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Merton’s Problem (1969)

Frictionless market consisting of one safe and one risky asset

Constant investment opportunities and CRRA for the investor

Maximize the expected utility of final wealth

Solution: risky weight πt ≡ π∗
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Merton’s Problem with Proportional Transaction Costs

Magill and Constantinides (1976)/ Constantinides (1986)/
Davis and Norman (1990) / Shreve and Soner (1994)...

No trading, if the risky weight is inside a certain no-trade
region

Minimal trading (of local-time type), if the boundaries of the
no-trade region are breached
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Merton’s Problem with Transaction Costs and Continous
Dividends

ππ∗0% 100%

Merton’s Problem

Merton’s Problem with ε = 1%

π+π−

Merton’s Problem and with ε = 1% and δ = 3%
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Motivation

For long-term investment problem common advice is to
buy-and-hold a stock portfolio: cf. Siegel (1998), Malkiel
(1999)

Theoretical models suggest to buy and sell: cf. Merton
(1969, 1971), Magill and Constantinides (1976)/
Constantinides (1986)/ Davis and Norman (1990) /
Shreve and Soner (1994)

Buy-and-hold is only optimal for very particular preferences

Jang 2007: numerical approach, but no new effect
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This paper

Merton’s problem with prop. transaction costs and continuous
dividends: dynamic Buy-and-Hold can be optimal for a range
of realistic parameters

Dividends are relevant for the portfolio choice problem in
contrast to capital structure (M&M theorem)

More complicated model might lead to simpler optimal
solutions

Closed form optimal strategies even with capital gains tax
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Model

Standing Assumptions:

Black-Scholes dynamics with continuous dividends:

dSt/St = (r + µ− δ)dt + σdWt

Proportional Transaction Costs: buy at the ask price (1 + ε)S ,
sell at the bid price (1− ε)S

Constant Relative Risk Aversion 0 < γ 6= 1

Infinite planning horizon

Frictionless solution: 0 < π∗ = µ/γσ2 < 1, i.e, no short or
levered positions
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Long-run Optimality

Goal: maximize the equivalent safe rate ESR among all admissible
strategies:

max

(
lim inf
T→∞

1

T
logE

[
(ΞT )1−γ

] 1
1−γ

)

Ξt = liquidation value at time t

admissible ”=” self financing and Ξt ≥ 0
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Main Results: Parameter assumption

Set

π†±(λ) =
µ± εδ/(1∓ ε)±

√
λ2 ± 2µεδ/(1∓ ε) + (εδ/(1∓ ε))2

γσ2

π−(λ) = π†−(λ), π+(λ) = min
(
π†+, 1

)
.

Suppose one of the following condition is satisfied:

(a) there exists λ > 0 such that π+(λ) < 1 and the solution
w(·, λ) of terminal value problem also satisfies a certain initial
condition.

(b) there exists λ > 0 such that π+(λ) = 1 and the solution
w(·, λ) of a Riccati ODE with a limit condition at infinity also
satisfies a certain initial condition.
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Main Results: Optimal Policy

Theorem

In the presence of proportional transaction costs ε > 0 and a
continuous yield δ > 0 an investor trades to maximizes the
equivalent safe rate. Then, under the previous assumption we have:

It is optimal to keep the risky weight within the buying and
selling boundaries [π−, π+]

The optimal equivalent safe rate β = r + (µ2 − λ2)/2γσ2

In case of π+ < 1 it holds

π± = π∗ ±
(

3

2γ
π2∗ (1− π∗)2

)1/3

ε1/3

+
δ

γσ2

(
2γπ∗

3 (1− π∗)2

)1/3

ε2/3 +O(ε) as ε ↓ 0
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Figure: The no-trade region (vertical axis) plotted against the dividend
yield δ (horizontal axis) for γ = 3.45 (π∗ = 90.6%), µ = 8%, σ = 16%
and ε = 1%.
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Figure: The never-sell region (shaded) for pairs of dividend yield δ
(horizontal axis) and frictionless portfolio weight π∗ (vertical axis).
Parameters are µ = 8%, σ = 16% and ε = 1%.
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Robustness

π∗ optimal never sell buy & hold

50% 1.67% 2.00% 4.67%
70% 1.58% 1.58% 4.21%
90% 1.52% 1.52% 3.70%

Table: Relative equivalent safe rate loss of the optimal ([π−, π+]), never
sell ([π−, 1]) and buy-and-hold ([0, 1]). These numbers are computed
using Monte Carlo simulation with T = 20, time step dt = 1/250 and
sample size N = 2 · 107, µ = 8%, σ = 16%, r = 1%, δ = 2%, and
ε = 1%.
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Robustness with respect to Taxes

Dividend Tax: suppose the effective dividend rate = δ(1− τ)
with 0 < τ < 1 and the expected, ex-dividend return remains
µ− δ

This model is equivalent to a model without dividend tax but
with a dividend yield δ̃ = δ(1− τ) and expected total return
µ̃ = µ− δτ
Capital Gains Tax: Sales of the risky asset induces a tax
payment or credit of α(St − Bt) with 0 < α < 1 (B is the
cost basis process/reference value)

Choices for B: Share Specification Method/Weighted Average
Cost Method cf. Dammon, Spatt and Zhang (2001),
Tahar, Soner and Touzi (2010)
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Taxes

π∗ [π−, π+]ave [π−, π+]ss never sell buy & hold

50% 2.41% 2.41% 2.07% 4.48%
70% 1.91% 1.91% 1.64% 3.55%
90% 1.36% 1.36% 1.36% 2.94%

Table: Relative equivalent safe rate loss of the capital gains tax adjusted
optimal ([π−, π+]), never sell ([π−, 1]) and buy-and-hold ([0, 1]). These
numbers are computed using Monte Carlo simulation with T = 20, time
step dt = 1/250 and sample size N = 2 · 107, µ = 8%, σ = 16%,
α = 20%, τ = 20%, r = 1%, δ = 2% and ε = 1%.
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Consumption

Objective function cf. Janecek and Shreve (2004), Shreve
and Soner (1994)

max

(
1

1− γ
E
[∫ ∞

0
e−ρtC 1−γ

t dt

])
For ε = 0 we have

C ∗t
Xt + Yt

=
ρ

γ
+

(
1− 1

γ

)(
r +

µ2

2γσ2

)
This consumption policy is approximately optimal even with
small proportional transaction costs (Kallsen and
Muhle-Karbe 2013)

17 / 24



Introduction and Model
Main Results

Sketch of Proof

Consumption

π∗ [πjs−, π
js
+] never sell buy & hold

50% 1.00% 1.67% 2.00%
70% 0.53% 1.05% 1.05%
90% 0.22% 0.65% 0.65%

Table: Relative equivalent safe rate loss of the asymptotically optimal
([πjs

−, π
js
+]), never sell ([π−, 1]) and simple buy-and-hold ([0, 1]) strategies

with πjs
± as defined in [Janecek and Shreve, Theorem 2]. These numbers

are computed using Monte Carlo simulation with T = 50, time step
dt = 1/250, sample size N = 2× 107, µ = 8%, σ = 16%, ρ = 2%,
r = 1%, δ = 3%, τ = 0% and ε = 1%.
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Consumption

π∗ [πjs−, π
js
+] never sell buy & hold

50% 1.00% 1.33% 2.33%
70% 0.53% 0.79% 1.05%
90% 0.22% 0.22% 0.22%

Table: Relative equivalent safe rate loss of the asymptotically optimal
([πjs

−, π
js
+]), never sell ([π−, 1]) and simple buy-and-hold ([0, 1]) strategies

with πjs
± as defined in [Janecek and Shreve, Theorem 2]. These numbers

are computed using Monte Carlo simulation with T = 50, time step
dt = 1/250, sample size N = 2× 107, µ = 8%, σ = 16%, ρ = 2%,
r = 1%, δ = 4%, τ = 0% and ε = 1%.
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Suggestions and Limitations

Retirement planning: investors with moderate risk aversions
should avoid selling

After the retirement: gradually liquidate stocks to finance the
required consumption or invest in high dividend funds

Dynamic Buy-and-Hold might be suboptimal for

small transaction costs
low dividend yields
large risk aversions
high consumption rates
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Heuristic Derivation

Martingale Optimality Condition & long run Ansatz  the
reduced HJB equation/ free boundary problem

Smooth pasting conditions  the boundaries of the no-trade
region  fixed boundary problem (depending on λ)

The reduced HJB equation contains terms like
z2v ′′(z), zv ′(z), v(z), δv ′(z)

We use a ”power” transformation (cf. Jang (2007)) of the
HJB equation  Whittaker equation (explicit solutions in
terms of the Whittaker functions)

The boundary conditions yield the characterization of the gap
parameter λ
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Construction of Shadow Market (S0, S̃)

Shadow Price Process S̃:

Lies within the bid-ask spread [(1− ε)S , (1 + ε)S ] a.s.

Existence of a long-run optimal strategy, i.e.,

Finite variation strategy
Self-financing strategy and solvent w.r.t. S̃
Maximizes the equivalent safe rate w.r.t. S̃
Same dividend payments δ̃S̃ = δS
Entails buying only when S̃t = (1 + ε)St
Entails selling only when S̃t = (1− ε)St
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Verification

Optimality of the candidate strategy in shadow market (cf.
Guasoni and Robertson 2012)

(super-) Martingale measure ⇒ upper bound of the finite
horizon ESR
Candidate strategy ⇒ lower bound of the finite horizon ESR
Upper bound = lower bound as T →∞

Optimality of the candidate strategy in original market

Property of the shadow market
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Thank You!
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