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Part I. Master Equation



Part I. Master Equation

a. Revisiting the PDE interpretation



Reminder
e Recall MFG when ¢ = 0

e Define the asymptotic equilibrium state of the population as the
solution of a fixed point problem

(1) fix a flow of probability measures (u;)o<;<r (With values in
P (RY))

(2) solve the stochastic optimal control problem in the environment

(M)o<i<T
dX; = b(X;, s, a)dt + o(Xy, u)dW;

o with Xy = £ being fixed on some set-up (Q, F, P) with a
d-dimensional B.M.

. T
o with cost J(a) = E[¢(Xr.ur) + [y f(Xe.pr, )t
3) let (X,* ) o<i<r be the unique optimizer (under nice assumptions)
~> find (u;)o<<7 such that

pe= LX), 1€10,7]



PDE point of view: HJB

e PDE characterization of the optimal control problem when o is the
identity

e Value function in environment (t;)o</<7

@ processes

T
Ut,x)= inf  E[e(Xr,ur) + f FXo, s, a)dslX; = x|
t

e U solution Backward HIB

(G,U + é%U)(t, x) +

infl [b(x, ps, @) - 0, U(t, x) + f(x, i, @)] = 0

@ sca

standard Hamiltonian in HJB
o~ a=a*(x,uy,0U(tx))
e Terminal boundary condition: U(T,-) = g(-, ur)
e Pay attention that U depends on (u;),!



Fokker-Planck
e Need for a PDE characterization of (L(X[* ),

e Dynamics of X**# at equilibrium
dX; ™ = b(X, wy, (X, 1y, 0,U(1, X 1)))dt + AW,

e Law (Xt* Mo<i<r satisfies Fokker-Planck (FP) equation

. 1
dipty = —div(b(x, gy, @ (x, 1y, 0, U(t, X)) )dt + §8§xutdt
b*(t,x)

e MFG equilibrium described by forward-backward in co dimension
o oo dimensional analogue of

% = b(x, y)dt, xp=x°

Vi = ~fCny)dt,  yr = glxr)

o 0¥ = 0 ~» deterministic FB system

o if 0¥ # 0 ~» stochastic FB system



MFG as characteristics of a PDE

o Find the decoupling field of the co dimensional FB system

e Find a function U such that

Y& ) =U@ -, )
HIB FP
o U:[0,T1XPr(RY) - CR?,R)
o UT, - ur) = g(,ur)
e Write (master?) PDE for U
e Procedure for the formal identification of the PDE

o martingale increment
dﬂ(ta X[*’ /Jl) +f(X[*’ HMt» al*(X[*7#t7 ax(L[(ta X;(’/“’lt)))dt

o compare with It6’s formula

o requires a chain rule on P,(R%)
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Part I. Master Equation

b. Deriving the master equation



Reminder
e Recall Lions differentiation on P, (R%)
e Consider U : P»(RY) - R
e Lifted-version of U
U : LX(Q,P) 3 X — ULaw(X))
o U differentiable if T Fréchet differentiable (Lions)
e Differential of U
o Fréchet derivative of U
D(LAI(X) =0, UWX), 0, Uw :R>3x 0, Uw(x) pu=LX)

o derivative of U at pu ~> 8, U(u) € L*RY, 13 RY)

e Finite dimensional projection

ax,.[w(]lvgaxj)] T R

J=1



Chain rule on %, (R")

o 1td process dX; = b;dt + o, dW;, fOT E[|b,* + |o|*1dt < o0
o u, =law of X;

o U twice Fréchet differentiable
o chain rule for (U(u;))r=0?

e Approximate u; by particle system

N
s ~ % M6y and dt[fu(% > 64|

j=1 j=1
o expand the right-hand side and pass to the limit

e Chain rule

o need RY 5 x - 9, U(u)(x) € RY differentiable

d 1
UG = Eby, 8, Uu)X))] + 5E[Trace(majax(aﬂfucuoxxt))]



Shape of the master equation

e Formal identification of zero df term in expansion of
d(L((t, X[*’ /Jl) +f(Xt*’#t’ a’*(Xz*’ﬂt’ ax(LI(t’ X[*’/'ll)))dt

o requires an extension of It6’s formula to handle all the
coordinates ~» no bracket!

e Formal derivation ~» first-order master equation:

U@, x, 1) + jl; d(b*(f, V), Oy U2, x, 1)(v))dp(v)

transport in u
+(b* (1, %), 0y U(t, x, ) + f(x, , @™ (8, x, O, U(t, X, 1), 1))
standard Hamiltonian
1
+ -Trace( UL x.p) )+ f Trace(d,d, Ut x, 1)())du(v) = 0
2 N e’ R4
standard diffusion

o Not a HIB! (MFG # optimization)

bracket



Part I. Master Equation

c. Sketch of the proof



Program

e Prove existence of a classical solution
o holds in small time if smooth coefficients
e Long time ~» emergence of singularities
o no singularity in x ¢~ Laplace 62
o if laplaee ~» use convexity in x in cost functional

o regularity in u ~» Laplace does not help need monotonicity
condition

main issue is to control 4, U!
e Lasry Lions monotonicity condition
o b doesn’t depend on u
o f(x,u, @) = folx, ) + fi(x, @) (u and « are separated)

o monotonicity property for fy and g w.r.t. u

Rd(h(x,/l) —hOe,())d(u —p')(x) >0, h=fog



Master equation in linear case

e Forget forward-backward and consider the decoupled case
dX; = b(X;, LIX[))dt +dW;, Xj =Xo
o choose o = 1Id for simplicity
e Analogue with the master equation?

o notice that £(X;*) only depends on L(Xp)

o define the semi-group
(Pip)(LX0) = p(LKX), 1€[0,T], ¢:P,R) >R
o dynamics of P2(RY) 3 u — Pp(u1)?

e Shape of the master equation
O (Pp)(u) — fR b0 1) - 0u(Pip))(v)dp(v)

1
-3 |, Trce(@.0,P600))aa) =0, (Pot)) = 9



Derivative of the semi-group of a MKV SDE

e Regularity of P;¢ when ¢ is smooth ~» investigate smoothness of
the flow of the MKV SDE

o Lift of ¢ ~> ¢ : L2(Q, A, P;RY) 3 X > $(X) = (LX)
o Pip(L(X0)) = p(X})

e Perturbation of X in direction ¢ € L?

aX
o XS =Xo+ &l ~ (Xt*’g)OstT = a(X,* = d—tgLe:O

e Derivative of P,¢ reads
E|(3(Pi#)(LX0))(X0), )| = E[(0up( LK N, X))
o get the estimate
B[jo. (P} Lol
derivative of semigroup at £(Xo)

< Efjg.ocaxmnen]”

derivative of ¢ along SDE

sup EH@«X,*)Z]I/Z
CE[¢PI<]

L2 flow of SDE



Derivative of the flow of MKV SDE
e Recall MKV dynamics

dX} = b(XF, LX)t +dW,, X = Xo

e Dynamics of 9, X*
;X = O,b(X}, LOX))O X dt
+ B[0,b(X}, L)X X Ndt,  9:Xy =¢

o (Q, A, P) auxiliary space with copies of the r.v. ~»
McKean-Vlasov derivative system

e [2 estimate of E[lo X} 2]
dE[|0, X} *] = 2E[(8, X}, 0:b(X}, LIX]))A X ))dt
+BE[0, X, ,b(X, LENK)IX)dt
o deduce E[|0;X}[*] < CE[|¢*] with

C= C(T, sup|8xb(x,u)'2, sup ‘ﬁaﬂb(x,y)(v)lzdu(v))
X X,



Higher-order derivatives

e Master equation ~» differentiate once again w.r.t. v
(1, v) = 0P p(u)(v)
e Derivatives in the direction v/X|

o freeze { and consider new perturbation Xy ~» Xg
L(X;) independentof &= L£(X]°) independentof &

e differentiate the formula for the derivative
&

d.
Bl(oaPaccod)odce 2 )]

= E[(0,0,0(LX™ )X ), X0 @ dig|s:0Xf )]

d .
0, % 0, % £, %
+ E[(9,6(LX N, o N
o example X = Xo + 6(cos(s)Z + sin(s)Z’)
o with (Z,Z’) ~ N(0, 1)®? and (Z, Z’) independent of X,



Example in coupled case

e Linear-quadratic costind = 1
ob(x,u, @) =a, filx,a)= %2
o g, fo bounded, smooth and Lasry-Lions
dX} = -0, U1, X}, LIX]))dt + dB,
e Dynamics of 9;X*
do; X} = —0:UXS, LX), )d X} dt
~ B[00 U)(e, X, LXK Nar

o 02U already estimated! (thanks to Laplace)
e Propagation of monotonicity
EE[0x(0,U)(e, X7, LK) K 0:X]] 2 0.
e Conclusion ~» E[|0,X**] < CE[I{I?]

o gives a way to control derivative in y ~» avoid any blow-up



Checking the monotonicity condition

e Lasry-Lions monotonicity condition (choose d = 1)

fR (h(x, 1) = h(x, w)d(p' = p)(x) 2 0
oX ~pand X' ~ '
E|h(X', LX) = h(X', LX) = (h(X, LK) = h(X, L(X)))] = 0
e Make a perturbation X’ = X + ¢V
o first step
EE[0,h(X’, LOOYR)Y = 8,h(X, LE))K)T] + o(e) 2 0
o need copies X and ¥ on another space

o second step

EE[0:8,h(X, LOO))TY] 2 0



Notes and complements

e Case with a common noise
o HJB and FP become stochastic PDEs

o but U remains deterministic! decoupling field of a stochastic
FBSDE in co dimension

e Master equation with a common noise ~» involves second-order
derivatives in the direction of the measure ~» example

o b(x,u, @) = —x+ b(m) +a,m= fx’d,u(x’)
o fOo, @) = 5[(x +£(m)” + @], g, p) = J(x + g(m))®
e Stochastic Pontryagin ~» strong solution if ¥; = X; + y;
dm; = (b(m;) = 2m, — x,)dt + dW?,
dy; = =(f + b)m)dt + §dW,  xr = glmr)

o 0, U(t, x, ;) = x + v(t, my) with m, mean of y,

ov(t,m)+ %aﬁmv(t, m) + 0pv(t, m)(b(m) —2m—v(t,m))+(f + b)(m) = 0



Part II. The convergence problem

o & = = = 9Dao



Part II. The convergence problem

a. General prospect



Revisiting the N-player game

e Controlled dynamics (1d to simplify)
dX; = b(X], iy, a)dt + o (X, iy )AW]

independent Brownian motion W', ... W,
progressively-measurable controls @', ..., a"
. . _N _ l N .
o mean-field interaction ~ ;" = 4 2.0, 5X;

e Cost functionals to player i

T
J"(al,...,o/v)=E[g(X%ﬂ¥)+fo £ Y, o)ds]

o try to minimize ~» Nash equilibrium?

e Rigorous connection between Nash equilibria with N players and
MFG?



Two roads for making the connection

e Prove the convergence of the Nash equilibria as N tends to co

o difficulty ~» no uniform smoothness on the optimal feedback
function a*" w.rtto N

*,i,N _ _xN/vyi. vl i—1 i+l N
o] =™V X!, XL X xN)
——
optimal control to player i states of the others

~» no compactness on the feedback functions

o several attempts ~» weak compactness arguments on the control
(notion of relaxed controls) for equilibria over open loop controls

o below ~» use the master equation
e Implement feedback function for MFG into finite player game
o limit setting ~» optimal control has the form
af = a* (X, M )
——
population at equilibrium

ouse @ = a*(X!, ;) ~ what about Nash?



Part II. The convergence problem

b. Convergence of the equilibria



Reminder
e Recall FBSDE associated with Markov loop

X = b(X\, i), o* (X}, i1, 2 o7 (XL ) )dt + o (X 1 )W,

dy} = ~f(XL @ o (XL & 2V o™ (XL, ) )de + Zz”dwf
j=1
with Y} = g(XL, ,u]}’ ) as terminal condition

o a* is the minimizing function of the Hamiltonian

@ (x,1,2) = irelgH(x,u, @,2) H,u,a,2) =bx,u, @) -7+ f(x,1,2)
(04

o difficulty Z" = AN t,X!,...,xV)

N————"

derivative of x; if ith value function

e Same assumption as for optimal control under non-degenerate o
(with A bounded) in 1st Lecture ~» existence and uniqueness

o again ~» no uniform control of d,,u""



N-player game as a perturbation

o Idea is to use the master equation (if smooth solution)

o recall the meaning of Y and Z in the MFG
Y, = UEX, LX) Z = 0, U X, LX) o(Xi, LX)
N e
choose o = 1d

e Perturbed version ~» go back to N-player game equilibrium

Yi=U@X,5)

FBSDE for ; i
° Zi = 0 UE X!, i)

f)
e Get it by applying It6’s formula to V" d=1)

i1
a. U, xj’,UN’x)] = o, U(t, XinuN’x)éi- + Nafu(l, Xj#N*x)(Xi)

|
O e, 3, )] = UGt 3, 1)) + 0,0, 3 1))

N e +O(N"H8) + O(N~?)
out=N" Zgzl Ox,



Perturbed FBSDE

L " = a* (XL N, Z0) artificial control
o | ct . . ..
N = o (X1, g,z true control

o [td expansion yields

dy!
= b i)Y, o ™) = b Y o )| - O U XL i)t

N
1 P : P o0 Ny
5 DB ™) b Y o )] U X O
j=1
— Xy o )de + O(N ™ )d

N
A | S
+ZHAW > Zaw]
J=1

bracket ~ N~!

o reminiscent of the expansion of (¥/)y<,<r ~» make the
difference between both



Stability argument

e Difference between the two FBSDEs
Ay - Y
= b5 Y o) = b(XL Y o ) |oxt (e XL Yt

1 . o
wZ[b( X, ) = b0 Y o) |9, U Xy 1))
j=1
= [P a0 = XL Y oY) de + Ot
+(Zi -z )aw; + Z(z’d Z7)aw

e Lipschitz differences!
o recall [o*° — a*N| < C|ZF - Z]
o if [0, U(t, x, )| < C and E[|0,U(t, x, ))(X)P1'/? < Cfor X ~ p

o use variation of Cauchy-Lipschitz ~» stability!



Conclusion

o Stability yields and symmetry
s i~ ¥iP1 8 [ 1z 2P — o

0<t<T — 0

e Plug into the forward equation
dx; = b(x}, @', o* (X}, i1, Z"))dt + dW]
~ b(X i) o* (X i O U XL 1)) )t + AW
e Recover the standard MKV setting!

o require 0,U to be Lipschitz

o then particles get independent in the limit with following
dynamics

dX; = b(X,, LX), a*(X,, LX), U Xy, LX) )dt + dW,

o recover the dynamics of the MFG equilbrium



Part II. The convergence problem

c. Construction of quasi-equilibria



Implementing the limit optimal feedback

e Shape of the optimal feed back in the limit MFG problem
o (x g1, Ox Ut x, 1))

o @* minimizes the Hamiltonian
o u} is the law of the population at time when in equilibrium

o OyU(t, x, ;1) matches Oy UM (t,x) where UM" is the value
function in environment p*

. . * .
o under same assumptions as in Lecture 1 ~» 9, U* (¢, ) is
Lipschitz continuous in x

e Go back to the dynamics of the finite player system

o assume that o is identity (for simplicity)
dXt = b(e, X!, @Y, a* (1, XE, i, 0,UF” (1, X1)))dt + dW]

o compute first d,U*" and g* numerically and plug them!



Propagation of chaos

e N-player system
dX! = b(e, X!, @Y, a* (1, X!, 0, U* (1, X0), 1)) dt + dW!

o fits the framework of MKV SDE
e As N tends to oo
o for k fixed

X\ X oerer - L(Xo<rer)™
o where (X} )o<<r optimal dynamics in the limit
X} = DX} o (X g, O U™ (1, X))t + AW,

o moreover, for each ¢ € [0, T, & ? ur



Quasi-Nash property

e Notations

ol = a*(t, X!, 0, U* (1, X)), uF) controls taken from the limit
feedback function

o call J* the optimal cost in the MFG setting

o under assumptions used throughout the lectures

J((x],...,a/N)N—> J*
e Check that (a!, ..., ") forms a quasi-Nash equilibrium

o change ' into B! and freeze the others (Nash over open loop)
o dNp s.t. for N > No, A > 0, AC s.t.
T
Ef BPdt>C=J'B a2 ....a") =T  +A
0

oforA >0, d(ey)n>1 | 0s.t. 0, such that

T lepl 2 N *
J B at...,a") =" —ey
12
< .
Efo Bilrdr <A = JiBa% ..., d¥) 2 J* —ey, 2<i<N



