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Asset price dynamics

e Process X = (X;)¢>0 take values in R, with dynamics
described by the SDE

dXt = H(Xt)dt + O'(Xt)d Wt s XO =x€R y

where W = (W;)¢>0 is a Brownian motion in R.
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Asset price dynamics

e Process X = (X;)¢>0 take values in R, with dynamics
described by the SDE

dXt = [L(Xt)dt + O'(Xt)d Wt s XO =x€R N (1)

where W = (W;)¢>0 is a Brownian motion in R.
e Fix number of time steps n € N* and a time horizon T >0 .
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Asset price dynamics

e Process X = (X;)¢>0 take values in R, with dynamics
described by the SDE

dXt = [L(Xt)dt + O'(Xt)d Wt s XO =x€R N (1)

where W = (W;)¢>0 is a Brownian motion in R.
e Fix number of time steps n € N* and a time horizon T >0 .

e Define a partition on the interval [0, T] by

T={0=t<t<..<t,=T}
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Option Price and Greeks

e Let g be a function of process X at terminal time T.
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Option Price and Greeks

e Let g be a function of process X at terminal time T.

e Option price: V(x), given the initial condition Xy = x:

V(x) :=E[g(X:,)[Xo = x].
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Option Price and Greeks

e Let g be a function of process X at terminal time T.

e Option price: V(x), given the initial condition Xp = x:

V(x) = E[g(Xe,)[Xo = x].

e Greeks: sensitivities of option price.
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Option Price and Greeks

Let g be a function of process X at terminal time T.

Option price: V(x), given the initial condition Xp = x:

V(x) = E[g(Xe,)[Xo = x].

Greeks: sensitivities of option price.

A: sensitivity w.r.t. to x using a central-difference

V(x+ h)— V(x—h)
AC,h = oh .
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Setting

e Recall SDE (1). Value function v : [0, T] x R — R is such

that
LOy(t, X)) =0 for t € [0, T), @)
U( T, ) = g(),

where the operators are defined as

LO) =, 1 u(x)0x + %a(xfag

LD =5 (x)dy.
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Setting

e Recall SDE (1). Value function v : [0, T] x R — R is such

that
LOy(t, X)) =0 for t € [0, T),

u(T,) =g(),

where the operators are defined as

(2)

L©) =8, + u(x)dy + %a(xfaﬁ

LD =5 (x)dy.

e Assumption on the smoothness of the value function u
imposed.
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Aim

A A

Work with approximations X = (Xt)c[o, 7] Using grid 7, where
h:=|x|:=T/n.
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Aim

A

Work with approximations X = (Xt)tefo, 1] using grid 7, where
h:=|x|:=T/n.
® Find weights H such that for a general diffusion X:

Greek = E[Hg(X7)] + O(h'),

where H is some Fj-measurable weight.
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Aim

A

Work with approximations X = (Xt)tefo, 1] using grid 7, where
h:=|x|:=T/n.
® Find weights H such that for a general diffusion X:

Greek = E[Hg(X7)] + O(h'),

where H is some Fj-measurable weight.

® Control MSE for convergence results of the Greek
approximations.

6
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Aim

A

Work with approximations X = (Xt)tefo, 1] using grid 7, where
h:=|x|:=T/n.
® Find weights H such that for a general diffusion X:

Greek = E[Hg(X7)] + O(h'),

where H is some Fj-measurable weight.

® Control MSE for convergence results of the Greek
approximations.

© Higher order schemes and extrapolation techniques.

6
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Theoretical Coefficients H? [CC14]

e Fix | € N. Define B[Io ] @s the set of bounded, measurable
functions ¢ : [0,1] — R such that

1
| vt =1
0
1
/ Y(s)skds = 0,if e NT, V1 < k < /.
0
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Theoretical Coefficients H? [CC14]

e Fix | € N. Define B[Io ] @s the set of bounded, measurable
functions ¢ : [0,1] — R such that

1
| vt =1
0
1
/ Y(s)skds = 0,if e NT, V1 < k < /.
0

e Define weights HY to approximate the A:

Definition 1 (H; -functionals)
Let ¢) € Bfy 11, and for 0 < h < T, define Hj as

h

HY = /17/5:ow (%)dWS.
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Examples of ¢ € B[/O,l] and H;f

@ /=0: p=1€ B, and weight HY = Wy/h.
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Examples of ¢ € B[/O,l] and H}f

@ /=0: p=1€ B, and weight HY = Wy/h.
_1- 1
o /=18,
(a) Linear equation v, 1(u) =4 — 6u.

4 6 ("
Hy»t = - Wh— o5 | sdw..

r
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Examples of ¢ € B[/o,l] and H;f

@ /=0: p=1€ B, and weight HY = Wy/h.

— 1. R1
0o/ =1 8[071]
(a) Linear equation v, 1(u) =4 — 6u.

4 6 ("
H,?”’I:EW,,—?/O sdW.

c—1

(b) Fix ¢ € (0,1), the function s 1(u) = ﬁl[l_c,l](u) 4 e=2,

c—1 % 1 Wh(l—c)

st‘l — - .
h h " ch(l—c)

34
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Examples of ¢ € B[/o,l] and H;f

@ /=0: p=1€ B, and weight HY = Wy/h.

— 1. R1
0o/ =1 8[071]
(a) Linear equation v, 1(u) =4 — 6u.

4 6 ("
H,'f"’I:EW,,—ﬁ/O sdW.

(b) Fix ¢ € (0,1), the function s 1(u) = ﬁl[l_c,l](u) 4 e=2,

c—1

c—1 % l Wh(l—c)

st‘l — .
h h " ch(l—c)

® / = 2: the unique quadratic belonging to 8[20 1] is
Ypo(u) =9 —36u+ 3002,

34
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e The variance of the weights H;f}"’ grows with the order /.
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e The variance of the weights H;f}"’ grows with the order /.

e Polynomial weights have slightly lower variance than step
functions.
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e The variance of the weights H;f}"’ grows with the order /.

e Polynomial weights have slightly lower variance than step
functions.

e If X can be perfectly simulated, ¢y =1 € B?O 1] (i.e. order

I = 0) recovers the Malliavin A weight Hr = W1 /(xTo).
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The variance of the weights H;f}"’ grows with the order /.

Polynomial weights have slightly lower variance than step
functions.

If X can be perfectly simulated, v =1 € B?O 1] (i.e. order

I = 0) recovers the Malliavin A weight Hr = W1 /(xTo).
Family of weights used in the BSDE literature to approximate
the Z process (i.e. Z = o(X:)Oxu(t, Xt)), which contains the
A [CC14].
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The variance of the weights H;f}"’ grows with the order /.

Polynomial weights have slightly lower variance than step
functions.

If X can be perfectly simulated, v =1 € B?O,l] (i.e. order

I = 0) recovers the Malliavin A weight Hr = W1 /(xTo).
Family of weights used in the BSDE literature to approximate
the Z process (i.e. Zy = o(X;)Oxu(t, X¢)), which contains the
A [CC14].

Lemma 2 ([CC14, Proposition 2.4])

For v € B[Io,l] and value function sufficiently smooth,
E [H{ g(Xr)| = LDu(0,x) + O(h*),

where LM u(0,x) = o(x)A (i.e. expression containing the A).
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Weak Taylor schemes
)A(to =x. Fori=1,...,n—1, define

tit1
hit1 = tiy1—t;, AWiiq = / d W, Az =
t,

i

r
0000000000

tit1
Wids.

tj
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Weak Taylor schemes
)A(to =x. Fori=1,...,n—1, define

tit1
hit1 = tiy1—t;, AWiiq = / d W, Az =
t,

@ Euler scheme (weak Taylor scheme order 1).

Ky 7= Xe + 1(Xe)higr + o(Xe) AWy

r
0000000000

tit1
/ Wids.
tj

10/34
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Weak Taylor schemes
)A(to =x. Fori=1,...,n—1, define
tit1

tit1
hit1 = tip1—tj, AWy = / dWs, AZiyg = Wids.
t,

i tj

@ Euler scheme (weak Taylor scheme order 1).

Ky = Ko + (X)) i + o(Xe) ) AWip1.

® Weak Taylor scheme of order 2

~ 1 ~ ~
X, = Euler + Ea(xt,.)a’(xt,) ((AWiy1)® — hit1)

,\ A 1 o o 1 A ~
F R R)AZi + 5 (0 (Re) + 50 ()oK )

~ N 1 ~ N
() (%) + 50" ()2 (R6) ) (AWisahisa — AZ,).

10/34
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Euler scheme

e On [0, h], the Euler scheme is a BM with drift f(y) diffusion
o(y) if the process X starts at y at time t =0, i.e.

Xy =y +uy)h+o(y)VhZ,

for some Z ~ N(0,1).
e Define the operators [9), Jj = 0,1 associated to this process:

Definition 3 (Fixed space operators)

For function  : RT x R — R and some y € R, define the
operators Ii}(f) on ¢ by

A1
(LYo}t x) :=0(y)dxep(t, %),

~ ]' n N
{L&O)cp}(t,X) t= <0t I H(}/)ax aF §L§/1) © L)(/1)> gp(t,x),

where 9; and Oy are partial derivatives w.r.t. time and space.

11 /34
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Remark 1

Considering the explicit Euler scheme and fixing y = )AQ,., then [&0)
is the operator associated to the diffusion process (Xt)e[s,
Recall the operators defined in (2); note that

tii1]-

LO(t, X:) = IQ0(t, %), LWo(t, X:) = LP(t, X).

12 /34
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Choosing the appropriate weight and weak Taylor scheme and
sufficient smoothness of the value function:

Fix | € N. Suppose u is sufficiently smooth, and L©u. =0,
Y E B[Io 17 weak Taylor scheme order | + 1. Then,

E [Hy u(h, X9)| = LOu(0, %) + O(h'*)
= o(x)A + O(h'*h).

13 /34
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Idea of proof

Consider one time step of SDE: dX; = o(X;)dW;, with Xy = x.
® Euler scheme on [0, h], for some Z ~ N(0, 1):

Xy, = x4+ a(x)V'hZ.

14 /34
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Idea of proof

Consider one time step of SDE: dX; = o(X;)dW;, with Xy = x.
® Euler scheme on [0, h], for some Z ~ N(0, 1):
Xy, = x4+ a(x)V'hZ.

@ Weight HY with ¢ =1 (i.e. H' :== Z/V/h.)
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Idea of proof

Consider one time step of SDE: dX; = o(X;)dW;, with Xy = x.

® Euler scheme on [0, h], for some Z ~ N(0, 1):

Xy, = x4+ a(x)V'hZ.

@ Weight HY with ¢ =1 (i.e. H' :== Z/V/h.)
© Taylor expand u(h, X;) around (0, x).

14 /34
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Idea of proof

Consider one time step of SDE: dX; = o(X;)dW;, with Xy = x.

® Euler scheme on [0, h], for some Z ~ N(0, 1):

Xy, = x4+ a(x)V'hZ.

@ Weight HY with ¢ =1 (i.e. H' :== Z/V/h.)
© Taylor expand u(h, X;) around (0, x).
@ Consider E[H;Du(h,f(h)] - collect powers of Z, recalling

E[ZH] = 0 if k is odd;
132/ —1) if k is even.

14 /34
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Theorem 5 (Higher order A)

Fix I € N. Consider a weak Taylor scheme of order | + 1, on an
equidistant mesh T, such that || = h, value function u is
sufficiently smooth, and let i € B[Io 1 Then,

E [H;/’g(kr)] = LW yu(0, x) + O(hY),

15 /34
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Theorem 5 (Higher order A)

Fix I € N. Consider a weak Taylor scheme of order | + 1, on an
equidistant mesh T, such that || = h, value function u is
sufficiently smooth, and let i € B[Io 1 Then,

E [H;/’g(kr)] = LW yu(0, x) + O(hY),

e To prove result, express E {H;f’u(t,,,f(tn)} as

E [H;fu(h,fq,)] +E

n—1
H;f} Z {u(t""'l’)%tﬂrl) - u(th)%t,-)}

i=1

e Deal with first term from previous lemma, and bound
telescoping terms from the smoothness of the value function.

15 /34



Weights H Weak Taylor schemes A Heston A r
000 000000® oo

Flavour of techniques

Iterated It6 integrals, and weak Taylor schemes [KP92].
e Expansions introduced by [TT90].

Choose weights for state-space Greeks.

Refine H}f} for higher order schemes.

16 /34
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Higher order schemes

e Consider N simulations, and fix the step size to h := 1/NC.
e Approximate A, with E [H;fg()A(T)}

17 /34
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Higher order schemes

e Consider N simulations, and fix the step size to h := 1/N<.
e Approximate A, with E [H}fg()A(T)}

r (Scheme) Weight ¢ MSE Complexity | Slope

1 (Euler) |9 =1€B, | 1/3]ON2F) | ON*F) | -1/2
2 (WT2) Y EBpyy | 1/5 | O(N45) | O(N®?) | —2/3
3 (WT3) Y eByy | 1/7| ONOT) | O(N¥7) | —3/4

Table 1: Implementation for higher order A.

17 /34
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o 1u(x) =0, o(x) =1+ sin?(x), g(x) = arctan(x).
e (X0, T)=1(03,1), (¢1,¢2,¢3) =(1/3,1/5,1/7).

Complexity vs MSE (log log plot)

5
——— WT1 (r,c) = (-0.51649,-8.4175)
WT2 (1,c) = (-0.70609,-8.5722)
& WT3 (1,c) = (-0.76792,-8.6215)
7
jm
[%)
s -8
=
o
o
19
14l , , . . . . . . )
4 -3 2 -1 1 4 5

0
log(complexity (sec))

Figure 1. Higher order A and .

e =~ 20 seconds for WT3 vs =~ 60 seconds for WT1!

18 /34
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Extrapolating A

o Approximation X" is with a grid |x| = h.

19/34
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Extrapolating A

o Approximation X" is with a grid |x| = h.
o Show that E {H;fg(fq'-)} = LDu(0,x) + ch+ O(h?).

19/34
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Extrapolating A

o Approximation X" is with a grid |x| = h.
o Show that E {H}fg(f(;’-)} = LDu(0,x) + ch+ O(h?).

e Approximation X2/ is with a grid |7| = 2h.

19/34
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Extrapolating A

o Approximation X" is with a grid |x| = h.
o Show that E {H}fg(f(;’-)} = LDu(0,x) + ch+ O(h?).

e Approximation X2/ is with a grid |7| = 2h.

Theorem 6 (Romberg extrapolation)

0 [H}fg(f(;’-)] _E [H;Phg(k%h)} = LW yu(0,x) + O(h?).

19/34
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0.525

0.52

0.515

0.51

Delta

0.505

0.5

0.495
0

Weak Taylor schemes A
. 000e00

Delta Approximations, WT1 extrapolation
T T

Heston
00

T
—V— - Extrapolated
—6—h

2h
— — — True Delta

2 3 4 5 6 7 8
Seconds

10

Figure 2: Extrapolated A, the value with stepsize h, 2h and the true A.
Euler scheme, ( =1/5.
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Similar expansion for higher order Romberg extrapolation

A

O000e0

A extrapolated

better ¢ € B[/O,l] and weak Taylor expansions.

using

r (Scheme) | Weight | ¢ MSE Complexity | Slope

1 (Euler) | =1 | 1/5| O(N=*5) | O(N®®) | -2/3

2 (WT2) s | 1/7 | O(N7/TY | O(N8/T) | -3/4

3 (WT3) Vvs2 | 1/9 | O(N=8/9) | O(NW0/%) | -4/5
Table 2:

Implementation for the extrapolated A.

21/34
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Extrapolated A using WT1 and WT?2

MSE vs Complexity for Extrapolated Delta (log log plot)

—— WT1, WT1, ¢ =1, (m,c) = (-0.66338,-8.6781)
-7 —— WT2, WT2, y_., (1,C) = (-0.78319,-9.0532)

s,1

log(MSE)

10

-10.5

—11 I I I I | )
-3 -2 -1 0 1 2 3
log(complexity (sec))

Figure 3: MSE for extrapolated A vs Complexity.
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Heston A
[ le]

Heston Delta

e The Heston model can be represented with i.i.d. Brownian
motions W) = (Wt(l))tzo and W® = (Wt(z))tzo as

AW 'St Nygpy (VXSO dw®
x.) = (o - X0 0 evx:) \aw®
where (Sp, Xo) = (x,v).

e For an Euler scheme:

(H)) )

)
A e

g(X7) + O(h),

where ()1 is defined with ¢ € BY |\ and W'Y,

23 /34
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Explicit and drift-implicit schemes

e (k,0,& r,x,v)=(1.15,0.04,0.2,0,100,0.04).
e Mean reversion w := 2k /6% = 2.3,
e Call option with strike K =100, and T = 1.

Complexity vs MSE (log log plot)

-4.5
—o&— Explicit Euler (r.c) = (-0.53697,-6.4368)
— Drift-implicit (r,c) = (-0.49373,-6.2407)
-5
-5.9
m
]
= -6
E=3
L2
-6.5
i
7. . . 1 . h ,
-3 -2 -1 0 1 2 3

log(complexity (sec))

Figure 4. MSE for Heston A, ( = 1/3.

0000000000
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[ of an option

e Second order sensitivity with respect to initial underlying
price, x;
M= 8XXE [g(XT)] :

25 /34
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[ of an option

e Second order sensitivity with respect to initial underlying
price, x;
M= 8xx}E [g(XT)] :

e Find family of functions with desirable properties.
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[ of an option

e Second order sensitivity with respect to initial underlying
price, x;
M= 8XXE [g(XT)] :

e Find family of functions with desirable properties.

e Previous ideas for higher order approximations and
extrapolation.

25 /34



A Heston A r

Overview Weights H

A class of approximate [ weights
Definition 7 (¢-functions)

Fix | € NT. Define g[’o ] @s the set of bounded, measurable
functions ¢ : [0, 1] — R such that

1
[ ots)sas =1 (3)
0

and if / > 2, then for all k € NT such that 2 < k </,

/01 #(s)s"ds = 0. (4)

26

0O@00000000
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A class of approximate [ weights
Definition 7 (¢-functions)

Fix | € NT. Define g[’o ] @s the set of bounded, measurable
functions ¢ : [0, 1] — R such that

1
[ ots)sas =1 (3)
0

and if / > 2, then for all k € NT such that 2 < k </,

/01 #(s)s"ds = 0. (4)

e Higher order weights are of the form

o .= % /sio¢ (%) W.dW.,

26
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Summary for I

e Taylor expanding sufficiently, and using the smoothness of the
value function eventually yields:

E {I‘fu(h, )A(h)} = 020, u(0, x) + 00’'0xu(0, x) + O(h)
= o?(X)I + o(x)o’(x)A + O(h). -

27 /34
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Summary for I

e Taylor expanding sufficiently, and using the smoothness of the
value function eventually yields:

E {I‘fu(h, )A(h)} = 020, u(0, x) + 00’'0xu(0, x) + O(h)
= o?(X)I + o(x)o’(x)A + O(h). -

e Deal with telescoping terms.

27 /34
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Summary for I

e Taylor expanding sufficiently, and using the smoothness of the
value function eventually yields:

E {I‘fu(h, )A(h)} = 020, u(0, x) + 00’'0xu(0, x) + O(h)
= o?(X)I + o(x)o’(x)A + O(h). -

e Deal with telescoping terms.

e Equation (5), includes the I := 0y u(0, x) of interest.

27 /34
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I" using a weak Taylor scheme order 2:

Theorem 8 (I)

Value function u is sufficiently smooth, ¢ € Q[lo i and WT2
scheme, equidistant time grid |7| = h. Then,

E [ng()?r)} = 0(x)2T + o' (x)o(x)A + O(h).

28 /34
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I" using a weak Taylor scheme order 2:

Theorem 8 (I)

Value function u is sufficiently smooth, ¢ € Q[lo i and WT2
scheme, equidistant time grid |7| = h. Then,

E [ng()%r)} = 0(x)2T + o' (x)o(x)A + O(h).

e Similarly, higher order I approximations can be obtained.

28 /34
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e In Table 3, implementation for higher order schemes for I’
using different schemes, and weights.

Scheme Weight ¢ MSE Complexity | Slope

WT2 [¢=2€G), | 1/4| ON72) | ON*) | —2/5
WT3 | ds2€Ghyy | 1/6 | O(NT23) | O(N"/®) | —4/7

Table 3: Implementation and MSE for the Gamma.

29 /34
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Weak Taylor 2 scheme, using ¢ = 2

MSE vs Complexity for Gamma(log log plot)

WT2 (r,c) = (-0.41837,-5.9818)|

log(complexity (sec))

Figure 5:  MSE for the I'. Parameters as in Table 3 (i.e. ( =1/4).
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[ extrapolation
Extrapolation using constants A, B:

AE [Fg(X4)] - BE [5,5(X3")] = Value + O(H'™).

10) Value | Scheme | A B ¢ MSE Slope
9[1071] (3 | Euler 2 1 |1/6 | ON2/3) | -4/7
Gio.] LDy | WT2 | 2 | 1 [1/6 | ON2/3) | -4/7
Gioap | LPMuo | WT3 | 4/3|1/3|1/8 | O(N/*) | -2/3

Table 4:  Parameters for approximating I using extrapolation, using
different ¢ and schemes.
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[ extrapolation
Extrapolation using constants A, B:
AE [r;f;g(f@)} _ BE [rghg(X%h)] = Value + O(h'1).
10) Value | Scheme | A B ¢ MSE Slope

9[1071] [)((1,1)[]0 Euler 2 1 |1/6 O(N—2/3) -4)7
Ghy | L0u | WT2 | 2 | 1 |1/6|ON272) | -4/7
oy | LOVuo | WT3 | 4/3|1/3 | 1/8 | O(N34) | -2/3

Table 4:  Parameters for approximating I using extrapolation, using
different ¢ and schemes.

Remark 2

Extrapolating for the I using an Euler scheme yields
[V = 62(x)T, which does not include the A term.
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MSE vs Complexity for Extrapolated Gamma (log log plot)

Q —S— Euler, g2, (1,c) =(~0.6138,~4.7974)
WT2, =2, (1,c) =(~0.5920,~4.4686)

\@ — — WT3,q, (rc) =(-0.7259,-6.7694)

log(MSE)
é

. . . . . ,
-4 -3 -2 -1 0 1 2
log(complexity (sec))

Figure 6: loglog plot of the MSE vs Complexity for the " using
extrapolation. Euler scheme and WT2 with ¢ =2, and (A, B) = (2,1).
Third plot is WT3, using s and (A, B) = (4/3,1/3). See Table 4.
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Thank you for listening
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