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I. Introduction to price impact and LLOB
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By definition, trading affects the shape of supply and demand

BUT HOW ?

To determine the properties of supply and demand, we need to probe it...
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Numerical results [animation]
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Relevance of price impact

Why is this issue relevant?

I Theory (I): Relevant, because price impact is a way to probe the supply and
demand curves, so as to determine their properties;

I Theory (II): Because price impact is the mechanism through which prices absorb
information encoded in trades; because it is the core ingredient of many
agent-based models that aim to study price formation;

I Practice (I): Price impact is a cost for traders, which they need to accurately
control in order to optimize their execution;

I Practice (II): For regulators, price impact controls stability.
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Some historical results on financial markets

Evidence that dates back to
1997 (!) shows that impact
has a concave shape
(roughly) independent of:

I Venue
I Maturity
I Historical period
I Geographical area

[see Torre (1997), Almgren et al.(2003), Moro
et al. (2009), Tóth et al.(2011), Gomes,
Waelbroeck (2014),Bershova, Rakhlin (2013),
Mastromatteo et al.(2014), X. Brokmann et al.
(2014),Zarinelli et al. (2015)]

square-root impact law appears to hold approximately in
all cases.

The aim of the present paper is to provide a theoretical
underpinning for such a universal impact law. We first give
a general dynamical theory of market liquidity that predicts
that the average supply/demand profile is V shaped around
the current price. The anomalously small local liquidity
induces a breakdown of the linear response and explains
the square-root impact law. We then study numerically a
stylized model of order flow based on minimal ingredients.
The numerical results fully support our analytical argu-
ments and allow us to get quantitative insights into various
aspects of the problem.

II. AN INTRIGUING IMPACT LAW

One should first carefully distinguish the total impact of
a given metaorder of sizeQ from other measures of impact
that have been reported in the literature. One is the imme-
diate impact of an individual market order of size q, which
has been studied by various authors and is also strongly
concave as a function of q, i.e., q! with ! ! 0:2, or even
lnq [3]. Another easily accessible measure of impact is to
relate the average price change !T in a given time interval
T to the total market order imbalanceQT in the same time

period, i.e., the sum of the signed volumes of all market
orders. This quantity is estimated using all the trades in the
market (i.e., those coming from different market partici-
pants) and is clearly different from the impact of a given
metaorder (see below). However, there seems to be quite a
bit of confusion in the literature and many authors unduly
identify the two quantities. If T is very short, such that
there are only one or a few trades, one essentially observes
the concave impact of individual orders that we just men-
tioned. But as T increases, and as such, the number of
trades becomes large, the relation between !T and QT

becomes more and more linear for small imbalances (see,
e.g., [3], Fig. 2.5), and on time scales comparable to those
needed to complete a metaorder, the concavity has almost
disappeared, except in rare cases when QT=V is large—in
any case, much larger than the region where Eq. (1) holds.
A square-root singularity for small traded volumes is

highly nontrivial, and certainly not accounted for in Kyle’s
classical model of impact [11], which predicts a linear
impact ! / Q. A concave impact function is often thought
of as a saturation of impact for large volumes. We believe
that the emphasis should rather be placed on the anomalous
high impact of small trades. Numerically, Eq. (1) means
that trading 100th of the daily volume moves the price by a
tenth of its daily volatility, which is indeed a huge ampli-
fication. Mathematically, Eq. (1) implies that the marginal

impact diverges for small volumes as Q"1=2, which means
that the susceptibility of the market to trades of vanishing
size is formally infinite. In most systems, the response to a
small perturbation is linear, i.e., small disturbances lead to
small effects. The breakdown of the linear response often
implies that the system is at, or close to, a critical point,
where very special properties emerge, such as long-range
memory or scale-invariant avalanches, that accompany this
diverging susceptibility. Of course, the mathematical di-
vergence is cut off in practice—for one thing, the volume
Q of a metaorder cannot be smaller than a single lot.
Empirical data will never be in the asymptotic limit
Q=V ! 0, but this is irrelevant to our discussion. This is,
in fact, also the case for most physical systems for which
critical behavior is observed. The important point here is
that the proximity of a critical point can lead to strongly
nonlinear effects and extreme fragility. As we will argue in
detail below, and substantiate within a precise numerical
model, we believe that markets operate in a critical regime
where liquidity vanishes. This offers a framework to under-
stand many of the anomalies in the behavior of markets,
including the long-term memory in order flow and the
presence of frequent unexplained jumps in prices, that
are—or so we believe—a consequence of the chronic
lack of liquidity that leads to a micro crisis. The anomalous
high impact of small trades implied by the concave impact
law, Eq. (1), is, in our view, another side of the same coin.
Numerous interpretations have been put forth to explain

a concave impact law, and can be broadly classified into
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FIG. 1. The impact of metaorders for Capital Fund
Management proprietary trades on futures markets, in the period
from June 2007 to December 2010. Impact is measured here as
the average execution shortfall of a metaorder of size Q. The
data base contains nearly 500 000 trades. We show !=" vs Q=V
on a log-log scale, where " and V are the daily volatility and
daily volume measured the day the metaorder is executed. The
blue curve is for large tick sizes, and the red curve is for small
tick sizes. For large ticks, the curve can be well fit with # ¼ 0:6,
while for small ticks we find # ¼ 0:5. For comparison, we also
show the lines of slope 0.5 (corresponding to a square-root
impact) and 1 (corresponding to linear impact). We have re-
moved a small positive intercept !=" ¼ 0:0015 for Q ¼ 0,
which is probably due to a conditioning effect.
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Some historical results on financial markets

Evidence that dates back to
1997 (!) shows that impact
has a concave shape
(roughly) independent of:

I Venue
I Maturity
I Historical period
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I(Q) = Y σ

(
Q
V

)1/2
(2)

I(Q) price change

Q executed volume

σ daily volatility

V daily traded volume

Y Y-ratio
(adimensional ∼ 1)
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II. General insights on Bitcoin, data and metaorders
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General aspects of the Bitcoin/USD market

I Crypto-currency, exchanged against usual currencies on limit order books,
I Power law distribution of volumes traded and traders wealth,
I Power law distribution of returns,
I Unpredictable price changes.

Almost like a usual market, except...

I One exchange (MtGox) with market share > 80% (at that time) and few
correlated product/derivatives,

I Very large spread and fees,
I Few professionals (no significant HFT, market making, almost no brokerage...),
I Trading intentions are displayed much longer in advance !

Square root law for price impact: Empirical evidence and theory Imperial College London, March 4, 2015
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Data

I Snapshots of the whole order book of MtGox every 10 min since 2011

I MtGox full trading report (7M trades) with anonymized IDs.
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Metaorders

Position of a given trader vs time and zoom on a metaorder

I Times series decomposition rather irrelevant due to the irregular nature of the
time series.

I Method used:
I for each trader, spot periods of inactivity (>1h)
I define the start of a metaorder as the first trade after this period
I continue until either a new inactivity period or a position reversal
I this eliminates some sequences, but also mean-reversion biases

We consider only aggressive orders to limit adverse selection biases (since we don’t
know the target volume to execute).
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Results on metaorders
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selection biases and is a sign of poorly strategic behaviour regarding execution
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Results on metaorders
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Metaorders are positively correlated with the aggressive imbalance of other traders,
but the effect is not dynamical (the correlation remains constant on [0,T ]).

Thus the impact picture will not come from some dynamical synchronization between
agents (who for instance would all try to exploit the same signal at the same time, resulting in a sharper increase
in price when the signal is released).
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III. Market impact on the Bitcoin [Donier and Bonart, 2014]

Square root law for price impact: Empirical evidence and theory Imperial College London, March 4, 2015



Introduction: Price impact and LLOB Data, metaorders Market impact on the Bitcoin Bubbles and crashes Conclusions

Typical impact shape

Abrupt rise of the price to I(Q) then decay
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Market impact on the Bitcoin

What would we expect on the Bitcoin market?

Reminder: fees are high, market is immature, agents are amateur, EMH is not the rule
on such scales...
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Market impact on the Bitcoin

Over 4 decades, impact I(Q) = 〈(pT − p0) | Q〉 is square root
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Remark: For the right plot, metaorders are regularly sub-sampled in quantiles of volumes (every
2.5%) so that every trajectory has equal weight.

Square root law for price impact: Empirical evidence and theory Imperial College London, March 4, 2015



Introduction: Price impact and LLOB Data, metaorders Market impact on the Bitcoin Bubbles and crashes Conclusions

Market impact on the Bitcoin

Question: is it possible that this comes from a conditioning between the
executed volume and the price signal?

Square root law for price impact: Empirical evidence and theory Imperial College London, March 4, 2015
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Market impact on the Bitcoin

I The whole price trajectories
during impact pt , t = 0...T (for
given Q, T ) are square root of
time (not only the end points);

I Thus, the square root form for
the scatter plot (I(Q),Q) does
not come from a conditioning of
Q on the price signal: it is a
trajectory effect;

I This suggests the existence of a
microscopic mechanism to
produce this shape.

0.01

0.1

1

10

1 10 100 1000 10000

Im
p
ac
t
in

%

Volume in Bitcoins

Trading rate: 10 BTC/s

0.01

0.1

1

10

0.1 1 10 100 1000

Im
p
ac
t
in

%

Volume in Bitcoins

Trading rate: 3 BTC/s

150BTC
600BTC

10000BTC
δ = 0.5

15BTC
60BTC
150BTC
600BTC
δ = 0.5

Square root law for price impact: Empirical evidence and theory Imperial College London, March 4, 2015



Introduction: Price impact and LLOB Data, metaorders Market impact on the Bitcoin Bubbles and crashes Conclusions

Bid, ask, traded price: What relevance?
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Some impact trajectories for given Q,T. The "price" means nothing here: Only the
best opposite is relevant for our purposes and give a square root, which supports

mechanical theories of impact as LLOB.
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Opposite side dynamics after the trade
I After the execution is completed, the opposite side reverts;
I For isolated trades, it almost reverts to the initial price [see also Brokmann et al., 2014].
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Execution speed

Cost increases with execution speed for isolated metaorders

Remark: For non-isolated metaorders, changing the execution horizon T changes the
amount of correlation with the markets: we would observe the wrong effect!
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Impact pre-factor
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Y := Ỹ (σD/
√
VD)

−1

rolling mean

Ỹ
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Lessons from the Bitcoin study

What did we learn here?

I A constant pressure on the price lifts it as a square root of time;

I The square root holds at all scales, in particular far below the spread and the
fees;

I The impact of isolated orders reverts to zero (or close); the part of the impact
that appears permanent is only due to correlation with the market overall
direction.

I Because of the microstructure of the Bitcoin market, EMH cannot be the
determinant of impact. More mechanical mechanisms must be at stake.

I This study strongly supports the LLOB theory [Donier, Bonart, Mastromatteo and Bouchaud, 2014].
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IV. Zooming-out: Bubbles and crashes
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We have a full description of what happens at the microscopic scale

CAN WE GO FURTHER ?

Let us investigate some macroscopic features: Bubbles, crashes...

Square root law for price impact: Empirical evidence and theory Imperial College London, March 4, 2015
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Liquidity on the order book fluctuates... [animation]

...which should reflect at all scales!
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Macroscopic liquidity: Definition
Let us introduce a macroscopic definition of liquidity LOB:∫ pt

pt (1−φ)
dpρ(p, t) := LOB(φ) , (3)
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This definition is meaningful on the Bitcoin where liquidity is displayed long in
advance (as opposed to financial markets).
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Macroscopic liquidity: Fact I

LOB correctly predicts the amplitude of crashes:
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Macroscopic liquidity: Fact II

A support price can be defined as φ∗ such that φ∗ = L−1
OB(Q∗), where Q∗ := 40kBTC

(typical large sell-off):
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Macroscopic liquidity: Fact III

LOB is well tracked by the theoretical and empirical impact pre-factors:

I LI := I(Q)/
√
Q

I LTH := σD/
√
VD
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Macroscopic liquidity: Fact IV
The theoretical impact pre-factor LTH := σD/

√
VD is a good predictor of tomorrow’s

liquidity (much better that Amihud’s ILLIQ measure):
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Conclusions: Bubbles and crashes

Based on a microscopic understanding of liquidity and price impact, we proposed a
measure of liquidity σD/

√
VD (σD : daily volatility, VD : daily volume) that

I Is publicly available,

I Detects bubbles,

I Correctly predicts the amplitude of potential crashes,

I Largely outperforms Amihud’s popular ILLIQ measure σD/VD .
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Conclusions: Overall

I Continuous trading has a universal effect on th eorder book shape.

I It makes it grow linearly next to the price.

I A microscopic understanding of liquidity allows for a prediction of
extreme macroscopic events (bubbles, crashes...).
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One last picture...

Order book...
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