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Overview Weights H Weak Taylor schemes ∆ Heston ∆ Γ

Asset price dynamics

• Process X = (Xt)t≥0 take values in R, with dynamics
described by the SDE

dXt = µ(Xt)dt + σ(Xt)dWt , X0 = x ∈ R , (1)

where W = (Wt)t≥0 is a Brownian motion in R.

• Fix number of time steps n ∈ N+ and a time horizon T > 0 .

• Define a partition on the interval [0,T ] by

π := {0 = t0 < t1 < . . . < tn = T}.

3 / 34



Overview Weights H Weak Taylor schemes ∆ Heston ∆ Γ

Asset price dynamics

• Process X = (Xt)t≥0 take values in R, with dynamics
described by the SDE

dXt = µ(Xt)dt + σ(Xt)dWt , X0 = x ∈ R , (1)

where W = (Wt)t≥0 is a Brownian motion in R.

• Fix number of time steps n ∈ N+ and a time horizon T > 0 .

• Define a partition on the interval [0,T ] by

π := {0 = t0 < t1 < . . . < tn = T}.

3 / 34



Overview Weights H Weak Taylor schemes ∆ Heston ∆ Γ

Asset price dynamics

• Process X = (Xt)t≥0 take values in R, with dynamics
described by the SDE

dXt = µ(Xt)dt + σ(Xt)dWt , X0 = x ∈ R , (1)

where W = (Wt)t≥0 is a Brownian motion in R.

• Fix number of time steps n ∈ N+ and a time horizon T > 0 .

• Define a partition on the interval [0,T ] by

π := {0 = t0 < t1 < . . . < tn = T}.

3 / 34



Overview Weights H Weak Taylor schemes ∆ Heston ∆ Γ

Option Price and Greeks

• Let g be a function of process X at terminal time T .

• Option price: V (x), given the initial condition X0 = x :

V (x) := E [g(Xtn)|X0 = x ] .

• Greeks: sensitivities of option price.

• ∆: sensitivity w.r.t. to x using a central-difference

∆C ,h :=
V (x + h)− V (x − h)

2h
.
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Setting

• Recall SDE (1). Value function u : [0,T ]× R→ R is such
that

L(0)u(t,Xt) = 0 for t ∈ [0,T ),
u(T , ·) = g(·), (2)

where the operators are defined as

L(0) :=∂t + µ(x)∂x +
1

2
σ(x)2∂2

x

L(1) :=σ(x)∂x .

• Assumption on the smoothness of the value function u
imposed.
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Aim

Work with approximations X̂ = (X̂t)t∈[0,T ] using grid π, where
h := |π| := T/n.

1 Find weights H such that for a general diffusion X :

Greek = E[Hg(X̂T )] +O(hl),

where H is some Fh-measurable weight.

2 Control MSE for convergence results of the Greek
approximations.

3 Higher order schemes and extrapolation techniques.
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Theoretical Coefficients Hψ [CC14]
• Fix l ∈ N. Define Bl[0,1] as the set of bounded, measurable

functions ψ : [0, 1]→ R such that∫ 1

0
ψ(s)ds = 1,∫ 1

0
ψ(s)skds = 0, if l ∈ N+, ∀1 ≤ k ≤ l .

• Define weights Hψ
· to approximate the ∆:

Definition 1 (Hψ
h -functionals)

Let ψ ∈ Bl[0,1], and for 0 < h ≤ T , define Hψ
h as

Hψ
h :=

1

h

∫ h

s=0
ψ
( s
h

)
dWs .
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Examples of ψ ∈ Bl
[0,1] and Hψ

h

0 l = 0: ψ ≡ 1 ∈ B0
[0,1], and weight Hψ

h := Wh/h.

1 l = 1: B1
[0,1]

(a) Linear equation ψp,1(u) ≡ 4− 6u.

H
ψp,1

h =
4

h
Wh −

6

h2

∫ h

0

sdWs .

(b) Fix c ∈ (0, 1), the function ψs,1(u) ≡ 1
c(c−1) 11[1−c,1](u) + c−2

c−1 .

H
ψs,1

h =
c − 1

c

Wh

h
+

1

c

Wh(1−c)

h(1− c)
.

2 l = 2: the unique quadratic belonging to B2
[0,1] is

ψp,2(u) ≡ 9− 36u + 30u2.

8 / 34
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• The variance of the weights H
ψ·,l
h grows with the order l .

• Polynomial weights have slightly lower variance than step
functions.

• If X can be perfectly simulated, ψ ≡ 1 ∈ B0
[0,1] (i.e. order

l = 0) recovers the Malliavin ∆ weight HT = WT/(xTσ).

• Family of weights used in the BSDE literature to approximate
the Z process (i.e. Zt = σ(Xt)∂xu(t,Xt)), which contains the
∆ [CC14].

Lemma 2 ([CC14, Proposition 2.4])

For ψ ∈ Bl[0,1] and value function sufficiently smooth,

E
[
Hψ
h g(XT )

]
= L(1)u(0, x) +O(hl+1),

where L(1)u(0, x) = σ(x)∆ (i.e. expression containing the ∆).
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Weak Taylor schemes
X̂t0 = x . For i = 1, . . . , n − 1, define

hi+1 := ti+1−ti , ∆Wi+1 :=

∫ ti+1

ti

dWs , ∆Zi+1 :=

∫ ti+1

ti

Wsds.

1 Euler scheme (weak Taylor scheme order 1).

X̂ti+1 := X̂ti + µ(X̂ti )hi+1 + σ(X̂ti )∆Wi+1.

2 Weak Taylor scheme of order 2

X̂ti+1 := Euler +
1

2
σ(X̂ti )σ

′(X̂ti )
(
(∆Wi+1)2 − hi+1

)
+ µ′(X̂ti )σ(X̂ti )∆Zi+1 +

1

2

(
µ(X̂ti )µ

′(X̂ti ) +
1

2
µ′′(X̂ti )σ

2(X̂ti )

)
h2
i+1

+

(
µ(X̂ti )σ

′(X̂ti ) +
1

2
σ′′(X̂ti )σ

2(X̂ti )

)
(∆Wi+1hi+1 −∆Zi+1) .
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Euler scheme
• On [0, h], the Euler scheme is a BM with drift f (y) diffusion
σ(y) if the process X starts at y at time t = 0, i.e.

X̂h = y + µ(y)h + σ(y)
√
hZ ,

for some Z ∼ N(0, 1).

• Define the operators L̂
(j)
y , j = 0, 1 associated to this process:

Definition 3 (Fixed space operators)

For function ϕ : R+ × R→ R and some y ∈ R, define the

operators L̂
(j)
y on ϕ by

{L̂(1)
y ϕ}(t, x) :=σ(y)∂xϕ(t, x),

{L̂(0)
y ϕ}(t, x) :=

(
∂t + µ(y)∂x +

1

2
L̂

(1)
y ◦ L̂(1)

y

)
ϕ(t, x),

where ∂t and ∂x are partial derivatives w.r.t. time and space.
11 / 34
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Remark 1

Considering the explicit Euler scheme and fixing y = X̂ti , then L̂
(0)
y

is the operator associated to the diffusion process (X̂t)t∈[ti ,ti+1].
Recall the operators defined in (2); note that

L(0)ϕ(t,Xt) = L̂
(0)
Xt
ϕ(t,Xt), L(1)ϕ(t,Xt) = L̂

(1)
Xt
ϕ(t,Xt).

12 / 34



Overview Weights H Weak Taylor schemes ∆ Heston ∆ Γ

Choosing the appropriate weight and weak Taylor scheme and
sufficient smoothness of the value function:

Lemma 4

Fix l ∈ N. Suppose u is sufficiently smooth, and L(0)u· = 0,
ψ ∈ Bl[0,1], weak Taylor scheme order l + 1. Then,

E
[
Hψ
h u(h, X̂h)

]
= L(1)u(0, x) +O(hl+1)

= σ(x)∆ +O(hl+1).

13 / 34
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Idea of proof

Consider one time step of SDE: dXt = σ(Xt)dWt , with X0 = x .

1 Euler scheme on [0, h], for some Z ∼ N(0, 1):

X̂h := x + σ(x)
√
hZ .

2 Weight Hψ
h with ψ ≡ 1 (i.e. Hψ

h := Z/
√
h.)

3 Taylor expand u(h, X̂h) around (0, x).

4 Consider E[Hψ
h u(h, X̂h)] - collect powers of Z , recalling

E[Z k ] =

{
0 if k is odd;∏k/2

j=1(2j − 1) if k is even.

14 / 34
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Theorem 5 (Higher order ∆)

Fix l ∈ N. Consider a weak Taylor scheme of order l + 1, on an
equidistant mesh π, such that |π| = h, value function u is
sufficiently smooth, and let ψ ∈ Bl[0,1]. Then,

E
[
Hψ
h g(X̂T )

]
= L(1)u(0, x) +O(hl+1).

• To prove result, express E
[
Hψ
h u(tn, X̂tn)

]
as

E
[
Hψ
h u(h, X̂h)

]
+ E

[
Hψ
h

n−1∑
i=1

{
u(ti+1, X̂ti+1)− u(ti , X̂ti )

}]
.

• Deal with first term from previous lemma, and bound
telescoping terms from the smoothness of the value function.
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telescoping terms from the smoothness of the value function.
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Flavour of techniques

• Iterated Itô integrals, and weak Taylor schemes [KP92].

• Expansions introduced by [TT90].

• Choose weights for state-space Greeks.

• Refine Hψ
h for higher order schemes.
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Higher order schemes

• Consider N simulations, and fix the step size to h := 1/Nζ .

• Approximate ∆, with E
[
Hψ
h g(X̂T )

]
.

r (Scheme) Weight ζ MSE Complexity Slope

1 (Euler) ψ ≡ 1 ∈ B0
[0,1] 1/3 O(N−2/3) O(N4/3) −1/2

2 (WT2) ψ ∈ B1
[0,1] 1/5 O(N−4/5) O(N6/5) −2/3

3 (WT3) ψ ∈ B2
[0,1] 1/7 O(N−6/7) O(N8/7) −3/4

Table 1: Implementation for higher order ∆.
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• µ(x) ≡ 0, σ(x) ≡ 1 + sin2(x), g(x) ≡ arctan(x).
• (X0,T ) = (0.3, 1), (ζ1, ζ2, ζ3) = (1/3, 1/5, 1/7).
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log(complexity (sec))
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Complexity vs MSE (log log plot)

 

 
WT1 (r,c) = (−0.51649,−8.4175)
WT2 (r,c) = (−0.70609,−8.5722)
WT3 (r,c) = (−0.76792,−8.6215)

Figure 1: Higher order ∆ and ψ.

• ≈ 20 seconds for WT3 vs ≈ 60 seconds for WT1! 18 / 34
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Extrapolating ∆

• Approximation X̂ h is with a grid |π| = h.

• Show that E
[
Hψ
h g(X̂ h

T )
]

= L(1)u(0, x) + c1h +O(h2).

• Approximation X̂ 2h is with a grid |π| = 2h.

Theorem 6 (Romberg extrapolation)

2E
[
Hψ
h g(X̂ h

T )
]
− E

[
Hψ

2hg(X̂ 2h
T )
]

= L(1)u(0, x) + O(h2).

19 / 34



Overview Weights H Weak Taylor schemes ∆ Heston ∆ Γ

Extrapolating ∆

• Approximation X̂ h is with a grid |π| = h.

• Show that E
[
Hψ
h g(X̂ h

T )
]

= L(1)u(0, x) + c1h +O(h2).

• Approximation X̂ 2h is with a grid |π| = 2h.

Theorem 6 (Romberg extrapolation)

2E
[
Hψ
h g(X̂ h

T )
]
− E

[
Hψ

2hg(X̂ 2h
T )
]

= L(1)u(0, x) + O(h2).

19 / 34



Overview Weights H Weak Taylor schemes ∆ Heston ∆ Γ

Extrapolating ∆

• Approximation X̂ h is with a grid |π| = h.

• Show that E
[
Hψ
h g(X̂ h

T )
]

= L(1)u(0, x) + c1h +O(h2).

• Approximation X̂ 2h is with a grid |π| = 2h.

Theorem 6 (Romberg extrapolation)

2E
[
Hψ
h g(X̂ h

T )
]
− E

[
Hψ

2hg(X̂ 2h
T )
]

= L(1)u(0, x) + O(h2).

19 / 34



Overview Weights H Weak Taylor schemes ∆ Heston ∆ Γ

Extrapolating ∆

• Approximation X̂ h is with a grid |π| = h.

• Show that E
[
Hψ
h g(X̂ h

T )
]

= L(1)u(0, x) + c1h +O(h2).

• Approximation X̂ 2h is with a grid |π| = 2h.

Theorem 6 (Romberg extrapolation)

2E
[
Hψ
h g(X̂ h

T )
]
− E

[
Hψ

2hg(X̂ 2h
T )
]

= L(1)u(0, x) + O(h2).

19 / 34



Overview Weights H Weak Taylor schemes ∆ Heston ∆ Γ
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D
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Delta Approximations, WT1 extrapolation

 

 
Extrapolated
h
2h
True Delta

Figure 2: Extrapolated ∆, the value with stepsize h, 2h and the true ∆.
Euler scheme, ζ = 1/5.
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∆ extrapolated

Similar expansion for higher order Romberg extrapolation using
better ψ ∈ Bl[0,1] and weak Taylor expansions.

r (Scheme) Weight ζ MSE Complexity Slope

1 (Euler) ψ ≡ 1 1/5 O(N−4/5) O(N6/5) -2/3

2 (WT2) ψs,1 1/7 O(N−6/7) O(N8/7) -3/4

3 (WT3) ψs,2 1/9 O(N−8/9) O(N10/9) -4/5

Table 2: Implementation for the extrapolated ∆.
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Extrapolated ∆ using WT1 and WT2
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MSE vs Complexity for Extrapolated Delta (log log plot)
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WT1, WT1, ψ ≡ 1, (m,c) = (−0.66338,−8.6781)
WT2, WT2, ψs,1, (r,c) = (−0.78319,−9.0532)

Figure 3: MSE for extrapolated ∆ vs Complexity.
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Heston Delta

• The Heston model can be represented with i.i.d. Brownian

motions W (1) = (W
(1)
t )t≥0 and W (2) = (W

(2)
t )t≥0 as

d

(
St
Xt

)
=

(
rSt

κ (θ − Xt)

)
dt +

(√
XtSt 0
0 ξ

√
Xt

)(
dW

(1)
t

dW
(2)
t

)

where (S0,X0) = (x , v).

• For an Euler scheme:

∆ = E

[
g(XT )

(Hψ
h )(1)

x
√
v

]
+O(h),

where (Hψ
h )1 is defined with ψ ∈ B0

[0,1] and W
(1)
· .
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Explicit and drift-implicit schemes
• (κ, θ, ξ, r , x , v) = (1.15, 0.04, 0.2, 0, 100, 0.04).
• Mean reversion ω := 2κθ/ξ2 = 2.3.
• Call option with strike K = 100, and T = 1.
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Complexity vs MSE (log log plot)

 

 
Explicit Euler (r,c) = (−0.53697,−6.4368)
Drift−implicit (r,c) = (−0.49373,−6.2407)

Figure 4: MSE for Heston ∆, ζ = 1/3.
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Γ of an option

• Second order sensitivity with respect to initial underlying
price, x ;

Γ := ∂xxE [g(XT )] .

• Find family of functions with desirable properties.

• Previous ideas for higher order approximations and
extrapolation.
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A class of approximate Γ weights

Definition 7 (φ-functions)

Fix l ∈ N+. Define G l[0,1] as the set of bounded, measurable

functions φ : [0, 1]→ R such that∫ 1

0
φ(s)sds = 1, (3)

and if l ≥ 2, then for all k ∈ N+ such that 2 ≤ k ≤ l ,∫ 1

0
φ(s)skds = 0. (4)

• Higher order weights are of the form

Γφh :=
1

h2

∫ h

s=0
φ
( s
h

)
WsdWs ,
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Summary for Γ

• Taylor expanding sufficiently, and using the smoothness of the
value function eventually yields:

E
[
Γφhu(h, X̂h)

]
= σ2∂xxu(0, x) + σσ′∂xu(0, x) +O(h)

= σ2(x)Γ + σ(x)σ′(x)∆ +O(h).
(5)

• Deal with telescoping terms.

• Equation (5), includes the Γ := ∂xxu(0, x) of interest.
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Γ using a weak Taylor scheme order 2:

Theorem 8 (Γ)

Value function u is sufficiently smooth, φ ∈ G1
[0,1], and WT2

scheme, equidistant time grid |π| = h. Then,

E
[
Γφhg(X̂T )

]
= σ(x)2Γ + σ′(x)σ(x)∆ +O(h).

• Similarly, higher order Γ approximations can be obtained.
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• In Table 3, implementation for higher order schemes for Γ
using different schemes, and weights.

Scheme Weight ζ MSE Complexity Slope

WT2 φ ≡ 2 ∈ G1
[0,1] 1/4 O(N−1/2) O(N5/4) −2/5

WT3 φs,2 ∈ G2
[0,1] 1/6 O(N−2/3) O(N7/6) −4/7

Table 3: Implementation and MSE for the Gamma.
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Weak Taylor 2 scheme, using φ ≡ 2
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MSE vs Complexity for Gamma(log log plot)

 

 
WT2 (r,c) = (−0.41837,−5.9818)

Figure 5: MSE for the Γ. Parameters as in Table 3 (i.e. ζ = 1/4).
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Γ extrapolation
Extrapolation using constants A,B:

AE
[
Γφhg(X̂ h

T )
]
− BE

[
Γφ2hg(X̂ 2h

T )
]

= Value +O(hl+1).

φ Value Scheme A B ζ MSE Slope

G1
[0,1] L̂

(1,1)
x u0 Euler 2 1 1/6 O(N−2/3) -4/7

G1
[0,1] L(1,1)u0 WT2 2 1 1/6 O(N−2/3) -4/7

G2
[0,1] L(1,1)u0 WT3 4/3 1/3 1/8 O(N−3/4) -2/3

Table 4: Parameters for approximating Γ using extrapolation, using
different ζ and schemes.

Remark 2

Extrapolating for the Γ using an Euler scheme yields

L̂
(1,1)
x = σ2(x)Γ, which does not include the ∆ term.
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Euler, φ≡2, (r,c) =(−0.6138,−4.7974)
WT2, φ≡2, (r,c) =(−0.5920,−4.4686)

WT3, φs.2, (r,c) =(−0.7259,−6.7696)

Figure 6: log log plot of the MSE vs Complexity for the Γ using
extrapolation. Euler scheme and WT2 with φ ≡ 2, and (A,B) = (2, 1).
Third plot is WT3, using ψs,2 and (A,B) = (4/3, 1/3). See Table 4.
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Thank you for listening
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