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Part I. Revisiting McKean-Vlasov FBSDEs
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Part 1. Revisiting McKean-Vlasov FBSDEs

a. Within the framework of MFG



Program without common noise

e Make use of the results from the first chapter in order to characterize
the optimal paths in the fixed point

o in the FBSDE formulation of the optimization problem ~»
replace the environment by the law of the solution

o derive an FBSDE of the McKean-Vlasov type of the general
form

t

X, =&+ f b (X,, LX), Ys, Z,) ds

0

t

+ f o (Xy, LIX,), Ys)dWy
0
T
Y, = g(XT’ -L(XT)) + f f (XSa -L(Xs)a YSaZs) ds
t

T
- f Z,aw,
t

e Choose the coefficients accordingly and solve!



Program with common noise

e Make use of the results from the first chapter in order to characterize
the optimal paths in the fixed point

o in the FBSDE formulation of the optimization problem ~»
replace the environment by the conditional law of the solution

o derive an FBSDE of the McKean-Vlasov type of the general
form

t
X =&+ f b (X, LOXIWO), ¥y, Z;) ds
0
t
+ f o (Xy, LXWO), Yo)dW, + 0°(Xs, LX W), Y)dW?
0
T
Y, = g(Xr, LX7IWY) + f f Xy, LXWO), Yy, Z) ds
t

T T
- f Z,dW — f Z0aw?
t t

e Choose the coefficients accordingly and solve!



MKY FBSDE for the value function
e Consider, on (€, F, P), the MKV FBSDE

X, =¢

+ f b (X, LX), o (X, LX), Z,o ™ (X, L(X,)))) dis
0

!
+ f o(X,, L(X,))dW,
0
Y, = g(Xp, L(X1))

T
+ f £ (Ko LOG), a* (X LX), Z,o™ (X, LX) ds

T
- f Z,dW,
t

o a*(x, u, z) is the unique minimizer of a — H(x, u, @, 7)

e Under assumptions of Chapter 1 ~» solution to MKV FBSDE is
MFG equilibrium



MKY FBSDE for the value function
e Consider, on (Q2, F, P), the MKV FBSDE

X, =¢
!
b [ (X LOUW) % (X LOGIW. Zi™ 06y L) ds
0

!
+ f o (X,, LXWO)aW, + o°(X,, LX|W°))aw?
0
Y, = g(Xz, LX7 W)

T
+ f f X, LW, a* (X, LOXGIWO), Zo 7 (X, LEXWO)))) ds
t
T

T
— f Z.dW, — f Z0aw?
t t

o a*(x, i, z) is the unique minimizer of @ — H(x,u, @, z)

e Under assumptions of Chapter 1 ~» solution to MKV FBSDE is
MFG equilibrium



MKY FBSDE for the Pontryagin principle
e Consider, on (Q, F, P), the MKV FBSDE

t
X, =+ [ (X L00).0" (X, £00). 1)
0
t
+ f o (L(X;))dW;
0
Y, = axg(XTa L(X7))

T
+ f BeH (X, L(X,), a* (X, L(X,), Y,), Y,) ds
t

T
= f Z,dW;
t

e Under assumptions of Chapter 1 ~» solution to MKV FBSDE is
MFG equilibrium



MKY FBSDE for the Pontryagin principle
e Consider, on (Q, F, P), the MKV FBSDE

!
X, =&+ f b (XS,L(XSIWO), a*(X,, LX|WO), YS)) ds
0
!
+ f (LK W) AW, + o2 (L(X|WO))dw?
0
Y, = 0xg(Xy, LXr W)

T
+ f B:H (X,, LXIWO), a*(X,, LK, W), Y,), ¥;) ds
t

T T
- f Z,dW, — f Z0aw?
5 1

e Under assumptions of Chapter 1 ~» solution to MKV FBSDE is
MFG equilibrium



Existence and uniqueness in small time

e New two-point-boundary-problem ~»
o Cauchy-Lipschitz theory in small time only

e Example when 0 = 0
! !
X = g + f b (Xs, L(Xs), Y, Zs) + f O-(Xs’ L(Xs)’ Ys)dWs
0 0

T T
Yt = g(XT, L(XT)) + f f (Xs7 L(Xs)7 YS7 Zs) ds — f stWs
t t

e Lipschitz setting
o b, o, f and g L-Lipschitz continuous in (x, 4, y, 7)
o Lipschitz in u «» W, Wasserstein distance
o (b,f,0, 02 g)t,0,d,0,0) bounded

o = existence and uniqueness provided that 7 < ¢(L)



Part II1. McKean-Vlasov FBSDEs

b. Lions derivative overs P»(R%)



Differentiation on $,(R)
e Consider U : P,(RY) - R
e Lifted-version of U

U : LX(Q,AP;RY) 3 X > ULaw(X))

o U differentiable if €/ Fréchet differentiable (Lions)
o independent of the choice of (Q, P) (rich enough)
o Differential of U

o Fréchet derivative of ¥ with u = Law(X)
DUX) = 3, Uu)(X), 8, Uw) : R 3 x — 8, UW)(x) € R?
o Derivative of U at 1~ 0, U(u) € L*(R, u;RY)



Differentiation on $,(R)
e Consider U : P,(RY) - R
e Lifted-version of U

U : X(Q,AP;RY) 5 X > ULaw(X))
o U differentiable if €/ Fréchet differentiable (Lions)
o independent of the choice of (Q, P) (rich enough)
e Differential of U
o Fréchet derivative of ¥ with u = Law(X)
DUX) = 3, Uu)(X), 8, Uw) : R 3 x — 8, UW)(x) € R?
o Derivative of U at 1~ 0, U(u) € L*(R, u;RY)

e Finite dimensional projection

ol $30)]- Sy o

J=1



Examples
o Ist example: U(w) = [, h(x)du(x)

o two r.v.’s X and Y with values in RY
U(LX + &Y)) = E[h(X + &Y)]
= E[h(X)] + eE[0h(X)Y] + o(e)
o 0, U)(v) = h(v)
e 2nd example: U(u) = [, [, h(x = y)dpu)du(y)
otwor.v.’s X and Y with independent copies X’ and Y’
U(LX + €Y))
=E[h(X - X' + &Y - Y"))]
=E[h(X - X")] + €E[0h(X — X" )Y — Y)] + o(e)
= E[h(X — X")] + €E[0h(X — X")Y] — €E[0h(X" — X)Y] + o(&)

0 Ay UWW) = [, 0h(v = Y)du(y) — [, 0h(y = v)du(y)



Connection with W, distance

e Let U be Lions-differentiable with
B[, UwXF] <€ LX) =p
[ —

[ 10, Pduc)

e For X, X’ € L2(Q, A,P;RY)
ULX)) - ULX))

1

:f ifL{(L(tX’+(1—t)X))dt
0 dt
1 d - ,

:j(; d—t(Ll(tX + (1 = HX)dt

1
= f E[0, ULEX + (1 - DX))(eX' + (1 = DX)(X' - X)]dt
0

< CE[IX’ - x"]"/*

o take inf over (X, X”) with given laws ~» Lipschitz w.r.t. W,



Part II1. McKean-Vlasov FBSDEs

c. Control of McKean-Vlasov and potential games



Rough version of the Pontryagin principle

e Controlled MKV processes (no common noise)

dX, = b(X;, LXy), @,)dt + o(X;, L(X,))dW,

o optimize the cost J(@) = E[g(X7, L(X7)) + fOT F (X, LX), ap)dt]
e Optimize w.r.t. the measure as well
o Use the same H and the same &(¢, x, i, )

o Adjoint equations:

dX, = b(X,, . &(t, X;, £LX,, Y))dt + odW,
dy, = _axH(Xte LX), a(Xy, LX), Y), Yt)dt

- 70,H(X;, LX), @(Xy, LX), Vo), Y,)"dt + Z,dW,;
Yr = 0:8(Xt, L(X7)) + "0,8(X7, L(XT7))”

o What do ”d,,H” and ”d,,g” mean?



Right version of the Pontryagin principle

e Adjoint equations take the form

dX, = b(X;, LX), &1, X;, LX), Y))dt + odW,
le = _axH(Xt’ L(Xt)’ &(t9 Xt’ L(Xt)’ Yt)’ Yl)dt
— E[0,H(X], LX), &(X], LX), Y))(X)]dt + Z,dW,
Yr = 0,g(X1, L(X7)) + E'[0,8(X7, LXT))(X7)]
o (X], Y/) independent copy of (X;, ¥;) on (Q',F",P)
e example ~» social optimization with
0 f11,0) =} fou foaf (6 = VARCIAU) + o, f symmetric

0 8) =3 fou Jpa 8¢ = Y)dp()du(y). g symmetric
ob(a) =«

OH () = Opf (LXD)Xy) = E'[f (X; = X)) = Ope=x, B [f(x = X))

o same equilibrium as MFG with j;%df(x - ydu(y) + %|a/|2 ~
potential game!



Part II. Solving MFG without common noise
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Part II. Solving MFG without common noise

a. Schauder fixed point theorem



Objective

e Assume o = 0 and provide solution to
t !
X, =&+ f b (X, LX), ¥, Z) + f o (Xy, LX), Y)W,
0 0

T T
Y, = g(XT7 -£(XT)) + f f (Xs’ -L(Xs)s Y, Zs) ds — f ZdW;
t t

e Assumption that

when (L(X;))o<<T replaced by some fixed input (u;)o<i<r
=
existence and uniqueness of a solution to the FBSDE
in environment (t;)o<;<T

e Example: implement the results from Chapter 1!

o apply the two characterizations for stochastic optimal control



Objective

e Assume o = 0 and provide solution to
t !
X, =&+ f b (X, 15, Yoo Zs) + f (X, s, Y5)dW,
0 0

T T
Y, = g(XT, /JT) + f f (Xs’ s, Y, Zs) ds — f ZdW;
t t

e Assumption that

when (L(X;))o<<T replaced by some fixed input (u;)o<i<r
=
existence and uniqueness of a solution to the FBSDE
in environment (t;)o<;<T

e Example: implement the results from Chapter 1!

o apply the two characterizations for stochastic optimal control



How to attack existence?

e Preliminary remark: no hope for solving MFG by Picard fixed
theorem

o at least under classical Lipschitz assumptions only
o expect small time
o need refined assumptions
o First step ~» existence only
o forget about uniqueness!
o use a fixed point theorem without uniqueness!
e Use Schauder’s fixed point theorem
o see statement in the next slide
o need a structure with a compactness

o in the framework of MFG ~» fixed point is on probability
measures ~» nice compactness criterion!



Statement of the Schauder fixed point theorem

e Generalisation of Brouwer’s theorem from finite to infinite
dimension

e Let (V,| - ) be a normed linear space
o # E c V with E closed and convex
o ¢ : E — E continuous such that ¢(E) is relatively compact
o = existence of a fixed point to ¢
e In MFG ~» what is V, what is E, what is ¢?
o recall that MFG equilibrium is a flow of measures (u;)o<;<r
E c C(I0, T1, P2(RY))
o need to embed into a linear structure
C([0, T), P2 ®") € C(10, T1, Mi(R)

o M;(RY) set of signed measures v with &d [x|dV|(x) < oo



Compactness on the space of probability measures

e Equip M, (R?) with a norm || - || and restrict to P;(R?) such that

o convergence of (v,),>1 in P(RY) implies weak convergence

Vf € Cp(R4,R), lim f fdv, = f fdv
n=ee JRrd R4
o if (v,)n>1 has uniformly bounded moments of order p > 2
Unif. square integrability = W»(v,,v) — 0
o says that the input in the coefficients varies continuously!

b(X, Vs 9, 2), (X Va)y 000X, Vi)s FOX Vs ,2), 8(X, Vi)

e Conversely, if (v,),>1 has bounded moments of order p > 2
o (Vu)n>1 admits a weakly convergent subsequence

o then convergence for W, by unit. integrability and for || - || also



Application to MKV FBSDE

e Choose E as continuous (u;)o<;<r from [0, T] to Po(R%)

sup |x|4d,u,(x) <K for some K
0<1<T JRY

o Construct ¢ ~» fix (u;)o<s<7 in E and solve

! !
X = é: + f b (Xs’,us, Y, Zs) + f O_(Xs’,us, Ys)dWs
0 0
T T
Y, = g(XTs,uT) + f f (st,uxa Y, Zc) ds — f ZdW;
t t

o let ¢(i = (uosi<r) = (LXINosi<r
e Assume bounded coefficients and E[|£[*] < oo

o choose K such that E[IXf M<K
= E stable by ¢

o Wa(L&X™M), L£(X*)) < CE[IX* — X#12]'* < C|t — 5/'/2



Conclusion

e Consider continuous g = ((;)o<i<7 from [0, T'] to PQ(R”I)
o for any # ~ (¢(u)); in a compact subset of Po(RY)
0 [0,T] 3t — (¢(u)), is uniformly continuous in p

o by Arzela-Ascoli = output lives in a compact subset of
E c C([0, T, P>(RY)) ( and thus of C([0, T1, M;(R%)))

e Continuity of ¢ on E

o stability of the solution of FBSDEs with respect to a continuous
perturbation of the environment

o under assumption of Chapter 1 and continuity w.r.t.
environment ~» answer is yes

e ¢ is continuous and compact range = existence of a fixed point



Part II. Solving MFG without common noise

b. Statements and refinements



Non-degenerate setting

e Growth conditions

b(x, 1, @)l < C(1 + |al), (0,07, @), )l < C
[f(x, w, @)| < C(1 + |af?)

e Lipschitz condition

(0,0, 07 Q) @) = (b, 0,07 Q@) < C(W =~ x + o’ ~ al)
(X', @) = fx, p, @)l < Clx" = x|
(e, @) = fCx, p, @) < C(1 + al + e’ Dle” - el
e b linear in a and f strictly convex in @ = unique minimizer
a*(x, u, z) of the Hamiltonian; and regularity of the minimizer
o interpretation of the value function

o for any input g = (u;)o<;<r = unique optimal path with bounded
control (comes from the fact that the gradient of HJB is bounded)

e = existence of an MFG equilibrium!



Restricted convex setting

e Use the stochastic Pontryagin principle

o need to state the conditions for the derivative of the Hamiltonian

o require b to be linear in x = no a priori bound for b ~» need to
adapt the result of Section I

o simplify ~» take the example when b independent of x (say
b(x, p, @) = @)

e Backward equation (0,f = 0,H)
Y; = 0,8(Xr, L(X1))

T T
+ f dof (X5 LX), @* (X, LX,), V) ds — f Z,dW,
t t

o require g convex in x and f convex in (x, @) but d,g and 0,/
bounded ~» very restrictive!

o if continuity with respect to u = existence of an MFG solution



Mollification procedure

e Convex Lipschitz is not satisfactory
o use a mollification procedure

e Approximate coefficients (f, g) by coefficients (f;,;, g») such that
o f, and g, are convex and Lipschitz

o general procedure for approximating convex functions

@"(x) = sup inf [(y,x = 2) + O(2)]

yl<n z€

o solve MFG for (g,,f,) ~ equilibrium (i} )o<;<7
e Converging subsequence of (1} )o<;<7?
o new compactness problem in C([0, T], P,(R?))

o analysis ~» boils down to control

sup sup xldpf (x) < o0
n=1 1€[0,T] JR

o must prevent any blow-up of the means of the equilibria!



Solvability in the convex setting

e Convex setting
o b linear in (x, @), g convex in x
o f convex in (x, @) and strictly convex in «

e Local Lipschitz continuity of the cost functionals
@,y =t x, )] + g 1) = g(x, )|
<t te Wit vlel+ ([ b ) |
X [I(', @) = (x, @)l + Wa (i,

e f and g C! w.r.t. (x, @) with Lipschitz derivatives

e weak-mean reverting condition
(x,0,f(1,0,0x,0)) 2 —c(1 + |x])  and  (x,0,8(0,0x)) > —c(1 + |x])

e = existence of an MFG equilibrium!



Linear-quadraticin d = 1

e Apply previous results with
o b(t,x,u, @) = a;x + a;E(u) + bsa;
oglx,u) = —[qx +q E(u)] «» (mean-reverting) gg’ > 0
o f(t,x, 1, @) = [oz + (mx + m,E(,u)) | ¢~ (mean-rev.) mm; > 0
e Compare with direct method ~» adjoint equations
dX; = [aX; + dE(X,) — b?Y,]dt + odW,
dY[ = —[ath + mt(mtXt + mtE(X[))] 1+ thWt
Yr = qlgX7 + ¢'E(X7)]
o take the mean
dE(X;) = [(a; + a))E(X,) — b7E(Y;)]dt
dE(Y[) = —[GIE(YI) + m,(m, + m;)E(X;)]dt
E(Yr) = q(q + ¢')E(Xr)

e existence and uniqueness if (¢ + ¢’) = 0, m;(m; + m;) = 0



Part II. Solving MFG without common noise

c. Uniqueness criterion

DHa



A counter-example to uniqueness
e Consider the MKV FBSDE

dXt = b(E(Y[))dt als th, X() = X0
dY[ = —f(E(X[))dt + Zl‘tha YT = g(]E(XT))
o take bounded and Lipschitz coefficients ~» existence of a
solution
o uniqueness may not hold!

o completely different of the system with b(Y;), f(X;) and g(X7)
for which uniqueness holds true!

e Proof ~» take the mean
dE(X;) = b(E(Y,)dt, E(Xo) = xo
dE(Y;) = —f(E(Xp)dt, E(Y7) = g(E(X7))

o led back to counter-example for FBSDE ~» choose b, f and g
equal to the identity on a compact subset



Lasry Lions monotonicity condition

e Recall for an FBSDE without noise (o = 0° = 0)

o existence and uniqueness may hold for the Pontryagin system if
convex cost functional

o convexity «» monotonicity of dyg and 9,H

o what is monotonicity condition in the direction of the measure?
e Lasry Lions monotonicity condition

o b, o do not depend on

o fx,u, @) = folx, u) + fi1(x, @) (u and « are separated)

o monotonicity property for fy and g w.r.t. u
I(fi)(x,/l) = folx, 1H))d(p — p')(x) > 0
R4

Rd(g(x,u) - g, 1"))d(u — ') (x) = 0



Monotonicity restores uniqueness

e Assume that for any input g = (u;)o<s<7 unique optimal control a@*#
o + existence of an MFG for a given initial condition
e Lasry Lions = uniqueness of MFG equilibrium!
o if two different ~> a*# # a*#
J@**) < J@**) and  J(a**) < J¥(a*)
S—— —
cost under p cost under '

T (@) = J () + T (@) = T (@) > 0

th t ’ ’ ’ ’
T @y - @) - [ @) = (@) > 0

B 0 i) - ) (G i) = X5 ) +... | >0

fR d(g(x,ﬂ’ﬁ — 8(x, ur))dur(x) f (g(x, 1) — g(x, ur))du’p(x)
Rd

o same for fy = LHS must be < 0



Example for Lasry Lions

e Examples for A(x, u) satisfying

\QJM%m—h@wﬁﬂw—#%ﬂzo

o if & is independent of x

o if h given by
h(x, ) = (e, ), = fR _yau(Q)
o if & is given by
) = [ f6r=du) and 1 odd

oif d = 1 and 4 is independent of x

h(x,u) = u(—oco,x] and u,u’ have no atoms



Part III. Solving MFG with common noise

[m] = = = = A



Part III. Solving MFG with common noise

a. Strategy of proof



General prospect

e Solve MFG with a common noise

o need to solve conditional MKV FBSDE
t
X =&+ f b (Xs’ -L(XS|W0)’ Y, Zs) ds
0
! t
+ f o (Xs, LXIWO), Y )dW + f (X, LOGIWO), Y)W
0 0
T
Y, = g(Xr, LX7IW")) + f f (X, LXIWO), Y, Z,) ds
t

T T
— f ZsdW,— f Z0aw?
t t

e Again ~» Cauchy Lipschitz theory in small time
o may adapt the result for MFG without common noise

e How to implement Schauder’s fixed point over intervals of arbitrary
length?



Need for revisiting the strategy of proof

e Try to follow the same strategy as in the case o*

o Fix u = (1;)o<;<r random process with values in P,(R%) and adapted
w.r.t. W0 on (Q°, F0, P¥)

ocall X* = (Xﬁ‘ )o<:<7 the forward component of the solution to
t
X, =¢+ f b (X, 15, Ys, Z5) ds
0
t
+ f (0 Xy 15 Y)dWs + (X, 1y, Y)dWY)
0
T T
Y: = g(Xr, ur) + f f Xy pis, Y, Zs) ds — f (Zaw, + z2aw?)
t t
o Solve 1;(u°) = .[:(Xf IWO)(a)O) for any ¢ € [0, T] and for almost
every w? € Q° ~» fixed point in

(10, T1, P2z ™

o much too big for nice compactness criterion!



Discretization method

e General idea ~» discretize the conditioning in the MKV FBSDE!
o L(X,IWO) ~» L(X;/finitely supported process)
o I projection mapping onto space grid {xi, ..., xy} ¢ R?
ofty,...,ty afinite time grid C [0, T]
o WY = TI(W)
e Solve the forward-backward system with
LOGW, ... W), 6 <t <t
¢ Fixed point strategy

o input u = (1)o<s<7 adapted with respect to discrete filtration
generated by (VAV,? s Wt?v)

o solve the fixed point y,(Wg, el ng) = L(XflVAVg, e, ng)

e Since (Wg, e, ng) has finite support of size MN ~» fixed point in
(o, 71, PE)™



Passing to the limit

e For any M and N ~»> g*MN = (u*"Nyo_ . fixed point under the
discretized conditioning

o call (X*MN y*MN z*MN 70xMNy solution of the
corresponding FBSDE

o aim at extracting converging subsequence

e Assume tightness (u***")y; y>1 seen as processes with paths in
C([0, T], P2(%))

WM NYo<ier - 1 up to subsequence

! t
o (Xt* MN Yr MN f ZXMN g, f Z?’*’M N ds)o weakly
o 0 <t<T

converges to solution of FBSDE in environment gu*?
o is u* the flow of conditional measures of the solution?

e Main issue: loose adaptability of u* with respect to systemic noise
in the limit!



Part III. Solving MFG with common noise

b. Weak and strong solutions



Need for a weak solution

e In previous slides ~» loose adaptability of u* with respect to
common noise

o set-up is made of (Q°, F°, P%) and (Q!, F!, P')

o Q! carries idiosyncratic noise and Q° carries both common
noise and limit u* ~> FC larger than Brownian filtration!

e [oose martingale representation theorem ~» FBSDE in the limit
takes the form

f f
X, =&+ f b (X, u¥. Yo Z5) ds + f (X )W, + 70X pi2)dWY)
0 0

T T
Yt :g(XT>/'lT)+f f(XY’/l:7 Y\'vZS) ds—f Z.SdWS_( MT_MI )
t t —
mart. L W

o conditioning takes the form

Ly = L(Xr | 7—'[()) ( may differ from L(Xz | (W.?)()gxsr) )



Strong vs. weak equilibra

e Strong sense
o probability spaces (Q°, F, PY) and (Q', F', P!) are given
o example ~» canonical spaces

Q’=c(0,7,RY) Q'= RY  xC([0,T],RY)

initial condition
o require (u Josr<r = LX|W’)
e Weak sense: probability space is not given
o 1 2 filtered probability spaces (QO, O, IP’O) and (Q1 ,FL, P
o (WO, )<<t is carried on Q°, (Xo, W;)o<i<r on Q!
oulr = L(X,|7—'to) (conditioning is enlarged but independent of W)

e Same type of assumptions as in Section II = existence of weak
MFG

e Yamada-Watanabe: strong ! + weak 3 = strong 3

o reconstruct solutions on the same space



Part III. Solving MFG with common noise

c. Common noise may restore uniqueness



Smoothing effect of common noise

e Lasry Lions conditions = strong uniqueness
e ODEs without uniqueness ~» SDEs with uniqueness!
o restoration of uniqueness with common noise
e Simple example
o b(x,u, @) = —x+ b(m)+a,m= fx’d,u(x’)
o flo @) = 5[ +f(m)” + ]
o g, ) = 5(x+ g(m))’
e Stochastic Pontryagin ~» strong solution if ¥; = X; + y;
dm; = (b(my;) — 2m; — y;)dt + dW,O,
dy: = =(f + b)(mpdt + LdW,,  x7 = glmr)
o m;, = E[X,|W]
o b, f, g smooth bounded + noise = J and !

o without noise = ! may fail



