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The SABR Model

Consider

dX; = VX dw, Xo = xo >0,
dYi=vY; dZt, Yo = Yo > 0,
d<Zv W>t =p dt7

v>0,pe[-1,1],8€][0,1],
and W and Z are Brownian motions on (Q, F, (Ft)>0, P).
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The SABR Initial Value Problem

Relate the SABR Kolmogorov equation

1
sKo.v(s.%.y) = 5 V2 (P05 + 200x" 0%, + V205, ) Kx.v(s.%.¥)

Asasr(X,y)

to a heat equation

1
5‘SI{)%Y(Sv X, y) = éAg(x,y) K)%Y(S,va)

on a manifold with an appropriately chosen Riemannian metric g.
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The Riemannian metric

Consider A uniformly elliptic second order operator,
¢7(x) highest order coefficients of A,

Matrix of coefficients =(x) := (¢7(x));;

gii(x) coefficients of the inverse =~'. Then

Riemannian metric

n
> gj(x) dx' @ ax’!

ij=1

is then a symmetric covariant tensor field on the state space S,
the pair (S, g) is a Riemannian manifold.
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The SABR Initial Value Problem

The operator Agagr, of the SABR model, differs from the manifold’s
Laplace operator Ay, ) only by a lower order term b(x, y)0x:

Asagr(X. ¥) + V2y2x*P 71 0y = Dgixy).-
N—_————
b(x,y)

The regular perturbation

The following asymptotic relation holds for the fundamental solutions
of the related PDEs

Kx,v(8.x,y) = (Id + Ab(x, y)0x) KF y (8, X, ¥) + O(A?)

foralls > 0and X, Y, x,y > 0, where the expansion is in A = es.

4
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Small-Time Asymptotics

For d;u = }.Au, when A is uniformly elliptic,
we have the following short time asymptotic limit

Varadhan’s Formula

d(Z1 y 22)2

lim tlog pr(z1,22) = ———5

p:(z1, z2) denotes the fundamental solution of d;u = . Au,

d(z1, z2) the Riemannian distance from the metric g; = (E),‘J‘.
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The Geometric Viewpoint

Degeneracy at x =0,y = 0.

The matrix of highest order coefficients of Asagr is

yEx2P y2pxP )

= X =
saBR(X, Y) (yszﬁ 2

Riemannian metric at x = 0, y = 0 not defined.

P
R VT ROV

1 —P
9(x,y) = (Zsasr) " (x,y) = ( S N S )

Problem?
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Varadhan'’s formula does not always fail when = does not fulfill
the uniform ellipticity condition

Normal SABR model: 5=0,p=0

_ 2.0
=sasr(X,y) = ( }6 y2 >7

for all {(x,y) € R2: x,y > 0}, in fact for all {(x,y) € R?: y > 0}.

The Riemannian metric is the well known Poincaré metric

1 1
de@ ax + ?dy@) dy.
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Consider the SABR Formula (HLW)

alog(x/K)( ¢ )
OSABR ~ —i—3_Ki—5 f

=5 (©)
{1 "

wazxm 4 Pram Xar | (2—3p*)2
Expansion for the implied volatility ine =v T

€2T—|-...}

24 4 24

The degeneracy at x = 0 matters.
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Small-Strike Asymptotics

If P(Xr <K)-P(Xr=0)=0(K®)as K |0,
and X is a true martingale then

Small-Strike Expansion with Positive Mass (de Marco et al. *13)

2llogK| N~'(m7) (N "'(mr))?
T T +2\/2T|IogK|+¢(K)’

Ir(K) =

m7 := P(X7 = 0) is the mass at the origin,
N the Gaussian cumulative distribution function,

¢ : (—00,0) — R satisfies limsupy 4 /2T |log K||®(K)| < 1.
See also Gulisashvili *15.
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The Mass at Zero in the SABR Model

Uncorrelated case: decompose SABR by time-change

o) . t
IED(Xt:0):/ P(Xr:O)]I”(/ desedr)dr,
0 0

where the mass at zero for the CEV model X is

2(1-5)
Xo

P()N(fzo) :1r<2(11—6)’2r(6—1)2>’

with [(v, z) = T(v)™" [5 uv e vdu.
Tractable formula for the mass P (X; = 0)?
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The density of the time-change

t
P </ YZds € dr>
0

o familiar: appears when pricing Asian options

@ related to the Hartman-Watson density

@ highly oscillating expressions, double integral, ...
= Numerical difficulties

2Vt V2 1 3 1
= Xp( B 4u2r> mz"zf( 4’4u2r> ar
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Small-time Asymptotics

Oscillating parts:

2
82%/2T (1 + §)674(7
my(/_j,72) = 2 X
T/ 2Ty

/ e Zeosh(2u)—ju* g (u, g, 2z sinh(u)z) sinh(2u) sin <7Tyu> du
0

M is the Kummer function:

B . ala+1)...(a+k—1)xk
M(a,b7X)=1+k; b(b+1)...(b+k—1)k!"

Way out: Direct inverse Laplace transform approach inspired by
Gerhold '11. = Obtain small-time asymptotics.
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Large-time Asymptotics

ymmm:m

_ Xo(1 g —3/2 Y5 d
- ur 1—5) 2r(5—11 )" exp(%)r

Fairly regular = Numerics, asymptotic expansion
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Accumulation of Mass in the SABR Model

Influence of the initial value xy on the large-time mass at zero
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with (yo,v) = (0.015,0.6)

volatility process for these parameters fairly well-behaved
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Accumulation of Mass in the SABR Model

Influence of the initial value xy on the large-time mass at zero
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Accumulation of Mass in the SABR Model

Influence of the parameter 5 on the large-time mass at zero
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Accumulation of Mass in the SABR Model

Influence of the parameter 5 on the large-time mass at zero
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Application: Comparing Implied Volatilities

Recall de Marco et al. ’13:

_ /2llogK| A N7'(m7) =~ (N '(m7))?
I+(K) = T +2\/W+¢(K) (1)

@ model independent

@ by definition arbitrage-free
we plot the functions k :=log K € R + Ir(e¥)\/T/[k|
we compare SABR formula (Obt6j refinement) with (1)
in order to avoid arbitrage, has to be bounded by /2

Blanka Horvath Mass at Zero and Small-Strike Implied Volatility Expansion in the SABR Model



Application: Comparing Implied Volatilities

20

. + Obloj formula
18} Ty, — - First-order correction
’ — Second-order correction
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log strikes
We plot k € R+ Ir(eX)\/T/Ik|.
The black line marks the level v2.
Parameters are (v, 8, p, X0, ¥o, T) = (0.3,0,0,0.35,0.05, 10)
The large-time mass is equal to 28.3%
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Application: Comparing Implied Volatilities

0.0 - ™
A
Rl Obloj formula '
_10|| — - First-order correction Y
— Second-order correction
s % 5 9 5 o o 0

log strikes
We plot k € R+ Ir(eX)\/T/Ik|.
The black line marks the level v2.
Parameters are (v, 8, p, X0, Yo, T) = (0.6,0.6,0,0.08,0.015,10)
The large-time mass is equal to 3.1%
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Correlated Case

We consider the associated heat equation

dX; = Y X dW, + ngXfﬂ’1dt, Xo =X >0,

dY; = I/YtdZt, Yo = Yo > 0,
d(Z, W); = pdt,

withv >0, p € (-1,1), 8 € [0,1).

Particular interest in the cases 5 = 0 and p = 0.

See also: Hobson ’10, Déring-H. ’15.
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Thank you for your attention!
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