+ (1 —w)exp(—Aa({ +t — s+ x)),

forw € [0,1] andA;, A2 > 0. Note thatk satisfies the martingale condition. This choice of kernel
function is motivated by the empirical studies in Barnddtfélsen et al. (2010), where such a specifi-
cation in anLSS—model was shown to fit spot price data collected from the @arpower exchange
EEX. In the same study, one found that a NIG Lévy process veaseessful choice, and inspired by
this we suppose thdt is a NIG Lévy basis. Finally, suppose tHatis equal to one, which means that
we do not have any volatility process in our ambit field speatfon.

Due to the specification of the kernel function, we can shhtambit field into two parts,

Yi(z) = wY)' (z) + (1 - w)Y(2),

/ / N(EH=542) [ (geds) = e M t+:c/ / &M (E9) [ (deds),

for i = 1,2. We immediately see that, fax; > 0,

. . t+A¢ ')
tl-i-At(':U) _ —)\z’AtY'tz(l,) + e—)\iAte—)\i(t-i-x)/t /O e Nil6—s) L(déds).

For smallA;, the last integral can be approximated by

/HAt/ e NiE=%) L(deds) ~ é/ e NEL(dE x Ay),

to get the iterative Euler—like time—stepping scheme

where

VA, () = e N8y (z) 4 e Mot / e NEL(dE x A). (48)
0

The integral ovet can be computed numerically by a Riemann—like approximai®in the general
case above. We note that we can iterate numerically oveespaevell, since for\, we have the
equality
Yi(e+A4,) = e MY (2). (49)

We make use of (48) and (49) to implement efficient numericakmes for the simulation of the
whole fieldY;(x).

In an example, lef; = 0.012, Ay, = 0.226, andw = 0.07 in the kernel function specification.
The NIG Lévy basis has parametérs- 0.7, o = 0.0556, © = 8 = 0 (using the standard notation for
the parameters in the NIG distribution). These figures dentdrom the estimates of theSS spot
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Figure 2: Simulated ambit field based on an NIG Lévy basihouit stochastic volatility.

price model for EEX data found in Barndorff-Nielsen et aD1R). We initializeY (0) by simulating
backwards in time sufficiently long in order to reach stedigty. In Fig. 2 we show a simulated
realization of the ambit field. Along the time axis for= 0 one identifies a sample path of the
implied spot dynamics from the model, whereas intthree—to—maturityaxis x we see that the field is
very smooth.

In our second example, we include a stochastic volatilitthenambit field specification df;(x),
and exchange the NIG Lévy basis with a Gaussian basis,)V. More specifically, we suppose that
L7 is an IG Lévy basisl” being the identity function anflbeing the exponential function, i.8£,t—
s,x) = exp(=A7(§ +t — s+ x)) for A > 0. Since the kernel functiop is of exponential type, we
can use the same considerations as above to obtain a tim@acel iterative scheme for simulation
of o, (). Arealization of the ambit field is shown in Fig 3, where wedagedy = «, and the decay
rate \ = 0.5 as an example. Note that this stochastic volatility proégessspatial generalization
of a so—called BNS model for the volatility process, defined as the stationary solution of an 1G—
Lévy process driven OU dynamics. The choice of speed of mearsion equal t0.5 will in that
context yield a half-life ofn 2/0.5 ~ 1.4, meaning that the volatility is fast mean reverting. This is
in accordance with the empirical results found in Barndbilifflsen et al. (2010).

As we observe, the stochastic volatility case generatehmigher variation in prices. This is due
to the integration over the volatility in space, that creaehigher variation than the NIG ambit field
model.

10 Extensions

We consider various extensions of our model, in particalayeometric forward model and the ques-
tion of how to model forwards with delivery period.
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Figure 3: Simulated ambit field based on a Gaussian Lévg bati a stochastic volatility component
based on an IG Lévy basis.

10.1 Geometric modelling framework

So far, we have worked with an arithmetic model for the forvarice since this is a very natural
model choice and is in line with the traditional random fielmkbd models where the forward rate
is directly modelled by e.g. a Gaussian random field. Howestandard critical arguments include
that such models can in principal produce negative pricdsance might not be realistic in practice.
One way to overcome that problem would be to work with positievy bases (recall that the kernel
function and the stochastic volatility component in the #@ribld are by definition positive). Clearly,
in such a set—-up we would have to relax the zero—-mean assumBiut this is straightforward to
do. An alternative and more traditional approach would bevaok with geometric models, i.e. we
model the forward price as the exponential of an ambit pseEs®s Most of the results we derived
before can be directly carried over to the geometric set-Eig. when we study the link between
the forward price and the spot price, this has to be intezgress the link between the logarithmic
forward price and the logarithmic spot price. Likewise, wi@oking at probabilistic properties such
as the moments and cumulants of the processes, they candrded@s the moments/cumulants of
the logarithmic forward price.

The only result, which indeed needs some adjustment, iscintfee martingale property. The

condition on the kernel functioh stays the same as in Theorem 3 when we go to the geometric model

framework, but on top of that there will be an additional tcifndition. In order to keep the exposition
as simple as possible, we will focus bomogeneoukévy bases, see Section 3.2, in this section.
Before we formulate the martingale condition, we specifyadditional integrability assumption.

Assumption (A4) LetY be defined as in (3), where we assume th#& ahomogeneoukévy basis
andh satisfies the condition of Theorem 3. We assume that

E (exp < C’{—i%(ﬁ, s, T)os(§) T L'}d{ds)) < oo, forallt € R.
Ay
Now we can formulate the martingale conditions for the geoimérward price model.

32
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Theorem 8. Let A; = {(¢,s) : s < t;z > 0}. Further, we assume that the integrability condition
(A4) is satisfied. Then, the forward price at timevith delivery at time < T, fi,(T) = (fi(T))i<r
with

fi(T) = exp ( /A h(&, s, T)os(€)L(dE, ds) — C{—z‘ﬁ(g,s,T)aS(g)1L’}d§ds>,

Ag
is a martingale with respect tQF; }icr.
Consider the example of a Gaussian Lévy basis:

Example 8. In the special case that = W is a standardised, homogeneous Gaussiéamylbasis
and that (A4) is satisfied, we have that

ft(T) = eXp (/ %(57 S, T)O-s(g)W(d£> dS) - % / 77’2(57 S, T)Ug(f)dfd«S) )
At At
is a martingale with respect toF; }cr.

10.2 Inference

In this section, we will sketch how to estimate the new modetlie forward price based on an ambit
field. A more detailed analysis is relegated to future redear

10.2.1 The case of constant volatility

In the absence of stochastic volatility, the estimatiorcpdure for an ambit field is rather straightfor-
ward and can be carried out in two steps, as described inldtimset al. (2011, Section 6).

First, we use the fact that the autocorrelation functionrofmbit field defined in (25), but with-
out stochastic volatility, is completely determined by #wrnel functionk, see Section A.4 in the
Appendix for more details. Hence, given a concrete paramgpecification for the kernel function
k, one can estimate the corresponding parameters from tiegkam of the observed random field,
see Cressie (1993) for more details.

After having estimated the parameters of the kernel functime can then proceed and estimate
the parameters of a parametric specification of the Lévispase Jonsdottir et al. (2011) for more
details.

Remark 11. Note that the estimation method described above works follyadpecified parametric
model. However, one might also be interested in non—paramestimation techniques — of the
kernel function in particular. Brockwell et al. (204,b) have developed such a method for estimating
the kernel function for continuous—time moving averagecpsses. In future research, it will be
interesting to study how such techniques can be extenddtetetnpo—spatial framework of ambit
fields.

10.2.2 The case of stochastic volatility

As soon as we have a trutochasticvolatility field o in the ambit field specification, inference
becomes significantly more involved and the detailed estimaheory is beyond the scope of this
paper. However, we still wish to state the main points whiatehto be addressed.

Note that in order to ensure the identifiability of the model meed to formulate restrictions for
k,oandL.

As before, we can use the variogram to estimate the autdatore function. However, in the
general case that is stochastic, both the second momentand its autocorrelation function enter
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in the autocorrelation function of the ambit field, see Tleeo® in the Appendix. This makes it more
difficult to identify the kernel functiork. Additional assumptions (such as zero mean of the Lévy
basisL and a simple parametric form of the second momemt)afill help to solve that problem.

In a next step, one needs to estimate the stochastic wylaiid the Lévy basis. A natural ap-
proach to tackle this problem would be to construct a noraratric estimator of the stochastic
volatility field, similar to realised quadratic variatioarfsemimartingales in the null-spatial case, see
e.g. Barndorff-Nielsen & Shephard (2002) and Barndor#isin, Corcuera & Podolskij (204,b).
Then one can estimate the volatility parameters separassigd on a non—parametric proxy, as it was
done in the one—dimensional case in Todorov (2009), Ve(aaitl). In order to follow this approach,
it might be helpful to focus on the class of ambit fields which imdeed martingales first so that stan-
dard theory on quadratic variation is applicable. In a nésgp,sextensions to the ambit fields which
are not semimartingales can be studied.

10.3 Outlook on how to include period of delivery into the moelling framework

So far, we have focused on forward prices with fixed delivengt i.e. onf,(z) = f,(T'—t). However,
in energy markets, there is not just a time of delivérybut typically adelivery periodi.e. at time of
deliveryT = T a certain amount of electricity, say, gets delivered umi&t?;, for somely, > 17, see
e.g. BenthSaltyt'e Benth & Koekebakker (2008, Chapter 6) and Barth &tB€2010). The forward
price (T3, T5) at timet with delivery period[T7, T»] is defined by (see e.g. BentBaltyte Benth &
Koekebakker (2008))

1 2
=T Jp,

Ft(Tl, TQ) = ft(u — t)du
Hence, given an ambit model ¢f(x), we simply average it over the delivery period in order toehav
the forward price for a contract with delivery period.

Alternatively, we could think of modelling; (7}, 75) directly — by an ambit field. The main idea
here is to include the length of the delivery period= T, — T as an additional spatial component.
E.g. we could think of using

/A ( ) k(£7X>t - S,T,.Z')O's(g,X)L(dg,dX,dS),
as a building block forF;(71,7>). The main obstacle in building such models is the no—agstra

condition between contracts with overlapping deliveryiges. In fact, any model for; (77, 7%)
must satisfy (see BentBaltyte Benth & Koekebakker (2008))

1 T
F (T, T) = F d
t( 1 2) TQ—Tl /Tl t(TaT) T,
which puts serious restrictions on the degrees of freedammoidelling.
It will be interesting to study the analytical propertiessoich models in more detalil in future
research.

11 Conclusion

This paper presents a new modelling framework for eletyrifrward prices. We propose to use
ambit fields which are special types of tempo—spatial ranfielas as the building block for the new
modelling class. Ambit fields are constructed by stochastagration with respect to Lévy bases and
we have argued in favour of the integration concept of Wal€86) in the context of financial ap-
plications since it enables us to derive martingale comaktifor the forward prices. Furthermore, we
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have shown that forward and spot prices can be linked to ghehn within the ambit field framework.
Also, we have discussed relevant examples of model spdmfisawithin the new maodelling frame-
work and have related them to the traditional modelling epite. In addition, we have discussed how
a change of measure between the risk—neutral and physimalpiity measure can be carried out,
so that our model can be used both for option pricing purpasesfor statistical studies under the
physical measure.

A natural next step to take is to test our new model empisicatid to study statistical aspects
related to our ambit—field models, such as model estimatiwhnaodel specification tests etc.. We
plan to address these issues in detail in future research.

Another interesting aspect, which we leave for future regeds to adapt our modelling frame-
work for applications to the term structure of interest sate

A Proofs and some further results

A.1 Explicit results for Example 1
Note that

1

/000 <1 — /14 2 exp(—2a(€ - s))) d¢ = % [(2\/1 + 2 exp(2as) — 2)

( ( (\/1 + c? exp(2as) + 1) c? exp(2as)) ) ]
+ | 2log(2) — log )

V1+ c2exp(2as) — 1
Hence, we get

—8a/?

log(E(ivfi(z))) = —8 + 8 In(2) —4 In (¢?) — 2 (In(2))* + 4 In (2) In (?)
+8m+4ln(_1+m) _41n(1+m)

n <ln (—1 + m))z + 4 dilog (1/2 +1/2 m)
_41n(_1+m) 1n<2>+21n(_1+m)1n(1+m)
(i (1+ VI EER)) 80+ 8 In (2) o~ (In (262))°

¢ log(w dxfort>1

where the dilogarithm function is defined by dilog= |

A.2 Presence of the Samuelson effect

Proof of Theorem 7:Forz > 0, we have

/ / K2 (&,t — s, x)02(€)dEds,

wherec := (b + k2) with b, x5 defined as in Section A.4. Now l6t< x < 2/, then

ve(2') — vz / / (K*(&,t — s,2") — K (&,t — s, @) o2déds > 0,

due to the fact that(¢,t — s, x) is non—decreasing in. O
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A.3 Proof of the martingale condition

Proof of Theorem 3In addition to measurability and integrability (which isaghtforward here), we
have to show that N N
EY;(T —t)| F] = YT —t), forallt <t.

Note that fort < ¢, we have thatd; C A;. Using the independence propertycofind L and the fact
that L is a zero mean process, we find
5

EY(T —t) | F]

=E

/A h(E 5, T — 1,)0,(€) L(de, ds) + / W€, s, T — 1, 8)0s(€) L(dE, ds)

t At\AZ

Ay

where

I?(T _%v) = AN{h(&SvT - t>t) - h(é,s,T - a%v)} Us(g)L(d&ds) .

Without loss of generality we assume thair (L) = 1. SinceL is a Lévy basis with zero mean, we

know thatE(Z (T — t)) = 0, and from the Itd isometry we therefore get that
Var(I(T - 7)) = / (W€, T — t,8) — (€5, T — 1.0} E(0(€))Q(dé, ds).
Ay

Thus, in order to obtaidi{7 — ¢) = 0, we need thatforal) < ¢, s <t <t < T
h(g,s,t,T—t):h(f,s,ft:T—N). (50)

When we look at condition (50) more closely, then we obsenat there is in fact only one class of
functions, which satisfy such a condition, i.e. functiofishe form

h(£> s, T — t>t) = iL(f, 5>T)7

forall¢ > 0,s <t <t < T for some deterministic kernel functidn
O

Proof of Theorem 8We show thathV = (M;)ier With M; = exp(Y;(T — t) — d;) is a martingale
with respect to{ F; };cr Where

Y(r-t= | (€, s, T)o(€)L(ds,dE),  dy = ’ C{—ih(¢,s,T)os(€) T L'}deds,

where Ay = {(§,s) : s < t;z > 0}. Clearly, M is measurable with respect {0 };cr and also
integrable due to the integrability assumption (A4). Ferttior allt < ¢, we have that
")

E(M;|F;) = E (exp(Yy(T —t) — dy)| F3)

= ]\41?1[-3 (eXp (/ E(&v 3>T)Us(£)L(ds>d£) - (dt - dt~)>
A\Ay

(&, 5, T)ou(€) L(ds, d) + /

%(67 S, T)US (S)L(dsa dg) - dt~+ dt~_ dt)
At\AtN

")
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Using the formula for the characteristic functions of imtdg with respect to Lévy bases, see Rajput
& Rosinski (1989) and Section 3.2, we get

E (exp / h(€, 5, T)ou(€)L(ds, d€) | | 7
A\A;
“E(E (exp / h(E, 5, T)o(€)L(de, ds) || 77 ) | 7
A\A;

=FE (exp (/ C{ﬁ(g,s,T)as(f) i L'}d§d<9> .7-"t~> E (exp( )‘.7-")
AN\A;
Hence the result follows.

In the special case thdtis a standardised, homogeneous Gaussian Lévy basis,ifthis diven
by

1

4= /A (e T)o(E)deds

A.4 Second order structure of ambit fields

We provide some results on the probabilistic propertieiefambit fields which are useful in mod-
elling.
For ease of exposition, we will focus on ambit fields baseti@mogeneoukévy bases.

A.4.1 Results

Now we study the second order properties of a general amhiitgieen by
Vi) = | M &L )0 (OL(ds, ) (51)
t\T

for a homogeneous Lévy basis(not necessarily with zero mean), a homogeneous ambi ge?
(as defined above) and a processhich is independent af and where: denotes a damping function
(ensuring that the integral exists). In order to computéousr moments of the ambit field, we work
with the Lévy—Itd decomposition:

Yt<w>=/A W5, .1, 2)0s (VI (dE, ds) + /A /{| | H(,E )0 €N — )y, .
t( t( y|<

/ / 56,1, 2)04(€) N (dy, ds, de),
At (z) {ly\>1}

whereb > 0 andN is a Poisson random measure with compensatétence,N(A) ~ Poisson(v(A))
and, in particular,

E(N(A)) = v(A) = Var(N(4)), E((N(A)%) = v(A) + v(A)*.
Furthermore, we know that
E(N(A) —v(A)) =0, Var(N(A) —v(A)) =E(N(A) — V(A))2 =v(A).

Assumption (H) In the following, we work under the assumptions that
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e The generalised Lévy measurés factorisable, i.ev(dy, dn) = U(dy)u(dn), forn = (€, s),

e the measurg is homogeneous, i.g.(dn) = cdn, for a constant € R. For ease of exposition,
we choose: = 1. Hence, we have(dy, ds, d¢) = U(dy)dsd.

Furthermore, we use the following notation. Lat = f{|y\>1} yU(dy) andky = [p y2U (dy) (as-
suming they exist!) and define a functipn R* — R by

p(5,5,6,€) = E (0,(6)05(0)) — E(0:() E (03(0)) (52)

for s,5,£,€ > 0.

Theorem 9. Lett,#,x,& > 0 and letY;(x) be an ambit field as defined in (51) and assume that
assumption (H) holds. The second order structure is theolamsixfs. The means are given by

B (Vi) o) =1 | Mo &t )0 s
E(Yi(z)) = r1 /A M E I (7(6)) dod

The variances are given by

Var (Yi(@)| o) = (b+ o) /A e et

Var (Yi(x)) = (b+ o) / W2 (s, 6.1, 2)E (02(€)) dsdé
+ K7 /At(x /At s, &, t,x)h(5,&,t,x)p(s, 8, &, &)dsdEdSdE.
The covariances are given by
Cou (Yla). Y@ o) = (b+ ) [ o M G &, T D)o s,
Cov (Yi(), Yi(#)) = (b + #2) /A 661 N 6T R)E (02(0) s
e /A . / 5.6t )h(E,EF, B)p(s, 5, €, E)ddEdsde.

Corollary 3. The conditional correlation is given by

Jav@ynay@ 1(s: 6t a)h(s, &, 1, 2)03(§)dds

Vi) (5. 6.4,2)02 (€)deds [, o) W25, €8, 7)02(E)dEds

Cor (Yi(x), Yi(7)| o) =

For k1 = 0, the unconditional correlation is given by
fAt(x NA;(Z) (8 &t 33‘) (Svéaﬂj)E (0’3(5)) déds

Cor (Yi(z),Y;(2) — —
\/f/w (5,61, 2)E (02(€)) déds [y ) W2(5,€, T, )E (03(€) ) déds
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A.4.2 Proofs of the second order properties

Proof of Theorem 9Recall thats; = f|y‘>1yU(dy ) andky = [ y*U(dy). Then

/ / 5,6,t,2)04 (E)U(dy)dsdé = #y / h(s,€,t, 20 (€)dsd,
At(x) {Iy\>1}

A¢(z)

E (Yi(x)) = 1 / W(s,€,1, 2)E (04(€)) dsdt.

Ai(z)

For the second moment, we get

2
h(s7 67 t? ;U)Js(g)d8d6> )
@)

E (Yi(@)*| o) = (b+ £2) /A - h?(s,€,t )02 (€)dsdE + w1 ( /A .
B (Vo)) = 0+ k) [ (5,68, 0)B (03(6)) ddg
A¢(z)
+ K2 /At(x /At 5,6, t,2)h(3,€,t,2)E ( (§)a§(§)> dsd¢d3de.
The conditional and unconditional variance is then given by

Var (Vi) o) = (b ka) [ 2o, €.t 0)o3(dsd,
At(z)
Var (Yi(z)) = E(Var (Yi(z)| o)) + Var (E (Yi(z)| o))
(b—l—@)/ B2 (s, €., 2)E (02(€)) dsde
+ K7 /At(x /At 5,6, t,2)h(5,€,t,2)p(s, 5,&,€)dsdEd3dE.

Next, we compute the covariance. In order to do that, we usmigout that fory,7 € R and

(5.6), (3.€) € Au(w) N Ag(a):
E (N(dy, ds, d§)N(dy, 5, ) ) = v(dy, ds, d€)v(dj, 3, d€) + v(dmin(y, ), dmin(s, 5), d min(&, £)),

and

E ((N — )(dy, ds, d€)(N — v)(d§, d3, dé)) — v(dmin(y, §),dmin(s, 5), dmin(€, €)).

For the product, we get
E (Yi(2)Y;(Z)| o) = (b-i-lig)/A( S h(s, & t,x)h(s, &1, )0 (§)d§ds
+ K} /At /A(x 5,6, t,2)h(3,€,1,%)0s(€)o5(€)dsdedsde,
E (Y:(2)Yy(#)) = (b+ r2) /A (6 6T RE (02(0) deds

+51/At /A(I (s,€,t,2)h(5,€,8,7)E ( (g)a§(§)> d3dEdsd.
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Therefore, the covariance is given by
Cov (Yy(x), Yy(7)[ o) = (b + sz)/ h(s, & t,x)h(s, & 1, %)os (€)dEds,
Ai(z)NA;(2)

Cou (Vi) Yi(@) = G-+ ) | oy M E LR, LD (07(6)) dsds

i SC

+ K7 /A . / s,6,t,2)h(8,€,8,%)p(s, 5,¢,&)d3dEdsde.

A.5 Multivariate extension and cross correlation

For practical applications it is often necessary to extéredcurrent modelling framework to a multi-
variate set—-up. E.g. one could think of modelling variouswwdity forwards or futures simultane-
ously. Such a task can be tackled by using the ambit concept.

In order to simplify the notation, we will focus on tlévariate case in the following. Extensions
to then—dimensional case for € IV are then straightforward.

Let us assume we have a pair of ambit fields, i.e.

Vi) = /A(i)( ) WO (s, &,t,0)0l) ()L (ds, dE),
+ x

fori = 1,2, whereh(®, () and L(") are defined as above. The corresponding Lévy—Itd6 decampos
tion is then given by

(@) = /Ao( hO(s,&, 1, 2)0l (€ VHO W (dg, ds)

/ / 5,6,6,2)0(€)(NO — ) (dy, ds, de)
A (2) {|y\<1}

/ / (5,&,t, )0 ()N (dy, ds, d€),
@ Jguen

whereb!) > 0 and N is a Poisson random measure with compensator

The key issue is now how this two ambit fields are related td edloer. A natural way of doing
a multivariate modelling is to assume that:= (L(}), L)) is a vector-valued homogeneous Lévy
basis, where the Gaussian part satisfies

Cov (W(l)(df, ds), W@)(dg,ds)) — pdéds,
for —1 < p < 1 and the generalised Lévy measure is given by
v(y1, Y2, 51, 82,81, &2) = U(y1, y2) (81, 82,61, &2)-
Since we only consider homogeneous Lévy bases, we get
v(dy1, dya, ds1, dsg, d1, dé2) = U(dyr, dya)ds1ds2dE1dEs,

where we set the proportionality constant to 1.

So we see that correlations between the two Lévy bases cartdporated either through the
Gaussian part or the jump part or a combination of both.

In order to shorten the exposition slightly, we focus on tleugsian and pure—jump cases sepa-
rately.
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Theorem 10(Gaussian Lévy base) et L() be a Gaussian &vy base foi = 1,2 and letp denote
the corresponding correlation coefficient, i@léds = Cov (W (d¢, ds), W2 (d¢, ds)). Under
the assumptions above, we get the following covariationtfons:

Cov (V! (), ¥, (@) oV,0®)

= VWD [ B 2 (5,68 D 0 € dsds.
A NA;" (%)
The unconditional covariation is given by
Cov (YV(2), 2 (@) = pv/b002 / WO (s, €, t,2)h® (s, 6,1, 7)Y (s, €)dsde,
AP @)na® @)
where

1(s,6) = E (o1 (€)02(6)) ~E (¢(©) E (+2(©))

Likewise, we get the following result in the pure jump case.

Theorem 11( The pure jump case)Let L(?) be a pure jump Evy base foi = 1,2 and letki =
f|y‘>1 f‘y >1YY 'U(dy,dy’). Then (under the assumptions above), we get the followimgrizion
functions:

Cov (Yt(n(x)’ Yt@ (@)‘ o0, 0(2)>
= (10— x{Vn?) / B (s, €, 1, 2)h® (s,6,8,5)0 ) (€)o ) (€)dsde.
AP (@)na? (z)
The unconditional covariance is then given by
Cov (V" (2),v,P (@) = / o (s, 6t @) (5,68, 3) (5, 5, €, €)dsdE
Ay (2)NAT(Z)

/ o / gy GO W2 (3,€,1,3)T (s, 3,€, €)d3dEdsdg,
where
T5.5.6.8) = a8 (@) @) - WW7E (o)) E(o17()

Note that from a modelling point of view there are many paétés in modelling the joint Lévy
measurd/. E.g. one could work with classical multivariate Lévy m&&s. Another possibility would
be to apply Lévy copulas, see e.g. Cont & Tankov (2004), tdehthe dependence structure.
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