Mean-Field Games

Lectures at the Imperial College London

4th Lecture: Master Equation and Convergence

François Delarue (Nice – J.-A. Dieudonné)

May 13 2015

Joint works with R. Carmona; J.F. Chassagneux and D. Crisan; P. Cardaliaguet

Part I. Master Equation

Part I. Master Equation

a. Revisiting the PDE interpretation

Reminder

- Recall MFG when $\sigma^0 \equiv 0$
- Define the asymptotic equilibrium state of the population as the solution of a fixed point problem
- (1) fix a flow of probability measures $(\mu_t)_{0 \le t \le T}$ (with values in $\mathcal{P}_2(\mathbb{R}^d)$)
- (2) solve the stochastic optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

$$dX_t = b(X_t, \mu_t, \alpha_t)dt + \sigma(X_t, \mu_t)dW_t$$

 \circ with $X_0 = \xi$ being fixed on some set-up $(\Omega, \mathbb{F}, \mathbb{P})$ with a d-dimensional B.M.

• with cost
$$J(\alpha) = \mathbb{E} \left[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \alpha_t) dt \right]$$

(3) let $(X_t^{\star,\mu})_{0 \le t \le T}$ be the unique optimizer (under nice assumptions) \sim find $(\mu_t)_{0 \le t \le T}$ such that

$$\mu_t = \mathcal{L}(X_t^{\star,\mu}), \quad t \in [0,T]$$

PDE point of view: HJB

- \bullet PDE characterization of the optimal control problem when σ is the identity
- Value function in environment $(\mu_t)_{0 \le t \le T}$

$$U(t,x) = \inf_{\alpha \text{ processes}} \mathbb{E} \Big[g(X_T, \mu_T) + \int_t^T f(X_s, \mu_s, \alpha_s) ds | X_t = x \Big]$$

• U solution Backward HJB

$$\left(\partial_t U + \frac{\partial_{xx}^2 U}{2}\right)(t,x) + \underbrace{\inf_{\alpha \text{ scalar}} \left[b(x,\mu_t,\alpha) \cdot \partial_x U(t,x) + f(x,\mu_t,\alpha)\right]}_{\text{standard Hamiltonian in HJB}} = 0$$

$$\circ \alpha \leadsto \alpha = \alpha^{\star}(x, \mu_t, \partial_x U(t, x))$$

- Terminal boundary condition: $U(T, \cdot) = g(\cdot, \mu_T)$
- Pay attention that U depends on $(\mu_t)_t$!

Fokker-Planck

- Need for a PDE characterization of $(\mathcal{L}(X_t^{\star,\mu}))_t$
- Dynamics of $X^{\star,\mu}$ at equilibrium

$$dX_t^{\star,\mu} = b\big(X_t^{\star,\mu},\mu_t,\alpha^\star(X_t^{\star,\mu},\mu_t,\frac{\partial_x U(t,X_t^{\star,\mu})})\big)dt + dW_t$$

• Law $(X_t^{\star,\mu})_{0 \le t \le T}$ satisfies Fokker-Planck (FP) equation

$$d_t \mu_t = -\text{div}(\underbrace{b(x, \mu_t, \alpha^*(x, \mu_t, \frac{\partial_x U(t, x)}{\partial_x U(t, x)})}_{b^*(t, x)} \mu_t) dt + \frac{1}{2} \partial_{xx}^2 \mu_t dt$$

- MFG equilibrium described by forward-backward in ∞ dimension
 - $\circ \infty$ dimensional analogue of

$$\dot{x}_t = b(x_t, y_t)dt, \quad x_0 = x^0$$

$$\dot{y}_t = -f(x_t, y_t)dt, \quad y_T = g(x_T)$$

- $\circ \sigma^0 \equiv 0 \rightarrow \text{deterministic FB system}$
- \circ if $\sigma^0 \neq 0 \Rightarrow$ stochastic FB system

MFG as characteristics of a PDE

- Find the decoupling field of the ∞ dimensional FB system
- Find a function *U* such that

$$\underbrace{U}_{\text{HJB}}(t,\,\cdot\,) = \underbrace{U}_{\text{FP}}(t,\,\cdot\,,\,\,\underline{\mu_t})$$

$$\circ \ \mathcal{U}: [0,T] \times \mathcal{P}_2(\mathbb{R}^d) \to C(\mathbb{R}^d,\mathbb{R})$$

$$\circ \ \mathcal{U}(T,\cdot,\mu_T) = g(\cdot,\mu_T)$$

- Write (master?) PDE for *U*
- Procedure for the formal identification of the PDE
 - martingale increment

$$d\mathcal{U}(t, X_t^{\star}, \mu_t) + f(X_t^{\star}, \mu_t, \alpha^{\star}(X_t^{\star}, \mu_t, \partial_x \mathcal{U}(t, X_t^{\star}, \mu_t)))dt$$

- o compare with Itô's formula
- \circ requires a chain rule on $\mathcal{P}_2(\mathbb{R}^d)$

MFG as characteristics of a PDE

- Find the decoupling field of the ∞ dimensional FB system
- Find a function *U* such that

$$\underbrace{U}_{\text{HJB}}(t,x) = \underbrace{U}(t,x,\underbrace{\mu_t}_{\text{FP}})$$

- $\circ \ \mathcal{U}: [0,T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$
- \circ $\mathcal{U}(T, x, \mu_T) = g(x, \mu_T)$
- Write (master?) PDE for *U*
- Procedure for the formal identification of the PDE
 - martingale increment

$$d\mathcal{U}(t, X_t^{\star}, \mu_t) + f(X_t^{\star}, \mu_t, \alpha^{\star}(X_t^{\star}, \mu_t, \partial_x \mathcal{U}(t, X_t^{\star}, \mu_t)))dt$$

- o compare with Itô's formula
- \circ requires a chain rule on $\mathcal{P}_2(\mathbb{R}^d)$

Part I. Master Equation

b. Deriving the master equation

Reminder

- Recall Lions differentiation on $\mathcal{P}_2(\mathbb{R}^d)$
- Consider $\mathcal{U}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$
- Lifted-version of *U*

$$\hat{\mathcal{U}}: L^2(\Omega, \mathbb{P}) \ni X \mapsto \mathcal{U}(\text{Law}(X))$$

- $\circ \mathcal{U}$ differentiable if $\hat{\mathcal{U}}$ Fréchet differentiable (Lions)
- \bullet Differential of ${\cal U}$
 - \circ Fréchet derivative of $\hat{\mathcal{U}}$

$$D\hat{\mathcal{U}}(X) = \partial_{\mu}\mathcal{U}(\mu)(X), \quad \partial_{\mu}\mathcal{U}(\mu) : \mathbb{R} \ni x \mapsto \partial_{\mu}\mathcal{U}(\mu)(x) \quad \mu = \mathcal{L}(X)$$

- \circ derivative of \mathcal{U} at $\mu \leadsto \partial_{\mu} \mathcal{U}(\mu) \in L^{2}(\mathbb{R}^{d}, \mu; \mathbb{R}^{d})$
- Finite dimensional projection

$$\partial_{\mathbf{x}_{i}}\left[\mathcal{U}\left(\frac{1}{N}\sum_{j=1}^{N}\delta_{x_{j}}\right)\right] = \frac{1}{N}\partial_{\mu}\mathcal{U}\left(\frac{1}{N}\sum_{j=1}^{N}\delta_{x_{j}}\right)(\mathbf{x}_{i}), \quad x_{1}, \ldots, x_{N} \in \mathbb{R}^{d}$$

Chain rule on $\mathcal{P}_2(\mathbb{R}^d)$

- Itô process $dX_t = b_t dt + \sigma_t dW_t$, $\int_0^T \mathbb{E}[|b_t|^2 + |\sigma_t|^4] dt < \infty$ • $\mu_t = \text{law of } X_t$
- $\hat{\mathcal{U}}$ twice Fréchet differentiable • chain rule for $(\mathcal{U}(\mu_t))_{t>0}$?
- Approximate μ_t by particle system

$$\mu_t \sim \frac{1}{N} \sum_{j=1}^N \delta_{X_t^j}$$
 and $d_t \left[\mathcal{U} \left(\frac{1}{N} \sum_{j=1}^N \delta_{X_t^j} \right) \right]$

- o expand the right-hand side and pass to the limit
- Chain rule
 - \circ need $\mathbb{R}^d \ni x \mapsto \partial_{\mu} \mathcal{U}(\mu)(x) \in \mathbb{R}^d$ differentiable

$$\frac{d}{dt}\mathcal{U}(\boldsymbol{\mu_t}) = \mathbb{E}[\langle b_t, \partial_{\mu}\mathcal{U}(\boldsymbol{\mu_t})(X_t) \rangle] + \frac{1}{2}\mathbb{E}[\operatorname{Trace}(\sigma_t \sigma_t^{\dagger} \partial_{x}(\partial_{\mu}\mathcal{U}(\boldsymbol{\mu_t}))(X_t))]$$

Shape of the master equation

• Formal identification of zero dt term in expansion of

$$d\mathcal{U}(t, X_t^{\star}, \boldsymbol{\mu}_t) + f(X_t^{\star}, \boldsymbol{\mu}_t, \alpha^{\star}(X_t^{\star}, \boldsymbol{\mu}_t, \partial_x \mathcal{U}(t, X_t^{\star}, \boldsymbol{\mu}_t)))dt$$

∘ requires an extension of Itô's formula to handle all the coordinates → no bracket!

• Formal derivation → first-order master equation:

Not a HJB! (MFG ≠ optimization)

$$\partial_{t}\mathcal{U}(t,x,\mu) + \underbrace{\int_{\mathbb{R}^{d}} \langle b^{\star}(t,\nu), \partial_{\mu}\mathcal{U}(t,x,\mu)(\nu) \rangle d\mu(\nu)}_{\text{transport in }\mu}$$

$$+ \underbrace{\langle b^{\star}(t,x), \partial_{x}\mathcal{U}(t,x,\mu) \rangle + f(x,\mu,\alpha^{\star}(t,x,\partial_{x}\mathcal{U}(t,x,\mu),\mu))}_{\text{standard Hamiltonian}}$$

$$+ \frac{1}{2} \text{Trace} \Big(\underbrace{\partial_{x}^{2}\mathcal{U}(t,x,\mu)}_{\text{standard diffusion}} \Big) + \underbrace{\int_{\mathbb{R}^{d}} \text{Trace} \Big(\partial_{\nu}\partial_{\mu}\mathcal{U}(t,x,\mu)(\nu) \Big) d\mu(\nu)}_{\text{standard diffusion}} = 0$$

◆ロト ◆御 ▶ ◆ 恵 ▶ ・ 恵 ・ 夕久で

Part I. Master Equation

c. Sketch of the proof

Program

- Prove existence of a classical solution
 - o holds in small time if smooth coefficients
- Long time → emergence of singularities
 - \circ no singularity in $x \leftrightarrow \text{Laplace } \partial_x^2$
 - \circ if Laplace \rightarrow use convexity in x in cost functional
- \circ regularity in $\mu \sim$ Laplace does not help need monotonicity condition

main issue is to control $\partial_u \mathcal{U}!$

- Lasry Lions monotonicity condition
 - \circ b doesn't depend on μ
 - $\circ f(x, \mu, \alpha) = f_0(x, \mu) + f_1(x, \alpha)$ (μ and α are separated)
 - \circ monotonicity property for f_0 and g w.r.t. μ

$$\int_{\mathbb{R}^d} (h(x,\mu) - h(x,\mu')) d(\mu - \mu')(x) \ge 0, \quad h = f_0, g$$

Master equation in linear case

• Forget forward-backward and consider the decoupled case

$$dX_t^{\star} = b(X_t^{\star}, \mathcal{L}(X_t^{\star}))dt + dW_t, \quad X_0^{\star} = X_0$$

- \circ choose σ = Id for simplicity
- Analogue with the master equation?
 - \circ notice that $\mathcal{L}(X_t^{\star})$ only depends on $\mathcal{L}(X_0)$
 - o define the semi-group

$$(P_t\phi)(\mathcal{L}(X_0)) = \phi(\mathcal{L}(X_t^*)), \quad t \in [0,T], \quad \phi: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$$

- \circ dynamics of $\mathcal{P}_2(\mathbb{R}^d) \ni \mu \mapsto P_t \phi(\mu)$?
- Shape of the master equation

$$\partial_{t}(P_{t}\phi)(\mu) - \int_{\mathbb{R}^{d}} b(v,\mu) \cdot \partial_{\mu}(P_{t}\phi)(\mu)(v) d\mu(v)$$

$$-\frac{1}{2} \int_{\mathbb{R}^{d}} \operatorname{Trace}\left(\partial_{v}\partial_{\mu}(P_{t}\phi)(\mu)(v)\right) d\mu(v) = 0, \quad (P_{0}\phi)(\mu) = \phi(\mu)$$

Derivative of the semi-group of a MKV SDE

• Regularity of $P_t \phi$ when ϕ is smooth \sim investigate smoothness of the flow of the MKV SDE

• Lift of
$$\phi \leadsto \hat{\phi} : L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^d) \ni X \mapsto \hat{\phi}(X) = \phi(\mathcal{L}(X))$$

• $P_t \phi(\mathcal{L}(X_0)) = \hat{\phi}(X_t^*)$

• Perturbation of X_0 in direction $\zeta \in L^2$

$$\circ X_0^{\varepsilon} = X_0 + {\varepsilon \zeta} \leadsto (X_t^{\star, \varepsilon})_{0 \le t \le T} \Rightarrow \partial_{\zeta} X_t^{\star} = \frac{dX_t^{\star, \varepsilon}}{d\varepsilon}|_{\varepsilon = 0}$$

• Derivative of $P_t \phi$ reads

$$\mathbb{E}\Big[\big\langle \partial_{\mu}(P_t\phi)(\mathcal{L}(X_0))(X_0), \zeta \big\rangle\Big] = \mathbb{E}\Big[\big\langle \partial_{\mu}\phi(\mathcal{L}(X_t^{\star}))(X_t^{\star}), \partial_{\zeta}X_t^{\star} \big\rangle\Big]$$

o get the estimate

$$\mathbb{E}\left[\left|\partial_{\mu}(P_{t}\phi)(\mathcal{L}(X_{0}))(X_{0})\right|^{2}\right]^{1/2} \\
\text{derivative of semigroup at } \mathcal{L}(X_{0}) \\
\leq \mathbb{E}\left[\left|\partial_{\mu}\phi(\mathcal{L}(X_{t}^{\star}))(X_{t}^{\star})\right|^{2}\right]^{1/2} \\
\text{derivative of } \phi \text{ along SDE}}
\underbrace{\sup_{\zeta: \mathbb{E}\left[\left|\zeta\right|^{2}\right] \leq 1}}_{\mathcal{L}^{2} \text{ flow of } \mathbb{SDE}_{+} \mathbb{R} \to +\mathbb{R}} \mathbb{R}$$

Derivative of the flow of MKV SDE

• Recall MKV dynamics

$$dX_t^{\star} = b(X_t^{\star}, \mathcal{L}(X_t^{\star}))dt + dW_t, \quad X_0^{\star} = X_0$$

• Dynamics of $\partial_{\zeta}X^{\star}$

$$\begin{split} d\partial_{\zeta}X_{t}^{\star} &= \partial_{x}b(X_{t}^{\star},\mathcal{L}(X_{t}^{\star}))\partial_{\zeta}X_{t}^{\star}dt \\ &+ \hat{\mathbb{E}}[\partial_{\mu}b(X_{t}^{\star},\mathcal{L}(X_{t}^{\star}))(\hat{X}_{t}^{\star})\partial_{\zeta}\hat{X}_{t}^{\star}]dt, \quad \partial_{\zeta}X_{0}^{\star} &= \zeta \end{split}$$

 \circ $(\hat{\Omega}, \hat{\mathcal{A}}, \hat{\mathbb{P}})$ auxiliary space with copies of the r.v. \rightsquigarrow McKean-Vlasov derivative system

• L^2 estimate of $\mathbb{E}[|\partial_{\zeta} X_t^{\star}|^2]$

$$d\mathbb{E}[|\partial_{\zeta}X_{t}^{\star}|^{2}] = 2\mathbb{E}[\langle\partial_{\zeta}X_{t}^{\star},\partial_{x}b(X_{t}^{\star},\mathcal{L}(X_{t}^{\star}))\partial_{\zeta}X_{t}^{\star}\rangle]dt + \mathbb{E}\hat{\mathbb{E}}[\langle\partial_{\zeta}X_{t}^{\star},\partial_{\mu}b(X_{t}^{\star},\mathcal{L}(X_{t}^{\star}))(\hat{X}_{t}^{\star})\partial_{\zeta}\hat{X}_{t}^{\star}\rangle]dt$$

 \circ deduce $\mathbb{E}[|\partial_{\zeta} X_t^{\star}|^2] \leq C \mathbb{E}[|\zeta|^2]$ with

$$C = C\left(T, \sup_{x,\mu} \left| \partial_x b(x,\mu) \right|^2, \sup_{x,\mu} \int \left| \partial_\mu b(x,\mu)(v) \right|^2 d\mu(v) \right)$$

Higher-order derivatives

• Master equation \sim differentiate once again w.r.t. v

$$(\mu, \nu) \mapsto \partial_{\mu} P_t \phi(\mu)(\nu)$$

- Derivatives in the direction v/X_0
 - \circ freeze ζ and consider new perturbation $X_0 \leadsto X_0^{\varepsilon}$

$$\mathcal{L}(X_0^{\varepsilon})$$
 independent of $\varepsilon \Rightarrow \mathcal{L}(X_t^{\star,\varepsilon})$ independent of ε

• differentiate the formula for the derivative

$$\mathbb{E}\Big[\Big\langle \frac{\partial_{\nu}\partial_{\mu}\Big(P_{t}\phi(\mathcal{L}(X_{0}^{0}))\Big)(X_{0}^{0}), \zeta \otimes \frac{dX_{0}^{\varepsilon}}{d\varepsilon}\Big\rangle\Big]$$

$$= \mathbb{E}\Big[\Big\langle \frac{\partial_{\nu}\partial_{\mu}\phi(\mathcal{L}(X_{t}^{0,\star}))(X_{t}^{0,\star}), \partial_{\zeta}X_{t}^{0,\star} \otimes \frac{d}{d\varepsilon}\Big|_{\varepsilon=0}X_{t}^{\varepsilon,\star}\Big\rangle\Big]$$

$$+ \mathbb{E}\Big[\Big\langle \frac{\partial_{\mu}\phi(\mathcal{L}(X_{t}^{0,\star}))(X_{t}^{0,\star}), \frac{d}{d\varepsilon}\Big|_{\varepsilon=0}\partial_{\zeta}X_{t}^{\varepsilon,\star}\Big\rangle\Big]$$

$$\circ \text{ example } X_{0}^{\varepsilon} = X_{0} + \delta\Big(\cos(\varepsilon)Z + \sin(\varepsilon)Z'\Big)$$

$$\circ \text{ with } (Z, Z') \sim \mathcal{N}(0, 1)^{\otimes 2} \text{ and } (Z, Z') \text{ independent of } X_{0}$$

Example in coupled case

• Linear-quadratic cost in d = 1

$$\circ b(x, \mu, \alpha) = \alpha, \quad f_1(x, \alpha) = \alpha^2/2$$

 \circ g, f_0 bounded, smooth and Lasry-Lions

$$dX_t^{\star} = -\partial_x \mathcal{U}(t, X_t^{\star}, \mathcal{L}(X_t^{\star}))dt + dB_t$$

• Dynamics of $\partial_{\zeta}X^{\star}$

$$d\partial_{\zeta} X_{t}^{\star} = -\partial_{xx}^{2} \mathcal{U}(X_{t}^{\star}, \mathcal{L}(X_{t}^{\star}), \cdot) \partial_{\zeta} X_{t}^{\star} dt - \hat{\mathbb{E}} [\partial_{\mu} (\partial_{x} \mathcal{U})(t, X_{t}^{\star}, \mathcal{L}(X_{t}^{\star})) (\hat{X}_{t}^{\star}) \partial_{\zeta} \hat{X}_{t}^{\star}] dt$$

- $\circ \partial_{xx}^2 \mathcal{U}$ already estimated! (thanks to Laplace)
- Propagation of monotonicity

$$\mathbb{E}\hat{\mathbb{E}}\left[\partial_x(\partial_\mu \mathcal{U})(t, X_t^{\star}, \mathcal{L}(X_t^{\star}))(\hat{X}_t^{\star})\partial_{\zeta}\hat{X}_t^{\star}\partial_{\zeta}X_t^{\star}\right] \geq 0.$$

- Conclusion $\rightsquigarrow \mathbb{E}[|\partial_{\zeta} X_{t}^{\star}|^{2}] \leq C \mathbb{E}[|\zeta|^{2}]$
 - \circ gives a way to control derivative in $\mu \sim \text{avoid any blow-up}$

Checking the monotonicity condition

• Lasry-Lions monotonicity condition (choose d = 1)

$$\int_{\mathbb{R}} (h(x,\mu') - h(x,\mu)) d(\mu' - \mu)(x) \ge 0$$

 $\circ X \sim \mu$ and $X' \sim \mu'$

$$\mathbb{E}\Big[h(X',\mathcal{L}(X')) - h(X',\mathcal{L}(X)) - \Big(h(X,\mathcal{L}(X')) - h(X,\mathcal{L}(X))\Big)\Big] \ge 0$$

- Make a perturbation $X' = X + \varepsilon Y$
 - o first step

$$\mathbb{E}\hat{\mathbb{E}}\left[\partial_{\mu}h(X',\mathcal{L}(X))(\hat{X})\hat{Y} - \partial_{\mu}h(X,\mathcal{L}(X))(\hat{X})\hat{Y}\right] + o(\varepsilon) \ge 0$$

- \circ need copies \hat{X} and \hat{Y} on another space
- o second step

$$\mathbb{E}\hat{\mathbb{E}}\left[\partial_x \partial_\mu h(X, \mathcal{L}(X))(\hat{X})\hat{Y}Y\right] \ge 0$$

Notes and complements

- Case with a common noise
 - HJB and FP become stochastic PDEs
- \circ but $\mathcal U$ remains deterministic! decoupling field of a stochastic FBSDE in ∞ dimension
- Master equation with a common noise \sim involves second-order derivatives in the direction of the measure \sim example

$$b(x, \mu, \alpha) = -x + b(m) + \alpha, m = \int x' d\mu(x')$$

$$color f(x, \mu, \alpha) = \frac{1}{2} [(x + f(m))^2 + \alpha^2], g(x, \mu) = \frac{1}{2} (x + g(m))^2$$

• Stochastic Pontryagin \rightsquigarrow strong solution if $Y_t = X_t + \chi_t$

$$d\mathbf{m}_{t} = (b(\mathbf{m}_{t}) - 2\mathbf{m}_{t} - \chi_{t})dt + dW_{t}^{0},$$

$$d\chi_{t} = -(f + b)(\mathbf{m}_{t})dt + \zeta_{t}dW_{t}^{0}, \quad \chi_{T} = g(\mathbf{m}_{T})$$

$$\circ \partial_x \mathcal{U}(t, x, \mu_t) = x + v(t, m_t)$$
 with m_t mean of μ_t

$$\partial_t v(t,m) + \frac{1}{2} \partial_{mm}^2 v(t,m) + \partial_m v(t,m) \big(b(m) - 2m - v(t,m) \big) + (f+b)(m) = 0$$

Part II. The convergence problem

Part II. The convergence problem

a. General prospect

Revisiting the *N*-player game

• Controlled dynamics (1d to simplify)

$$dX_t^i = b(X_t^i, \bar{\mu}_t^N, \alpha_t^i)dt + \sigma(X_t^i, \bar{\mu}_t^N)dW_t^i$$

- independent Brownian motion $W^1, ..., W^N$, progressively-measurable controls $\alpha^1, ..., \alpha^N$
- o mean-field interaction $\leadsto \bar{\mu}^N_t = \frac{1}{N} \sum_{i=1}^N \delta_{X^i_t}$
- Cost functionals to player i

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \mathbb{E}\left[g(X_{T}^{i},\bar{\boldsymbol{\mu}}_{T}^{N}) + \int_{0}^{T} f(X_{s}^{i},\bar{\boldsymbol{\mu}}_{s}^{N},\alpha_{s}^{i})ds\right]$$

- ∘ try to minimize → Nash equilibrium?
- Rigorous connection between Nash equilibria with *N* players and MFG?

Two roads for making the connection

- Prove the convergence of the Nash equilibria as N tends to ∞
- \circ difficulty \leadsto no uniform smoothness on the optimal feedback function $\alpha^{\star,N}$ w.r.t to N

$$\underbrace{\alpha_t^{\star,i,N}}_{\text{optimal control to player }i} = \alpha^{\star,N}(X_t^i; \underbrace{X^1, \dots, X^{i-1}, X^{i+1}, \dots, X^N}_{\text{states of the others}})$$

→ no compactness on the feedback functions

- o several attempts → weak compactness arguments on the control (notion of relaxed controls) for equilibria over open loop controls
 - ∘ below → use the master equation
- Implement feedback function for MFG into finite player game
 - ∘ limit setting → optimal control has the form

$$\alpha_t^* = \alpha^*(X_t, \underline{\mu_t})$$
population at equilibrium

$$\circ$$
 use $\alpha_t^N = \alpha^*(X_t^i, \mu_t) \rightarrow$ what about Nash?

Part II. The convergence problem

b. Convergence of the equilibria

Reminder

• Recall FBSDE associated with Markov loop

$$\begin{split} dX_{t}^{i} &= b\Big(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha^{\star}(X_{t}^{i}, \bar{\mu}_{t}^{N}, Z_{t}^{i,i}\sigma^{-1}(X_{t}^{i}, \bar{\mu}_{t}^{N}))\Big)dt + \sigma(X_{t}^{i}, \bar{\mu}_{t}^{N})dW_{t}^{i} \\ dY_{t}^{i} &= -f\Big(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha^{\star}(X_{t}^{i}, \bar{\mu}_{t}^{N}, Z_{t}^{i,i}\sigma^{-1}(X_{t}^{i}, \bar{\mu}_{t}^{N}))\Big)dt + \sum_{j=1}^{N} Z_{t}^{i,j}dW_{t}^{j} \end{split}$$

with $Y_T^i = g(X_T^i, \mu_T^N)$ as terminal condition

 $\circ \alpha^{\star}$ is the minimizing function of the Hamiltonian

$$\alpha^{\star}(x,\mu,z) = \inf_{\alpha \in A} H(x,\mu,\alpha,z) \quad H(x,\mu,\alpha,z) = b(x,\mu,\alpha) \cdot z + f(x,\mu,z)$$

 $\circ \text{ difficulty } Z_t^{i,i} = \underbrace{\partial_{x_i} u^{i,N}}_{} (t, X_t^1, \dots, X_t^N)$

derivative of x_i if ith value function

 \bullet Same assumption as for optimal control under non-degenerate σ (with A bounded) in 1st Lecture \rightarrow existence and uniqueness

 \circ again \sim no uniform control of $\partial_{x_i} u^{i,N}$

N-player game as a perturbation

- Idea is to use the master equation (if smooth solution)
 - o recall the meaning of Y and Z in the MFG

$$Y_t = \mathcal{U}(t, X_t, \mathcal{L}(X_t))$$
 $Z_t = \partial_x \mathcal{U}(t, X_t, \mathcal{L}(X_t)) \underbrace{\sigma(X_t, \mathcal{L}(X_t))}_{\text{choose } \sigma = \text{Id}}$

• Perturbed version \sim go back to N-player game equilibrium

• FBSDE for
$$\mathcal{Y}_{t}^{i} = \mathcal{U}(t, X_{t}^{i}, \bar{\mu}_{t}^{N})$$

$$\mathcal{Z}_{t}^{i} = \partial_{x} \mathcal{U}(t, X_{t}^{i}, \bar{\mu}_{t}^{N})$$
?

• Get it by applying Itô's formula to $\mathcal{Y}_t^{\star,i}$ (d=1)

$$\partial_{x_{i}}[\mathcal{U}(t,x_{j},\mu^{N,x})] = \partial_{x}\mathcal{U}(t,x_{i},\mu^{N,x})\delta_{i}^{j} + \frac{1}{N}\partial_{\mu}\mathcal{U}(t,x_{j},\mu^{N,x})(x_{i})$$

$$\partial_{x_{i}}^{2}[\mathcal{U}(t,x,\mu^{N,x})] = \partial_{x}^{2}\mathcal{U}(t,x_{i},\mu^{N,x})\delta_{i}^{j} + \frac{1}{N}\partial_{\nu}\partial_{\mu}\mathcal{U}(t,x_{j},\mu^{N,x})(x_{i})$$

$$+ O(N^{-1})\delta_{i}^{j} + O(N^{-2})$$

$$\circ \mu^{N,x} = N^{-1}\sum_{\ell=1}^{N}\delta_{x_{\ell}}$$

Perturbed FBSDE

• Let
$$\begin{aligned} \alpha_t^{\star,i,\infty} &= \alpha^{\star}(X_t^i, \bar{\mu}_t^N, \mathbf{Z}_t^i) & \text{artificial control} \\ \alpha_t^{\star,i,N} &= \alpha^{\star}(X_t^i, \bar{\mu}_t^N, \mathbf{Z}_t^{i,i}) & \text{true control} \end{aligned}$$

• Itô expansion yields

$$\begin{split} d\mathcal{Y}_{t}^{i} &= \left[b(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, i, N}) - b(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, i, \infty})\right] \cdot \partial_{x} \mathcal{U}(t, X_{t}^{i}, \bar{\mu}^{N}) dt \\ &+ \frac{1}{N} \sum_{j=1}^{N} \left[b(X_{t}^{j}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, j, N}) - b(X_{t}^{j}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, j, \infty})\right] \cdot \partial_{\mu} \mathcal{U}(t, X_{t}^{i}, \bar{\mu}_{t}^{N})(X_{t}^{j}) dt \\ &- f(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{\star, i, \infty}) dt + O(N^{-1}) dt \\ &+ \mathcal{Z}_{t}^{\star, i} dW_{t}^{i} + \frac{1}{N} \sum_{j=1}^{N} \mathcal{Z}_{t}^{\star, i, j} dW_{t}^{j} \\ &\xrightarrow{\mathbf{bracket}} \sim N^{-1} \end{split}$$

 \circ reminiscent of the expansion of $(Y_t^i)_{0 \le t \le T} \leadsto$ make the difference between both

Stability argument

• Difference between the two FBSDEs

$$\begin{split} &d(\mathcal{Y}_{t}^{i}-Y_{t}^{i})\\ &=\Big[b(X_{t}^{i},\bar{\mu}_{t}^{N},\alpha_{t}^{\star,i,N})-b(X_{t}^{i},\bar{\mu}_{t}^{N},\alpha_{t}^{\star,i,\infty})\Big]\partial_{x}\mathcal{U}(t,X_{t}^{i},\bar{\mu}^{N})dt\\ &+\frac{1}{N}\sum_{j=1}^{N}\Big[b(X_{t}^{j},\bar{\mu}_{t}^{N},\alpha_{t}^{\star,j,N})-b(X_{t}^{j},\bar{\mu}_{t}^{N},\alpha_{t}^{\star,j,\infty})\Big]\partial_{\mu}\mathcal{U}(t,X_{t}^{i},\bar{\mu}_{t}^{N})(X_{t}^{j})dt\\ &-\Big[f(X_{t}^{i},\bar{\mu}_{t}^{N},\alpha_{t}^{\star,i,\infty}-f(X_{t}^{i},\bar{\mu}_{t}^{N},\alpha_{t}^{\star,i,N})\Big]dt+O(N^{-1})dt\\ &+\Big(\mathcal{Z}_{t}^{i}-\mathcal{Z}_{t}^{i,i}\Big)dW_{t}^{i}+\frac{1}{N}\sum_{j=1}^{N}(\mathcal{Z}_{t}^{i,j}-\mathcal{Z}_{t}^{i,j})dW_{t}^{j} \end{split}$$

• Lipschitz differences!

$$\circ \text{ recall } |\alpha^{\star,i,\infty} - \alpha^{\star,i,N}| \le C|\mathcal{Z}_t^{\star,i} - \mathcal{Z}_t^{\star,i,i}|$$

$$\circ \text{ if } |\partial_x \mathcal{U}(t,x,\mu)| \le C \text{ and } \hat{\mathbb{E}}[|\partial_\mu \mathcal{U}(t,x,\mu)(\hat{X})|^2]^{1/2} \le C \text{ for } \hat{X} \sim \mu$$

∘ use variation of Cauchy-Lipschitz → stability!

Conclusion

Stability yields and symmetry

$$\mathbb{E}[\sup_{0 \le t \le T} |\mathcal{Y}_t^i - Y_t^i|^2] + \mathbb{E}\int_0^T |\mathcal{Z}_t^i - Z_t^{i,i}|^2 dt \xrightarrow[N \to \infty]{} 0$$

• Plug into the forward equation

$$dX_t^i = b\left(X_t^i, \bar{\mu}_t^N, \alpha^*(X_t^i, \bar{\mu}_t^N, Z_t^{i,i})\right) dt + dW_t^i$$

$$\approx b\left(X_t^i, \bar{\mu}_t^N, \alpha^*(X_t^i, \bar{\mu}_t^N, \partial_x \mathcal{U}(t, X_t^i, \bar{\mu}_t^N))\right) dt + dW_t^i$$

- Recover the standard MKV setting!
 - \circ require $\partial_x \mathcal{U}$ to be Lipschitz
- o then particles get independent in the limit with following dynamics

$$dX_t = b\big(X_t, \mathcal{L}(X_t), \alpha^{\star}(X_t, \mathcal{L}(X_t), \partial_x \mathcal{U}(t, X_t, \mathcal{L}(X_t)))\big)dt + dW_t$$

o recover the dynamics of the MFG equilbrium

Part II. The convergence problem

c. Construction of quasi-equilibria

Implementing the limit optimal feedback

• Shape of the optimal feed back in the limit MFG problem

$$\alpha^{\star}(x,\mu_t^{\star},\partial_x\mathcal{U}(t,x,\mu_t^{\star}))$$

- $\circ \alpha^*$ minimizes the Hamiltonian
- $\circ \mu_t^{\star}$ is the law of the population at time when in equilibrium
- $\circ \partial_x \mathcal{U}(t, x, \mu_t^*)$ matches $\partial_x U^{\mu^*}(t, x)$ where U^{μ^*} is the value function in environment μ^*
- \circ under same assumptions as in Lecture $1 \leadsto \partial_x U^{\mu^*}(t,\cdot)$ is Lipschitz continuous in x
- Go back to the dynamics of the finite player system
 - \circ assume that σ is identity (for simplicity)

$$dX_t^i = b(t, X_t^i, \bar{\mu}_t^N, \alpha^*(t, X_t^i, \mu_t^*, \partial_x U^{\mu^*}(t, X_t^i)))dt + dW_t^i$$

 \circ compute first $\partial_x U^{\mu^*}$ and μ^* numerically and plug them!

Propagation of chaos

• N-player system

$$dX_t^i = b\big(t, X_t^i, \bar{\mu}_t^N, \alpha^{\star}(t, X_t^i, \partial_x U^{\mu^{\star}}(t, X_t^i), \mu_t^{\star})\big)dt + dW_t^i$$

- o fits the framework of MKV SDE
- As N tends to ∞
 - \circ for k fixed

$$(X_t^1,\ldots,X_t^k)_{0\leq t\leq T}\xrightarrow{\mathcal{L}}\mathcal{L}((X_t^{\star})_{0\leq t\leq T})^{\otimes k}$$

 \circ where $(X_t^{\star})_{0 \le t \le T}$ optimal dynamics in the limit

$$dX_t^{\star} = b(X_t^{\star}, \mu_t^{\star}, \alpha^{\star}(X_t^{\star}, \mu_t, \partial_x U^{\mu^{\star}}(t, X_t^{\star})))dt + dW_t$$

 \circ moreover, for each $t \in [0, T], \bar{\mu}_t^N \xrightarrow{f} \mu_t^*$

Quasi-Nash property

- Notations
- $\circ \alpha_t^i = \alpha^*(t, X_t^i, \partial_x U^{\mu^*}(t, X_t^i), \mu_t^*)$ controls taken from the limit feedback function
 - \circ call J^* the optimal cost in the MFG setting
 - o under assumptions used throughout the lectures

$$J(\alpha^1,\ldots,\alpha^N) \xrightarrow[N\to\infty]{} J^*$$

- Check that $(\alpha^1, \dots, \alpha^N)$ forms a quasi-Nash equilibrium
 - \circ change α^1 into β^1 and freeze the others (Nash over open loop)
 - $\circ \exists N_0 \text{ s.t. for } N \geq N_0, A > 0, \exists C \text{ s.t.}$

$$\mathbb{E} \int_0^T |\beta_t^1|^2 dt \ge C \Rightarrow J^1(\beta^1, \alpha^2, \dots, \alpha^N) \ge J^* + A$$

 \circ for A > 0, $\exists (\varepsilon_N)_{N > 1} \downarrow 0$ s.t. 0, such that

$$\mathbb{E} \int_0^T |\beta_t^1|^2 dt \le A \Rightarrow \begin{array}{l} J^1(\beta^1,\alpha^2,\ldots,\alpha^N) \ge J^\star - \varepsilon_N \\ J^i(\beta^1,\alpha^2,\ldots,\alpha^N) \ge J^\star - \varepsilon_N, \quad 2 \le i \le N \end{array}$$