Imperial's contribution to InSight: NASA's 2015 Mission to Mars

InSight

JPL

cnes

OCKHE

S a B

nperial College

Tom Pike, Electrical and Electronic Engineering Imperial College London

InSight Mission to Mars

- NASA Discovery Mission with a predominantly European payload
- Launch March 2015
- Land September 2015
- Operate for at least two years
- First determination of the internal structure of another planet

- Major instrumentation: a deployed seismic station
- Includes a large seismometer (VBB) and a three-axis microseismometer (called SP for short period)

Seismicity on Mars

Microseismometer Sensor Head

Three enclosures, x y and z, fabricated at Oxford each contain their proximity electronics and a single-axis micromachined silicon sensor from Imperial

Delivery of first sensor

SP noise budget current

status

Where to Land

In detail

Assumptions

• What we've got

What we'd like

Science Operations Center, Tucson

Water Ice identified during Phoenix mission

Microscopy Station on Phoenix

Microscopy data from Phoenix

- In 2008 Imperial provided the only UK hardware to the Phoenix mission
- Helped produce the first microscope data from Mars, down to 100nm resolution

Modelling our data

- We've developed a model from fragmentation theory to explain the particle size distributions we see
 - Mars

Extending from HiRISE

• Look below the resolution of HiRISE

Conclusions

- We have demonstrated a robust micromachined seismometer capable of surviving thousand of g's shock and reaching a sensitivity below 1 ng/ $\sqrt{(Hz)}$ for InSight in 2015
- We're using data and modelling from our 2008 Phoenix to select just where to land

Thanks

- The Imperial Team:
 - Aifric Delahunty, Gunagbin Dou, Anisha Mukherjee, Constantinos Charalambous
- The Oxford Team
 - Simon Calcutt, Neil Bowles, Paul Coe, Jon Temple
- Kinemetrics, Inc.
 - Ian Standley
- JPL
 - Matt Golombek: landing site selection
 - Bruce Banerdt: PI (thanks for the rocket!)
- UK Space Agency
 - For the supporting our participation in Phoenix and InSight

Imperial College

London