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Abstract

Density expansions for hypoelliptic diffusions
(

X1, . . . , Xd
)

are revisited. In particular, we

are interested in density expansions of the projection
(

X1
T , . . . , X

l
T

)

, at time T > 0, with l ≤ d.
Global conditions are found which replace the well-known ”not-in-cutlocus” condition known
from heat-kernel asymptotics; cf. G. Ben Arous [8]. Our small noise expansion allows for a
”second order” exponential factor. Applications include tail and implied volatility asymptotics
in some correlated stochastic volatility models; in particular, we solve a problem left open by
A. Gulisashvili and E.M. Stein (2009).

Keywords: Laplace method on Wiener space, generalized density expansions in small noise
and small time, sub-Riemannian geometry with drift, focal points, stochastic volatility, implied
volatility, large strike and small time asymptotics for implied volatility

1 Introduction

Given a multi-dimensional hypoelliptic diffusion process Xt =
(
X1

t , . . . , X
d
t : t ≥ 0

)
, started at

X0 = x0, we are interested in the behaviour of the probability density function f = f (y , t) of
the projected (in general non-Markovian) process

Yt := Πl ◦Xt :=
(
X1

t , . . . , X
l
t

)
, 1 ≤ l ≤ d.

Both short time asymptotics and tail asymptotics, in presence of some scaling, can be derived from
the small noise problem

dXε
t = b (ε,Xε

t ) dt+ εσ (Xε
t ) dWt, with Xε

0 = xε0 ∈ R
d.

Our main technical result, based on the Laplace method on Wiener space following Ben Arous
[8, 9], is a density expansion for Yε

t := Πl ◦Xε
t of the form, for x0, y, T fixed,

f ε (y, T ) = e−c1/ε
2

ec2/εε−l (c0 +O (ε)) as ε ↓ 0. (1)

Leaving definitions and precise statements to the main text below (cf theorem 9) let us briefly
mention our key assumptions
(i) a strong Hörmander condition at all points (or in fact, a weak Hörmander condition at x0 and
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an explicit controllability condition);
(ii) existence of at most finitely many minimizers in the control problem which govern the leader
order behaviour;
(iii) invertibility of the deterministic Malliavin covariance matrix along the minimizers;
(iv) a global condition on x0 ∈ R

d, y ∈ R
l which we call non-focality; motivated by geometric

terminology [46, 12].

Conditions (i)-(iii) will not surprise the reader familiar with the works [8, 9, 11, 49]. However,
condition (iv)1 which guarantees non-degeneracy of the minimizers (cf. proposition 7), appears to
be new in the context of density expansions, to the best of our knowledge, even in the Riemannian
case. It forms the essence of what is needed to extend the well-known point-point concept of non-
conjugacy (crucial part of the ”/∈ cut-locus condition” familiar from heat kernel expansions) to a
(sub-Riemannian, with drift) point-subspace setting. A simple example where (iv) and (1) fails, is
given in section 4.2. We emphasize that our applications require us to introduce and characterize
non-focality in a control-theoretic generality.

As far as the expansion (1) is concerned, we draw attention to (in the context of density ex-
pansions) the somewhat unusual second order exponential factor present when c2 6= 0. As was
understood in the context of the general Laplace method on Wienerspace, [5, 9], this has to do
with allowing drift vector field b (and in the present paper also: starting point) depend on ε in
first order; the special case that arises from considering short time asymptotics - the small noise
parameter ε is then introduced by Brownian scaling - always leads to c2 = 0. It is interesting to
note the work of Kusuoka–Stroock [36], concerning precise asymptotics for Wiener functionals (in
the small noise limit), see also [42, 35] for recent applications to projected diffusions, was set up as
expansion in ε2. This is enough to cover the model case of short time expansions, but cannot yield
an expansion of the type (1) with c2 6= 0. A similar remark applies to the small noise expansions
for projected diffusions due to Takanobu–Watanabe [49].

One of our main motivations comes from recent density expansions by Gulisashvili–Stein. In [27,
Theorem 2.1] they prove that the stock-price in the uncorrelated Stein–Stein stochastic volatility
model admits a density with expansion2

B1s
−B3eB2

√
log s (log s)

− 1
2

(

1 +O (log s)
− 1

2

)

as s ↑ ∞

with explicitly computable constants; asymptotic formulae of the implied volatility in the large
(similar: small) strike regime are then obtained as corollaries. When writing this expansion in
terms of log-price Y = logS, it indeed has the form (1) with y = log s = 1/ε2. More generally,
we can show from rather general and robust principles that the tail behaviour of YT ∈ R

1 for fixed
T > 0, subject to a certain scaling with parameter θ ∈ {1, 2} in the full Markovian specification of
the model, has the form

f (y, T ) = e−c1y
2/θ

ec2y
1/θ

y
1
θ−1

(

c0 +O
(

1/y1/θ
))

as y ↑ ∞. (2)

It is worth mentioning that such an expansion leads immediately to call price and then (Black–
Scholes) implied volatility expansions in the large strike regime, cf. [27, 29]; in the case θ = 2

1More precisely, x0 ∈ Rd must not be focal for the submanifold Ny := (y, ·) ⊂ Rd. The classical example here is
of course (0, 0) ∈ R2 which is focal for unit circle S1 ⊂ R2.

2Strictly speaking, their O-term is log s with power −1/4; the authors have informed us, however, that a closer
look at their argument indeed gives power −1/2.

2



typical for stochastic volatility,

σBS (k, T )2 T = (β1k + β2 + o (1))2 as log-strike k →∞;

β1 =
√
2
(√
c1 −

√
c1 − 1

)
,

β2 = c2
√
2
(
1/
√
c1 − 1− 1/

√
c1
)
.

(Small strike asymptotics are similar and will not be discussed here.) The leading order behaviour
described by β1 = β1 (c1) is well understood [37, 7]; the second order behaviour is given by β2 =
β2 (c1, c2). Further terms in this expansion are in principle possible [29]; in particular, the next
term would involve c0. When applied to the Stein–Stein stochastic volatility model,3 the afore-
mentioned scaling indeed leads to a small-noise, hypoelliptic diffusion problem with non-vanishing
second order exponential factor, as is handled by our main theorem. We then solve a problem left
open in the afore-mentioned work [27, Theorem 2.1] in that we are able to compute the expansion
in the correlated case. The importance of allowing for correlation in stochastic volatility models
is well-documented, e.g. [20, 38], and evidence from estimation of parametric stochastic volatility
models suggests correlation parameter ρ ≈ −0.7 or ρ ≈ −0.8 for S&P 500, for instance; a finding
fairly robust across models and time periods [1]. With this in mind, we shall focus on the case
−1 < ρ ≤ 0 in our explicit analysis and derive explicit expressions for c1, c2. (In principle, the
Laplace method on which we rely yields an explicit expression for c0, cf. [9, Thm 4, p 135], [35].)

Density expansions of diffusions in the small noise regime seem to go back (at least) to [34];
density expansions for projected diffusions in the small noise regime (which include the short time
regime), with applications to implied volatility expansions, were recently considered by Y. Osajima
[42], based on work with S. Kusuoka [35]. We partially improve on these results. First, as was
already mentioned, c2 = 0 in these works which makes any expansion of the form (2) out of reach.
Additionally, in comparison with [42] we do not assume x0 near (y, ·), nor ellipticity of the problem.
In further contrast to (the general results in) [35, 36] we provide a checkable, finite-dimensional
criterion that guarantees that the crucial infinite-dimensional non-degeneracy assumption, left as
such in [35, 36], is actually satisfied. On the other hand, these authors give explicit formulae for c0
which we (presently) do not.

Finally, our expansion (1) leads to short time expansion for projected diffusion densities, under
global conditions on (x0, y), of the form

f (y, t) ∼ c0 (x0, y)
1

tl/2
exp

(

−d
2 (x0, y)

2t

)

as t ↓ 0. (3)

When l = d, such expansions go back to classical works ranging from Molchanov [40] to Ben Arous
[8]. The leading order behaviour 2t log f (y, t) ∼ −d2 (x0, y) is due to Varadhan [50]. The case l < d,
in particular our global condition on (x0, y), appears to be new. That said, expansions of this form
have appeared in [49, 30, 42]; the last two references aimed at implied volatility expansions. In the
context of a time-homogenuous local volatility models (l = d = 1), the expansion (3) holds trivially
without any conditions on (x0, y); the resulting expansion was derived (with explicit constant c0)
in [22]. Subject to mild technical conditions on the diffusion coefficient, they show how to deduce
first a call price and then an implied volatility expansion in the short time (to maturity) regime:

σBS (k, t) = k/d (x0, k) + c (x0, k) t+O
(
t2
)
as t ↓ 0;

3In fact, the leading order behaviour of the density was discussed with large deviations methods in [16, p40, p265].
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where d (x0, k) is a point-point distance and c (x0, k) is explicitly given. The celebrated Berestycki–
Busca–Florent (BBF) formula [13] asserts that σBS (k, t) ∼ k/d (x0, k) as t ↓ 0, is in fact valid in
generic stochastic volatilty models, d (x0, k) is then understood as point-hyperplane distance. In
fact, k/d (x0, k) arose as initial condition of a non-linear evolution equation for the entire implied
volatility surface. As briefly indicated in [13, Sec 6.3] this can be used for a Taylor expansion
of σBS (k, t) in t. Such expansions have also been discussed, based on heat kernel expansions on
Riemannian manifolds by [15, 31, 43], not always in full mathematical rigor. Some mathematical
results are given in [42], assuming ellipticity and close-to-the-moneyness |k| << 1; see also forth-
coming work by Ben Arous–Laurence [10]. We suspect that our formula (3), potentially applicable
far-from-the-money, will prove useful in this context and shall return to this in future work.

It should be noted, that the BBF formula alone can be obtained from soft large deviation
arguments, cf. [44, Sec. 3.2.1] and the references therein. In a similar spirit, the Varadhan-type
formula 2t log f (y, t) ∼ −d2 (x0, y), when l < d, can be shown, without any conditions on (x0, y) by
large deviation methods, only relying on the existence of a reasonable density, cf. [51, Sec 5, Rmk
2.9].

As a final note, we recall that the (in general, non-Markovian) Rl-valued Itô-process (Yt : t ≥ 0)
admits - subject to some technical assumptions [28, 45] - a Markovian (or Gyöngy) projection. That
is, a time-inhomogeneous Markov diffusion (Ỹt : t ≥ 0) with matching time-marginals i.e Yt = Ỹt

(in law) for every fixed t ≥ 0. In a financial context, when l = 1, this process is known as (Dupire)
local volatility model and various authors [13, 15, 31, 10] have used this as an important intermediate
step in computing implied volatility in stochastic volatility models. Since all our expansions (small
noise, tail, short time ) are relative to such time-marginals they may also be viewed as expansions
for the corresponding Markovian projections.

Acknowledgement: JDD, PKF and AJ would like to thank MATHEON for financial support.
PKF would like to thank G. Ben Arous for pointing out conceptual similarities in [24, 8] and several
discussions thereafter. It is also a pleasure to thank F. Baudoin, J.P. Gauthier, A. Gulisashvili and
P. Laurence for their interest and feedback.

2 The main result and its corollaries

Consider a d-dimensional diffusion (Xε
t )t≥0 given by the stochastic differential equation

dXε
t = b (ε,Xε

t ) dt+ εσ (Xε
t ) dWt, with Xε

0 = xε0 ∈ R
d (4)

and where W = (W 1, . . . ,Wm) is an m-dimensional Brownian motion. Unless otherwise stated,
we assume b : [0, 1) × Rd → Rd, σ = (σ1, . . . , σm) : Rd → L

(
Rm,Rd

)
and x·0 : [0, 1) → Rd to be

smooth, bounded with bounded derivatives of all orders. Set σ0 = b (0, ·) and assume that, for
every multiindex α, the drift vector fields b (ε, ·) converges to σ0 in the sense4

∂αx b (ε, ·)→ ∂αx b (0, ·) = ∂αx σ0 (·) uniformly on compacts as ε ↓ 0. (5)

We shall also assume that

∂εb (ε, ·)→ ∂εb (0, ·) uniformly on compacts as ε ↓ 0 (6)

4If (4) is understood in Stratonovich sense, so that dW is replaced by ◦dW , the drift vector field b (ε, ·) is changed
to b̃ (ε, ·) = b (ε, ·)−

(

ε2/2
)
∑m

i=1 σi · ∂σi. In particular, σ0 is also the limit of b̃ (ε, ·) in the sense of (5) .
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and
xε0 = x0 + εx′0 + o (ε) as ε ↓ 0. (7)

Later applications to stochastic volatility models aside, the (technical) main result of this paper
is a density expansion in ε of the R

l-valued (in general, non-Markovian) projection5

Yε
T := Πl ◦Xε

T :=
(

Xε,1
T , . . . , Xε,l

T

)

∈ R
l;

where Πl denotes the projection
(
x1, . . . , xd

)
7→
(
x1, . . . , xl

)
, for fixed l ∈ {1, . . . , d} and T > 0. Of

course, we need to guarantee that Yε
T indeed admits a density. To this end, we make the standing

assumption that weak Hörmander condition holds at x0,

span [σi : 1 ≤ i ≤ m; [σj, σk] : 0 ≤ j, k ≤ m; ...]x0
= Tx0R

d; (H)

that is the linear span of σ1, . . . , σm and all Lie brackets of σ0, σ1, . . . , σm is full. Since this condition
is ”open” it also holds, thanks to (5), for ε > 0 small enough, with σ0 and x0 replaced by b (ε, ·) (or
b̃ (ε, ·), cf. previous footnote) and xε0, respectively. It then is a classical result (due to Hörmander,
Malliavin) that the Rd-valued r.v. Xε

T admits a (smooth) density for all times T > 0 and so does
its Rl-valued projection Yε

T . We denote the probability density of Yε
T by

fε (·, T ) ≡ fε (y, T ) with y ∈ R
l.

In theorem 9 below, it will be assumed that Ky is non-empty, where for fixed a ∈ Rl we define6

Kx0,T ;a = Ka := {h ∈ H : Πl ◦ φT (h) = a} . (8)

Here, H denotes the Cameron-Martin space, i.e. absolutely continuous paths with derivative in
L2 ([0, T ] ,Rm), and φT (h) denotes the time-T solution to the controlled ordinary differential equa-
tion

dφht = σ0

(

φht

)

dt+

m∑

i=1

σi

(

φh
t

)

dhit, φ
h
0 = x0 ∈ R

d. (9)

Let us also define φT←t (h) := φT (h) ◦ (φt (h))−1; at occasions we shall also write φh
T (x0) resp.

φhT←t (x0) instead of φT (h) resp. ΦT←t (h). We note that φT (h) is a diffeomorphism, as function
of x0 ∈ Rd, and denotes its differential by ΦT←t (h).

A well-known sufficient condition for Ka 6= ∅ is the strong Hörmander condition7

∀x ∈ R
d : Lie [σ1, . . . , σm] |x = TxRd ∼= R

d. (H1)

Whenever Ka 6= ∅, it makes sense to define the energy and the set of minimizers

Λx0,T (a) : = Λ (a) := inf

{
1

2
‖h‖2H : h ∈ Ka

}

, (10)

Kmin
a : =

{

h0 ∈ Ka :
1

2
‖h0‖2H = Λ (a)

}

.

5Due to the non-Markovianity of the problem, PDE techniques are poorly suited to study the density of Yε
T .

6In later applications to tail asymptotics, when l = 1, we have a = 1 and ε := 1/y or 1/y2 as y ↑ ∞. For this
reason we prefer to keep a and y at this stage separated.

7A weak Hörmander type condition which ensures Ka 6= ∅ is found in [33].
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In words, Λ (a) is the minimal energy required to go in time T from x0 ∈ Rd to the ”target”
submanifold

N := Na :=
{
x ∈ R

d : Πl (x) =
(
x1, . . . , xl

)
= a
}
.

Elements of Kmin
a will be called minimizers or minimizing controls. A standard weak-compactness

argument shows that Ka 6= ∅ already implies that Kmin
a is non-empty. (Throughout the paper, we

shall only be concerned with the situation that Kmin
a contains one or finitely many minimizers.)

Following Bismut [14] it will be crucial that Ka enjoys a (Hilbert) manifold structure, locally
around (each) h0 ∈ Kmin

a . As is well-known, this can be guaranteed by assuming invertibility of
Cx0,T ;a (h0), the deterministic Malliavin matrix given by

Cx0,T ;a (h) := C (h) := 〈DφT (h) , DφT (h)〉H ∈ Lin
(
T ∗xT

R
d → TxTR

d
) ∼= R

d×d

where xT := φT (h) and D will always denote the (H-valued) Fréchet derivative of some function
depending on h ∈ H . We can also view C (h) as (positive semi-definite) quadratic form on T ∗xT

Rd,
in coordinates

〈C (h) p, p〉 =
d∑

i=1

〈
DφiT (h) , pi

〉2
where p = pidx

i ∈ T ∗xT
R

d.

In fact, large parts of our analysis only rely on non-degeneracy of C (h) restricted to Rl×l but we
find it more convenient to deal with the ”full” matrix C (h0). The following condition will cover
most of our applications8.

Proposition 1 Assume h ∈ H and

∃t ∈ [0, T ] : span [σ1, . . . , σm] |xt = TxtR
d

where xt := φt (h). Then C (h) is invertible.

Proof. We have the well-known formula, for any k ∈ H,

〈DφT (h) , k〉H = DφT (h) [k] =

∫ T

0

m∑

j=1

ΦT←t (h)σj (xt) k̇
j
tdt ∈ TxTR

d

When pairing this with p = pidx
i ∈ T ∗xT

Rd, we have

〈〈p,DφT (h)〉 , k〉H =

∫ T

0

m∑

j=1

〈p,ΦT←t (h)σj (xt)〉 k̇jtdt ∈ TxT R
d

and it easily follows that

‖〈p,DφT (h)〉‖2H =

∫ T

0

m∑

j=1

〈p,ΦT←t (h)σj (xt)〉2 dt =
∫ T

0

m∑

j=1

〈
(ΦT←t (h))

∗
p, σj (xt)

〉2
dt.

By assumption span[σ1, . . . , σm] |xt = TxtR
d for some t ∈ [0, T ], and this clearly remains valid in a

small enough open interval containing t which is enough to conclude (ΦT←t (h))
∗ p ≡ 0. By non-

degeneracy of the (co-)tangent flow, this implies p = 0 and so C (h) is non-degenerate, as claimed.

8A sufficient condition for ”C (h) is invertible for every h 6= 0” in a strictly sub-elliptic setting is given as condition
(H2) by [14]; although much stronger than Hörmander’s condition, it does apply to examples such as the 3-dimensional
Heisenberg group.
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Remark 2 (Tangent space of Ka) Assume C (h) is invertible. Then Ka enjoys a (Hilbert) man-
ifold structure, locally around h and

ThKa
∼= kerD (Πl ◦ φT ) (h) =: H0.

Moreover,

H0 =






k ∈ H :

m∑

j=1

〈p,Φ0←t (h) σj (xt)〉 k̇jtdt = 0∀p ∈ span
[
dx1, . . . , dxl

]
|xT ⊂ T ∗xT

R
d







We now introduce the Hamiltonian

H (x, p) : = 〈p, σ0 (x)〉+
1

2

m∑

i=1

〈p, σi (x)〉2

= 〈p, σ0 (x)〉+
1

2

〈
p,
(
σσT

)
(x) p

〉

and Ht←0 =Ht←0 (x0, p0) as the flow associated to the vector field (∂pH,−∂xH) on T ∗Rd. (Under
which H is invariant; it follows that H·←0 does not explode.)

Remark 3 Our setup here is tied to the SDE (4), driven bym independent BrowniansW 1, . . . ,Wm.
Many stochastic models, notably in finance, are written in terms of correlated Brownians, i.e. with
a non-trivial correlation matrix Ω =

(
ωi,j : 1 ≤ i, j ≤ m

)
, where d

〈
W i,W j

〉

t
= ωi,jdt. The Hamil-

tonian then becomes

H (x, p) = 〈p, σ0 (x)〉+
1

2

〈
p,
(
σΩσT

)
(x) p

〉
. (11)

The following propositions generalize the respective results in Bismut’s book [14] (see also Ben
Arous [8, Theorems 1.15 and 1.1.8]) from a drift-free (σ0 ≡ 0), point-to-point setting (x0 ∈ Rd to
y ∈ Rd) to a point-to-subspace setting (x0 ∈ Rd to (y, ·) ∈ Rl ⊕ Rd−l) with drift vector field σ0.
Note that the Bismut setting [14, Chapter I] is recovered by taking zero drift, σ0 ≡ 0, and l = d.

Proposition 4 If (i) h0 ∈ Kmin
a is a minimizing control and (ii) the deterministic Malliavin co-

variance matrix C (h0) is invertible then there exists a unique p0 = p0 (h0) ∈ T ∗x0
Rd, in fact9

p0 ∈ (Φ0→T (h0))
∗
span

{
dx1, . . . , dxl

}
|φh

T (x0),

such that
φh0
t (x0) = πHt←0 (x0, p0) , 0 ≤ t ≤ T (12)

(π denotes the projection from T ∗Rd onto Rd; in coordinates π (x, p) = x).
Moreover, (x (t) , p (t)) :=Ht←0 (x0, p0) solves the Hamiltonian ODEs in T ∗Rd ∼= Rd ⊕ Rd

(
ẋ
ṗ

)

=

(
∂pH (x (t) , p (t))
−∂xH (x (t) , p (t))

)

, (13)

9The (global) coordinate chart
(

x1, . . . , xd
)

of Rd induces coordinates co-vectors fields (or one-forms)
(

dx1, . . . , dxd
)

.
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the minimizing control h0 = h0 (·) is recovered by

ḣ0 =





〈σ1 (x (·)) , p (·)〉
. . .

〈σm (x (·)) , p (·)〉



 (14)

and with C := H (x (t) , p (t)) independent of t ∈ [0, T ],

Λ (y) =
1

2
‖h0‖2H =

TC

2
− 1

2

∫ T

0

〈σ0 (x (t)) , p (t)〉 dt. (15)

At last, crucial for actual computations, (x (t) , p (t)) =Ht←0 (x0, p0) satisfies the Hamiltonian ODEs
(13) as boundary value problem, subject to the following initial -, terminal - and transversality
conditions,

x (0) = x0 ∈ R
d

x (T ) = (y, ·) ∈ R
l⊕Rd−l

p (T ) = (·, 0) ∈ R
l⊕Rd−l. (16)

Proof. The key remark, due to Bismut [14, Chapter I], is that under the assumption ”∃C (h0)
−1”

the set Kmin
a can be described by Hamilton–Jacobi theory. It then suffices to adapt the arguments of

Bismut, as done in the drift-free case by Takanobu–Watanabe, [49]. Let us note that the additional
drift vector field σ0 is trivially incorporated in their setting by adding a 0th component to the
controls, i.e. h0 (t) = t. The boundary conditions - in particular, transversality, have not been
pointed out explicitly in [49] although are implicitly contained in their formulation. In fact, formal
application of Pontryagin’s maximum principle leads precisely to the above boundary value problem;
care is necessary, however, since without assuming invertibility of C (h0), one can be in the so-called
”strictly abnormal” case; the above approach is then not possible.

Remark 5 Assume there exists a (smooth) map (a− ε, a + ε) ∋ y 7→ h0 (y) ∈ Kmin
y . Then

Λ (y) =
1

2
‖h0 (y)‖2 =⇒ ∂yΛ (a) = 〈h0 (a) , ∂yh0 (a)〉H .

On the other hand, we know from ΠlφT (h0 (y)) = y that

(Πl)∗DφT (h0 (a)) [∂yh0 (a)] = Id on R
l;

Using h0 (y) = DφT (h0 (y))
∗
p (T ) = DφT (h0 (y))

∗
(Πl)

∗
∗ q (a), where (Πl)

∗
∗ q (a) ≡ (q (a) , 0), we

have
〈h0 (a) , ∂yh0 (a)〉H = 〈q (a) , (Πl)∗DφT (h0 (y)) ∂yh0 (a)〉H .

It thus follows that the derivatives of the energy are given in terms of q (a),




∂y1Λ (a)
· · ·

∂ylΛ (a)



 =





q1 (a)
· · ·
ql (a)



 . (17)

This can be a useful short when computing the energy from the Hamiltonian system. If #Kmin
a = 1

for some a, and our non-degeneracy condition (ND) as introduced below is met, the existence of
such a map h0 (·) can be shown along the lines of [14, Thm 1.26]. We shall not rely on formula
(17) in the sequel although will find it confirmed in various examples.
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Remark 6 (How to compute optimal controls h0) Proposition 4 - as it stands - requires h0
to be a minimizer and then, subject to condition (ii), provides us with some information about
φh0 (x0) , (x, p) ≡ H·←0 (x0, p0) and in particular allows us to reconstruct h0 from the Hamiltonian
flow (x, p), cf. equation (14). That said, we can consider any solution to the boundary valued

problem (13),(16), say (x̂, p̂), and define a (possible non-minimizing) control path ĥ0 via (14) i.e.

ĥi0 =

∫ ·

0

〈σi (x̂ (t)) , p̂ (t)〉 dt, i = 1, . . . ,m.

From (13),

dx̂t = ∂pH (x̂t, p̂t) dt = σ0 (x̂t) dt+

m∑

i=1

σi (x̂t) 〈σi (x̂t) , p̂t〉 dt

and so relation (12) remains valid i.e. φĥ0
t (x0) = x̂t. It follows that the boundary conditions valid

for x̂ (namely, x̂0 = x0,Πlx̂T = y) are also valid for φĥ0 (x0) and hence ĥ0 ∈ Ky. While we do not

if ĥ0 ∈ Kmin
y , proposition 4 guarantees that every minimizer h0 ∈ Kmin

y can be found be the above
procedure. We thus have the following recipe:
(i) Argue a priori that C (h0) is invertible (or ignore and check in the end).
(ii) Solve Hamiltonian ODEs as boundary value problem, cf. (13),(16). Characterize all solution
via the (non-empty!) set

{p̂0 : Ht←0 (x0, p̂0) ≡ (x̂t, p̂t) satisfies (13),(16) } ;

(iii) For each such p̂0, compute ‖ĥ0‖2H where ĥ0 is given by

ĥi0 =

∫ ·

0

〈σi (x̂t) , p̂t〉 dt, i = 1, . . . ,m;

(iv) The minimizing h0 are precisely those elements in {ĥ0 : as constructed in (ii),(iii)} which

minimize energy ‖ĥ0‖2H . In particular then,

Λ (y) =
1

2
‖h0‖2H .

The following proposition is crucial.

Proposition 7 Under the assumptions of the proposition 4, in particular h0 ∈ Kmin
a with associated

p0 = p0 (h0) ∈ T ∗x0
Rd, the following are equivalent:

(iii) h0 ∈ Ka is a non-degenerate minimum of the energy I := 1
2‖ · ‖2H restricted to the Hilbert

manifold Ka; i.e.
I ′′ (h0) [k, k] > 0 ∀0 6= k ∈ H0

∼= Th0Ka

(iii’) x0 is non-focal for N = (a, ·) along h0 in the sense that, with (xT , pT ) := H0→T (x0, p0 (h0)) ∈
T ∗Rd,

∂(q,z)|(q,z)=(0,0)πH0←T (xT + (0, z) , pT + (q, 0))

is non-degenerate (as d × d matrix; here we think of (q, z) ∈ Rl × Rd−l ∼= Rd and recall that π
denotes the projection from T ∗Rd onto Rd; in coordinates π (x, p) = x).
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Proof. Let us give a quick proof of (iii’) =⇒ (iii) in the Riemannian setting, the general (sub-
Riemannian, with drift) case is new and full proof is given in the next section. Since h0 ∈ Kmin

a

we know that I ′′ (h0) must be positive semi-definite. In particular, the index of h0, relative to the
point-submanifold problem x0 ×N , is zero. By the Morse index theorem [46, 12], there cannot be
any focal point along the (x0 ×N)-geodesic

{πHT→t (xT , pT ) : t ∈ (0, T ]} .

Condition (iii’) guarantees that this extends to t = 0, i.e. there is no focal point along

{πHT→t (xT , pT ) : t ∈ [0, T ]} .

We can then use [46, lemma 2.9 (b)] to conclude that I ′′ (h0) is positive definite.

Definition 8 (Condition (ND); generalized /∈ cut-locus condition) We say that {x0}×Na

where Na := (a, ·) :=
{
x ∈ R

d : Πlx = a ∈ R
l
}
satisfies condition (ND) if

(i) 1 ≤ #Kmin
a <∞,

(ii) the deterministic Malliavin covariance matrix C (h) is invertible, ∀h ∈ Kmin
a ;

(iii) x0 is not focal for Na along h, for any h ∈ Kmin
a .

When σ0 ≡ 0 and l = d, i.e. N = {y}, and #Kmin
a = 1, condition (ND) says precisely that

(x0, y) is not contained in the sub-Riemannian cut-locus in the sense of Ben Arous [8]; extending the
usual Riemannian meaning. In this sense our (global) condition (ND) is effectively a generalization
of the well-known ”/∈ cut-locus” condition in the context of heat-kernel expansions.

Theorem 9 (Small noise) Let (Xε) be the solution process to

dXε
t = b (ε,Xε

t ) dt+ εσ (Xε
t ) dWt, with Xε

0 = xε0 ∈ R
d.

Assume b (ε, ·) → σ0 (·) in the sense of (5), (6), and Xε
0 ≡ xε0 → x0 as ε → 0 in the sense of (7).

Assume the weak Hörmander condition (H) at x0 ∈ Rd. Fix y ∈ Rl, Ny := (y, ·) and assume that
{x0}×Ny satisfies (ND), i.e. the generalized /∈ cut-locus condition (in particular then, #Kmin

y ≥ 1).
Then the energy

Λ (y) = inf

{
1

2
‖h‖2H : h ∈ Ky

}

=
1

2
‖h0‖2H .

is smooth in a neighbourhood of y provided #Kmin
y = 1; otherwise i.e. when #Kmin

y > 1, we assume
so.10

Fix x0, y and T > 0. Then there exists c0 = c0 (x0, y, T ) > 0 such that

Yε
T = ΠlX

ε
T =

(

Xε,1
T , . . . , Xε,l

T

)

, 1 ≤ l ≤ d

admits a density with expansion

fε (y, T ) = e−
Λ(y)

ε2 e
max{Λ′(y)· ŶT (h0):h0∈K

min
a }

ε ε−l (c0 +O (ε)) as ε ↓ 0.
10It will not be true in general, when #Kmin

y > 1, that Λ (y) is automatically smooth near y. To wit consider,

Kmin
y = {h0 (y) , h̃0 (y)}. Then Λ (y) = min

(

1
2
‖h0 (y) ‖2H , 1

2
‖h̃0 (y) ‖2H

)

and even if ‖h0 (·) ‖2H and ‖h̃0 (·) ‖2H are

smooth near y, this need not be the case for the minimum.
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Here Ŷ = Ŷ (h0) =
(

Ŷ 1, . . . , Ŷ l
)

is the projection, Ŷ =ΠlX̂, of the solution to the following (ordi-

nary) differential equation

dX̂t =
(

∂xb
(

0, φh0
t (x0)

)

+ ∂xσ(φ
h0
t (x0))ḣ0 (t)

)

X̂tdt+ ∂εb
(

0, φh0
t (x0)

)

dt, (18)

X̂0 = ∂ε|ε=0 x
ε
0.

Remark 10 The assumption Ky 6= ∅, implicit through #Kmin
y = 1 in the statement of the above

theorem, is known to be necessary for the existence of a positive density; in presence of (H) and
invertibility of C (h), some h ∈ Ky it is actually sufficient; [11]. The strong Hörmander condtion
at all points (H1) is well-known to ensure Ky 6= ∅; a less well-known and subtle condition of
weak-Hörmander type is given in [33].

Remark 11 When applied to small time expansions, the weak Hörmander condition in the above
theorem automatically reduces to the strong Hörmander condition at x0; indeed, the ”drift” vector
field in the weak condition will be the limit of ε2 times the original drift vector fields; plainly this is
zero and therefore does not figure in the span.

Proof. Assume #Kmin
a = 1 and see remark 12 below for the reduction of #Kmin

a <∞ to this case.
The basic remark is that fε(y, T ) is the Fourier inverse of its characteristic function,

E [exp (iξ · Yε
T )] = E [exp (i(ξ, 0) ·Xε

T )]

where we write (ξ, 0) =
(

ξ1, . . . , ξl, 0, . . . , 0
)

∈ R
d. In other words, it suffices to restrict the c.f.

of Xε
T , the full (Markovian) process evaluated at time T, to obtain the c.f. of Yε

T . The density is
then obtained by Fourier-inversion. When Xε

T is affine the c.f. is analytically described by ODEs;
(approximate) saddle points are easy to compute and the Fourier inversion - after shifting the
contour through the saddle point - becomes a finite-dimensional Laplace method which leads to the
desired expansion of fε(y, T ); in essence, this approach was carried out by Friz et al. in [24]. In
our present situation, of course, X does not enjoy any affine structure, but - following Ben Arous
[8], who considers the ”point-to-point” case l = d; a similar approach works and ultimately boils
down to Laplace method on Wiener space [9]. The differences to the setting of [8], aside from (i)
allowing for l < d, is that (ii) our drift-term does not vanish of order ε2 (which is typical when
aiming for short time asymptotics; cf. also proposition 15 below) and (iii) that the starting point is
allowed to depend on ε. In fact, (ii),(iii) are responsible for the additional exponential exp {(...) /ε}
factor in our expansion (Such a factor was already seen in the general context of Laplace method
on Wiener space [9].) Also, (ii) implies that the limiting vector field σ0 = limε b (ε, ·) affects the
leading order behaviour in that the energy Λ (y) has no geometric interpretation as square of some
(sub)Riemannian point-subspace distance. In particular, if we want to implement the strategy of
[8] we are forced to revisit the meaning of all geometric concepts (cut-locus, geodesics, conjugate
points ...) upon which the work [8] is based. The key observation is that essentially all geometric
concepts channel through the (non-geometric, but infinite-dimensional) condition (iii) of proposition
7 into the application of Laplace’s method. Now, the whole point of proposition 7 was to provide
check-able conditions for x0, y to satisfy (iii). Having made these part of our assumption we are in
fact ready to proceed along the lines of Ben Arous [8].

11



Fix y and note that for any C∞-bounded function z 7→ F (z) on Rl, by Fourier inversion,

fε(y, T )e
−F (y)/ε2 =

1

(2π)l

∫

Rl

E

[

exp

(

iξ · (Yε
T − y)− F (Yε

T )

ε2

)]

dξ (19)

=
1

(2πε)
l

∫

Rl

E

[

exp

(

iζ ·
(
Yε

T − y

ε

)

− F (Yε
T )

ε2

)]

dζ.

=
1

(2πε)
l

∫

Rl

E

[

exp

(

i (ζ, 0) ·
(
Xε

T − (y, 0)

ε

))

e−
F(ΠlX

ε
T )

ε2

]

dζ. (20)

In particular, the last integrand can be computed, as asymptotic expansion in ε for fixed ζ, by
Laplace method in Wiener space, cf. [8], [9], based on the full (Markovian) process Xε

T . We pick F
(for fixed y) such that F (·) + Λ (·) has minimum at y, i.e.

Λ (y) = inf
{
F (z) + Λ (z) : z ∈ R

l
}

and such that this minimum is non-degenerate; a natural candidate for F (z) would then be given
(at least for z near y) by

z 7→ λ |z− y|2 − Λ (z) , some λ > 0;

or z 7→ λ |z− y|2 − [Λ (z)− Λ (y)],

since adding constants is irrelevant here (recall that y is kept fix). The trouble with the above
candidate is their potential lack of (global) smoothness of Λ; even in the classical Riemannian
setting Λ will not be smooth at the cut-locus. On the other hand, Λ (·) is smooth near y in case
#Kmin

a = 1; this is seen exactly as in [14, Thm 1.26]. (In the case 1 < #Kmin
a , smoothness of Λ (·)

near y was in fact part of our assumptions.) It is thus natural to localize the above candidates
around y which leads us to define F , at least in a neighbourhood of y, by

F (z) = λ |z− y|2 −
[
∂

∂y
Λ (y) (y − z) +

1

2

∂2

∂y2
Λ (y) (y− z, y − z)

]

;

a routine modification of F , away from y, then guarantees C∞-boundedness of F . (Since F (y) = 0
with this last choice of F , the l.h.s. of (19) is actually precisely fε(y, T ) ) Non-degeneracy of

the minimum y of F entails that the functional H ∋ h 7→ F
(

φh
T (x0)

)

+ 1
2 ‖h‖

2
H has a non-

degenerate minimum at h0 ∈ H . (The argument is identical to [8, Thm 2.6] and makes crucial use
of proposition 7.) The Laplace method is then applicable: we replace εdW by εdW + dh0 in (4)
and call the resulting diffusion process Zε. The integrand of (20) can then be expressed in terms
with Xε replaced by Zε; of course at the price of including the Girsanov factor

G := exp

(

−1

ε

∫ T

0

ḣ0 (t) dWt −
1

2ε2

∫ T

0

∣
∣
∣ḣ0 (t)

∣
∣
∣

2

dt

)

= exp

(

−1

ε

∫ T

0

ḣ0 (t) dWt −
1

ε2
Λ (y)

)

.

A stochastic Taylor expansion of Zε, noting right away that

F (ΠlZ
ε
T ) |ε=0 = F

(

Πlφ
h
T (x0)

)

= F (y) = 0,
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then leads to (cf. [9, Lemme 1.43])

exp

(

− 1

ε2
F (ΠlZ

ε
T )

)

= exp

(

− 1

ε2

[

F (y)− ε
∫ T

0

ḣ0 (t) dWt − εΠlX̂T · ∂yΛ (y) +O
(
ε2
)

])

= exp

(

1

ε

∫ T

0

ḣ0 (t) dWt +
1

ε

(

ŶT

)

· ∂yΛ (y) +O (1)

)

. (21)

Putting things together, we have, using F (y) = 0, and noting cancellation of
∫ T

0
ḣ0 (t) dWt in (21)

with the identical term in the Girsanov factor G,

fε(y, T ) =
1

(2πε)
l

∫

Rl

E

[

G× exp

(

i (ζ, 0) ·
(
Zε
T − (y, 0)

ε

))

e−
F(ΠlZ

ε
T )

ε2

]

dζ

=
1

εl
exp

(

− 1

ε2
Λ (y)

)

exp

(
1

ε

(

ŶT

)

· ∂yΛ (y)

)

× 1

(2π)
l

∫

Rl

E

[

exp

(

i (ζ, 0) ·
(
Zε
T − (y, 0)

ε

))

exp (O (1))

]

dζ

︸ ︷︷ ︸

=:c0

(22)

where O (1) denotes the term, bounded as ε ↓ 0, from (21). What is left to show, of course, is
that c0, i.e. the final factor in the above expression, is indeed a strictly positive and finite real
number. But since our analysis is based on the full Markovian process XT (resp. Zε

T after change
of measure), the arguments of [8, Lemme (3.25)] apply with essentially no changes. In particular,
one uses large deviations as in [8, Lemme (3.25)]) and, crucially, non-degeneracy of the minimizer
h0 ∈ H , guaranteed by proposition 7. Finally, integrating the asymptotic expansion with respect
to ζ ∈ Rl is justified using the estimates of [8, Lemme 3.48], obtained using Malliavin calculus
techniques. At last one sees c0 > 0, as in [8, p. 330].

Remark 12 (Finitely many multiple minimizers) The case 1 < #Kmin
a < ∞ ∈ {2, 3, . . .}is

handled as in [9]. If

Kmin
a =

{

h
(1)
0 , . . . , h

(n)
0

}

,

and invertibility of the Malliavin matrix as well as non-focality holds along each of these, the ex-
pansion for fε (y, T ) as given in theorem 9 remains valid. Indeed, after localization around each of
these n minimizers,

fε (y, T ) =




∑

h0∈Kmin
a

e−
Λ(y)

ε2 e
Λ′(y)· ŶT (h0)

ε ε−lc0 (h0)



 (1 +O (ε))

∼ (const) e−
Λ(y)

ε2 e
max

{

Λ′(y)· ŶT (h0)

ε :h0∈Kmin
a

}

ε−l

where ŶT (h0) denotes the solution of (18).
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Remark 13 (Localization) The assumptions on the coefficients b, σ in theorem 9 (smooth, bounded
with bounded derivatives of all orders) are typical in this context (cf. Ben Arous [8, 9] for instance)
but rarely met in practical examples from finance. This difficulty can be resolved by a suitable

localization which we now outline.Set τR := inf
{

t ∈ [0, T ] : sups∈[0,t] |Xε
s | ≥ R

}

and assume

P [τR ≤ T ] . e−JR/ε2 as ε ↓ 0

with JR →∞ as R→∞ by this we mean, more precisely,

lim
R→∞

lim sup
ε→0

ε2 logP [τR ≤ T ] = −∞. (23)

In that case, we can pick R large enough so that Λ (y) < JR, uniformly for ε near 0+, and can expect
that the behaviour beyond some big ball of radius R will not influence the expansion. In particular,
if the coefficients b, σ are smooth, but fail to be bounded resp. have bounded derivatives, we can
modify them outside a ball of radius R such as to have this property; call b̃, σ̃ these new coefficients
and X̃ε the associated diffusion. To illustrate the localization, consider l = 1, i.e. Y ε

T ≡ Xε,1
T , and

the distribution function for Y ε
T . Clearly, one has the two-sided estimates

P [Y ε
T ≥ y; τR > T ] ≤ P [Y ε

T ≥ y] ≤ P [Y ε
T ≥ y; τR > T ] + P [τR ≤ T ] ,

and similar for Ỹ ε
T ≡ X̃ε,1

T . Since P [Y ε
T ≥ y; τR > T ] = P

[

Ỹ ε
T ≥ y; τR > T

]

it then follows

∣
∣
∣P [Y ε

T ≥ y]− P

[

Ỹ ε
T ≥ y

]∣
∣
∣ ≤ P [τR ≤ T ] . e−JR/ε2 .

In particular, any expansion for Ỹ ε
T of the form

P

[

Ỹ ε
T ≥ y

]

= e−c1/ε
2

e c2/ε
2

ε−lc0 (1 +O (ε))

leads, upon taking R large enough so that JR > c1, to the same expansion for P [Y ε
T ≥ y]. With

more work of routine type, this localization also be employed for the density expansion in theorem
9.

2.1 Corollary on tail expansions

We have the following application to tail behaviour of, say, the first component (i.e. l = 1 here)
of a diffusion processes at a fixed time T . The scaling assumption below is met in a number of
stochastic volatility models.

Corollary 14 (Tail behaviour) Assume xε0 → 0 ∈ Rd as ε → 0 and some diffusion process Xε,
started at xε0, satisfies the assumptions of theorem 9 with x0 = 0 and N = (1, ·) ⊂ R × Rd−1; in
particular, {0} × (1, ·) is assumed to satisfy condition (ND). Assume also θ-scaling by which we
mean the scaling relation

Y ε
T

(law)
= εθYT where Y ≡ Π1X

for some θ ≥ 1. Then the probability density function of YT has the expansion

f (y) = e−c1y
2
θ ec2y

1
θ y

1
θ−1

(

α0 +O
(

1/y1/θ
))

as y →∞ (24)
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where

c1 =Λ (1)

c2 = ŶTΛ
′ (1) =

2ŶT
θ

Λ (1)

In particular, when θ = 1 we have a Gaussian tail behaviour of the precise form

f (y) = e−Λ(1)y2

e2ŶT Λ(1)y (c0 +O (1/y)) ;

while θ = 2 leads to the exponential tail of the precise form

f (y) = e−Λ(1)yeŶT Λ′(1)
√
yy−1/2 (c0 +O (1/

√
y)) .

Proof. Let fε denote the density of Y ε
T . Since f

(
y/εθ

)
= εθfε (y) we can take y = 1 and εθ = y−1

in the theorem below. Another observation is that the assumed scaling implies

Λ0 (y) = y2/θΛ0 (1)

and hence Λ′0 (1) =
2
θΛ0 (1). The rest is obvious.

2.2 Corollary on short time expansions

Finally, we have the following application to short time asymptotics. Note that for l < d, the pro-
jection of X is non-Markovian and there is no Fokker-Planck equation that describes the evolution
of f . In particular, there is no direct PDE approach that leads to the expansion below.

Corollary 15 (Short time) Consider dXt = b (Xt) dt + σ (Xt) dW , started at X0 = x0 ∈ Rd,
with C∞-bounded vector fields such that the strong Hörmander condition holds,

∀x ∈ R
d : Lie [σ1, . . . , σm] |x = TxRd. (H1)

For fixed l ∈ {1, . . . , d} assume {x0} ×Ny, where Ny := (y, ·) for some y ∈ Rl, satisfies condition
(ND). Let f (t, ·) = f (t, y) be the density of Yt =

(
X1

t , . . . , X
l
t

)
. Then

f (t, y) ∼ (const)
1

tl/2
exp

(

−d
2 (x0, y)

2t

)

as t ↓ 0

where d (x0, y) is the sub-Riemannian distance, based on (σ1, . . . , σm), from the point x0 to the
affine subspace Ny.

Proof. After Brownian scaling, we apply the theorem with T = 1, ε2 = t so that

b (ε, ·) = ε2b (·)→ σ0 (·) ≡ 0;

which explains why there is no drift vector field in the present Hörmander condition H1. Also
xε0 = x0 here. The identification of the energy with 1/2 times the square of the sub-Riemannian
(or: control - , Carnot-Caratheodory - ) distance from x to Σy is classical. At last, the unique ODE

solution to (18) is then given by Ŷ ≡ 0 and there is no exp {(...) /ε} factor.
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3 Non-focality and infinite-dimensional non-degeneracy

In the present section only, we write h (rather than h0) for a fixed element in Kmin
a .

Recall ThKa = kerD (ΠlφT ) (h) =: H0. Since h ∈ Kmin
a , it is critical in the sense that

I ′ (h) = DI (h) = 0 on ThKa = H0.

Also recall xT = φh
T←0 (x0) = φT (h), notation used when x0 is fixed. Given

q ∈ span
{
dx1|xT , . . . , dx

l|xT

}

with 1 ≤ l ≤ d we shall write11

(q, 0) ∈ span
{
dx1|xT , . . . , dx

d|xT

}
= T ∗xT

R
d

for q ”viewed” as element in T ∗xT
Rd. We can describe H0 as the set of those k =

(
k1, . . . , km

)
∈ H

such that, for any q ∈ span
{
dx1|xT , . . . , dx

l|xT

}
,

∫ T

0

〈

(q, 0) ,Φh
T←tσi

(

φht←T (xT )
)〉

k̇itdt = 0;

where, of course,
{
x1, . . . , xd

}
denotes the standard coordinate chart of Rd and we tacitly use Ein-

stein’s summation convention.We recall our standing assumption that the deterministic Malliavin
covariance matrix C (h) is invertible.

Lemma 16 The linear map ρ̃h : span
{
dx1|xT , . . . , dx

l|xT

}
→ H given by

ρ̃h (q) :=







∫ ·
0

〈

(q, 0) ,Φh
T←tσ1

(

φht←T (xT )
)〉

dt

· · ·
∫ ·
0

〈

(q, 0) ,Φh
T←tσm

(

φht←T (xT )
)〉

dt







for i = 1, . . . ,m and t ∈ [0, T ] is one-one with range H⊥0 .

Proof. Since H0 is the set of those k ∈ H such that, for any q ∈ span
{
dx1|xT , . . . , dx

l|xT

}
,

∫ T

0

〈

(q, 0) ,Φh
T←tσi

(

φh
t←T (xT )

)〉

k̇itdt = 0

we see that H0 is the orthogonal complement in H of

{
ρ̃h (q) : q ∈ span

{
dx1|xT , . . . , dx

l|xT

}}
;

i.e. H⊥0 is the range of ρ̃h. Invertibility of the deterministic Malliavin matrix (along h) then implies
ker ρ̃h = {0} which shows that ρ̃h is one-one (and also that H⊥0 has dimension l).

11In fancy notation, (q, 0) = (Πl)
∗

∗
q where (Πl)

∗

∗
is the adjoint of (Πl)∗ : TxT Rd → TΠlxT

Rl, the differential of the

projection map Πl :
(

x1, . . . , xd
)

→
(

x1, . . . , xl
)
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Lemma 17 For each minimizer h ∈ Kmin
a , there exists a unique q = q (h) ∈ span

{
dx1|xT , . . . , dx

l|xT

}

s.t.
h = DφT (h)∗ [(q, 0)] .

(Recall DφT (h) : H → TxT R
d; its adjoint then maps T ∗xT

Rd → H where we identify H∗with H.)

Proof. By assumption, h is a minimizer, and so its differential I ′ (h) is 0 on ThKa ≡ H0. It follows
that for every k ∈ H0,

〈dI (h) , k〉 =
∫ T

0

m∑

i=1

ḣitk̇
i
tdt = 0

so that h is in the orthogonal complement of H0. It follows that there exists a (unique, thanks to
invertibility of the deterministic Malliavin matrix along h)

q = q (h) ∈ span
{
dx1|xT , . . . , dx

l|xT

}

such that h = ρ̂h (q). It follows that

ḣit =
〈

(q, 0) ,Φh
T←tσi

(

φh
t←T (xT )

)〉

.

It remains to see that, for any k ∈ H ,

〈k, h〉H =
〈
k,DφT (h)

∗
[(q, 0)]

〉

H
= 〈(q, 0) , DφT (h) [k]〉 ,

but this follows immediately from the computation

〈k, h〉H = 〈k, ρ̂h (q)〉H

=

∫ T

0

k̇it

〈

(q, 0) ,Φh
T←tσi

(

φht←T (xT )
)〉

dt

=

〈

(q, 0) ,

∫ T

0

Φh
T←tσi

(

φht←T (xT )
)

k̇itdt

〉

.

Lemma 18 I ′′ (h) is a bilinear form on H0 given by

I ′′ (h) [k, l] = 〈k, l〉H −
〈
(q (h) , 0) , D2φT (h) [k, l]

〉

= 〈k, l〉H −
(
q (h) , D2ψT (h) [k, l]

)

where (q (h) , 0) ∈ T ∗xT
Rd was constructed lemma 17. In particular, an element k ∈ H0 is in the

null-space N (h) of I ′′ (h),

k ∈ N (h) := {k ∈ H0 : I ′′ (h) [k, k] = 0}
= {k ∈ H0 : I ′′ (h) [k, ·] ≡ 0 on H0 } .

if and only if (identifying H∗ with H)

〈k, ·〉H −
(
pT , D

2ψ (h) [k, ·]
)
∈ H⊥0 .

17



Proof. Take a smooth curve c : (−ε, ε)→ Ka s.t. c (0) = h, ċ (0) = k. Then

I ′′ (h) [k, k] = |k|2H +
〈
h,

..
c (0)

〉
.

From the previous lemma

I ′′ (h) [k, k] = |k|2H +
〈
(q, 0) , DφT (h)

[..
c (0)

] 〉

= |k|2H +
〈
q,DψT (h)

[..
c (0)

] 〉

On the other hand, since ψT (c (t)) = ΠlφT (c (t)) ≡ a for t ∈ (−ε, ε) we have

0 =
d2

dt2
ψT (c (t)) |t=0

=
d

dt
DψT (c (t)) [ċ (t)] |t=0

=D2ψT (h) [k, k] +DψT (h)
[..
c (0)

]

and hence

I ′′ (h) [k, k] = |k|2H −
〈
q,D2ψT (h) [k, k]

〉

= |k|2H −
〈
(q, 0) , D2φT (h) [k, k]

〉
.

The characterization of elements in N (h) is then clear. Let us just remark that N (h) is indeed
equal to the space {k ∈ H0 : I ′′ (h) [k, ·] ≡ 0 on H0 } as is easily seen from the fact that I ′′ (h) is
positive semi-definite, since h is (by assumption) a minimizer.

If U is a vector field on R
d we define the push-forward, under the diffeomorphism

(

φhs←T

)−1
,

by
(

φh
s←T

)−1

∗
U (z) :=

(
Φh

s←T

)−1
U
(

φh
s←T (z)

)

∈ TzRd

We shall then need the following known formula, cf. [14, 1.21] combined with trivial time reparam-
eterization t T − t;

D
(

φht←T

)−1

∗
U (z) [k] =

∫ T

t

[(

φh
s←T

)−1

∗
σj ,
(

φht←T

)−1

∗
U

]

(z) k̇jsds. (25)

Lemma 19 For k, l ∈ H we have, with xT = φT (h),

D2φT (h) [k, l] =

∫ T

0

∫ T

t

[(

φhs←T

)−1

∗
σj ,
(

φh
t←T

)−1

∗
σi

]

(xT ) k̇
j
s l̇

i
tdsdt

+

∫ T

0

Φh
T←t∂σi

(

φh
t←T (xT )

)

Φh
t←TDφT (h) [k] l̇itdt.

Proof. Clearly

DφT (h) [l] =

∫ T

0

Φh
T←tσi

(

φh
t←T (xT )

)

l̇itdt

18



where φT (h) = xT . Perturbing h implies

φT (h + εk) = xT + εDφT (h) [k] + o (ε)

and then

DφT (h + εk) [l] =

∫ T

0

Φh+εk
T←t σi

(

φh+εk
t←T (xT + εDφT (h) [k] + o (ε))

)

l̇itdt.

Taking derivatives then leads us to12

D2φT (h) [k, l] =

∫ T

0

D
{

Φh
T←tσi

(

φht←T (xT )
)}

[k] l̇itdt

+

∫ T

0

Φh
T←t∂σi

(

φh
t←T (xT )

)

Φh
t←TDφT (h) [k] l̇itdt.

The proof is then finished using (25).
Given k ∈ H0, set (

0
η

)

:= DφT (h) [k] (26)

where the notation is meant to suggest that

η ∈ TxTNa where Na = (a, ·) ⊂ R
l × R

d−l ∼= R
d.

Proposition 20 Elements k ∈ N (h) ⊂ H0 are characterized by (inhomogeneous, linear ”back-
ward”) Volterra equation13

k̇it =

〈

(q (h) , 0) ,

∫ T

t

[(

φhs←T

)−1

∗
σj ,
(

φht←T

)−1

∗
σi

]

(xT ) k̇
j
sds

〉

+

〈

(q (h) , 0) ,Φh
T←t∂σi

(

φht←T (xT )
)

Φh
t←T

(
0
η

)〉

+
〈

(θ, 0) ,Φh
T←tσi

(

φh
t←T (xT )

)〉

.

where
η = η (k) ∈ span {∂l+1|xT , . . . , ∂d|xT } = TxTNa

is given by (26) and
θ = θ (k) ∈ span

{
dx1|xT , . . . , dx

l|xT

}
= T ∗xT

N⊥a .

Remark 21 When k ∈ N (h) is also in H1 = kerDφT (h) (which is always true in the point-point
setting!) we have η = 0; the equation for k simplifies accordingly and matches precisely the Bismut’s
equation [14, 1.65].

12It should be noted that the term DφT (h) [k] is zero for k ∈ H1 = kerDφT (h); in particular the second summand
will vanish when D2φT (h) [·, ·] is restricted to H1 i.e. when considering the point-point case l = d.

13... which takes the usual form upon reparameterizing time τ ← T − t ...
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Remark 22 It is an important step in our argument to single out η. In fact, we must not use

(
0
η

)

=

∫ T

0

Φh
T←sσj

(

φhs←T (xT )
)

k̇jsds

as integral term for k̇ in the above integral equation for k̇. Indeed, doing so would lead to a Fredholm
integral equation (of the second kind) for k̇ whereas it will be crucial for the subsequent argument
to have a Volterra structure. (Solutions to such Volterra equations are unique; the same is not true
for Fredholm integral equations.)

Proof. For fixed k ∈ H0, we write

(
0
η

)

:= DφT (h) [k] .

With slight abuse of notation (Riesz!) the previous result then implies that

{
D2φT (h) [k, ·]

}i

t
=

∫ T

t

[(

φh
s←T

)−1

∗
σj ,
(

φht←T

)−1

∗
σi

]

(xT ) k̇
j
sds (27)

+Φh
T←t∂σi

(

φht←T (xT )
)

Φh
t←T

(
0
η

)

.

On the other hand, for k ∈ N (h), we know that

〈k, ·〉H −
〈
(q (h) , 0) , D2φT (h) [k, ·]

〉
∈ H⊥0 = range (ρ̃h) .

Hence, recalling

ρ̃h (θ) =
〈

(θ, 0) ,Φh
T←tσi

(

φh
t←T (xT )

)〉

,

it follows from (27) that

k̇it =

〈

(q (h) , 0) ,

∫ T

t

[(

φhs←T

)−1

∗
σj ,
(

φht←T

)−1

∗
σi

]

(xT ) k̇
j
sds

〉

+

〈

(q (h) , 0) ,Φh
T←t∂σi

(

φht←T (xT )
)

Φh
t←T

(
0
η

)〉

+
〈

(θ, 0) ,Φh
T←tσi

(

φh
t←T (xT )

)〉

Remark 23 If we introduce the orthogonal complement H2 so that

H0 = H1 ⊕H2 (orthogonal)

the map

k 7→ DφT (h) [k] =

(
0
η

)

7→ η

is a bijection from H2 → TxTNa.
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3.1 Jacobi variation

Again, the starting point is the formula

ḣit =
〈

pT ,Φ
h
T←tσi

(

φh
t←T (xT )

)〉

=
〈

(q(h), 0) ,Φh
T←tσi

(

φht←T (xT )
)〉

where we recall
pT = (q(h), 0) , xT ∈ (a, ·) ≡ Na.

We keep pT and xT fixed and note that the Hamiltonian (backward) dynamics are such that

ΠHt←T (xT , pT ) = φht←T (xT )

Replace pT by pT + ε(θ, 0) above, xT by xT + ε

(
0
η

)

and write h (ε) for the according control14

which satisfies the relation

ḣ (ε)
i
t =

〈

pT + ε (θ, 0) ,Φ
h(ε)
T←tσi

(

φ
h(ε)
t←T

(

xT + ε

(
0
η

)))〉

Define the Jacobi type variation

g := ∂(θ,η)h :=
∂h (ε)

∂ε
|ε=0

so that

ġit =
〈

pT , D
{

Φh
T←tσi

(

φht←T (xT )
)}

[g]
〉

+

〈

pT ,Φ
h
T←t∂σi

(

φh
t←T (xT )

)

Φh
t←T

(
0
η

)〉

+
〈

(θ, 0) ,Φh
T←tσi

(

φht←T (xT )
)〉

.

With pT = (q(h), 0) and formula (25) we see that ġ satisfies the identical (inhomogeneous, linear
backward15 Volterra equation) as the one given for k̇ in proposition 20. By basic uniqueness theory
for such Volterra equations we see that ġ = k̇ as elements in L2 ([0, T ] ,Rm), and hence g = k as
elements in H .

Proposition 24 Let k ∈ N (h) ⊂ H0 with associated parameters

θ ∈ span
{
dx1|xT , . . . , dx

l|xT

}
= T ∗xT

N⊥a

η ∈ span {∂l+1|xT , . . . , ∂d|xT } = TxTNa

14... which can be constructed explicitly from the Hamiltonian (backward) flow

(xt (ε) , pt (ε)) := Ht←T

(

xT + ε

(

0
η

)

, pT + ε(θ, 0)

)

and the usual formula ḣ (ε)it = (pt (ε) , Vi (xt (ε))) .
15Trivial reparameterization t  T − t will bring it in standard ”forward” form.
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provided by proposition 20. (In particular, η is given by DφT (h) [k], cf. (26).) Then k can be
written in terms of a Jacobi type variation

k = ∂(θ,η)h.

Conversely, any Jacobi type variation, with θ ∈ T ∗xT
N⊥a , η ∈ TxTNa yields an element in N (h).

Proof. The first part follows from the above discussion and it only remains to prove the converse
part. Since we have seen that every Jacobi type variation g := ∂(θ,η)h satisfies the appropriate
Volterra equation, cf. proposition 20, we only need to check

(
0
η

)

= DφT (h) [g]x

and we leave this as an easy exercise to the reader.
Recall that we say that x0 is non-focal for (a, ·) ≡ Na along h if for all θ ∈ T ∗xT

N⊥a , η ∈ TxTNa

∂ε|ε=0ΠH0←T

(

xT + ε

(
0
η

)

, pT + ε (θ, 0)

)

= 0 =⇒ (θ, η) = 0.

In the point-point setting (i.e. l = d so that θ ∈ T ∗xT
Rd, η = 0) the criterion reduces to

∂ε|ε=0ΠH0←T (xT , pT + εθ) = 0 =⇒ θ = 0;

disregarding time reparameterization t ← T − t and the fact that our setup allows for a non-zero
drift vector field, this is precisely Bismut’s non-conjugacy condition [14, p.50].

Corollary 25 The point x0 is non-focal for (a, ·) ≡ Na along h if and only if I ′′ (h), i.e. the second

derivative of ‖·‖2H
∣
∣
∣
Ka

at the minimizer h, viewed as quadratic form on H0 = kerD (ΠlφT ) (h), is

non-degenerate, i.e.
N (h) ≡ {0} .

Proof. ”⇒”: Take k ∈ N (h) ; from proposition 24

k = ∂(θ,η)h ≡ ∂ε|ε=0h (ε)

for suitable θ ∈ T ∗xT
N⊥a , η ∈ TxTNa; in fact,

(
0
η

)

= DφhT←0 (x0) [k] .

The criterion says that if

∂ε|ε=0ΠH0←T

(

xT + ε

(
0
η

)

, pT + ε (θ, 0)

)

= ∂ε|ε=0

(

φ
h(ε)
0←T

)(

xT + ε

(
0
η

))
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equals zero then (θ, η) must be zero. But this is indeed the case here since

∂ε|ε=0

(

φ
h(ε)
0←T

)(

xT + ε

(
0
η

))

=D
{

φh
0←T (xT )

}

[∂ε|ε=0h (ε)] + Φh
0←T

(
0
η

)

=D
{

φh
0←T (xT )

}

[k] + Φh
0←TDφ

h
T←0 (x0) [k]

=D
{

φh
0←T ◦ φhT←0 (x0)

}

[k]

= 0.

We thus conclude that the directional derivative ∂(θ,η)h, which of course depends linearly on (θ, η),
vanishes. It then follows that k = ∂(θ,η)h = 0 which is what we wanted to show.
”⇐”: Assume there exists (θ, η) 6= 0 so that

∂ε|ε=0ΠH0←T

(

xT + ε

(
0
η

)

, pT + ε (θ, 0)

)

= 0.

Then k := ∂(θ,η)h yields an element in the null-space N (h). We need to see that k is non-zero.

Assume otherwise, i.e. k = 0. Then Dφh
T←0 (x0) [k] = 0 and hence also η = 0. From the Volterra

equation for k we see that

0 =
〈

(θ, 0) ,Φh
T←tσi

(

φht←T (xT )
)〉

= ρ̃h ((θ, 0)) .

But ker ρ̃h was seen to be trivial and so θ = 0; in contradiction to assumption (θ, η) 6= 0.

4 Applications

4.1 Scaled Ornstein-Uhlenbeck

As a warmup, consider a scaled one-dimensional Ornstein-Uhlenbeck process of the form

dY ε
t = (αε+ βY ε

t ) dt+ γεdWt, Y
ε
0 = εy0 ∈ R.

Clearly, Y ε
T ∼ N

(
εµ, ε2σ2

)
with

µ = y0e
βTx0e

βT +
α

β

(
eβT − 1

)
, σ2 =

γ2

2β

(
e2βT − 1

)
(28)

and so Y ε
T has density of the form

f ε (y, T ) =
1

εσ
√
2π
e−

(y−εµ)2

2ε2σ2 ≡ ε−1e−c1/ε2ec2/ε (c0 +O (ε)) , (29)

with constants ci implicitly defined by (29). We leave it to the reader to check that the same
density, with explicit expressions for c1, c2 is obtained from our main theorem.
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4.2 Elliptic example with degeneracy

Consider the small noise problem for the stochastic differential equation

dY ε = εdW 1 + θZεεdW 2, Y ε
0 = 0;

dZε = εdW 2, Zε
0 = 0;

where θ ∈ [0, 1], say. Note that it could be immediately rephrased as short-time problem
(
T = 1, t = ε2

)
.

We are in an elliptic (Riemannian) setting. (In fact, R2 with the induced metric has zero-curvature
and empty cut-locus.) Clearly, Y ε

T admits a density, say f ε (y) at time T = 1. Considering the
point y = 1, for instance, it is not hard to see that

ε2 log f ε (1) ∼ −1

2
as ε ↓ 0.

At least when θ = 0 it is obvious from Y ε
T ∼ N

(
0, ε2T

)
that one has the expansion

f ε (1) = ε−1e−
1

2ε2 (c0 +O (ε))

for some (easy to compute) c0 > 0. Interestingly, the general situation is much more involved.
Exploiting the fact that Y ε

T can be written as the independent sum of a Gaussian and a (non-
centered) Chi-square random-variable, f ε (y) is given by a convolution integral and a direct (tedious)
analysis shows that

f ε (1) =

{

ε−1e−
1

2ε2 (c0 +O (ε)) when θ ∈ [0, 1)

ε−3/2e−
1

2ε2 (c0 +O (ε)) when θ = 1
. (30)

While the energy is equal to 1/2, no matter the value θ ∈ [0, 1], we see the appearance of an atypical
algebraic factor ε−3/2 in the case θ = 1.

With a view towards applying our theorem 9: we have vector fields σ1, σ2 of the form ∂y,
θz∂y+∂z. One checks without difficulty that h0 (t) = (t, 0) is the (unique) element in Kmin

a , for any
θ = [0, 1]. In particular, the ”most-likely” arrival point is (1, 0) ∈ (1, ·). (Minimizers and energy
start to look different when θ > 1, our focus on θ ∈ [0, 1] is pure algebraic convenience.) In the case
θ = 1, the explicit ”backward” and projected Hamiltonian flow is

πH0←T ((yT , zT ), (pT , qT ))

=

(

yT + 1
2 (pT zTT + qTT − zT )2 −

(
pTT + 1

2z
2
T

)

zT − qTT − pT zTT

)

.

From this expression, it is then easy to check that (0, 0) is focal for (1, ·). (Proposition 7 then implies
that the Hessian of the energy at h0 is degenerate. In fact, a simple computation shows that in this
example the null-space of I ′′ (h0) is given by N (h0) = [k] where k = k (t) = (0, t) ∈ Th0K1\ {0} .)
It follows that one must not apply theorem 9 here, and indeed, the predication of the theorem
(algebraic factor ε−1) would be false in the case θ = 1, as we know from (30). On the other hand,
one checks without trouble that for θ < 1 the situation is non-focal, all our assumptions are then
met, and so theorem 9 yields the correct expansion, in agreement with (30).
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4.3 Hypoelliptic Gaussian example

We are interested in the tail behaviour of YT where

dY = Zdt, Y0 = y0,

dZ = dWt, Z0 = z0.

Of course, YT is Gaussian with mean µ = y0 + z0T and variance

σ2 := V [YT ] = E

[
∫ T

0

∫ T

0

WsWtdsdt

]

= 2

[∫

0<s<t<T

sdsdt

]

=

∫ T

0

t2dt = T 3/3.

We are not looking here at the short time behaviour of Yt as t ↓ 0: Indeed the condition H1 is not
satisfied here and indeed the log density of Yt is proportional to 1/σ2 = O

(
t−3
)
as t ↓ 0 which is

not at all the behaviour described in corollary (15). Instead, let us fix T > 0 and note that the
density of YT is of the form

1√
2πσ2

e−
(y−µ)2

2σ2 ∼ (const)e−
3

2T3 (y
2−2µy) ≡ (const)e−c1y

2+c2y as y ↑ ∞. (31)

We now illustrate how this follows from corollary 14.
Scaling: Set Y ε := εY and similar for Z. Then

dY ε
t = Zε

t dt, Y ε
0 = εy0,

dZε
t = εdWt, Zε

0 = εz0.

In other words, the (first) component of interest to us scales with θ = 1. It remains to check the
assumptions. With σ0 = z∂y and σ1 = ∂z we have [σ0, σ1] = ∂y which not only implies the weak
Hörmander’s condition H but a stronger ”Bismut H2 type” condition which implies [14, Thm 1.10]

invertibility of Ch,x0

T for all h 6= 0. We are interested in paths going from limε→0 (Y
ε
0 , Z

ε
0) = (0, 0)

to N = (a, ·) with a = 1 and it is easy to see that this is possible upon replacing W by a suitable
Cameron-Martin path; in other words,

Ka 6= ∅.

(Cf. [33] for an abstract criterion that applies in this example). Since h ≡ 0 will never stir us from
(0, 0) to N we only need to check that (0, 0)×N satisfies condition (ND). To this end, we note that
the Hamiltonian in the present setting is

H ((y, z) ; (p, q)) = pz +
1

2
q2;

The Hamiltonian flow Ht←0 = Ht←0 (y, z, p, q) turns out to be an easily computable linear map.
The details of computing the minimizing control h = h (t) then follow the recipe given in remark 6.
In particular, we find p0 = (p 0, q0) = (3/T, 3/T ) and minimizing control h0 = h0 (t) = 3 (T − t) /T 3

in the notation of proposition 4. In particular then,

c1 := Λ (1) =
1

2

∫ T

0

∣
∣
∣ḣ (t)

∣
∣
∣

2

dt =
3

2T 3
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in agreement with (31). For the second order constant c2, we need to compute ŶT where

dŶt = Ẑtdt, Ŷ0 = y0, dẐt = 0, Ẑ0 = z0.

This leads immediately to ŶT = y0 + z0T =: µ and then c2 =
(

2ŶT /θ
)

Λ (1) = 2µc1, again in

agreement with the Gaussian computation.

4.4 Lévy’s Area

Following a similar discussion in [49], we consider

σ1





x
y
z



 =





1
0
−y/2



 , σ2





x
y
z



 =





0
1
z/2



 ;

the resulting diffusion

dXt = σ1 (Xt) dW
1
t + σ2 (Xt) dW

2
t , X0 = x0 ∈ R

3

is known as Brownian motion on the 3-dimensional Heisenberg group; it can also be viewed as the
Brownian rough path (e.g. [19] and the references therein) associated to the 2-dimensional standard
Brownian motion

(
W 1,W 2

)
. Set Xε := δεX where δε (x, y, z) =

(
εx, εy, ε2z

)
is the dilation operator

on the Heisenberg group. Then

dXε
t = σ1 (X

ε
t ) εdW

1
t + σ2 (X

ε
t ) εdW

2
t

which is also the form relevant to study short time asymptotics. Since the Hamiltonian is explicitly
available [23], our criterion (ND) can be checked directly16. In particular, we so recover all ”non-
degenerate” projected Lévy area expansion results of [49]: in the notation of that paper, section 7,
we cover their cases (I)1,(I)2,(III)1,(III)2,(III)3. The main difference, comparing the approach [49]
with ours, is that our criterion (ND) bypasses the involved analysis, carried out by hand in [49], of
the infinite-dimension Hessian of the energy at the minimizer. On the other hand, our approach
(presently) does not deal with degenerate minima, and we do not cover their cases (I)3, (II), (III)4;
all of which are, of course, ruled out by violating condition (ND).

Let us conclude with an application to Lévy’s area not considered in [49]. We are interested in
the tail-behaviour of the density, say f = f (z), of Lévy’s area Zt at unit time,

Z1 :=
1

2

∫ 1

0

(
W 1

s dW
2
s −W 2

s dW
1
s

)
.

One expects − log f (z) ∼ c∗z for some c∗ > 0 since Z1 is an element of the second Wiener Itô-chaos
which entails17

E [exp (cZ1)]<∞ for some 0 < c < c∗ (32)

E [exp (cZ1)] =+∞ for some c > c∗. (33)

No explicit density is available but a c.f. is known (Lévy’s formula). Density expansions could
then be obtained using saddle point methods, for instance. We now illustrate how such expansion

16Bismut’s H2 condition guarantees invertibility of the deterministic Malliavin matrix for any h 6= 0.
17There are examples of r.v.s with (32),(33) with density f for this fails!
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follows from corollary 14. To this end we exploit scaling, Xε := δεX. By trivial relabelling of the
coordinates (1 versus 3), our tail result shows, after verification of condition (ND), that Lévy’s area
Z1 admits a density of the form

f (z) = e−Λ0(1)zz−1/2
(
c0 +O

(
1/
√
z
))

where Λ0 (1) is seen to be the Carnot-Caratheodory distance of (0, 0, 0) to the hyperplane N =
(·, ·, 1).
4.5 Black-Scholes

The Black-Scholes (BS) model, written in log-language is an example where the above theorem is
applicable with θ = 1. Indeed, Y := logS satisfies, with fixed Black-Scholes volatility σ > 0

dYt = −
σ2

2
dt+ σdWt, Y0 = y0 = logS0.

Of course, Yt ∼ N
(
y0 − σ2t/2, σ2t

)
and the explicit Gaussian density

fBS (t, y) =
1√

2πσ2t
exp

{

−
(
y −

(
y0 − σ2t/2

))2

2σ2t

}

immediately yields short time resp. tail expansions,

fBS (t, y)∼ (const) t−1/2 exp

(

−
(
y−y0

σ

)2

2t

)

as t ↓ 0; any y ∈ R (34)

fBS (T, y)∼ (const) exp

(

− 1

2σ2T
y2
)

exp

(
y0 − σ2T/2

2σ2T
y

)

as y →∞; any T > 0. (35)

We derive now both expansions from general theory, i.e. with aid of corollary 15 resp 14. The
short time limit corresponds to a flat Riemannian situation, in particular the cutlocus is empty,
which is enough to guarantee (ND); the remaining computations to derive (34) from corollary 15
are left to the reader and we focus on the (more interesting) case of tail asymptotics. Corollary 14
applies with θ = 1, and (rescaled) starting point εy0 → 0. Condition (ND) needs to be checked;
the relevant Hamiltonian is

H (y, p) = −σ
2

2
yp+

σ2p2

2
, for all (y, p) ∈ R

2

and the Hamilton ODEs are

ẏt = −
σ2

2
yt + σ2pt, ṗt =

σ2

2
pt,

with boundary conditions y0 = 0 and yT = a. We first solve the ODE for p and we obtain
pt = peσ

2t/2, for some p ∈ R. We can then deduce the solution for the path y as a function of p:

yt =
1− e−σ2t/2

σ2/2

(
σ2p

2

)

.
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The boundary condition yT = a implies that

p = p0 :=
2

σ2

(

−σ2

2 y0

)

e−σ
2T/2 + σ2a/2

eσ2T/2 − e−σ2T/2
.

In particular, ∂pyT |p0
= 1 − e−σ2T/2 > 0, and hence invertible, for T, σ > 0. En passant, we also

deduce the optimal control h0(t) = σpt, and get the correct leading order factor

c1 :=
1

2
‖h0‖2 =

1

2

∫ T

0

h0(t)
2dt =

p20
σ2

(
eσT − 1

)
=

1

2σ2T
.

With the hint Ŷt = y0+
(

−σ2

2

)

t we leave it to the reader to verify that c2 =
(
y0 − σ2T/2

)
/
(
2σ2T

)
.

Frequently, one chooses y0 = 0 in this context (which amounts to normalize spot price to unit).

4.6 The Stein-Stein model

For given parameters, a ≥ 0, b < 0, c > 0, σ0 ≥ 0, ρ = d
〈
W 1,W 2

〉
/dt, the Stein–Stein model

expresses log-price Y , under the forward measure, via18

dY =−1

2
Z2dt+ ZdW 1, Y (0) = y0 = 0 (36)

dZ = (a+ bZ)dt+ cdW 2, Z (0) = σ0 > 0.

We will be interested in the behaviour, and in particular the tail-behaviour, of the probability
density function of YT . In fact, there is no loss of generality to consider T = 1. Applying Brownian

scaling, it is a straight-forward computation to see that the pair
(

Ỹ , Z̃
)

given by

Ỹ (t) := Y (tT ) , Z̃ (t) := Z (tT )T 1/2

satisfies the same parametric SDE form as Stein-Stein, but with the following parameter substitu-
tions

a← ã ≡ aT 3/2, b← b̃ ≡ bT, c← c̃ ≡ cT, σ0 ← σ̃0 ≡ σ0T
1/2.

In particular then, YT = YT (a, b, c, σ0, ρ) has the same law as Y1

(

ã, b̃, c̃, σ̃0, ρ
)

.

4.6.1 The case of zero-correlation

For the moment, we shall follow [27] in assuming the Brownians to be uncorrelated,

d
〈
W 1,W 2

〉

t
= ρdt with ρ = 0.

Recall their main result, a density expansion for YT of the form

(∗) : f (y) = e−c1yec2y
1/2

y−1/2
(

c3 +O
(

y−1/2
))

as y →∞. (37)

Scaling: Setting
Yε := ε2Y, Zε := εZ

18Sometimes the Stein–Stein model is written with |Z| dW 1 rather than ZdW 1. In the zero correlation case this
does not make a difference to the law of the process. In fact, there is a recent tendency in the finance community to
use the form ZdW 1 which we analyze here, cf. [39].
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yields the small noise problem

dYε =−
1

2
Z2
εdt+ ZεεdW

1, Yε (0) = 0 =: y0 ∀ε > 0 (38)

dZε = (aε+ bZε) dt+ cεdW 2, Zε (0) = εσ0 → 0 =: z0 as ε ↓ 0.

Our corollary 14, assuming its application to be justified, then gives the correct expansion (37),
namely

f (y) = e−c1 yec2 y1/2

y−1/2
(

c3 +O
(

y−1/2
))

,

and also identifies the constants c1 = Λ (1), c2 = ŶTΛ
′ (1). (The leading order constant c1is in

agreement with both [27] and [16, p40].)

Remark 26 Corollary 14 relies on an application of theorem 9 to (38); let us note straight away
that the coefficients here are smooth but unbounded. With a view towards the earlier remark on
localization, and in particular (23), we note here that, due to the particular structure of the SDE,
it suffices to localize such as to make σ bounded; e.g. by stopping it upon leaving a big ball of radius
R. This amounts to, cf. (23), to shows that

lim
R→∞

lim sup
ε→0

ε2 logP
[

|σε|∞;[0,T ] ≥ R
]

= −∞.

But since P

[

|σε|∞;[0,T ] ≥ R
]

= P

[

|σ|∞;[0,T ] ≥ R/ε
]

and σ is a Gaussian process, this is an imme-

diate consequence of Fernique’s estimate.

We postpone the justification that we may indeed apply corollary 14 (which involves an analysis
of the Hamiltonian ODEs) and proceed in showing how further qualitative information about the
expansion can be obtained without much computations.
Some information on c1: From the ”theorem”

c1 := Λ (1) = inf

{
1

2
‖h‖2H : φh0 = (0, 0) , φhT ∈ (1, ·)

}

where dφh,1
t = − 1

2

∣
∣
∣φ

h,2
t

∣
∣
∣

2

dt+ φh,2t dh1, dφh,2
t = bφh,2t dt+ cdh2. If then follows a priori that

c1 = c1 (b, c;T ) but not on a, σ0.

The same is true for h∗ := h0 and φ∗ := φh0of course.
Some information on c2: First, Λ′ (1) = c1 also only depends on the parameters b, c, T (but not

on a, σ0). It remains to analyze the factor ŶT where
(

Ŷt, Ẑt : t ≥ 0
)

solves the ODE

dŶt =
(

−φ∗,2t + h∗,1t

)

Ẑtdt, Ŷ0 = 0

dẐt = bẐtdt+ adt, Ẑ0 = σ0.
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Since Ẑt = σ0e
bt + a

∫ t

0
eb(t−s)ds it follows that ẐT is linear in σ0, a with coefficients depending on

b and T . Furthermore, noting that

ŶT =

∫ T

0

(

−φ∗,2t + h∗,1t

)

Ẑtdt

a similar statement is true for ŶT and then c2 = Λ′ (1)× Ŷ 1
T . Namely, for constants Ci = Ci (b, c;T )

c2 = C1 (b, c;T )σ0 + C2 (b, c;T )a.

It is interesting to compare this with the Heston result [24] where the constant c2 also depends
linearly on spot-vol σ0 =

√
v0.

Solving the Hamiltonian ODEs and computing c1 After replacing εdW by a control dh,
and taking ε ↓ 0 elsewhere in (38), we have to consider the controlled ordinary differential equation

dy=−1

2
z2dt+ zdh1, y0 = 0 (39)

dz = bzdt+ cdh2, z0 = 0,

minimizing the energy, 1
2

∫ T

0

∣
∣
∣ḣt

∣
∣
∣

2

dt subject to yT = a ≡ 1 > 0.

According to general theory, we now write out the Hamiltonian associated to (39),

H
((

y
z

)

,

(
p
q

))

(40)

=

(
− 1

2z
2

bz

)

·
(
p
q

)

+
1

2

∣
∣
∣
∣

(
z
0

)

·
(
p
q

)∣
∣
∣
∣

2

+
1

2

∣
∣
∣
∣

(
0
c

)

·
(
p
q

)∣
∣
∣
∣

2

=−1

2
z2p+ bzq +

1

2

(
z2p2 + c2q2

)
.

The Hamiltonian ODEs then become
(
ẏt
żt

)

=

(
z2t
(
pt − 1

2

)

bzt + c2qt

)

(41)

(
ṗt
q̇t

)

=

(
0

ptzt (1− pt)− bqt

)

.

Trivially, pt ≡ p0 which we shall denote by p from here on. As it turns out there is a simple
expression for the energy. Although we shall ultimately take a ≡ 1 it is convenient to carry out the
following analysis for general a > 0.

Lemma 27 For any h0 ∈ Kmin
a , and in fact any h0 given by (14), i.e.

ḣ0 (t) =

(
pzt
qtc

)

(42)

where (y, z; p, q) satisfies (41), subject to boundary conditions (y0, z0) = (0, 0) and yT = a, qT = 0,
we have

Λ (a) =
1

2

∫ T

0

∣
∣
∣ḣ0 (t)

∣
∣
∣

2

dt = pa.

In particular, we see that
p ≥ 0.
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Remark 28 In fact, linearity in a of (50) also follows immediately from the fact that the Stein-
Stein model satisfies θ-scaling with θ = 2 in the sense of corollary 14. Indeed, it was seen in the
proof of that corollary that the rate function Λ (a) scales like a2/θ = a. This already implies that p
does not depend on a. This is also consistent with the principle ∂aΛ (a) = pT pointed out in remark
5.

Proof. We give an elegant argument based on the Hamiltonian ODEs. The idea is to express
∣
∣
∣ḣ0 (t)

∣
∣
∣

2

as a time-derivative which then allows for immediate integration over t ∈ [0, T ]. Indeed,

∣
∣
∣ḣ0 (t)

∣
∣
∣

2

= p2z2t + c2q2t

= p2z2t + ∂t (ztqt)− z2t
(
p2 − p

)

= 2pz2t (p− 1/2) + ∂t (ztqt)

= 2pẏt + ∂t (ztqt)

where we used the ODEs for z, q as given in (41). It follows that

∫ T

0

∣
∣
∣ḣ0 (t)

∣
∣
∣

2

dt = 2p (yT − y0) + (zT qT − z0q0)

and we conclude with the initial/terminal/transversality conditions y0 = z0 = 0, yT = a and qT = 0.

Lemma 29 (Partial Hamiltonian Flow) Consider (41) as initial value problem, with initial
data (y0, z0) = (0, 0) and (p, q0). Assume19

χ2
p := c2p (p− 1)− b2 ≥ 0. (43)

Then the explicit solution is given by

yt =
q20c

4 (2p0 − 1)

8χ3
p

(
2χpt− sin

(
2χpt

))
, (44)

zt =
q0c

2

χp

sin
(
χpt
)
,

pt ≡ p,

qt = q0

(

cos
(
χpt
)
− b

χp

sin
(
χpt
)
)

.

Remark 30 The given solutions remain valid when χ2
p < 0; it suffices to consider χp as purely

imaginary; then, if desired, rewrite as cos
(
χpt
)
= cosh

(∣
∣χp

∣
∣ t
)
etc. Below, we shall solve (41) as

boundary value problem, subject to (y0, z0) = (0, 0), yT = a > 0 and qT = 0; we shall see then that
(43) is always satisfied and in fact χ2

p > 0.

19All explicit solutions given in (44) are even functions of χp0
and have a removable singularity for χp0

= 0. By
convention we shall always assume χp0

≥ 0 although the sign of χp0
does not matter.
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Proof. Let us first remark that the path (pt)t≥0 is constant, pt = p for all t ∈ [0, T ]. From the

Hamiltonian ODEs, the couple (zt, qt)t≥0 solves a linear ODE in R
2, so that the solution must be

a linear function of (z0, q0) = (0, q0). Indeed, a simple computation gives

qt = q0

(

cos
(
χpt
)
− b

χp

sin
(
χpt
)
)

and zt =
q0c

2

χp

sin
(
χpt
)
,

Elementary integration (”2
∫ t

0 sin
2 = t− cos sin t”) then gives (yt)t≥0 by direct integration; indeed

yt =

(

p− 1

2

)∫ t

0

z2sds =
q20c

4 (2p− 1)

8χ3
p

(
2χpt− sin

(
2χpt

))
.

This proves the lemma.
For the next proposition we recall the standing assumptions T > 0, b ≤ 0 (which models

mean-reversion) and a > 0.

Proposition 31 The ensemble of solutions to the Hamilton ODEs as boundary value problem

(y0, z0) = (0, 0) and yT = a, qT = 0

with a = 1 > 0 are characterized by inserting, for any k ∈ {1, 2, ...} and any choice of sign in (46)
below,

p= pk =
1

2

(

1 +

√

1 +
4b2

c2
+

4r2k
c2T 2

)

, (45)

q±0,k =±
2

c2

√
√
√
√

2r3k a(

2p+0,k − 1
)

T 3 (2rk − sin (2rk))
(46)

in (44). Here {rk : k = 1, 2, . . . } denotes the set of (increasing) strictly positive roots to

r cos(r) − bT sin(r) = 0.

Remark 32 As the proof will show, p as given in (45) is the unique positive root to

c2p (p− 1)− b2 =
(r0,k
T

)2

;

in particular, assumption (43) in the previous lemma is met.

Proof. By assumption and (44),

0 = qT = q0

(

cos
(
χpT

)
− b

χp

sin
(
χpT

)
)

. (47)

At this stage, χp could be a complex number (when χ2
p < 0). Let us note straight away that

we must have q0 6= 0 for otherwise (yt)t≥0 - which depends linearly on q0 as is seen explicitly in
(44) - would be identically equal to zero in contradiction with yT = a > 0. Let us also note that
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χp 6= 0 for otherwise (47), which has a removable singularity at χp = 0, leads to the contradiction
0 = 1− bT.(Recall b ≤ 0, T > 0.) But then r := χpT is a root, i.e. maps to zero, under the map

r ∈ C 7→ r cos r − bT sin r = r

(

cos r − bT

r
sin r

)

. (48)

A complex analysis lemma [27, Lemma 4] asserts that this map, provided

− bT ≥ 0, (49)

has only real roots; it follows that χp is real and so χ2
p ≥ 0; actually χ2

p > 0, since we already noted
that χp 6= 0. Note that (47), and in fact all further expressions involving χp, are unchanged upon
changing sign of χp, we shall agree to take χp > 0 as the positive square-root of χ2

p. In particular,
(47) is equivalent to the existence of χp > 0 such that

χpT cos
(
χpT

)
− bT sin

(
χpT

)
= 0.

It follows that χpT ∈ {rk : k = 0, 1, 2, . . .}, the set of zeros of (48) written in increasing order. We
deduce that, for each k = 0, 1, 2, . . . there is a choice of p arising from

χ2
p = c2p (p− 1)− b2 =

(rk
T

)2

.

For each k, there is a negative solution, say p = p−k < 0 which we may ignore thanks to lemma 27,
and a positive solution, namely

p = p+k =
1

2

(

1 +

√

1 +
4b2

c2
+

4r2k
c2T 2

)

> 1.

We now exploit yT = a. From the explicit expression of yt given in (44) we get

a = yT =
q20c

4 (2p− 1)

8χ3
p

(
2χpT − sin

(
2χpT

))

=
q20c

4 (2p− 1)T 3

8r3k
(2rk − sin (2rk))

and thus

q20 =
8r3k

c4 (2p− 1)T 3 (2rk − sin (2rk))
a.

It follows that, for each k ∈ {1, 2, . . . }, we can take

p= p+k =
1

2

(

1 +

√

1 +
4b2

c2
+

4

c2

(rk
T

)2
)

q0 = q±0,k = ± 2

c2

√

2r3k a
(
2p+k − 1

)
T 3 (2rk − sin (2rk))

and any such choice in (44) leads to a solution of the boundary value problem.

33



So far, we have for each k ∈ {1, 2, . . .} two choices of (p, q0), depending on the sign in (46) so
that the resulting Hamiltonian ODE solutions, started from (y0, z0) = (0, 0) and (p , q0), describe
all possible solutions of the boundary value problem given by the Hamiltonian ODEs with mixed
initial/terminal data

(y0, z0) = (0, 0) and yT = a, qT = 0.

It remains to see which choice (or choices) lead to minimizing controls; i.e. h0 ∈ Kmin
a . But this is

easy since we know from lemma 27 that, for any p ∈
{
p+k : k = 1, 2, . . .

}
,

1

2

∫ T

0

∣
∣
∣ḣ0 (t)

∣
∣
∣

2

dt = pa.

Since p+k is plainly (strictly) increasing in k ∈ {1, 2, . . . } , we see that the energy is minimal if and
only if p = p+1 . On the other hand, we are left with two choices for q0, namely q+0,1 and q−0,1. Using
(42) we then see that there are two minimizing controls,

Kmin
a =

{
h+0 , h

−
0

}
,

given by

ḣ±0 (t) =




p q0c

2

χp
sin
(
χpt
)

cq0

(

cos
(
χpt
)
− b

χp
sin
(
χpt
))



 with (p, q0)←
(
p+1 , q

+
0,1

)
resp.

(
p+1 , q

−
0,1

)
.

Of course, h±0 stands for h+0 resp. h−0 depending on the chosen substitution above. In (y, z)-
coordinates, note that both h+0 and h−0 have identical y-components; their z-components only differ
by a flipped sign due to q−0,1 = −q+0,1. (This reflects a fundamental symmetry in our problem which
is in fact invariant under (y, z) 7→ (y,−z)). We summarize our finds in stating that

Λ (a) =
1

2
‖h+0 ‖2H =

1

2
‖h−0 ‖2H = p+1 a (50)

and upon taking a = 1 we have computed the leading order constant

c1 = Λ (1) = p+1 =
1

2

(

1 +

√

1 +
4b2

c2
+

4

c2

(r1
T

)2
)

where we recall that r1 is the first strictly positive root of the equation r cos(r)− bT sin(r) = 0.

Computing c2 According to general theory, cf. equation (18), we need to compute certain ODEs
for each minimizer, h+0 = (h+,1

0,· , h
+,2
0,· ) resp. h

−
0 = (h−,10,· , h

−,2
0,· ), exhibited in the previous section. For

ease of notation we shall write
(
p, q±0

)
instead of

(
p+1 , q

+
0,1

)
resp.

(
p+1 , q

−
0,1

)
in this section. Related

to equation (38) we then have to consider the following ODE along h+0 (and then along h−0 )

d

dt

(
Ŷt
Ẑ2
t

)

=

{(
0−z+t
0 b

)

+

(
0 1
0 0

)

ḣ+,1
0,t

}(
Ŷt
Ẑ2
t

)

+

(
0
a

)

=

(
0 (p− 1) z+t
0 0

)(
Ŷt
Ẑ2
t

)

+

(
0
a

)

with

(
Ŷ0
Ẑ2
0

)

=

(
0
σ0

)

.
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Here, we used the fact that ḣ+,1
0 = pz+t , z

+
t indicates the chosen sign of q0,1 upon which it

depends, cf. (46). The ODE along h−0 for Ŷ = Ŷ − is similar, with z+t , ḣ
+,1
0,t replaced by z−t =

−z+t , ḣ−,10,t = −ḣ+,1
0,t respectively. We can solve these ODEs explicitly. In a first step (regardless of

the chosen sign for z, h0)

Ẑt =

{
σ0e

bT + a
b

(
ebt − 1

)
for b < 0

σ0 + at for b = 0

and since

Ŷ ±T = (p− 1)

∫ T

0

z±t Ẑtdt

we see that Ŷ −T = −Ŷ +
T .In fact, under the (usual) model parameter assumptions a > 0, σ0 > 0 we

see that Ẑt > 0. We then note that

z±t /q
±
0 =

c2

χp

sin
(
χpt
)
≥ 0 for t ∈ [0, T ] ;

indeed we saw that χpT ∈ [π/2, π) which implies χpt ∈ [0, π) and hence sin
(
χpt
)
≥ 0. In particular,

given that q+0 > 0 and p > 1we see that Ŷ +
T > 0 (and then Ŷ −T < 0). It follows that

c2 : = c+2 = Λ′ (1)× Ŷ +,1
T

= p (p− 1)

∫ T

0

z+t Ŷ
2
t dt (51)

whereas the contribution from c−2 = Λ′ (1) × Ŷ −,1T is exponentially smaller and will not figure in

the expansion (cf. remark 12). In fact, given the explicit form of t 7→ z+t resp. Ŷ 2
t in terms of sin (.)

and exp (.), it is clear that the integration in (51) can be carried out in closed form. In doing so,
one exploits a cancellation due to

−χp cos
(
χpT

)
+ b sin

(
χpT

)
= 0

and also the equality χ2
p + b2 = c2p (p− 1), one is led to

c2 = q+0

{

σ0 + a
tan

(
χpT/2

)

χp

}

.

It is possible, of course, to substitute the explicitly known quantities q+0 , χp but this does not yield
additional insight.

4.6.2 The case of non-zero correlation

We consider again the SDE (36) with diffusion matrix

σ = (σ1, σ2) =

(
z 0
0 c

)

but now allow for correlation ρ between W 1,W 2; we thus have the non-trivial correlation matrix

Ω =

(
1 ρ
ρ 1

)

=⇒ σΩσT =

(
z2 ρcz
ρcz c2

)

.
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In view of financial applications [20] it makes sense to focus on the case ρ ∈ (−1, 0]. This will
also prove convenient in our analysis below, although there is no doubt that the case ρ > 0, less
interesting in practice, could also be handled within the present framework.

The Hamiltonian becomes, cf. (11),

H
((

y
z

)

,

(
p
q

))

=−1

2
z2p+ bzq +

1

2

(
z2p2 + c2q2

)
+ ρczpq

=−1

2
z2p+ b̃zq +

1

2

(
z2p2 + c2q2

)

with
b̃ := b̃p := b+ ρcp

Noting ∂(y,z)b̃ = (0, 0)
′
, ∂(p,q)b̃ = (ρc, 0)

′
. The Hamiltonian equations for ż, ṗ, q̇, are thus identical as

in the uncorrelated case, one just has to replace b by b̃. (In particular, pt is again seen to be constant
and we denote its value by p.) The Hamiltonian equation for ẏ = ∂pH has, in comparison to the

uncorrelated case, an additional term, namely
(

∂pb̃
)

ztqt = ρcztqt. In summary, the Hamiltonian

ODEs are
(
ẏt
żt

)

=

(
z2t
(
pt − 1

2

)
+ ρcztqt

b̃zt + c2qt

)

(
ṗt
q̇t

)

=

(
0

ptzt (1− pt)− b̃qt

)

.

The following lemma is then obvious (only y requires a computation, due to the additional term in
the Hamiltonian ODEs).

Lemma 33 (Partial Hamiltonian Flow, correlated case) Consider the above Hamiltonian ODEs
as initial value problem, with initial data (y0, z0) = (0, 0) and (p, q0) and assume

χ2
p := c2p (p− 1)− b̃2p ≥ 0. (52)

Then the explicit solution for z, p, q are then identical to the uncorrelated case, one just has to
replace b by b̃p throughout. The explicit solution for y is modified to

yt =
q20c

2

8χ3
p

[(

c2 (2p− 1)− 2ρcb̃p

) (
2χpt− sin

(
2χpt

))
+ 2ρcχp

(
1− cos

(
2χpt

))]

. (53)

In our explicit analysis of the uncorrelated case (more precisely, in solving the coupled ODEs
żt = bzt + c2qt, q̇t = ptzt (1− pt) − bqt) we made use of the (model) assumption b ≤ 0, cf. (49).
Conveniently, this remains true when ρ ∈ (−1, 0]. Indeed, the following lemma shows we must have
p ≥ 0, so that (with ρ ≤ 0, c > 0)

b̃ = b+ ρcp ≤ 0. (54)

Lemma 34 Let a > 0. Then Λ (a) = pa and therefore p ≥ 0.
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Proof. We saw in the proof of lemma 27 that, in the uncorrelated case, as a direct consequence of
the Hamiltonian ODEs,

p2z2t + c2q2t = 2pẏt + ∂t (ztqt) .

The correlated case has the identical Hamiltonian ODEs provided we substitute

b← b̃ and ẏ ← ẏ − ρcztqt.

We therefore have

∣
∣
∣ḣ0 (t)

∣
∣
∣

2

= (p qt)

(
z2 ρcz
ρcz c2

)(
p
qt

)

= p2z2t + c2q2t + 2ρcpztqt

= 2p (ẏt − ρcztqt) + ∂t (ztqt) + 2ρcpztqt = 2pẏt + ∂t (ztqt)

and then conclude with the boundary data, exactly as in lemma 27.
As already noted, b̃ ≤ 0 allows to recycle all closed form expressions for z, q obtained in the

uncorrelated case - it suffices to replace b by b̃. In particular, for some yet unknown p, q0 which
may and will depend on ρ,

zt =
q0c

2

χp

sin
(
χpt
)
,

qt = q0

(

cos
(
χpt
)
− b̃

χp

sin
(
χpt
)

)

where χ2
p := c2p (p− 1)− b̃2 is seen to be positive as in the ”uncorrelated” argument. Also, q0 6= 0,

seen as in the ”uncorrelated” case. Transversality, qT = 0, then implies

χp cos
(
χpT

)
− b̃ sin

(
χpT

)
= 0. (55)

Introducing r := χpT the gives the equation

r cot r = (b+ ρcp)T. (56)

On the other hand, from the very definition of χp, we know

(r/T )
2
= c2p (p− 1)− (b+ ρcp)

2
. (57)

In the uncorrelated case, these two equations were effectively decoupled; in particular, r cot r = bT
lead to r ∈

{
r+k : k = 1, 2, . . .

}
⊂ (0,∞), written in increasing order. Since p+ was seen to be mono-

tonically increasing in r, cf. equation (45), and we were looking for the minimal p, corresponding
to the minimal energy (cf. lemma 34), we were led to seek the first positive root r+1 . (In fact,
r+1 ∈ (π/2, π) as we will also find in the ”correlated” discussion below.)

The correlated case is a little more complicated and we start in expressing p in equation (56) in
terms of r. Indeed, the quadratic equation (57) shows

p± (r) =
1

2 (1− ρ2)







(

1 + 2ρ
b

c

)

±
√
(

1 + 2ρ
b

c

)2

+ 4 (1− ρ2)
[
b2

c2
+

r2

c2T 2

]





, (58)
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where p− (r) < 0 (and hence can be ignored in view of lemma 34) and p+ (r) > 0. We now look for

r which satisfies the equation
r cot r =

(
b+ ρcp+ (r)

)
T

It is elementary to see that r cot r is non-negative on [0, π/2] and then maps [π/2, π) strictly mono-
tonically to (−∞, 0]. On the other hand, the map r 7→ (b+ρcp+ (r))T is ≤ 0 for all r; in particular,

there will be a first intersection with the graph of r 7→ r cot r in [π/2, π), say at r = r+1 . Since
p+ (r) is plainly strictly increasing in r, the minimal p must equal to

p+1 := p+
(
r+1
)
.

We then proceed as in the uncorrelated case, and determine q0 from the boundary condition yT =
a > 0 where y is now given by (53). This leads to q0 ∈

{
q+0,1, q

−
0,1

}
where

q±0,1 = ±2

c

√
√
√
√

2r3 a

T 3
((

c2 (2p− 1)− 2ρcb̃
)

(2r − sin (2r)) + 2ρcr/T (1− cos (2r))
)

where r = r+1 and p = p+1 . Again, we have two minimizing controls, Kmin
a =

{
h+0 , h

−
0

}
. We now

have

ḣ0 (t) =

(

zt
√

1− ρ2 0
ρzt c

)(
p
qt

)

(59)

instead of (42) and of course lemma 33 implies that zt and qt are fully and explicitly determined for
each choice of (p, q0). In particular for (p, q0)←

(
p+1 , q

+
0,1

)
resp.

(
p+1 , q

−
0,1

)
we so obtain h+0 resp. h−0

which can be written explicitly by simple substitution. Moreover, and again as in the uncorrelated
case,

Λ (a) =
1

2
‖h+0 ‖2H =

1

2
‖h−0 ‖2H = p+1 a (60)

and upon taking a = 1 we have computed the leading order constant

c1 = Λ (1) = p+1 ≡ p+
(
r+1
)

where we recall that r+1 is the first intersection point of r 7→ r cot r with (b+ ρcp+ (r))T and p+ (·)

was given in (58).

At last, we turn to the computation of the second-order exponential constant, c2. As in the
uncorrelated case, we ease notation by writing

(
p, q±0

)
instead of

(
p+1 , q

+
0,1

)
resp.

(
p+1 , q

−
0,1

)
for the rest

of this section. Again, we have to consider ODEs for
(

Ŷt, Ẑt

)

, for each minimizer, h+0 = (h+,1
0,· , h

+,2
0,· )

and h−0 = (h+,1
0,· ,−h+,2

0,· ). Recall from (59) that, with ρ̄ =
√

1− ρ2,

ḣ+0 (t) =

(
pρ̄z+t

ρpz+t + cq+t

)

;

38



where (·)± indicates the chosen sign of q0 ∈
{
q+0,1, q

−
0,1

}
which determines the choice of minimizer.

We first determine ŶT = ŶT
(
h+0
)
from the ODE

d

dt

(
Ŷt
Ẑ2
t

)

=

{(
0−z+t
0 b

)

+

(
0 ρ̄
0 0

)

ḣ+,1
0,t +

(
0 ρ
0 0

)

ḣ+,2
0,t

}(
Ŷt
Ẑt

)

+

(
0
a

)

=

(
0 (p− 1) z+t + ρcq+t
0 b

)(
Ŷt
Ẑt

)

+

(
0
a

)

with

(
Ŷ0
Ẑ2
0

)

=

(
0
σ0

)

.

This already shows that we have the identical (closed form) ODE solution for Ẑt as in the un-
correlated case. On the other hand, the form of ŶT now exhibits an additional term as is seen
in

ŶT = (p− 1)

∫ T

0

z+t Ẑtdt+ ρc

∫ T

0

q+t Ẑtdt.

Since q+t is essentially of the same trigonometric form as z+t , it is clear that the explicit computations
of the uncorrelated case extend. In the end, one finds without too much difficulties

c+2 = Λ′ (1)× ŶT
(
h+0
)
= q+0

{

σ0 + a
tan

(
χpT/2

)

χp

}

.

A similar computation along h−0 gives c+2 = Λ′ (1)× ŶT
(
h−0
)
in explicit form and c2 is identified as

max
(
c+2 , c

−
2

)
.

4.6.3 Checking non-degeneracy, zero and non-zero correlation

We now check the non-degeneracy condition (ND), as introduced in definition 8, which of course
is the ultimate justification that an expansion of the form (37) with the constants computed above
holds true. Again, focus is on the case of correlation parameter ρ ∈ (−1, 0]. We saw in the previous
sections (for ρ = 0, then ρ ≤ 0) that #Kmin

a = #
{
h+0 , h

−
0

}
= 2, whenever a > 0. (In fact, we apply

this with a = 1.)
Secondly, a look at (39) reveals that the degenerate region is {(y, z) : z = 0}, the complement of

which is elliptic. Clearly, no controlled path which reaches yT = a > 0 can stay in the degenerate
region for all times t ∈ [0, T ]; after all, this would entail dy = 0 and hence yT = 0. We conclude the
any ODE solution driven by h ∈ Ka must intersect the region of ellipticity; but this already implies
non-degeneracy of the corresponding (deterministic) Malliavin covariance matrix.

At last, we check non-focality and focus on h+0 , the other case being similar. We have to check
non-degeneracy of the Jacobian of the map πH0←T (a, ·; ∗, 0), evaluated at · = zT , ∗ = pT after
differentiation, where zT , pT are obtained form the Hamiltonian flow at time T , cf. lemma 33, with
time 0 initial data

(
0, 0; p+1 , q

+
0,1

)
.

With some abuse of notation, write

(
y0
z0

)

≡
(
y0 (z, p)
z0 (z, p)

)

≡ πH0←T (a, z; p, 0) .
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Our non-degeneracy condition requires us to show that

det

(
∂y0

∂p
∂y0

∂z
∂z0
∂p

∂z0
∂z

)∣
∣
∣
∣
∣
∗

6= 0 (61)

where (...) |∗ indicates evaluation (...) |(p,z)=(p+,zT ) in the sequel. This implies in particular that all
expressions which are formulated in terms of the solutions to the Hamiltonian flows, reduced to the
corresponding expressions identified in proposition 31, for ρ = 0, resp. in section 4.6.2 for ρ ≤ 0.
For instance, (y0, z0) |∗ = (0, 0) , yT |∗ = a, z|∗ = zT 6= 0, χpT |∗ ∈ [π/2, π) and so.

Since (z·, q·) solves a linear ODE, we can compute

z0 (z, p) =
(
1 0
)
e
−T





b̃p c2

p (1− p)−b̃p




(
z
0

)

=
z

χp

(

χp cos
(
χpT

)
− b̃p sin

(
χpT

))

.

We first note that ∂z0/∂z|∗ is zero; indeed, this follows from (55). Our next claim is ∂y0/∂z|∗ 6= 0.
Indeed, from the structure of the Hamilton ODEs,

y0 − a = −
∫ T

0

ẏtdt = z2 (...)

where (· · · ) does not depend on z. As a result ∂y0/∂z|∗ = 2z (...) |∗ = 2 y0−a
z |∗ = −2a/zT 6= 0.

It remains to check that ∂z0/∂p|∗ 6= 0. To this end, recall, as a consequence of the transversality
condition, see (55), that χp cos

(
χpT

)
− b̃p sin

(
χpT

)
|∗ = 0. It follows that

∂z0/∂p|∗ =
{
z

χp

∂

∂p

(

χp cos
(
χpT

)
− b̃p sin

(
χpT

))
}

∗

and since z/χp|∗ 6= 0, it will be enough to show (strict) negativity of ∂
∂p (...) |∗ above. By scaling,

there is no loss of generality in taking T = 1 and we shall do so from here on. Then

∂

∂p

(

χp cos
(
χp

)
− b̃p sin

(
χp

))

= χ′p[
(

1− b̃p
)

cos
(
χp

)
− χp sin

(
χp

)
]− ρc sin

(
χp

)
.

Since b̃p|∗ ≤ 0 and χp|∗ ∈ [π/2, π) we see that [...] |∗ < 0. Given that χ′p|∗ > 0, this already settles
the negativity claim in the zero-correlation case. In the case −1 < ρ < 0, we use (55) to write

∂

∂p

(

χp cos
(
χp

)
− b̃p sin

(
χp

))

|∗

= χ′p[
(

1− b̃p
) b̃p sin

(
χp

)

χp

− χp sin
(
χp

)
]− ρc sin

(
χp

)
|∗.
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After division by sin
(
χp

)
/χp|∗ > 0, we have, using b̃p = b+ ρcp ≤ 0, b ≤ 0 and again χ′p|∗ > 0,

χ′p[
(

1− b̃p
)

b̃p − χ2
p]− ρcχp|∗

≤ χ′p[(1− ρcp) ρcp− χ2
p]− ρcχp|∗

≤−ρc
(
χp − pχ′p

)
|∗.

With −ρc > 0, it will then be sufficient to show strict negativity of χp − pχ′p|∗. To this end note

that the definition, χ2
p = c2p (p− 1)− b̃2, implies

2χpχ
′
p = c2 (2p− 1)− 2b̃ (ρc)

χppχ
′
p = c2p (p− 1/2)− b̃ (ρcp)

= χ2
p +

c2p

2
+ bb̃ > χ2

p

whenever c2p/2 + bb̃ > 0 which is surely the case upon evaluation ...|∗.
We conclude that ∂z0/∂p|∗ 6= 0, and then validity of (61), for any parameter set ρ ∈ (−1, 0], b ≤

0, c > 0, T > 0. In other words, we have completed the check of our non-degeneracy condition.

4.7 Comments on Heston [32] and Lions–Musiela [38]

We recall from [27, 24] that the density of log-stock price YT in the Heston model,

dY =−V/2 +
√
V dW 1, X (0) = x0 = 0

dV = (a+ bV ) dt+ c
√
V dW 2, V (0) = v0 > 0,

with a ≥ 0, b ≤ 0, c > 0 and correlation ρ ∈ (−1, 0] has the form

f (y) = e−c1yec2
√
yy−3/4+a/c2 (c3 +O (1/

√
y)) as y →∞;

with explicitly computable c1 = C1 (b, c, ρ, T ) and c2 =
√
v0×C2 (b, c, ρ, T ), both do not depend on

a. While scaling with θ = 2,
Yε := ε2Y, Vε := ε2V

indeed yields a small noise problem, namely

dY ε =−V ε/2 +
√
V εεdW 1, X (0) = x0 = 0

dV ε =
(
aε2 + bV ε

)
dt+ c

√
V εεdW 2, V (0) = v0ε

2 > 0.

The algebraic factor y−3/4+a/c2 in the above expansion then contradicts the expected factor; cf.
(24)

y
1
θ−1 = y−1/2.

There is no contradiction here, of course. Rather, we see an explicit example where ”formal” appli-
cation of a theorem to a model which is short of the required regularity leads to wrong conclusion
(at least at the fine level of algebraic factors). Remark that one can trace the origin of this unex-

pected y−3/4+a/c2 factor to the behaviour of the one-dimensional variance process V ; also known
as Feller - or Cox-Ingersoll-Ross diffusion. Curiously then even a large deviation principle for V ε
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as given above presently lacks justification, despite the recent advances in [17], [6]. Clearly then,
we are not anywhere near in obtaining the Heston tail result of [27, 24] with the present methods.

However, in the special case when a = c2/4 it is an easy exercise to see that the Heston model
can be realized as Stein-Stein model (take V = Z2, where Z is the volatility component of the
Stein-Stein model), the resulting expressions are then seen to be consistent with those obtained in

[24] and, in particular, y−3/4+a/c2 = y−1/2.

Another class of non-smooth, non-affine stochastic vol model with ”θ = 2”-scaling, introduced
by Lions-Musiela [38]. For δ ∈ [1/2, 1] and γ = 1− δ they consider the 2-dimensional diffusion

dY =−1

2
Z2δdt+ ZδdW̃1, Y0 = 0

dZ = bZdt+ cZγdW2, Z (0) = z0 > 0.

And indeed with Yε = ε2Y and Zε = ε1/δZ this becomes a small noise problem;

dYε =−
1

2
Z2δ
ε dt+ Zδ

εεdW, Yε (0) = 0

dZε = bZεdt+ cZγ
ε εdZ, Zε (0) = ε1/δz0.

In their paper they establish exponential moments of YT in the precise sense (32),(33). It is tempting
to use corollary 14, at least to leading large deviation order, to obtain the exponential tail of Z
for models that scale with θ = 2. Of course, as was discussed in the Heston case, such a ”formal”
application can be wrong. Further work, building on [17], [6], will be necessary to deal with such
degenerate models directly.
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