Mean-Field Games

Lectures at the Imperial College London

3rd Lecture: Solving Mean-Field Games

François Delarue (Nice – J.-A. Dieudonné)

May 12 2015

Joint works with R. Carmona; J.F. Chassagneux and D. Crisan; P. Cardaliaguet

Part I. Revisiting McKean-Vlasov FBSDEs

Part I. Revisiting McKean-Vlasov FBSDEs

a. Within the framework of MFG

Program without common noise

- Make use of the results from the first chapter in order to characterize the optimal paths in the fixed point
- ∘ in the FBSDE formulation of the optimization problem → replace the environment by the law of the solution
- o derive an FBSDE of the McKean-Vlasov type of the general form

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mathcal{L}(X_{s}), Y_{s}, Z_{s}\right) ds$$

$$+ \int_{0}^{t} \sigma(X_{s}, \mathcal{L}(X_{s}), Y_{s}) dW_{s}$$

$$Y_{t} = g(X_{T}, \mathcal{L}(X_{T})) + \int_{t}^{T} f\left(X_{s}, \mathcal{L}(X_{s}), Y_{s}, Z_{s}\right) ds$$

$$- \int_{t}^{T} Z_{s} dW_{s}$$

• Choose the coefficients accordingly and solve!

Program with common noise

- Make use of the results from the first chapter in order to characterize the optimal paths in the fixed point
- ∘ in the FBSDE formulation of the optimization problem → replace the environment by the conditional law of the solution
- o derive an FBSDE of the McKean-Vlasov type of the general form

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mathcal{L}(X_{s}|\mathbf{W}^{0}), Y_{s}, Z_{s}\right) ds$$

$$+ \int_{0}^{t} \sigma(X_{s}, \mathcal{L}(X_{s}|\mathbf{W}^{0}), Y_{s}) dW_{s} + \sigma^{0}(X_{s}, \mathcal{L}(X_{s}|\mathbf{W}^{0}), Y_{s}) dW_{s}^{0}$$

$$Y_{t} = g(X_{T}, \mathcal{L}(X_{T}|\mathbf{W}^{0})) + \int_{t}^{T} f\left(X_{s}, \mathcal{L}(X_{s}|\mathbf{W}^{0}), Y_{s}, Z_{s}\right) ds$$

$$- \int_{t}^{T} Z_{s} dW_{s} - \int_{t}^{T} Z_{s}^{0} dW_{s}^{0}$$

• Choose the coefficients accordingly and solve!

MKV FBSDE for the value function

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{split} X_t &= \xi \\ &+ \int_0^t b\left(X_s, \mathcal{L}(X_s), \alpha^*(X_s, \mathcal{L}(X_s), Z_s\sigma^{-1}(X_s, \mathcal{L}(X_s)))\right) ds \\ &+ \int_0^t \sigma(X_s, \mathcal{L}(X_s)) dW_s \\ Y_t &= g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T f\left(X_s, \mathcal{L}(X_s), \alpha^*(X_s, \mathcal{L}(X_s), Z_s\sigma^{-1}(X_s, \mathcal{L}(X_s)))\right) ds \\ &- \int_t^T Z_s dW_s \end{split}$$

 $\circ \alpha^{\star}(x,\mu,z)$ is the unique minimizer of $\alpha \mapsto H(x,\mu,\alpha,z)$

ullet Under assumptions of Chapter 1 \leadsto solution to MKV FBSDE is MFG equilibrium

MKV FBSDE for the value function

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{split} X_t &= \xi \\ &+ \int_0^t b\left(X_s, \mathcal{L}(X_s|\mathbf{W}^0), \alpha^{\star}(X_s, \mathcal{L}(X_s|\mathbf{W}^0), Z_s\sigma^{-1}(X_s, \mathcal{L}(X_s|\mathbf{W}^0)))\right) ds \\ &+ \int_0^t \sigma(X_s, \mathcal{L}(X_s|\mathbf{W}^0)) dW_s + \sigma^0(X_s, \mathcal{L}(X_s|\mathbf{W}^0)) dW_s^0 \\ Y_t &= g(X_T, \mathcal{L}(X_T|\mathbf{W}^0)) \\ &+ \int_t^T f\left(X_s, \mathcal{L}(X_s|\mathbf{W}^0), \alpha^{\star}(X_s, \mathcal{L}(X_s|\mathbf{W}^0), Z_s\sigma^{-1}(X_s, \mathcal{L}(X_s|\mathbf{W}^0)))\right) ds \\ &- \int_t^T Z_s dW_s - \int_t^T Z_s^0 dW_s^0 \end{split}$$

- $\circ \alpha^{\star}(x,\mu,z)$ is the unique minimizer of $\alpha \mapsto H(x,\mu,\alpha,z)$
- \bullet Under assumptions of Chapter 1 \leadsto solution to MKV FBSDE is MFG equilibrium

MKV FBSDE for the Pontryagin principle

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mathcal{L}(X_{s}), \alpha^{*}(X_{s}, \mathcal{L}(X_{s}), Y_{s})\right) ds$$

$$+ \int_{0}^{t} \sigma(\mathcal{L}(X_{s})) dW_{s}$$

$$Y_{t} = \partial_{x} g(X_{T}, \mathcal{L}(X_{T}))$$

$$+ \int_{t}^{T} \partial_{x} H\left(X_{s}, \mathcal{L}(X_{s}), \alpha^{*}(X_{s}, \mathcal{L}(X_{s}), Y_{s}), Y_{s}\right) ds$$

$$- \int_{t}^{T} Z_{s} dW_{s}$$

 \bullet Under assumptions of Chapter 1 \leadsto solution to MKV FBSDE is MFG equilibrium

MKV FBSDE for the Pontryagin principle

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{split} X_t &= \xi + \int_0^t b\left(X_s, \mathcal{L}(X_s|\boldsymbol{W}^0), \alpha^{\star}(X_s, \mathcal{L}(X_s|\boldsymbol{W}^0), Y_s)\right) ds \\ &+ \int_0^t \sigma(\mathcal{L}(X_s|\boldsymbol{W}^0)) dW_s + \sigma^0(\mathcal{L}(X_s|\boldsymbol{W}^0)) dW_s^0 \\ Y_t &= \partial_x g(X_T, \mathcal{L}(X_T|\boldsymbol{W}^0)) \\ &+ \int_t^T \partial_x H\left(X_s, \mathcal{L}(X_s|\boldsymbol{W}^0), \alpha^{\star}(X_s, \mathcal{L}(X_s|\boldsymbol{W}^0), Y_s), Y_s\right) ds \\ &- \int_t^T Z_s dW_s - \int_t^T Z_s^0 dW_s^0 \end{split}$$

 \bullet Under assumptions of Chapter 1 \leadsto solution to MKV FBSDE is MFG equilibrium

Existence and uniqueness in small time

- New two-point-boundary-problem →
 - o Cauchy-Lipschitz theory in small time only
- Example when $\sigma^0 \equiv 0$

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mathcal{L}(X_{s}), Y_{s}, Z_{s}\right) + \int_{0}^{t} \sigma(X_{s}, \mathcal{L}(X_{s}), Y_{s}) dW_{s}$$

$$Y_{t} = g(X_{T}, \mathcal{L}(X_{T})) + \int_{t}^{T} f\left(X_{s}, \mathcal{L}(X_{s}), Y_{s}, Z_{s}\right) ds - \int_{t}^{T} Z_{s} dW_{s}$$

- Lipschitz setting
 - \circ b, σ , f and g L-Lipschitz continuous in (x, μ, y, z)
 - \circ Lipschitz in $\mu \leftrightarrow W_2$ Wasserstein distance
 - $\circ (b, f, \sigma, \sigma^0, g)(t, 0, \delta_0, 0, 0)$ bounded
 - $\circ \Rightarrow$ existence and uniqueness provided that $T \leq c(L)$

Part III. McKean-Vlasov FBSDEs

b. Lions derivative overs $\mathcal{P}_2(\mathbb{R}^d)$

Differentiation on $\mathcal{P}_2(\mathbb{R})$

- Consider $\mathcal{U}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$
- Lifted-version of *U*

$$\hat{\mathcal{U}}: L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^d) \ni X \mapsto \mathcal{U}(\text{Law}(X))$$

- $\circ \mathcal{U}$ differentiable if $\hat{\mathcal{U}}$ Fréchet differentiable (Lions)
- \circ independent of the choice of (Ω, \mathbb{P}) (rich enough)
- \bullet Differential of ${\cal U}$
 - \circ Fréchet derivative of $\hat{\mathcal{U}}$ with $\mu = \text{Law}(X)$

$$D\hat{\mathcal{U}}(X) = \partial_{\mu}\mathcal{U}(\mu)(X), \quad \partial_{\mu}\mathcal{U}(\mu) : \mathbb{R}^{d} \ni x \mapsto \partial_{\mu}\mathcal{U}(\mu)(x) \in \mathbb{R}^{d}$$

 \circ Derivative of \mathcal{U} at $\mu \leadsto \partial_{\mu} \mathcal{U}(\mu) \in L^{2}(\mathbb{R}, \mu; \mathbb{R}^{d})$

Differentiation on $\mathcal{P}_2(\mathbb{R})$

- Consider $\mathcal{U}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$
- Lifted-version of *U*

$$\hat{\mathcal{U}}: L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^d) \ni X \mapsto \mathcal{U}(\text{Law}(X))$$

- $\circ \mathcal{U}$ differentiable if $\hat{\mathcal{U}}$ Fréchet differentiable (Lions)
- \circ independent of the choice of (Ω, \mathbb{P}) (rich enough)
- ullet Differential of ${\cal U}$
 - \circ Fréchet derivative of $\hat{\mathcal{U}}$ with $\mu = \text{Law}(X)$

$$D\hat{\mathcal{U}}(X) = \partial_{\mu}\mathcal{U}(\mu)(X), \quad \partial_{\mu}\mathcal{U}(\mu) : \mathbb{R}^{d} \ni x \mapsto \partial_{\mu}\mathcal{U}(\mu)(x) \in \mathbb{R}^{d}$$

- Derivative of \mathcal{U} at $\mu \leadsto \partial_{\mu} \mathcal{U}(\mu) \in L^{2}(\mathbb{R}, \mu; \mathbb{R}^{d})$
- Finite dimensional projection

$$\partial_{\mathbf{x}_{i}}\left[\mathcal{U}\left(\frac{1}{N}\sum_{j=1}^{N}\delta_{x_{j}}\right)\right] = \frac{1}{N}\partial_{\mu}\mathcal{U}\left(\frac{1}{N}\sum_{j=1}^{N}\delta_{x_{j}}\right)(\mathbf{x}_{i}).$$

Examples

- 1st example: $\mathcal{U}(\mu) = \int_{\mathbb{R}^d} h(x) d\mu(x)$
 - \circ two r.v.'s X and Y with values in \mathbb{R}^d

$$\begin{split} \mathcal{U}\big(\mathcal{L}(X+\varepsilon Y)\big) &= \mathbb{E}\big[h(X+\varepsilon Y)\big] \\ &= \mathbb{E}[h(X)] + \varepsilon \mathbb{E}\big[\partial h(X)Y\big] + o(\varepsilon) \end{split}$$

$$\circ \, \partial_{\mu} \mathcal{U}(\mu)(v) = \partial h(v)$$

- 2nd example: $\mathcal{U}(\mu) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} h(x y) d\mu(x) d\mu(y)$
 - \circ two r.v.'s X and Y with independent copies X' and Y'

$$\mathcal{U}(\mathcal{L}(X+\varepsilon Y))$$

$$= \mathbb{E}[h(X-X'+\varepsilon(Y-Y'))]$$

$$= \mathbb{E}[h(X - X')] + \varepsilon \mathbb{E}[\partial h(X - X')(Y - Y')] + o(\varepsilon)$$

$$= \mathbb{E}[h(X-X')] + \varepsilon \mathbb{E}\big[\partial h(X-X')Y\big] - \varepsilon \mathbb{E}\big[\partial h(X'-X)Y\big] + o(\varepsilon)$$

$$\circ \partial_{\mu} \mathcal{U}(\mu)(v) = \int_{\mathbb{R}^d} \partial h(v - y) d\mu(y) - \int_{\mathbb{R}^d} \partial h(y - v) d\mu(y)$$

Connection with W_2 distance

 \bullet Let $\mathcal U$ be Lions-differentiable with

$$\underbrace{\mathbb{E}[|\partial_{\mu}U(\mu)(X)|^{2}]}_{\int_{\mathbb{R}^{d}}|\partial_{\mu}U(\mu)(v)|^{2}d\mu(v)} \leq C^{2}, \qquad \mathcal{L}(X) = \mu$$

• For $X, X' \in L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^d)$

$$\mathcal{U}(\mathcal{L}(X')) - \mathcal{U}(\mathcal{L}(X))$$

$$= \int_0^1 \frac{d}{dt} \mathcal{U}(\mathcal{L}(tX' + (1-t)X))dt$$

$$= \int_0^1 \frac{d}{dt} \hat{\mathcal{U}}(tX' + (1-t)X)dt$$

$$= \int_0^1 \mathbb{E}[\partial_{\mu} \mathcal{U}(\mathcal{L}(tX' + (1-t)X))(tX' + (1-t)X)(X' - X)]dt$$

$$< C\mathbb{E}[|X' - X|^2]^{1/2}$$

 \circ take inf over (X, X') with given laws \rightarrow Lipschitz w.r.t. W_2

Part III. McKean-Vlasov FBSDEs

c. Control of McKean-Vlasov and potential games

Rough version of the Pontryagin principle

• Controlled MKV processes (no common noise)

$$dX_t = b(X_t, \mathcal{L}(X_t), \alpha_t)dt + \sigma(X_t, \mathcal{L}(X_t))dW_t$$

$$\circ$$
 optimize the cost $J(\alpha) = \mathbb{E}[g(X_T, \mathcal{L}(X_T)) + \int_0^T f(X_t, \mathcal{L}(X_t), \alpha_t) dt]$

- Optimize w.r.t. the measure as well
 - \circ Use the same *H* and the same $\hat{\alpha}(t, x, \mu, y)$
 - Adjoint equations:

$$\begin{split} dX_t &= b(X_t, \mu_t, \hat{\alpha}(t, X_t, \mathcal{L}X_t, Y_t))dt + \sigma dW_t \\ dY_t &= -\partial_x H(X_t, \mathcal{L}(X_t), \hat{\alpha}(X_t, \mathcal{L}(X_t), Y_t), Y_t)dt \\ &\quad - "\partial_\mu H(X_t, \mathcal{L}(X_t), \hat{\alpha}(X_t, \mathcal{L}(X_t), Y_t), Y_t)"dt + Z_t dW_t \\ Y_T &= \partial_x g(X_T, \mathcal{L}(X_T)) + "\partial_\mu g(X_T, \mathcal{L}(X_T))" \end{split}$$

• What do " $\partial_{\mu}H$ " and " $\partial_{\mu}g$ " mean?

Right version of the Pontryagin principle

• Adjoint equations take the form

$$dX_{t} = b(X_{t}, \mathcal{L}(X_{t}), \hat{\alpha}(t, X_{t}, \mathcal{L}(X_{t}), Y_{t}))dt + \sigma dW_{t}$$

$$dY_{t} = -\partial_{x}H(X_{t}, \mathcal{L}(X_{t}), \hat{\alpha}(t, X_{t}, \mathcal{L}(X_{t}), Y_{t}), Y_{t})dt$$

$$-\mathbb{E}'[\partial_{\mu}H(X'_{t}, \mathcal{L}(X_{t}), \hat{\alpha}(X'_{t}, \mathcal{L}(X_{t}), Y'_{t}))(X_{t})]dt + Z_{t}dW_{t}$$

$$Y_{T} = \partial_{x}g(X_{T}, \mathcal{L}(X_{T})) + \mathbb{E}'[\partial_{\mu}g(X'_{T}, \mathcal{L}(X_{T}))(X_{T})]$$

- $\circ (X'_t, Y'_t)$ independent copy of (X_t, Y_t) on $(\Omega', \mathbb{F}', \mathbb{P}')$
- example → social optimization with

$$\circ f(\mu, \alpha) = \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x - y) d\mu(x) d\mu(y) + \frac{1}{2} |\alpha|^2, f \text{ symmetric}$$

$$\circ g(\mu) = \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} g(x - y) d\mu(x) d\mu(y), g \text{ symmetric}$$

$$\circ b(\alpha) = \alpha$$

$$\partial_{u}H(\cdot) = \partial_{u}f(\mathcal{L}(X_{t}))(X_{t}) = \mathbb{E}'[\partial f(X_{t} - X_{t}')] = \partial_{|x=X_{t}}\mathbb{E}'[f(x - X_{t}')]$$

• same equilibrium as MFG with $\int_{\mathbb{R}^d} f(x-y) d\mu(y) + \frac{1}{2} |\alpha|^2 \sim$ potential game!

Part II. Solving MFG without common noise

Part II. Solving MFG without common noise

a. Schauder fixed point theorem

Objective

• Assume $\sigma^0 \equiv 0$ and provide solution to

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mathcal{L}(X_{s}), Y_{s}, Z_{s}\right) + \int_{0}^{t} \sigma(X_{s}, \mathcal{L}(X_{s}), Y_{s}) dW_{s}$$

$$Y_{t} = g(X_{T}, \mathcal{L}(X_{T})) + \int_{t}^{T} f\left(X_{s}, \mathcal{L}(X_{s}), Y_{s}, Z_{s}\right) ds - \int_{t}^{T} Z_{s} dW_{s}$$

• Assumption that

when
$$(\mathcal{L}(X_t))_{0 \le t \le T}$$
 replaced by some fixed input $(\mu_t)_{0 \le t \le T}$
 \Rightarrow existence and uniqueness of a solution to the FBSDE in environment $(\mu_t)_{0 \le t \le T}$

- Example: implement the results from Chapter 1!
 apply the two characterizations for stochastic optimal control
 - **◆□▶ ◆□▶ ◆荳▶ 荳 り**९@

Objective

• Assume $\sigma^0 \equiv 0$ and provide solution to

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) + \int_{0}^{t} \sigma(X_{s}, \mu_{s}, Y_{s}) dW_{s}$$

$$Y_{t} = g(X_{T}, \mu_{T}) + \int_{t}^{T} f\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) ds - \int_{t}^{T} Z_{s} dW_{s}$$

• Assumption that

when
$$(\mathcal{L}(X_t))_{0 \le t \le T}$$
 replaced by some fixed input $(\mu_t)_{0 \le t \le T}$
 \Rightarrow existence and uniqueness of a solution to the FBSDE in environment $(\mu_t)_{0 \le t \le T}$

- Example: implement the results from Chapter 1!
 apply the two characterizations for stochastic optimal control

How to attack existence?

- Preliminary remark: no hope for solving MFG by Picard fixed theorem
 - o at least under classical Lipschitz assumptions only
 - o expect small time
 - need refined assumptions
- First step → existence only
 - o forget about uniqueness!
 - use a fixed point theorem without uniqueness!
- Use Schauder's fixed point theorem
 - o see statement in the next slide
 - need a structure with a compactness
- \circ in the framework of MFG \rightarrow fixed point is on probability measures \rightarrow nice compactness criterion!

Statement of the Schauder fixed point theorem

- Generalisation of Brouwer's theorem from finite to infinite dimension
- Let $(V, \|\cdot\|)$ be a normed linear space
 - \circ ∅ ≠ $E \subset V$ with E closed and convex
 - $\circ \phi : E \to E$ continuous such that $\phi(E)$ is relatively compact
 - $\circ \Rightarrow$ existence of a fixed point to ϕ
- In MFG \rightsquigarrow what is V, what is E, what is ϕ ?
 - recall that MFG equilibrium is a flow of measures $(\mu_t)_{0 \le t \le T}$

$$E \subset C([0,T],\mathcal{P}_2(\mathbb{R}^d))$$

o need to embed into a linear structure

$$C([0,T],\mathcal{P}_2(\mathbb{R}^d))\subset C([0,T],\mathcal{M}_1(\mathbb{R}^d))$$

 $\circ \mathcal{M}_1(\mathbb{R}^d)$ set of signed measures ν with $\int_{\mathbb{R}^d} |x| d|\nu|(x) < \infty$

Compactness on the space of probability measures

• Equip $\mathcal{M}_1(\mathbb{R}^d)$ with a norm $\|\cdot\|$ and restrict to $\mathcal{P}_1(\mathbb{R}^d)$ such that \circ convergence of $(\nu_n)_{n\geq 1}$ in $\mathcal{P}_1(\mathbb{R}^d)$ implies weak convergence

$$\forall f \in C_b(\mathbb{R}^d, \mathbb{R}), \quad \lim_{n \to \infty} \int_{\mathbb{R}^d} f d\nu_n = \int_{\mathbb{R}^d} f d\nu$$

∘ if $(v_n)_{n \ge 1}$ has uniformly bounded moments of order p > 2

Unif. square integrability
$$\Rightarrow W_2(\nu_n, \nu) \rightarrow 0$$

• says that the input in the coefficients varies continuously!

$$b(x, \nu_n, y, z)$$
, $\sigma(x, \nu_n)$, $\sigma^0(x, \nu_n)$, $f(x, \nu_n, y, z)$, $g(x, \nu_n)$

- Conversely, if $(\nu_n)_{n\geq 1}$ has bounded moments of order p>2
 - $\circ (v_n)_{n\geq 1}$ admits a weakly convergent subsequence
 - \circ then convergence for W_2 by unit. integrability and for $\|\cdot\|$ also

Application to MKV FBSDE

• Choose *E* as continuous $(\mu_t)_{0 \le t \le T}$ from [0, T] to $\mathcal{P}_2(\mathbb{R}^d)$

$$\sup_{0 \le t \le T} \int_{\mathbb{R}^d} |x|^4 d\mu_t(x) \le K \qquad \text{for some } K$$

• Construct $\phi \sim \text{fix } (\mu_t)_{0 \le t \le T} \text{ in } E \text{ and solve}$

$$X_t = \xi + \int_0^t b\left(X_s, \mu_s, Y_s, Z_s\right) + \int_0^t \sigma(X_s, \mu_s, Y_s) dW_s$$

$$Y_t = g(X_T, \mu_T) + \int_t^T f\left(X_s, \mu_s, Y_s, Z_s\right) ds - \int_t^T Z_s dW_s$$

$$\circ \operatorname{let} \phi \Big(\boldsymbol{\mu} = (\mu_t)_{0 \le t \le T} \Big) = (\mathcal{L}(X_t^{\boldsymbol{\mu}}))_{0 \le t \le T}$$

- Assume bounded coefficients and $\mathbb{E}[|\xi|^4] < \infty$
 - \circ choose K such that $\mathbb{E}[|X_t^{\mu}|^4] \leq K$

$$\Rightarrow$$
 E stable by ϕ

$$\circ W_2(\mathcal{L}(X_t^{\mu}), \mathcal{L}(X_s^{\mu})) \le C \mathbb{E}[|X_t^{\mu} - X_s^{\mu}|^2]^{1/2} \le C|t - s|^{1/2}$$

Conclusion

- Consider continuous $\mu = (\mu_t)_{0 \le t \le T}$ from [0, T] to $\mathcal{P}_2(\mathbb{R}^d)$
 - \circ for any $t \leadsto (\phi(\mu))_t$ in a compact subset of $\mathcal{P}_2(\mathbb{R}^d)$
 - \circ [0, T] \ni t \mapsto ($\phi(\mu)$)_t is uniformly continuous in μ
- ∘ by Arzelà-Ascoli ⇒ output lives in a compact subset of $E \subset C([0,T], \mathcal{P}_2(\mathbb{R}^d))$ (and thus of $C([0,T], \mathcal{M}_1(\mathbb{R}^d))$)
- Continuity of ϕ on E
- stability of the solution of FBSDEs with respect to a continuous perturbation of the environment
- o under assumption of Chapter 1 and continuity w.r.t.
 environment → answer is yes
- ϕ is continuous and compact range \Rightarrow existence of a fixed point

Part II. Solving MFG without common noise

b. Statements and refinements

Non-degenerate setting

• Growth conditions

$$\begin{split} |b(x,\mu,\alpha)| &\leq C(1+|\alpha|), \ |(\sigma,\sigma^{-1},g)(x,\mu)| \leq C \\ |f(x,\mu,\alpha)| &\leq C(1+|\alpha|^2) \end{split}$$

• Lipschitz condition

$$\begin{split} |(b,\sigma,\sigma^{-1},g)(x',\mu,\alpha') - (b,\sigma,\sigma^{-1},g)(x,\mu,\alpha)| &\leq C(|x'-x| + |\alpha'-\alpha|) \\ |f(x',\mu,\alpha) - f(x,\mu,\alpha)| &\leq C|x'-x| \\ |f(x,\mu,\alpha') - f(x,\mu,\alpha)| &\leq C(1+|\alpha| + |\alpha'|)|\alpha'-\alpha| \end{split}$$

- *b* linear in α and *f* strictly convex in $\alpha \Rightarrow$ unique minimizer $\alpha^*(x, \mu, z)$ of the Hamiltonian; and regularity of the minimizer
 - o interpretation of the value function
- \circ for any input $\mu = (\mu_t)_{0 \le t \le T} \Rightarrow$ unique optimal path with bounded control (comes from the fact that the gradient of HJB is bounded)
- \Rightarrow existence of an MFG equilibrium!

Restricted convex setting

- Use the stochastic Pontryagin principle
 - o need to state the conditions for the derivative of the Hamiltonian
- \circ require b to be linear in $x \Rightarrow$ no a priori bound for $b \rightsquigarrow$ need to adapt the result of Section I
- \circ simplify \leadsto take the example when b independent of x (say $b(x, \mu, \alpha) = \alpha$)
- Backward equation $(\partial_x f = \partial_x H)$

$$Y_{t} = \partial_{x} g(X_{T}, \mathcal{L}(X_{T}))$$

$$+ \int_{t}^{T} \partial_{x} f\left(X_{s}, \mathcal{L}(X_{s}), \alpha^{\star}(X_{s}, \mathcal{L}(X_{s}), Y_{s})\right) ds - \int_{t}^{T} Z_{s} dW_{s}$$

- \circ require g convex in x and f convex in (x, α) but $\partial_x g$ and $\partial_x f$ bounded \sim very restrictive!
 - \circ if continuity with respect to $\mu \Rightarrow$ existence of an MFG solution

Mollification procedure

- Convex Lipschitz is not satisfactory
 - use a mollification procedure
- Approximate coefficients (f, g) by coefficients (f_n, g_n) such that
 - $\circ f_n$ and g_n are convex and Lipschitz
 - o general procedure for approximating convex functions

$$\Phi^{n}(x) = \sup_{|y| \le n} \inf_{z \in \mathbb{R}^{d}} [\langle y, x - z \rangle + \Phi(z) \rangle]$$

- ∘ solve MFG for (g_n, f_n) \rightsquigarrow equilibrium $(\mu_t^n)_{0 \le t \le T}$
- Converging subsequence of $(\mu_t^n)_{0 \le t \le T}$?
 - \circ new compactness problem in $C([0,T],\mathcal{P}_2(\mathbb{R}^d))$
 - ∘ analysis → boils down to control

$$\sup_{n\geq 1} \sup_{t\in[0,T]} \int_{\mathbb{R}^d} |x| d\mu_t^n(x) < \infty$$

 \circ must prevent any blow-up of the means of the equilibria!

Solvability in the convex setting

- Convex setting
 - \circ *b* linear in (x, α) , *g* convex in *x*
 - \circ f convex in (x, α) and strictly convex in α
- Local Lipschitz continuity of the cost functionals

$$\begin{split} \left| f(t, x', \mu', \alpha') - f(t, x, \mu, \alpha) \right| + \left| g(x', \mu') - g(x, \mu) \right| \\ & \leq L \left[1 + |x'| + |x| + |\alpha'| + |\alpha| + \left(\int_{\mathbb{R}^d} |y|^2 d(\mu + \mu')(y) \right)^{1/2} \right] \\ & \times \left[|(x', \alpha') - (x, \alpha)| + W_2(\mu', \mu) \right], \end{split}$$

- f and g C^1 w.r.t. (x, α) with Lipschitz derivatives
- weak-mean reverting condition

$$\langle x, \partial_x f(t, 0, \delta_x, 0) \rangle \ge -c(1 + |x|)$$
 and $\langle x, \partial_x g(0, \delta_x) \rangle \ge -c(1 + |x|)$

• \Rightarrow existence of an MFG equilibrium!

Linear-quadratic in d = 1

Apply previous results with

$$b(t, x, \mu, \alpha) = a_t x + a_t' \mathbb{E}(\mu) + b_t \alpha_t$$

$$g(x, \mu) = \frac{1}{2} [qx + q' \mathbb{E}(\mu)]^2 \iff \text{(mean-reverting) } qq' \ge 0$$

$$f(t, x, \mu, \alpha) = \frac{1}{2} [\alpha^2 + (m_t x + m_t' \mathbb{E}(\mu))^2] \iff \text{(mean-rev.) } m_t m_t' \ge 0$$

• Compare with direct method → adjoint equations

$$dX_t = [a_t X_t + a_t' \mathbb{E}(X_t) - b_t^2 Y_t] dt + \sigma dW_t$$

$$dY_t = -[a_t Y_t + m_t (m_t X_t + m_t' \mathbb{E}(X_t))] dt + Z_t dW_t$$

$$Y_T = q[qX_T + q' \mathbb{E}(X_T)]$$

o take the mean

$$d\mathbb{E}(X_t) = [(a_t + a_t')\mathbb{E}(X_t) - b_t^2\mathbb{E}(Y_t)]dt$$

$$d\mathbb{E}(Y_t) = -[a_t\mathbb{E}(Y_t) + m_t(m_t + m_t')\mathbb{E}(X_t)]dt$$

$$\mathbb{E}(Y_T) = q(q + q')\mathbb{E}(X_T)$$

• existence and uniqueness if $q(q+q') \ge 0$, $m_t(m_t+m_t') \ge 0$

Part II. Solving MFG without common noise

c. Uniqueness criterion

A counter-example to uniqueness

Consider the MKV FBSDE

$$dX_t = b(\mathbb{E}(Y_t))dt + dW_t, \quad X_0 = x_0$$

$$dY_t = -f(\mathbb{E}(X_t))dt + Z_t dW_t, \quad Y_T = g(\mathbb{E}(X_T))$$

- o take bounded and Lipschitz coefficients → existence of a solution
 - o uniqueness may not hold!
- \circ completely different of the system with $b(Y_t)$, $f(X_t)$ and $g(X_T)$ for which uniqueness holds true!
- Proof → take the mean

$$d\mathbb{E}(X_t) = b(\mathbb{E}(Y_t))dt, \quad \mathbb{E}(X_0) = x_0$$

$$d\mathbb{E}(Y_t) = -f(\mathbb{E}(X_t))dt, \quad \mathbb{E}(Y_T) = g(\mathbb{E}(X_T))$$

 \circ led back to counter-example for FBSDE \leadsto choose b, f and g equal to the identity on a compact subset

Lasry Lions monotonicity condition

- Recall for an FBSDE without noise ($\sigma = \sigma^0 = 0$)
- existence and uniqueness may hold for the Pontryagin system if convex cost functional
 - \circ convexity \longleftrightarrow monotonicity of $\partial_x g$ and $\partial_x H$
 - what is monotonicity condition in the direction of the measure?
- Lasry Lions monotonicity condition
 - \circ b, σ do not depend on μ
 - $\circ f(x, \mu, \alpha) = f_0(x, \mu) + f_1(x, \alpha) (\mu \text{ and } \alpha \text{ are separated})$
 - \circ monotonicity property for f_0 and g w.r.t. μ

$$\int_{\mathbb{R}^d} (f_0(x,\mu) - f_0(x,\mu')) d(\mu - \mu')(x) \ge 0$$
$$\int_{\mathbb{R}^d} (g(x,\mu) - g(x,\mu')) d(\mu - \mu')(x) \ge 0$$

Monotonicity restores uniqueness

• Assume that for any input $\mu = (\mu_t)_{0 \le t \le T}$ unique optimal control $\alpha^{\star,\mu}$

• + existence of an MFG for a given initial condition

- Lasry Lions ⇒ uniqueness of MFG equilibrium!
 - \circ if two different $\sim \alpha^{\star,\mu} \neq \alpha^{\star,\mu'}$

$$\underbrace{J^{\mu}(\alpha^{\star,\mu})}_{\text{cost under }\mu} < J^{\mu}(\alpha^{\star,\mu'}) \quad \text{and} \quad \underbrace{J^{\mu'}(\alpha^{\star,\mu'})}_{\text{cost under }\mu'} < J^{\mu'}(\alpha^{\star,\mu})$$

so that
$$J^{\mu'}(\alpha^{\star,\mu}) - J^{\mu'}(\alpha^{\star,\mu'}) + J^{\mu}(\alpha^{\star,\mu'}) - J^{\mu}(\alpha^{\star,\mu}) > 0$$
$$J^{\mu'}(\alpha^{\star,\mu}) - J^{\mu}(\alpha^{\star,\mu}) - [J^{\mu'}(\alpha^{\star,\mu'}) - J^{\mu}(\alpha^{\star,\mu'})] > 0$$

$$\mathbb{E}\left[\underbrace{g(X_{T}^{\star,\mu},\mu_{T}') - g(X_{T}^{\star,\mu},\mu_{T})}_{-g(x,\mu_{T}')d\mu_{T}(x)} - \underbrace{\left(g(X_{T}^{\star,\mu'},\mu_{T}') - g(X_{T}^{\star,\mu'},\mu_{T})\right)}_{-g(x,\mu_{T}')d\mu_{T}'(x)} + \ldots\right] > 0$$

∘ same for f_0 ⇒ LHS must be ≤ 0

Example for Lasry Lions

• Examples for $h(x, \mu)$ satisfying

$$\int_{\mathbb{R}^d} (h(x,\mu) - h(x,\mu')) d(\mu - \mu')(x) \ge 0$$

- \circ if h is independent of x
- \circ if h given by

$$h(x,\mu) = \langle x, \bar{\mu} \rangle, \quad \bar{\mu} = \int_{\mathbb{R}^d} y d\mu(y)$$

 \circ if h is given by

$$h(x,\mu) = \int_{\mathbb{R}^d} f(x-y)d\mu(y)$$
 and f odd

 \circ if d = 1 and h is independent of x

$$h(x, \mu) = \mu(-\infty, x]$$
 and μ, μ' have no atoms

a. Strategy of proof

General prospect

- Solve MFG with a common noise
 - o need to solve conditional MKV FBSDE

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mathcal{L}(X_{s}|\mathbf{W}^{0}), Y_{s}, Z_{s}\right) ds$$

$$+ \int_{0}^{t} \sigma\left(X_{s}, \mathcal{L}(X_{s}|\mathbf{W}^{0}), Y_{s}\right) dW_{s} + \int_{0}^{t} \sigma^{0}\left(X_{s}, \mathcal{L}(X_{s}|\mathbf{W}^{0}), Y_{s}\right) dW_{s}^{0}$$

$$Y_{t} = g\left(X_{T}, \mathcal{L}(X_{T}|\mathbf{W}^{0})\right) + \int_{t}^{T} f\left(X_{s}, \mathcal{L}(X_{s}|\mathbf{W}^{0}), Y_{s}, Z_{s}\right) ds$$

$$- \int_{t}^{T} Z_{s} dW_{s} - \int_{t}^{T} Z_{s}^{0} dW_{s}^{0}$$

- Again → Cauchy Lipschitz theory in small time
 may adapt the result for MFG without common noise
- How to implement Schauder's fixed point over intervals of arbitrary length?

Need for revisiting the strategy of proof

- ullet Try to follow the same strategy as in the case σ^0
- Fix $\mu = (\mu_t)_{0 \le t \le T}$ random process with values in $\mathcal{P}_2(\mathbb{R}^d)$ and adapted w.r.t. W^0 on $(\Omega^0, \mathbb{F}^0, \mathbb{P}^0)$
 - \circ call $X^{\mu} = (X^{\mu}_t)_{0 \le t \le T}$ the forward component of the solution to

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) ds$$

$$+ \int_{0}^{t} \left(\sigma(X_{s}, \mu_{s}, Y_{s}) dW_{s} + \sigma^{0}(X_{s}, \mu_{s}, Y_{s}) dW_{s}^{0}\right)$$

$$Y_{t} = g(X_{T}, \mu_{T}) + \int_{t}^{T} f\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) ds - \int_{t}^{T} \left(Z_{s} dW_{s} + Z_{s}^{0} dW_{s}^{0}\right)$$

 \circ Solve $\mu_t(\omega^0) = \mathcal{L}(X_t^{\mu}|W^0)(\omega^0)$ for any $t \in [0,T]$ and for almost every $\omega^0 \in \Omega^0 \leadsto$ fixed point in

$$\left(C([0,T],\mathcal{P}_2(\mathbb{R}^d))\right)^{\Omega_0}$$

o much too big for nice compactness criterion!

Discretization method

- General idea → discretize the conditioning in the MKV FBSDE!
 - ∘ $\mathcal{L}(X_t|W^0)$ \rightsquigarrow $\mathcal{L}(X_t|\text{finitely supported process})$
 - ∘ Π projection mapping onto space grid $\{x_1, ..., x_M\} \subset \mathbb{R}^d$
 - $\circ t_1, \ldots, t_N$ a finite time grid $\subset [0, T]$
 - $\circ \; \hat{W}^0_{t_i} = \Pi(W^0_{t_i})$
- Solve the forward-backward system with

$$\mathcal{L}(X_t|\hat{W}_{t_1}^0,\ldots,\hat{W}_{t_i}^0), \quad t_i \leq t < t_{i+1}$$

- Fixed point strategy
- \circ input $\mu = (\mu_t)_{0 \le t \le T}$ adapted with respect to discrete filtration generated by $(\hat{W}^0_{t_1}, \dots, \hat{W}^0_{t_N})$
 - \circ solve the fixed point $\mu_t(\hat{W}_{t_1}^0, \dots, \hat{W}_{t_N}^0) = \mathcal{L}(X_t^{\mu} | \hat{W}_{t_1}^0, \dots, \hat{W}_{t_N}^0)$
- Since $(\hat{W}_{t_1}^0, \dots, \hat{W}_{t_N}^0)$ has finite support of size $MN \rightsquigarrow$ fixed point in $(C([0,T],\mathcal{P}(\mathbb{R})))^{MN}$

Passing to the limit

- For any M and $N \rightsquigarrow \mu^{\star,M,N} = (\mu_t^{\star,M,N})_{0 \le t \le T}$ fixed point under the discretized conditioning
- \circ call $(X^{\star,M,N},Y^{\star,M,N},Z^{\star,M,N},Z^{0,\star,M,N})$ solution of the corresponding FBSDE
 - o aim at extracting converging subsequence
- Assume tightness $(\mu^{\star,M,N})_{M,N\geq 1}$ seen as processes with paths in $C([0,T],\mathcal{P}_2(^d))$

$$(\mu_t^{\star,M,N})_{0 \le t \le T} \xrightarrow{\mathcal{L}} \mu^{\star}$$
 up to subsequence

$$\circ \left(X_t^{\star,M,N}, Y_t^{\star,M,N}, \int_0^t Z_s^{\star,M,N} ds, \int_0^t Z_s^{0,\star,M,N} ds\right)_{0 \le t \le T} \text{ weakly converges to solution of FBSDE in environment } \mu^*?$$

- \circ is μ^* the flow of conditional measures of the solution?
- Main issue: loose adaptability of μ^* with respect to systemic noise in the limit!

b. Weak and strong solutions

Need for a weak solution

- ullet In previous slides \sim loose adaptability of μ^{\star} with respect to common noise
 - \circ set-up is made of $(\Omega^0, \mathbb{F}^0, \mathbb{P}^0)$ and $(\Omega^1, \mathbb{F}^1, \mathbb{P}^1)$
- $\circ \Omega^1$ carries idiosyncratic noise and Ω^0 carries both common noise and limit $\mu^* \leadsto \mathbb{F}^0$ larger than Brownian filtration!
- Loose martingale representation theorem → FBSDE in the limit takes the form

$$X_{t} = \xi + \int_{0}^{t} b\left(X_{s}, \mu_{s}^{\star}, Y_{s}, Z_{s}\right) ds + \int_{0}^{t} \left(\sigma(X_{s}, \mu_{s}^{\star}) dW_{s} + \sigma^{0}(X_{s}, \mu_{s}^{\star}) dW_{s}^{0}\right)$$

$$Y_{t} = g(X_{T}, \mu_{T}) + \int_{t}^{T} f\left(X_{s}, \mu_{s}^{\star}, Y_{s}, Z_{s}\right) ds - \int_{t}^{T} Z_{s} dW_{s} - \left(\underbrace{M_{T} - M_{t}}_{mart. \perp}\right)$$
mart. $\perp W$

o conditioning takes the form

$$\mu_t = \mathcal{L}(X_t \mid \mathcal{F}_t^0) \quad (\text{may differ from } \mathcal{L}(X_t \mid (W_s^0)_{0 \le s \le t}))$$

Strong vs. weak equilibra

- Strong sense
 - \circ probability spaces $(\Omega^0, \mathbb{F}^0, \mathbb{P}^0)$ and $(\Omega^1, \mathbb{F}^1, \mathbb{P}^1)$ are given
 - example → canonical spaces

$$\Omega^0 = C([0, T], \mathbb{R}^d)$$
 $\Omega^1 = \underbrace{\mathbb{R}^d}_{\text{initial condition}} \times C([0, T], \mathbb{R}^d)$

- \circ require $(\mu_t^{\star})_{0 \le t \le T} = \mathcal{L}(X_t | \mathbf{W}^0)$
- Weak sense: probability space is not given
 - \circ \exists 2 filtered probability spaces $(\Omega^0, \mathbb{F}^0, \mathbb{P}^0)$ and $(\Omega^1, \mathbb{F}^1, \mathbb{P}^1)$
 - $\circ (W_t^0, \mu_t^{\star})_{0 \le t \le T}$ is carried on Ω^0 , $(X_0, W_t)_{0 \le t \le T}$ on Ω^1
 - $\circ \mu_t^{\star} = \mathcal{L}(X_t | \mathcal{F}_t^0)$ (conditioning is enlarged but independent of W)
- ullet Same type of assumptions as in Section II \Rightarrow existence of weak MFG
- Yamada-Watanabe: strong ! + weak $\exists \Rightarrow$ strong \exists
 - o reconstruct solutions on the same space

c. Common noise may restore uniqueness

Smoothing effect of common noise

- Lasry Lions conditions ⇒ strong uniqueness
- ODEs without uniqueness → SDEs with uniqueness!
 - o restoration of uniqueness with common noise
- Simple example

$$b(x, \mu, \alpha) = -x + b(m) + \alpha, m = \int x' d\mu(x')$$

$$color f(x, \mu, \alpha) = \frac{1}{2} [(x + f(m))^2 + \alpha^2]$$

$$color g(x, \mu) = \frac{1}{2} (x + g(m))^2$$

• Stochastic Pontryagin \rightsquigarrow strong solution if $Y_t = X_t + \chi_t$

$$dm_t = (b(m_t) - 2m_t - \chi_t)dt + dW_t^0,$$

$$d\chi_t = -(f + b)(m_t)dt + \zeta_t dW_t^0, \quad \chi_T = g(m_T)$$

$$\circ \mathbf{m}_t = \mathbb{E}[X_t | \mathbf{W}^0]$$

$$\circ b, f, g \text{ smooth bounded} + \text{noise} \Rightarrow \exists \text{ and } !$$

$$\circ$$
 without noise \Rightarrow ! may fail

