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Part I. Revisiting McKean-Vlasov FBSDEs

a. Within the framework of MFG



Program without common noise
•Make use of the results from the first chapter in order to characterize
the optimal paths in the fixed point

◦ in the FBSDE formulation of the optimization problem{
replace the environment by the law of the solution

◦ derive an FBSDE of the McKean-Vlasov type of the general
form

Xt = ξ +

∫ t

0
b
(
Xs,L(Xs),Ys,Zs

)
ds

+

∫ t

0
σ
(
Xs,L(Xs),Ys

)
dWs

+ σ0(Xs,L(Xs),Ys
)
dW0

s

Yt = g
(
XT ,L(XT )

)
+

∫ T

t
f
(
Xs,L(Xs),Ys,Zs

)
ds

−

∫ T

t
ZsdWs

−

∫ T

t
Z0

s dW0
s

• Choose the coefficients accordingly and solve!
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MKV FBSDE for the value function
• Consider, on (Ω,F,P), the MKV FBSDE

Xt = ξ

+

∫ t

0
b
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds

+

∫ t

0
σ
(
Xs,L(Xs)

)
dWs

+ σ0(Xs,L(Xs)
)
dW0

s

Yt = g
(
XT ,L(XT )

)
+

∫ T

t
f
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds

−

∫ T

t
ZsdWs

−

∫ T

t
Z0

s dW0
s

◦ α?(x, µ, z) is the unique minimizer of α 7→ H(x, µ, α, z)

• Under assumptions of Chapter 1{ solution to MKV FBSDE is
MFG equilibrium
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MKV FBSDE for the Pontryagin principle
• Consider, on (Ω,F,P), the MKV FBSDE

Xt = ξ +

∫ t

0
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Xs,L(Xs),Ys
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t
∂xH
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)
,Ys

)
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t
ZsdWs

• Under assumptions of Chapter 1{ solution to MKV FBSDE is
MFG equilibrium
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Existence and uniqueness in small time
• New two-point-boundary-problem{

◦ Cauchy-Lipschitz theory in small time only

• Example when σ0 ≡ 0

Xt = ξ +

∫ t

0
b
(
Xs,L(Xs),Ys,Zs

)
+

∫ t

0
σ
(
Xs,L(Xs),Ys

)
dWs

Yt = g
(
XT ,L(XT )

)
+

∫ T

t
f
(
Xs,L(Xs),Ys,Zs

)
ds −

∫ T

t
ZsdWs

• Lipschitz setting

◦ b, σ, f and g L-Lipschitz continuous in (x, µ, y, z)

◦ Lipschitz in µ! W2 Wasserstein distance

◦ (b, f , σ, σ0, g)(t, 0, δ0, 0, 0) bounded

◦ ⇒ existence and uniqueness provided that T ≤ c(L)



Part III. McKean-Vlasov FBSDEs

b. Lions derivative overs P2(Rd)



Differentiation on P2(R)
• ConsiderU : P2(Rd)→ R

• Lifted-version ofU

Û : L2(Ω,A,P;Rd) 3 X 7→ U(Law(X))

◦ U differentiable if Û Fréchet differentiable (Lions)

◦ independent of the choice of (Ω,P) (rich enough)

• Differential ofU

◦ Fréchet derivative of Û with µ = Law(X)

DÛ(X) = ∂µU(µ)(X), ∂µU(µ) : Rd 3 x 7→ ∂µU(µ)(x) ∈ Rd

◦ Derivative ofU at µ{ ∂µU(µ) ∈ L2(R, µ;Rd)

• Finite dimensional projection

∂xi

[
U

( 1
N

N∑
j=1

δxj

)]
=

1
N
∂µU

( 1
N

N∑
j=1

δxj

)
(xi).
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Examples
• 1st example: U(µ) =

∫
Rd h(x)dµ(x)

◦ two r.v.’s X and Y with values in Rd

U
(
L(X + εY)

)
= E

[
h(X + εY)

]
= E[h(X)] + εE

[
∂h(X)Y

]
+ o(ε)

◦ ∂µU(µ)(v) = ∂h(v)

• 2nd example: U(µ) =
∫
Rd

∫
Rd h(x − y)dµ(x)dµ(y)

◦ two r.v.’s X and Y with independent copies X′ and Y ′

U
(
L(X + εY)

)
= E

[
h
(
X − X′ + ε(Y − Y ′)

)]
= E[h(X − X′)] + εE

[
∂h(X − X′)(Y − Y ′)

]
+ o(ε)

= E[h(X − X′)] + εE
[
∂h(X − X′)Y

]
− εE

[
∂h(X′ − X)Y

]
+ o(ε)

◦ ∂µU(µ)(v) =
∫
Rd ∂h(v − y)dµ(y) −

∫
Rd ∂h(y − v)dµ(y)



Connection with W2 distance
• LetU be Lions-differentiable with

E
[
|∂µU(µ)(X)|2

]︸              ︷︷              ︸∫
Rd
|∂µU(µ)(v)|2dµ(v)

≤ C2, L(X) = µ

• For X,X′ ∈ L2(Ω,A,P;Rd)

U
(
L(X′)

)
−U

(
L(X)

)
=

∫ 1

0

d
dt
U

(
L(tX′ + (1 − t)X)

)
dt

=

∫ 1

0

d
dt
Û

(
tX′ + (1 − t)X

)
dt

=

∫ 1

0
E
[
∂µU

(
L(tX′ + (1 − t)X)

)(
tX′ + (1 − t)X

)
(X′ − X)

]
dt

≤ CE
[
|X′ − X|2

]1/2

◦ take inf over (X,X′) with given laws{ Lipschitz w.r.t. W2



Part III. McKean-Vlasov FBSDEs

c. Control of McKean-Vlasov and potential games



Rough version of the Pontryagin principle
• Controlled MKV processes (no common noise)

dXt = b
(
Xt,L(Xt), αt

)
dt + σ

(
Xt,L(Xt)

)
dWt

◦ optimize the cost J(α) = E
[
g(XT ,L(XT )) +

∫ T
0 f (Xt,L(Xt), αt)dt

]
• Optimize w.r.t. the measure as well

◦ Use the same H and the same α̂(t, x, µ, y)

◦ Adjoint equations:

dXt = b
(
Xt, µt, α̂(t,Xt,LXt,Yt)

)
dt + σdWt

dYt = −∂xH
(
Xt,L(Xt), α̂(Xt,L(Xt),Yt),Yt

)
dt

− ”∂µH
(
Xt,L(Xt), α̂(Xt,L(Xt),Yt),Yt

)
”dt + ZtdWt

YT = ∂xg
(
XT ,L(XT )

)
+ ”∂µg

(
XT ,L(XT )

)
”

◦What do ”∂µH” and ”∂µg” mean?



Right version of the Pontryagin principle
• Adjoint equations take the form

dXt = b
(
Xt,L(Xt), α̂(t,Xt,L(Xt),Yt)

)
dt + σdWt

dYt = −∂xH
(
Xt,L(Xt), α̂(t,Xt,L(Xt),Yt),Yt

)
dt

− E′
[
∂µH(X′t ,L(Xt), α̂(X′t ,L(Xt),Y ′t )

)
(Xt)

]
dt + ZtdWt

YT = ∂xg(XT ,L(XT )) + E′
[
∂µg

(
X′T ,L(XT )

)
(XT )

]
◦ (X′t ,Y

′
t ) independent copy of (Xt,Yt) on (Ω′,F′,P′)

• example{ social optimization with

◦ f (µ, α) = 1
2

∫
Rd

∫
Rd f (x − y)dµ(x)dµ(y) + 1

2 |α|
2, f symmetric

◦ g(µ) = 1
2

∫
Rd

∫
Rd g(x − y)dµ(x)dµ(y), g symmetric

◦ b(α) = α

∂µH(·) = ∂µf (L(Xt))(Xt) = E′
[
∂f (Xt − X′t )

]
= ∂|x=XtE

′[f (x − X′t )
]

◦ same equilibrium as MFG with
∫
Rd f (x − y)dµ(y) + 1

2 |α|
2{

potential game!



Part II. Solving MFG without common noise



Part II. Solving MFG without common noise

a. Schauder fixed point theorem



Objective
• Assume σ0 ≡ 0 and provide solution to

Xt = ξ +

∫ t

0
b
(
Xs,L(Xs),Ys,Zs

)
+

∫ t

0
σ
(
Xs,L(Xs),Ys

)
dWs

Yt = g
(
XT ,L(XT )

)
+

∫ T

t
f
(
Xs,L(Xs),Ys,Zs

)
ds −

∫ T

t
ZsdWs

• Assumption that

when (L(Xt))0≤t≤T replaced by some fixed input (µt)0≤t≤T

⇒

existence and uniqueness of a solution to the FBSDE
in environment (µt)0≤t≤T

• Example: implement the results from Chapter 1!

◦ apply the two characterizations for stochastic optimal control
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+
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⇒
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How to attack existence?
• Preliminary remark: no hope for solving MFG by Picard fixed
theorem

◦ at least under classical Lipschitz assumptions only

◦ expect small time

◦ need refined assumptions

• First step{ existence only

◦ forget about uniqueness!

◦ use a fixed point theorem without uniqueness!

• Use Schauder’s fixed point theorem

◦ see statement in the next slide

◦ need a structure with a compactness

◦ in the framework of MFG{ fixed point is on probability
measures{ nice compactness criterion!



Statement of the Schauder fixed point theorem
• Generalisation of Brouwer’s theorem from finite to infinite
dimension

• Let (V , ‖ · ‖) be a normed linear space

◦ ∅ , E ⊂ V with E closed and convex

◦ φ : E → E continuous such that φ(E) is relatively compact

◦ ⇒ existence of a fixed point to φ

• In MFG{ what is V , what is E, what is φ?

◦ recall that MFG equilibrium is a flow of measures (µt)0≤t≤T

E ⊂ C
(
[0,T],P2(Rd)

)
◦ need to embed into a linear structure

C
(
[0,T],P2(Rd)

)
⊂ C

(
[0,T],M1(Rd)

)
◦ M1(Rd) set of signed measures ν with

∫
Rd |x|d|ν|(x) < ∞



Compactness on the space of probability measures

• EquipM1(Rd) with a norm ‖ · ‖ and restrict to P1(Rd) such that

◦ convergence of (νn)n≥1 in P1(Rd) implies weak convergence

∀f ∈ Cb(Rd,R), lim
n→∞

∫
Rd

fdνn =

∫
Rd

fdν

◦ if (νn)n≥1 has uniformly bounded moments of order p > 2

Unif. square integrability⇒ W2(νn, ν)→ 0

◦ says that the input in the coefficients varies continuously!

b(x, νn, y, z), σ(x, νn), σ0(x, νn), f (x, νn, y, z), g(x, νn)

• Conversely, if (νn)n≥1 has bounded moments of order p > 2

◦ (νn)n≥1 admits a weakly convergent subsequence

◦ then convergence for W2 by unit. integrability and for ‖ · ‖ also



Application to MKV FBSDE

• Choose E as continuous (µt)0≤t≤T from [0,T] to P2(Rd)

sup
0≤t≤T

∫
Rd
|x|4dµt(x) ≤ K for some K

• Construct φ{ fix (µt)0≤t≤T in E and solve

Xt = ξ +

∫ t

0
b
(
Xs, µs,Ys,Zs

)
+

∫ t

0
σ
(
Xs, µs,Ys

)
dWs

Yt = g
(
XT , µT

)
+

∫ T

t
f
(
Xs, µs,Ys,Zs

)
ds −

∫ T

t
ZsdWs

◦ let φ
(
µ = (µt)0≤t≤T

)
= (L(Xµt ))0≤t≤T

• Assume bounded coefficients and E[|ξ|4] < ∞

◦ choose K such that E[|Xµt |
4] ≤ K

⇒ E stable by φ

◦ W2(L(Xµt ),L(Xµs )) ≤ CE
[
|Xµt − Xµs |2

]1/2
≤ C|t − s|1/2



Conclusion

• Consider continuous µ = (µt)0≤t≤T from [0,T] to P2(Rd)

◦ for any t{ (φ(µ))t in a compact subset of P2(Rd)

◦ [0,T] 3 t 7→ (φ(µ))t is uniformly continuous in µ

◦ by Arzelà-Ascoli⇒ output lives in a compact subset of
E ⊂ C([0,T],P2(Rd))

(
and thus of C([0,T],M1(Rd))

)
• Continuity of φ on E

◦ stability of the solution of FBSDEs with respect to a continuous
perturbation of the environment

◦ under assumption of Chapter 1 and continuity w.r.t.
environment{ answer is yes

• φ is continuous and compact range⇒ existence of a fixed point



Part II. Solving MFG without common noise

b. Statements and refinements



Non-degenerate setting
• Growth conditions

|b(x, µ, α)| ≤ C(1 + |α|), |(σ,σ−1, g)(x, µ)| ≤ C

|f (x, µ, α)| ≤ C(1 + |α|2)

• Lipschitz condition

|(b, σ, σ−1, g)(x′, µ, α′) − (b, σ, σ−1, g)(x, µ, α)| ≤ C
(
|x′ − x| + |α′ − α|

)
|f (x′, µ, α) − f (x, µ, α)| ≤ C|x′ − x|

|f (x, µ, α′) − f (x, µ, α)| ≤ C
(
1 + |α| + |α′|

)
|α′ − α|

• b linear in α and f strictly convex in α⇒ unique minimizer
α?(x, µ, z) of the Hamiltonian; and regularity of the minimizer

◦ interpretation of the value function

◦ for any input µ = (µt)0≤t≤T ⇒ unique optimal path with bounded
control (comes from the fact that the gradient of HJB is bounded)

• ⇒ existence of an MFG equilibrium!



Restricted convex setting
• Use the stochastic Pontryagin principle

◦ need to state the conditions for the derivative of the Hamiltonian

◦ require b to be linear in x⇒ no a priori bound for b{ need to
adapt the result of Section I

◦ simplify{ take the example when b independent of x (say
b(x, µ, α) = α)

• Backward equation (∂xf = ∂xH)

Yt = ∂xg
(
XT ,L(XT )

)
+

∫ T

t
∂xf

(
Xs,L(Xs), α?

(
Xs,L(Xs),Ys

))
ds −

∫ T

t
ZsdWs

◦ require g convex in x and f convex in (x, α) but ∂xg and ∂xf
bounded{ very restrictive!

◦ if continuity with respect to µ⇒ existence of an MFG solution



Mollification procedure
• Convex Lipschitz is not satisfactory

◦ use a mollification procedure

• Approximate coefficients (f , g) by coefficients (fn, gn) such that

◦ fn and gn are convex and Lipschitz

◦ general procedure for approximating convex functions

Φn(x) = sup
|y|≤n

inf
z∈Rd

[
〈y, x − z〉 + Φ(z)〉

]
◦ solve MFG for (gn, fn){ equilibrium (µn

t )0≤t≤T

• Converging subsequence of (µn
t )0≤t≤T?

◦ new compactness problem in C([0,T],P2(Rd))

◦ analysis{ boils down to control

sup
n≥1

sup
t∈[0,T]

∫
Rd
|x|dµn

t (x) < ∞

◦ must prevent any blow-up of the means of the equilibria!



Solvability in the convex setting
• Convex setting

◦ b linear in (x, α), g convex in x

◦ f convex in (x, α) and strictly convex in α

• Local Lipschitz continuity of the cost functionals∣∣∣f (t, x′, µ′, α′) − f (t, x, µ, α)
∣∣∣ +

∣∣∣g(x′, µ′) − g(x, µ)
∣∣∣

≤ L
[
1 + |x′| + |x| + |α′| + |α| +

(∫
Rd
|y|2d

(
µ + µ′)(y)

)1/2]
×

[
|(x′, α′) − (x, α)| + W2(µ′, µ)

]
,

• f and g C1 w.r.t. (x, α) with Lipschitz derivatives

• weak-mean reverting condition

〈x, ∂xf (t, 0, δx, 0)〉 ≥ −c
(
1 + |x|

)
and 〈x, ∂xg(0, δx)〉 ≥ −c

(
1 + |x|

)
• ⇒ existence of an MFG equilibrium!



Linear-quadratic in d = 1
• Apply previous results with

◦ b(t, x, µ, α) = atx + a′tE(µ) + btαt

◦ g(x, µ) = 1
2
[
qx + q′E(µ)

]2! (mean-reverting) qq′ ≥ 0

◦ f (t, x, µ, α) = 1
2
[
α2 +

(
mtx + m′tE(µ)

)2]! (mean-rev.) mtm′t ≥ 0

• Compare with direct method{ adjoint equations

dXt =
[
atXt + a′tE(Xt) − b2

t Yt
]
dt + σdWt

dYt = −
[
atYt + mt

(
mtXt + m′tE(Xt)

)]
dt + ZtdWt

YT = q
[
qXT + q′E(XT )

]
◦ take the mean

dE(Xt) =
[
(at + a′t)E(Xt) − b2

t E(Yt)
]
dt

dE(Yt) = −
[
atE(Yt) + mt(mt + m′t)E(Xt)

]
dt

E(YT ) = q(q + q′)E(XT )

• existence and uniqueness if q(q + q′) ≥ 0, mt(mt + m′t) ≥ 0



Part II. Solving MFG without common noise

c. Uniqueness criterion



A counter-example to uniqueness
• Consider the MKV FBSDE

dXt = b
(
E(Yt)

)
dt + dWt, X0 = x0

dYt = −f
(
E(Xt)

)
dt + ZtdWt, YT = g

(
E(XT )

)
◦ take bounded and Lipschitz coefficients{ existence of a

solution

◦ uniqueness may not hold!

◦ completely different of the system with b(Yt), f (Xt) and g(XT )
for which uniqueness holds true!

• Proof{ take the mean

dE(Xt) = b
(
E(Yt)

)
dt, E(X0) = x0

dE(Yt) = −f
(
E(Xt)

)
dt, E(YT ) = g

(
E(XT )

)
◦ led back to counter-example for FBSDE{ choose b, f and g

equal to the identity on a compact subset



Lasry Lions monotonicity condition
• Recall for an FBSDE without noise (σ = σ0 = 0)

◦ existence and uniqueness may hold for the Pontryagin system if
convex cost functional

◦ convexity! monotonicity of ∂xg and ∂xH

◦ what is monotonicity condition in the direction of the measure?

• Lasry Lions monotonicity condition

◦ b, σ do not depend on µ

◦ f (x, µ, α) = f0(x, µ) + f1(x, α) (µ and α are separated)

◦ monotonicity property for f0 and g w.r.t. µ∫
Rd

(
f0(x, µ) − f0(x, µ′)

)
d
(
µ − µ′

)
(x) ≥ 0∫

Rd

(
g(x, µ) − g(x, µ′)

)
d
(
µ − µ′

)
(x) ≥ 0



Monotonicity restores uniqueness
• Assume that for any input µ = (µt)0≤t≤T unique optimal control α?,µ

◦ + existence of an MFG for a given initial condition

• Lasry Lions⇒ uniqueness of MFG equilibrium!

◦ if two different{ α?,µ , α?,µ
′

Jµ
(
α?,µ

)︸   ︷︷   ︸
cost under µ

< Jµ
(
α?,µ

′)
and Jµ

′(
α?,µ

′)︸     ︷︷     ︸
cost under µ′

< Jµ
′(
α?,µ

)

so that
Jµ
′(
α?,µ

)
− Jµ

′(
α?,µ

′)
+ Jµ

(
α?,µ

′)
− Jµ

(
α?,µ

)
> 0

Jµ
′(
α?,µ

)
− Jµ

(
α?,µ

)
−

[
Jµ
′(
α?,µ

′)
− Jµ

(
α?,µ

′)]
> 0

E
[

g(X?,µ
T , µ′T ) − g(X?,µ

T , µT )︸                          ︷︷                          ︸∫
Rd

(
g(x, µ′T ) − g(x, µT )

)
dµT (x)

−
(
g(X?,µ′

T , µ′T ) − g(X?,µ′

T , µT )
)︸                              ︷︷                              ︸∫

Rd

(
g(x, µ′T ) − g(x, µT )

)
dµ′T (x)

+. . .
]
> 0

◦ same for f0 ⇒ LHS must be ≤ 0



Example for Lasry Lions
• Examples for h(x, µ) satisfying∫

Rd

(
h(x, µ) − h(x, µ′)

)
d
(
µ − µ′

)
(x) ≥ 0

◦ if h is independent of x

◦ if h given by

h(x, µ) = 〈x, µ̄〉, µ̄ =

∫
Rd

ydµ(y)

◦ if h is given by

h(x, µ) =

∫
Rd

f (x − y)dµ(y) and f odd

◦ if d = 1 and h is independent of x

h(x, µ) = µ(−∞, x] and µ, µ′ have no atoms
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Part III. Solving MFG with common noise

a. Strategy of proof



General prospect
• Solve MFG with a common noise

◦ need to solve conditional MKV FBSDE

Xt = ξ +

∫ t

0
b
(
Xs,L(Xs|W0),Ys,Zs

)
ds

+

∫ t

0
σ
(
Xs,L(Xs|W0),Ys

)
dWs +

∫ t

0
σ0

(
Xs,L(Xs|W0),Ys

)
dW0

s

Yt = g
(
XT ,L(XT |W0)

)
+

∫ T

t
f
(
Xs,L(Xs|W0),Ys,Zs

)
ds

−

∫ T

t
ZsdWs−

∫ T

t
Z0

s dW0
s

• Again{ Cauchy Lipschitz theory in small time

◦ may adapt the result for MFG without common noise

• How to implement Schauder’s fixed point over intervals of arbitrary
length?



Need for revisiting the strategy of proof
• Try to follow the same strategy as in the case σ0

• Fix µ = (µt)0≤t≤T random process with values in P2(Rd) and adapted
w.r.t. W0 on (Ω0,F0,P0)

◦ call Xµ = (Xµt )0≤t≤T the forward component of the solution to

Xt = ξ +

∫ t

0
b
(
Xs, µs,Ys,Zs

)
ds

+

∫ t

0

(
σ(Xs, µs,Ys)dWs + σ0(Xs, µs,Ys)dW0

s

)
Yt = g(XT , µT ) +

∫ T

t
f
(
Xs, µs,Ys,Zs

)
ds −

∫ T

t

(
ZsdWs + Z0

s dW0
s

)
◦ Solve µt(ω0) = L(Xµt |W

0)(ω0) for any t ∈ [0,T] and for almost
every ω0 ∈ Ω0{ fixed point in(

C
(
[0,T],P2(Rd)

))Ω0

◦ much too big for nice compactness criterion!



Discretization method
• General idea{ discretize the conditioning in the MKV FBSDE!

◦ L(Xt|W0){ L(Xt|finitely supported process)

◦ Π projection mapping onto space grid {x1, . . . , xM} ⊂ R
d

◦ t1, . . . , tN a finite time grid ⊂ [0,T]

◦ Ŵ0
ti = Π(W0

ti )

• Solve the forward-backward system with

L(Xt|Ŵ0
t1 , . . . , Ŵ

0
ti ), ti ≤ t < ti+1

• Fixed point strategy

◦ input µ = (µt)0≤t≤T adapted with respect to discrete filtration
generated by (Ŵ0

t1 , . . . , Ŵ
0
tN )

◦ solve the fixed point µt
(
Ŵ0

t1 , . . . , Ŵ
0
tN
)

= L
(
Xµt |Ŵ

0
t1 , . . . , Ŵ

0
tN

)
• Since (Ŵ0

t1 , . . . , Ŵ
0
tN ) has finite support of size MN { fixed point in(

C([0,T],P(R))
)MN



Passing to the limit
• For any M and N { µ?,M,N = (µ?,M,N

t )0≤t≤T fixed point under the
discretized conditioning

◦ call (X?,M,N ,Y?,M,N ,Z?,M,N ,Z0,?,M,N) solution of the
corresponding FBSDE

◦ aim at extracting converging subsequence

• Assume tightness (µ?,M,N)M,N≥1 seen as processes with paths in
C([0,T],P2(d))

(µ?,M,N
t )0≤t≤T −→

L
µ? up to subsequence

◦
(
X?,M,N

t ,Y?,M,N
t ,

∫ t

0
Z?,M,N

s ds,
∫ t

0
Z0,?,M,N

s ds
)
0≤t≤T

weakly

converges to solution of FBSDE in environment µ??

◦ is µ? the flow of conditional measures of the solution?

•Main issue: loose adaptability of µ? with respect to systemic noise
in the limit!



Part III. Solving MFG with common noise

b. Weak and strong solutions



Need for a weak solution
• In previous slides{ loose adaptability of µ? with respect to
common noise

◦ set-up is made of (Ω0,F0,P0) and (Ω1,F1,P1)

◦ Ω1 carries idiosyncratic noise and Ω0 carries both common
noise and limit µ?{ F0 larger than Brownian filtration!

• Loose martingale representation theorem{ FBSDE in the limit
takes the form

Xt = ξ +

∫ t

0
b
(
Xs, µ

?
s ,Ys,Zs

)
ds +

∫ t

0

(
σ(Xs, µ

?
s )dWs + σ0(Xs, µ

?
s )dW0

s

)
Yt = g(XT , µT ) +

∫ T

t
f
(
Xs, µ

?
s ,Ys,Zs

)
ds −

∫ T

t
ZsdWs −

(
MT −Mt︸    ︷︷    ︸

mart. ⊥ W

)
◦ conditioning takes the form

µt = L
(
Xt | F

0
t

) (
may differ from L

(
Xt | (W0

s )0≤s≤t
) )



Strong vs. weak equilibra
• Strong sense

◦ probability spaces (Ω0,F0,P0) and (Ω1,F1,P1) are given

◦ example{ canonical spaces

Ω0 = C
(
[0,T],Rd) Ω1 = Rd︸︷︷︸

initial condition

× C
(
[0,T],Rd)

◦ require (µ?t )0≤t≤T = L(Xt|W0)

•Weak sense: probability space is not given

◦ ∃ 2 filtered probability spaces (Ω0,F0,P0) and (Ω1,F1,P1)

◦ (W0
t , µ

?
t )0≤t≤T is carried on Ω0, (X0,Wt)0≤t≤T on Ω1

◦ µ?t = L(Xt|F
0

t ) (conditioning is enlarged but independent of W)

• Same type of assumptions as in Section II⇒ existence of weak
MFG

• Yamada-Watanabe: strong ! + weak ∃ ⇒ strong ∃

◦ reconstruct solutions on the same space



Part III. Solving MFG with common noise

c. Common noise may restore uniqueness



Smoothing effect of common noise
• Lasry Lions conditions⇒ strong uniqueness

• ODEs without uniqueness{ SDEs with uniqueness!

◦ restoration of uniqueness with common noise

• Simple example

◦ b(x, µ, α) = −x + b(m) + α, m =
∫

x′dµ(x′)

◦ f (x, µ, α) = 1
2
[(

x + f (m)
)2

+ α2]
◦ g(x, µ) = 1

2
(
x + g(m)

)2

• Stochastic Pontryagin{ strong solution if Yt = Xt + χt

dmt =
(
b(mt) − 2mt − χt

)
dt + dW0

t ,

dχt = −
(
f + b

)
(mt)dt + ζtdW0

t , χT = g(mT )

◦ mt = E[Xt|W0]

◦ b, f , g smooth bounded + noise⇒ ∃ and !

◦ without noise⇒ ! may fail


