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Factor

models

Arbitrage-free pricing usually boils down to calculating conditional
expectations:

Price(t) = E [ Payoff(T) | %]

Factor model:
Payoff(T) = f(X7)

where X is a factor process, f is a deterministic function

Task: Find X and f to get tractable yet flexible class of models
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Polynomial preserving diffusions

» Markov process X with state space E C RY
> (Extended) generator ¢ given by

Gf(x) = b(x)"VFf(x)+ %Tr (a(x)V*f(x))

Definition. X is called Polynomial Preserving (PP) if
& Pol,(E) C Pol,(E) for all neN,

where Pol,(E) = {polynomials on E of degree < n}.

Lemma. X is (PP) if and only if

b; € Poly(E) and ajj € Poly(E)
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Polynomial preserving diffusions

> By definition of (PP), & restricts to an operator ¢|p,,(g) on the
finite-dimensional vector space Pol,(E)

> Let hy,..., hy be a basis for Pol,(E), write
H(x) = (hi(x), ..., hn(x)) "

» Coordinate representations:

p(x) = H(x)"p peRrY
Gp(x)=H(x)"Gp G e RVXN
» Key consequence:
E[p(X7) | 4] = T 9p(Xy) (formally)

— H(Xt)Te(Tft)Gﬁ

» This only involves a matrix exponential as opposed to solving a PDE
which leads to tractable pricing models
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Polynomial preserving diffusions
Examples:

» Affine diffusions

» Pearson diffusions (Forman and Sgrensen, 2008), E C R:

X, — (51 B fo % T AR,

More generally:

» Existence theory for polynomial preserving diffusions is available
when E is a basic closed semialgebraic set:

E={xeR?: pi(x) > 0,...,pm(x) > 0}

where pi, ..., pm € Pol(RY). See Filipovi¢ & L. (2014).
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The role of the state space

» The geometry of the state space restricts factor dynamics

Example. Affine diffusions on E = ]Ri:

O'1\/X1t 0 L 0
dX; = (b+ BX;)dt + 0 o2V Xat : dw,
: 0
0 0 (Td\/th

Geometry of E forces (X;, Xj) = 0 for i # j.

» Compact state spaces useful for polynomial approximation

Theorem. If E is compact and X is an E-valued affine diffusion,
then X is deterministic.
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PP diffusions on the unit ball

Example.
dXt: _Xt dt+ 1_ ||Xt||2 th

where W = (W, ..., W?) is d-dimensional BM.

But richer diffusion dynamics is possible:

¢



PP diffusions on the unit ball

Theorem. X is a PP diffusion on the unit ball if and only if
b(x) = b+ Bx and a(x) = (1 = ||Ix||?)a + c(x)
for some b € RY, B € R¥*?, o € S?, and c € ¢, such that
1
b"x 4+ x"Bx + 5 Tr(c(x)) <0 forall xe.797%

Here .#971 is the unit sphere in R, and

¢j € Homy for all 7, j
€. ={c:RT=S%: c(x)x=0
c(x) € S for all x
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The set €,

¢ € Homy for all i,
€ ={c:RT =587 . c(x)x=0
c(x) € S for all x

Examples of c € ¢

> Take Aj,..., A, € Skew(d) and set
c(x) = Axx TA] + Apxx TAS + -+ Apxx TAT

» This leads to a convenient parameterization of a large class of
elements of €, ...

> ... but is this exhaustive?
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The set €,

c(x) with ¢; = ¢j € Homo = BQ(x,y) ==y c(x)y
is a biquadratic form

c(x)x=0 = BQ(x,x)=0
c(x) positive semidefinite for all x — BQ(x,y) >0 for all x,y
c(x) = Eg;l ApxxTA; = BQ(x,y) = Z:P(yTApx)2
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.
= {all SOS biquadratic forms with vanishing diagonal}
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Nonnegativity vs. sum of squares

» Hilbert (1888): Every nonnegative homogeneous polynomial of
degree k in d variables is SOS if and only if

d=2 or k=2 or (d, k) =(3,4).
> Choi (1975): Not every nonnegative biquadratic form is the sum of
squares of bilinear forms.

> Quarez (2010) on biquadratic forms:

» Every nonnegative biquadratic form in 3 + 3 variables with at
least 11 zeros is SOS

» There exist nonnegative biquadratic forms in 4 4 4 variables
with infinitely many zeros that are not SOS

> Laszl6 (2010): There exist nonnegative, non-SOS biquadratic
forms with vanishing diagonal in 6 + 6 variables.



Nonnegativity vs. sum of squares

Theorem.

(i) If d <4, then any nonnegative biquadratic form in d + d variables
vanishing on the diagonal is SOS. Equivalently, any ¢ € € is of
the form

c(x) = Z ApxxTA; for some A1, ..., An € Skew(d).
p=1

(ii) If d > 6, then there exist nonnegative biquadratic forms in d + d
variables vanishing on the diagonal that is not SOS. Equivalently,
there exist ¢ € €+ that is not of the above form.



Nonnegativity vs. sum of squares

Theorem.

(i) If d <4, then any nonnegative biquadratic form in d + d variables
vanishing on the diagonal is SOS. Equivalently, any ¢ € € is of
the form

c(x) = Z ApxxTA; for some A1, ..., An € Skew(d).
p=1

(ii) If d > 6, then there exist nonnegative biquadratic forms in d + d
variables vanishing on the diagonal that is not SOS. Equivalently,
there exist ¢ € €+ that is not of the above form.

Open question: What happens for d = 57



Nonnegativity vs. sum of squares

Example. Let d = 6. The map ¢ : R — S? with components

€11
c12
€13
c14

€15 =

€16

€2 =

23
2
€25
26

(
(
(
(
(
(
(
(
(
(
(

X2 + X3+ x4 + x5 + 6)?
X2 + X3 + X4 + x5 + x)(—
x2 + X3 + x4 + x5 + x6)(—
X2 + X3 + X4 + x5 + xg)(—
x2 + X3 + x4 + x5 + x6)(—
X2 + X3 + xa + x5 + Xg)

— X

X| — X3 — X4 — X5 — Xg)
X] — X3 — X4 — X5 — Xg)
X] — X3 — X4 — X5 — Xp)
X| — X3 — X4 — X5 — Xp)

6)

X] — X3 — X4 — X5

x| + x3 + xa + x5 + xg)

X| — X2 + X4 + X5 + Xp)

X] — X3 — X3 + X5 + Xg)

X| — X2 — X3 — X4 + Xp)

—X| — X — X3 — X4 — X5)
2

(x1+x2 — x4 — x5 — x6)
(x1 +x2 + x3 — X5 — Xg)

(x1+x2+x3 + x4 — xp)
(x1 + x2 + x3 + x4 + xs5)

lies in €y but y " c(x)y is not SOS.

2

33 = (x1 +x2 — x4 — X5 — Xp)

e =(a+x —xa— x5 —x)(x1 +x2+x3 — X5 — Xg)

a5 = (x1+x2 —xa — x5 — x6)(x1 + x2 + X3 + x4 — X5)

36 =(x1+x2 — x4 — x5 — x6)(x1 +x2 +x3+x1 +x5)
2

cag = (x1 +x2 +x3 — x5 — Xp)

as = (x1 +x2+x3 — x5 — x6)(x1 +x2 +x3 + x4 — Xp)

a6 = (1 +x2 +x3 — x5 — X6)(x1 + x2 + X3 + x4 + x5)
2

55 = (x1 +x2 + X3 + x4 — X6)

6 = (x1+x2+x3+ x4 —x)(x1 +x2 +x3+x1 + X5)

ce6 = (x1 +X2+X3+X4+X5)2
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Consequences of SOS: PP diffusions on the unit sphere

> Let X be PP diffusion on .79~ 1 = {x € RY . x| =1}

» Such X are characterized by
1
Gf(x) = (BX)TVf(x) + 5 Tr(c(X)sz(x))
with ¢ € ¢, and 2x" Bx + Tr(c(x)) = 0.

» 7971 is an interesting state space for applications:
» It is compact: polynomial approximation works well

> It has no boundary: simulation works well
> Let Z; = [Xt(l) Xt(")] be valued in (#971)", n > d. Then
Ct = ZtTZt

is an n x n correlation matrix of rank at most d.



Consequences of SOS: PP diffusions on the unit sphere

Theorem. Let X be a PP diffusion on .#9~1. Equivalent are:
» yTc(x)y is SOS.

> X can be realized as the unique strong solution to the SDE
dX; = (o dY:) Xi,
where Y is correlated Brownian motion with drift on Skew(d):
Ye=Aot+ AAW!+ - + AW/

with Ao, ..., Am € Skew(d) and m-dim BM (W, ..., W™).

> & can be expressed in Hérmander form as
_ 1 — 2
9 =W+ 5 Z Vp,
p=1

where V,, is the linear vector field V,(x) = Apx, A, € Skew(d).



Consequences of SOS: PP diffusions on the unit sphere

Corollary (existence of density). Let X be a PP diffusion on .91
such that y T c(x)y is SOS. The following are equivalent:

(i) X: (t > 0) has a smooth density w.r.t. area measure on .9~}

(ii) Lie{As,...,An} = Skew(d)



Conclusion

> (PP) processes can be used to build flexible and tractable models

v

Geometry of the state space crucially affects factor dynamics

v

The unit ball is an interesting example of a compact state space
allowing for rich factor dynamics

v

(PP) diffusions with the SOS property ...

> ... can be completely parameterized
> ... can be represented as strong solutions to SDE
» ... admit simple conditions for existence of smooth density



Thank you!



