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Part I. Equilibria within a finite system



Part I. Equilibria within a finite system

a. Several notions



General formulation

• Controlled system of N interacting particles with
symmetric
mean-field

interaction through the global state of the population

◦ dynamics of particle number i ∈ {1, . . . ,N}

dXi
t︸︷︷︸

∈ Rd

= b
(
Xi

t , global state of the collectivity, αi
t
)
dt

+ σ
(
Xi

t , global state
)

dW i
t︸︷︷︸

idiosyncratic noises

+ σ0(Xi
t , global state

)
dW0

t︸︷︷︸
common noise

• Rough description of the probabilistic set-up

◦ (W0
t ,W

1, . . . ,WN)0≤t≤T independent B.M. with values in Rd

◦ (αi
t)0≤t≤T progressively-measurable processes with values in A

◦ simplicity{ same deterministic initial conditions



Empirical measure
• Encode the global state of the population at time t through

µ̄N
t =

1
N

N∑
i=1

δXi
t
{ probability measure on Rd

◦ P(Rd){ set of probability measures on Rd

◦ P2(Rd){ set of probability measures on Rd with second order
moments

• Express the coefficients as

b : Rd × P2(Rd) × A→ Rd, σ, σ0 : Rd × P2(Rd)→ Rd×d

◦ example 1: b(x, µ, α) = b
(
x,

∫
Rd
ϕdµ, α

)
, ϕ = Id{ mean

◦ example 2: b(x, µ, α) =

∫
Rd

b(x, v, α)dµ(v)



Cost functionals
• Rewrite the dynamics of the particles

dXi
t = b

(
Xi

t , µ̄
N
t , α

i
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t + σ0(Xi
t , µ̄

N
t
)
dW0

t

• Cost functional to player i ∈ {1, . . . ,N}

Ji(α1,α2, . . . ,αN)
= E

[
g
(
Xi

T , µ̄
N
T
)

+

∫ T

0
f
(
Xi

t , µ̄
N
t , α

i
t
)
dt

]
◦ take the same f and g for all players to symmetrize

◦ pay attention that Ji depends on the other controls through
empirical measure

◦ same kind of example for f and g as above



Nash equilibrium
• Each player is willing to minimize its own cost functional

◦ no chance that everybody can minimize at the same time

◦ need for a consensus{ Nash equilibrium

• Say that a N-tuple of strategies (α1,?, . . . ,αN,?) is a consensus if

◦ no interest for any player to leave the consensus

◦ change αi,? { αi ⇒ Ji ↗

Ji(α1,?, . . . ,αi,?, . . . ,αN,?) ≤ Ji(α1,?, . . . ,αi, . . .αN,?)
• Existence{ fixed point argument (see later on)

•Meaning of freezing α1,?, . . . ,αi−1,?,αi+1,?,αN,?

◦ freezing the processes{ Nash equilibrium in open loop

◦ means that the players observe the noises{ what about if the
players only observe the states?



Markov loop
• PDE{ require that each αi

t is a function of the private states
X1

t , . . . ,X
N
t at time t

◦ αi
t = αi(t,X1

t , . . . ,X
N
t )

◦ each function αi is called a Markov feedback{ notion of
Markov loop

• New notion of Nash equilibrium

◦ freeze the Markov feedback function α?,1, . . . , α?,N

◦ if change α?,i into αi ⇒ all the players may move

◦ with this notion of Nash, the Markov feedback are frozen but
not the control processes

◦ leads to different equilibria!

• In the framework of MFG, expect that there is no difference in the
asymptotic setting

◦ when N tends to +∞ and α?,i changed into αi ⇒ other players
hardly feel the modification



Social optimization and Pareto
•May also optimize the global wealth of the society

N∑
i=1

Ji(α1, . . . ,αN)
◦ a social optimizer is a Pareto equilibrium{ no way to decrease

one’s cost without increasing somebody else’s cost

• Example: one center of decision for one big company with small
agencies all over an area

◦ center decides of the general policy, for instance

αi
t = αi(t,X1

t , . . . ,X
N
t ) or αi

t = αi(t,Xi
t , µ̄

N
t )

◦ choose αi = α symmetric⇒ ((Xi
t , α

i
t,W

i
t )0≤t≤T )1≤i≤N are

exchangeable (invariance by permutation)

◦ may optimize the global wealth of the company over strategies
(α1, . . . ,αN) such that ((αi

t,W
i
t )0≤t≤T )1≤i≤N are exchangeable



Part I. Equilibria within a finite system

b. Examples



Exhaustible resources
• N producers of oil{ Xi

t (estimated reserve) at time t

dXi
t = −αi

tdt + σXi
tdW i

t

◦ αi
t { instantaneous production rate

◦ σ common volatility for the perception of the reserve

◦ should be a constraint Xi
t ≥ 0

• Optimize the profit of a producer

Ji(α1, . . . ,αN) = E

∫ T

0

(
αi

tPt − c(αi
t)
)
dt

◦ Pt is selling price

◦ mean-field constraint{ selling price is a function of the
mean-state of the reserves

Pt = P
( 1
N

N∑
i=1

Xi
t
)



Growth model
• Consider the labor productivity (Z1, . . . ,ZN) and the wealth
(A1, . . . , ) of N workers

dZi
t = b(Zi

t)dt + σ(Zi
t)dW i

t

dAi
t =

(
wtZi

t + rtAi
t − ci

t
)
dt

◦ wt { wage rate

◦ rt { interest rate

◦ ct { consumption

• Optimize utility of consumption and final wealth

Ji(c1, . . . , cN)
= E

[∫ T

0
u(ci

t)dt + U(AT )
]

◦ may impose state constraint on (At)0≤t≤T

◦ utility functions u and U

◦ mean-field constraint

wt = FW

( 1
N

N∑
i=1

Ai
t

)
, rt = FR

( 1
N

N∑
i=1

Ai
t

)



Carbon markets
• N producers of energy

◦ Producer i: Xi
T global emissions of carbon on [0,T]

◦ Λ: number of permits received by producer i

• Cap rule

◦ if N−1 ∑N
j=1 Xj

T > Λ

◦ penalty for i: λ(Xi
T − Λ)+1(Λ,∞)

(
N−1 ∑N

j=1 Xj
T

)
• Dynamics of ‘perceived’ emissions

dXi
t =

(
bt − α

i
t
)
dt + σdW i

t

◦ αi{ abatement by investment in green technology

•Minimize

E
[∫ T

0
c(αi

t)dt + λ(Xi
T − Λ)+1(Λ,∞)

(
N−1

N∑
j=1

Xj
T

)]



Part I. Equilibria within a finite system

c. Seeking equilibria



Reminder from the first chapter
• Hamiltonian

H(x, µ, α, z) = b(x, µ, α) · z + f (x, µ, α)

◦ α?(x, µ, z) = argminα∈AH(x, µ, α, z)

• Two ways to handle stochastic optimal control

• Interpretation of the value function! interpretation of the HJB
equation

◦ sounds like a PDE method{ reformulate it in the framework of
Nash equilibria with Markov closed loop

• Use of the stochastic Pontryagin principle

◦ very much demanding in terms of assumption but very robust
(no need of a Markov structure behind)

◦ implement it in the framework of Nash equilibria with open loop



Hamiltonian associated with Markov loop
• As in last part of Chapter 1{ assume that σ0 ≡ 0

• Assume that α1,?, . . . , αN,? Nash equilibrium in Markov feedback
form

dXj
t = b

(
Xj

t , µ̄
N
t , α

j,?(t,X1
t , . . . ,X

N
t )

)
dt + σ

(
Xj

t , µ̄
N
t
)
dW j

t

◦ change feedback function αi,? into αi

◦ just facing a standard optimization problem but with a diffusion
process with values in (Rd)N { the control is just through the player
number i

•Write the Hamitonian

b
(
xi,

1
N

N∑
j=1

δxj , α
)
· zi + f

(
xi,

1
N

N∑
j=1

δxj , α
)

+
∑
`,i

b
(
x`,

1
N

N∑
j=1

δxj , α
`,?(t, x1, . . . , xN)

)
· z`

◦ can forget the second line!



FBSDE associated with Markov loop
• Forget the cut-off function discussed in Chapter 1 and write the
FBSDE

dXi
t = b

(
Xi

t , µ̄
N
t , α

?(Xi
t , µ̄

N
t ,Z

i,i
t σ
−1(Xi

t , µ̄
N
t )

))
dt + σ(Xi

t , µ̄
N
t )dW i

t

dY i
t = −f

(
Xi

t , µ̄
N
t , α

?(Xi
t , µ̄

N
t ,Z

i,i
t σ
−1(Xi

t , µ̄
N
t )

))
dt +

N∑
j=1

Zi,j
t dW j

t

with Y i
T = g(Xi

T , µ
N
T ) as terminal condition

◦ may discuss sufficient conditions (won’t do it in the lectures)

◦ part of the difficulty again consists in controlling the
smoothness of the decoupling field

(Y1
t , . . . ,Y

N
t ) = u(t,X1

t , . . . ,X
N
t )

◦ difficulty to handle the quadratic setting as Y is multi
dimensional (series of works due to Bensoussan and Frehse)

◦ within MFG{ deterioration of the smoothness as N ↗ ∞



Open loop
• Consider a very simple case when b(x, µ, α) = b(x, α), σ and σ0

constant (typical framework for stochastic Pontryagin principle)

•When freezing α1,?, . . . ,αi−1,?,αi+1,?, . . . ,αN,?

◦ (X1,?
t , . . . ,Xi−1,?

t ,Xi+1,?
t ,XN,?

t ) remain the same (would be false
with Markov loop)

◦ again, we are facing a standard optimization problem{
optimization of αi

◦ may use the same Hamiltonian H

dXi
t = b

(
Xi

t , µ̄
N
t , α

?(Xi
t , µ̄

N
t ,Y

i
t
))

dt + σdW i
t + σ0dW0

t

dY i
t = −∂xH

(
Xi

t , µ̄
N
t , α

?(Xi
t , µ̄

N
t ,Y

i
t
))

dt +

N∑
j=0

Zi,j
t dW j

t

with Y i
T = ∂xg(Xi

T , µ̄
N
T )

◦ if Lipschitz coefficients (and growth conditions) and σ , 0{
unique solution



Part II. From propagation of chaos to MFG



Part II. From propagation of chaos to MFG

a. Handling an example



Systemic risk model
• Recall the dynamics of the (log)-reserve

dXi
t = a

(
X̄N

t − Xi
t
)

dt + αi
t dt + σ dW i

t + σ0dW0
t

• Recall the cost functional

Ji(α1, . . . , αN)
= E

[
g(Xi

T , X̄
N
T ) +

∫ T

0
f (Xi

t , X̄
N
t , α

i
t)dt

]
◦ f (x,m, α) = α2 + ε2(m − x

)2
− 2qεα

(
m − x

)
, q ≤ ε2

◦ g(x,m) = c2(x − m)2

• Linear quadratic⇒ explicitly solvable

◦ ansatz{ seek optimal Markov feedback (both in the open loop
and Markov closed loop case) of the linear form (derivative of
quadratic functions)

α?,it = ηtXi
t + χt

◦ by symmetry, expect same coefficients η and χ



Solving the systemic risk model
• Inject the ansatz into the FBSDE and proceed

• Nash equilibria over Markov loop

◦ (ηt)0≤t≤T solves Riccati equation

η̇t = 2(a + q)ηt +
(
1 − N−2)η2

t + q2 − ε, ηT = c

◦ equilibrium has the shape

α?,it =
(
q + (1 −

1
N

)ηt
) ( 1

N

N∑
j=1

Xj
t − Xi

t

)
• Nash equilibria over open loop

◦ (ηt)0≤t≤T solves Riccati equation

η̇t =
(
2(a + q) −

1
N

q
)
ηt +

(
1 − N−1)η2

t + q2 − ε, ηT = c

◦ equilibrium has the same shape but with the solution of the new
Riccati equation



About the Riccati equation
• Convexity of the coefficients⇒ Riccati equation is unique solvable

◦ solution depends upon N and differs according to the sense
given to the Nash equilibrium

◦ explicitly solvable (combination of exponentials)

• Riccati equations have the same asymptotic behavior

◦ label η with superscript N ⇒ (ηN
t )0≤t≤T (whatever the sense of

the Nash equilibrium is)

◦ ηN
t → η∞t , t ∈ [0,T]

η̇∞t = 2(a + q)η∞t +
(
η∞t

)2
+ q2 − ε, ηT = c

◦ explicitly solvable as well



Particle system for the Nash equilibrium
• Inject the shape of the optimal feedback into the particle system

dXi
t =

(
a + q + (1 −

1
N

)ηN
t
) (

X̄N
t − Xi

t
)

dt + σ dW i
t + σ0dW0

t

◦ whatever the meaning of the Nash equilibrium is

• Take the empirical mean X̄N
t = 1

N
∑N

i=1 Xi
t

X̄N
t = X̄0

t +
σ

N

N∑
i=1

W i
t + σ0W0

t

◦ choose Xi
0 = x0 ⇒

X̄N
t → x + σ0W0

t =: mt

• Expect in the limit

dXi
t =

(
a + q + η∞t

) (
mt − Xi

t
)

dt + σ dW i
t + σ0dW0

t

◦ particles are exchangeable and independent given (W0
t )0≤t≤T

◦ mt is conditional mean of any Xi
t given common noise



Part II. From propagation of chaos to MFG

b. McKean-Vlasov SDEs



General uncontrolled particle system
• Remove the control in the original particle system!

dXi
t = b

(
Xi

t , µ̄
N
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t + σ0(Xi
t , µ̄

N
t
)
dW0

t

◦ X1
0 , . . . ,X

i
N i.i.d. (and independent of the noises)

◦ µ̄N
t =

1
N

N∑
i=1

δXi
t

(empirical measure)

• Assume the coefficients are Lipschitz in all the variables

◦ need to say what it means in terms of the measure (connection
with Lipschitz property with respect to the measure argument)

◦ unique solution!

• Find the asymptotic behavior of the particle system as N tends to∞



Wasserstein distance
• Several distances on the space of probability measures

• Here distance on P2(Rd) probability measures µ with a second order
moment) ∫

Rd
|x|2dµ(x) < ∞

◦ use the Wasserstein distance

µ, ν ∈ P2(Rd), W2(µ, ν) =

(
inf
π

∫
Rd×Rd

|x − y|2dπ(x, y)
)1/2

,

where π has µ and ν as marginals on Rd × Rd

◦ X and X′ two r.v.’s⇒ W2(L(X),L(X′)) ≤ E[|X − X′|2]1/2

◦ CV in Wasserstein⇔ weak CV + square unif. integrability

• Example W2
( 1
N

N∑
i=1

δxi ,
1
N

N∑
i=1

δx′i

)
≤

( 1
N

N∑
i=1

|xi − x′i |
2
)1/2

◦ yields the required Lipschitz property



McKean-Vlasov SDE
• Start with the case without common noise

◦ on the model of (II a) expect some decorrelation in the particle
system as N ↗ ∞

◦ replace the empirical measure by the theoretical measure of the
solution

dXt = b
(
Xt,L(Xt)

)
dt + σ

(
Xt,L(Xt)

)
dWt

• Cauchy-Lipschitz theory

◦ assume b and σ Lipschitz continuous on Rd × P2(Rd)⇒ unique
solution for any given initial condition in L2

◦ proof works as in the standard case taking advantage of

E
[∣∣∣(b, σ)

(
Xt,L(Xt)

)
− (b, σ)

(
X′t ,L(X′t )

)∣∣∣2] ≤ CE
[
|Xt − X′t |

2]
◦ permits to exhibit a contraction



Propagation of chaos
• Prove that the solution of the particle system converges to the
solution of the MKV SDE when σ0 ≡ 0

•Main statement

◦ each (Xi
t)0≤t≤T converges in law to the solution of MKV SDE

◦ particles get independent in the limit{ for k fixed:

(X1
t , . . . ,X

k
t )0≤t≤T −→

L
L(MKV)⊗k = L

(
(Xt)0≤t≤T

)⊗k as N ↗ ∞

◦ lim
N↗∞

sup
0≤t≤T

E
[(

W2(µ̄N
t ,L(Xt)

)2]
= 0

• Proof relies on a coupling argument

◦ N copies (X̃1
t , . . . , X̃

N
t )0≤t≤T of MKV SDE with (Wt)0≤t≤T

replaced by ((W i
t )0≤t≤T )1≤i≤N

E
[

sup
0≤t≤T

|Xi
t − X̃i

t |
2]→ 0⇒ sup

0≤t≤T
E
[(

W2
(
µ̄N

t ,
1
N

N∑
i=1

δX̃i
t

))2]
→ 0

◦ LLN may replace
1
N

N∑
i=1

δX̃i
t

by L(Xt)



Case with a common noise
•MKV SDE{ conditional MKV SDE

dXt = b
(
Xt,L(Xt|W0)

)
dt

+ σ
(
Xt,L(Xt|W0)

)
dWt + σ0(Xt,L(Xt|W0)

)
dW0

t

◦ L(Xt|W0) conditional law of Xt given the realization of
(W0

t )0≤t≤T

• Set the equation on (Ω0 ×Ω1,F0 ⊗ F1,P0 ⊗ P1)

◦ Ω0 carries W0 and Ω1 carries W and X0

◦ L(Xt|W0) = L(Ω1,F1,P1)(Xt(ω0, ·))

◦ L(Xt|W0) is also L(Xt|(W0
s )0≤s≤t)

• Propagation of chaos revisited

◦ asymptotically{ conditional independence given W0 instead
of independence

◦ convergence of the empirical measure to the conditional law



Part II. From propagation of chaos to MFG

c. Formulation of the asymptotic problems



Ansatz
• Start with the case when σ0 ≡ 0

• Ansatz{ at equilibrium

αi,?
t = αN(

t,Xi
t , µ̄

N
t
)
≈ α

(
t,Xi

t , µ̄
N
t
)

◦ particle system at equilibrium

dXi
t ≈ b

(
Xi

t , µ̄
N
t , α(t,Xi

t , µ̄
N
t )

)
dt + σ

(
Xi

t , α(t,Xi
t , µ̄

N
t

)
dW i

t

◦ particles should decorrelate as N ↗ ∞

◦ µ̄N
t should stabilize around some deterministic limit µt

•What about an intrinsic interpretation of µt?

◦ should describe the global state of the population in equilibrium

◦ in the limit setting, any particle that leaves the equilibrium
should not modify µt { leaving the equilibrium means that the cost
increases{ any particle in the limit should solve an optimal control
problem in the environment (µt)0≤t≤T



Matching problem of MFG
• Assume again that σ0 ≡ 0

• Define the asymptotic equilibrium state of the population as the
solution of a fixed point problem

(1) fix a flow of probability measures (µt)0≤t≤T (with values in
P2(Rd))

(2) solve the stochastic optimal control problem in the environment
(µt)0≤t≤T

dXt = b(Xt, µt, αt)dt + σ(Xt, µt)dWt

◦ with X0 = ξ being fixed on some set-up (Ω,F,P) with a
d-dimensional B.M.

◦ with cost J(α) = E
[
g(XT , µT ) +

∫ T
0 f (Xt, µt, αt)dt

]
(3) let (X?,µ

t )0≤t≤T be the unique optimizer (under nice assumptions)
{ find (µt)0≤t≤T such that

µt = L
(
X?,µ

t
)
, t ∈ [0,T]

• Not a proof of the convergence!



MFG with a common noise
• Same probabilistic set-up as for conditional MKV

Ω = Ω0 ×Ω1, F = F0 ⊗ F1, P = P0 ⊗ P1

(1) fix an adapted continuous process on (Ω0,F0,P0)

µ : [0,T] 3 t 7→ µt ∈ P2(Rd)

(2) solve the stochastic optimal control problem in the random
environment (µt)0≤t≤T

dXt = b(Xt, µt, αt)dt + σ(Xt, µt)dWt + σ0(Xt, µt)dW0
t

◦ with X0 = ξ ∈ L2(Ω1,F 1
0 ,P

1;Rd)

◦ with (αt)0≤t≤T -progressively measurable with values in A
(square integrable) on Ω

◦ same cost functional (under the double expectation)

(3) let (X?,µ
t )0≤t≤T be the unique optimizer (under nice assumptions)

{ find (µt)0≤t≤T such that, P0 almost surely,

µt(ω0) = LΩ1
(
X?,µ

t (ω0, ·)
)
, t ∈ [0,T]



Social optimization
• Assume again that σ0 ≡ 0

• Recall that one center of decision imposes some Markov feedback
function to all the agents

◦ the ansatz must be the same!

◦ the difference is in the interpretation of the measures (µt)0≤t≤T

• In the social optimization, when one moves{ everybody moves!
No way to fix the flow of measures!

◦ the flow of measures describe the collective state of population
under the decision of the center

dXt = b
(
Xt,L(Xt), αt

)
dt + σ

(
Xt,L(Xt)

)
dWt

◦ optimize the cost J(α) = E
[
g(XT ,L(XT )) +

∫ T
0 f (Xt,L(Xt), αt)dt

]
◦ optimization of McKean-Vlasov diffusion processes!



Part III. McKean-Vlasov FBSDEs



Part III. McKean-Vlasov FBSDEs

a. Within the framework of MFG



New program without common noise
•Make use of the results from the first chapter in order to characterize
the optimal paths in the fixed point

◦ in the FBSDE formulation of the optimization problem{
replace the environment by the law of the solution

◦ derive an FBSDE of the McKean-Vlasov type of the general
form

Xt = ξ +

∫ t

0
b
(
Xs,L(Xs),Ys,Zs

)
ds

+

∫ t

0
σ(Xs,L(Xs),Ys)dWs

+ σ0(Xs,L(Xs),Ys)dW0
s

Yt = g(XT ,L(XT )) +

∫ T

t
f
(
Xs,L(Xs),Ys,Zs

)
ds

−

∫ T

t
ZsdWs

−

∫ T

t
Z0

s dW0
s

• Choose the coefficients accordingly



New program with common noise
•Make use of the results from the first chapter in order to characterize
the optimal paths in the fixed point

◦ in the FBSDE formulation of the optimization problem{
replace the environment by the conditional law of the solution

◦ derive an FBSDE of the McKean-Vlasov type of the general
form

Xt = ξ +

∫ t

0
b
(
Xs,L(Xs|W0),Ys,Zs

)
ds

+

∫ t

0
σ(Xs,L(Xs|W0),Ys)dWs + σ0(Xs,L(Xs|W0),Ys)dW0

s

Yt = g(XT ,L(XT |W0)) +

∫ T

t
f
(
Xs,L(Xs|W0),Ys,Zs

)
ds

−

∫ T

t
ZsdWs −

∫ T

t
Z0

s dW0
s

• Choose the coefficients accordingly



MKV FBSDE for the value function
• Consider, on (Ω,F,P), the MKV FBSDE

Xt = ξ

+

∫ t

0
b
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds

+

∫ t

0
σ
(
Xs,L(Xs)

)
dWs

+ σ0(Xs,L(Xs)
)
dW0

s

Yt = g
(
XT ,L(XT )

)
+

∫ T

t
f
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds

−

∫ T

t
ZsdWs

−

∫ T

t
Z0,

s dW0
s

◦ α?(x, µ, z) is the unique minimizer of α 7→ H(x, µ, α, z)

• Under assumptions of Chapter 1{ solution to MKV FBSDE is
MFG equilibrium



MKV FBSDE for the value function
• Consider, on (Ω,F,P), the MKV FBSDE

Xt = ξ

+

∫ t

0
b
(
Xs,L(Xs|W0), α?

(
Xs,L(Xs|W0),Zsσ

−1(Xs,L(Xs|W0))
))

ds

+

∫ t

0
σ
(
Xs,L(Xs|W0)

)
dWs + σ0(Xs,L(Xs|W0)

)
dW0

s

Yt = g
(
XT ,L(XT |W0)

)
+

∫ T

t
f
(
Xs,L(Xs|W0), α?

(
Xs,L(Xs|W0),Zsσ

−1(Xs,L(Xs|W0))
))

ds

−

∫ T

t
ZsdWs −

∫ T

t
Z0,

s dW0
s

◦ α?(x, µ, z) is the unique minimizer of α 7→ H(x, µ, α, z)

• Under assumptions of Chapter 1{ solution to MKV FBSDE is
MFG equilibrium



MKV FBSDE for the Pontryagin principle
• Consider, on (Ω,F,P), the MKV FBSDE

Xt = ξ +

∫ t

0
b
(
Xs,L(Xs), α?

(
Xs,L(Xs),Ys

))
ds

+

∫ t

0
σ(L(Xs))dWs

Yt = ∂xg(XT ,L(XT ))

+

∫ T

t
∂xH

(
Xs,L(Xs), α?

(
Xs,L(Xs),Ys

)
,Ys

)
ds

−

∫ T

t
ZsdWs

• Under assumptions of Chapter 1{ solution to MKV FBSDE is
MFG equilibrium
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• Consider, on (Ω,F,P), the MKV FBSDE

Xt = ξ +

∫ t

0
b
(
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Xs,L(Xs|W0),Ys

))
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+
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0
σ(L(Xs|W0))dWs + σ0(L(Xs|W0))dW0
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Yt = ∂xg(XT ,L(XT |W0))

+

∫ T

t
∂xH

(
Xs,L(Xs|W0), α?

(
Xs,L(Xs|W0),Ys

)
,Ys

)
ds

−

∫ T

t
ZsdWs −

∫ T

t
Z0

s dW0
s

• Under assumptions of Chapter 1{ solution to MKV FBSDE is
MFG equilibrium



Seeking a solution
• New two-point-boundary-problem{

◦ Cauchy-Lipschitz theory in small time only

◦ if Lipschitz coefficients (including the direction of the measure)
{ existence and uniqueness in short time

{ existence and uniqueness of MFG equilibria in small time

• Third lecture{ what about arbitrary time?

◦ existence{ fixed point over the measure argument by means of
compactness arguments

Schauder’s theorem

◦ uniqueness{ require additional assumption

• Other question{ what about social optimization?

◦ don’t write the HJB equation (infinite dimension)

◦ use Pontryagin principle instead



Part III. McKean-Vlasov FBSDEs

b. Lions derivative overs P2(Rd)



Differentiation on P2(Rd)
• ConsiderU : P2(Rd)→ R

• Lifted-version ofU

Û : L2(Ω,P) 3 X 7→ U(Law(X))

◦ U differentiable if Û Fréchet differentiable (Lions)

◦ independent of the choice of (Ω,P) (rich enough)

• Differential ofU

◦ Fréchet derivative of Û with µ = Law(X)

DÛ(X) = ∂µU(µ)(X), ∂µU(µ) : Rd 3 x 7→ ∂µU(µ)(x) ∈ Rd.

◦ Derivative ofU at µ{ ∂µU(µ) ∈ L2(Rd, µ;Rd)

• Finite dimensional projection

∂xi

[
U

( 1
N

N∑
j=1

δxj

)]
=

1
N
∂µU

( 1
N

N∑
j=1

δxj

)
(xi).
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Examples
• 1st example: U(µ) =

∫
Rd h(x)dµ(x)

◦ two r.v.’s X and Y with values in Rd

U
(
L(X + εY)

)
= E

[
h(X + εY)

]
= E[h(X)] + εE

[
∂h(X)Y

]
+ o(ε)

◦ ∂µU(µ)(v) = ∂h(v)

• 2nd example: U(µ) =
∫
Rd

∫
Rd h(x − y)dµ(x)dµ(y)

◦ two r.v.’s X and Y with independent copies X′ and Y ′

U
(
L(X + εY)

)
= E

[
h
(
X − X′ + ε(Y − Y ′)

)]
= E[h(X − X′)] + εE

[
∂h(X − X′)(Y − Y ′)

]
+ o(ε)

= E[h(X − X′)] + εE
[
∂h(X − X′)Y

]
− εE

[
∂h(X′ − X)Y

]
+ o(ε)

◦ ∂µU(µ)(v) =
∫
Rd ∂h(v − y)dµ(y) −

∫
Rd ∂h(y − v)dµ(y)



Part III. McKean-Vlasov FBSDEs

c. Control of McKean-Vlasov and potential games



Rough version of the Pontryagin principle
• Controlled MKV processes (no common noise)

dXt = b
(
Xt,L(Xt), αt

)
dt + σ

(
Xt,L(Xt)

)
dWt

◦ optimize the cost J(α) = E
[
g(XT ,L(XT )) +

∫ T
0 f (Xt,L(Xt), αt)dt

]
• Optimize w.r.t. the measure as well

◦ Use the same H and the same α̂(t, x, µ, y)

◦ Adjoint equations:

dXt = b
(
Xt, µt, α̂(t,Xt,LXt,Yt)

)
dt + σdWt

dYt = −∂xH
(
Xt,L(Xt), α̂(Xt,L(Xt),Yt),Yt

)
dt

− ”∂µH
(
Xt,L(Xt), α̂(Xt,L(Xt),Yt),Yt

)
”dt + ZtdWt

YT = ∂xg
(
XT ,L(XT )

)
+ ”∂µg

(
XT ,L(XT )

)
”

◦What do ”∂µH” and ”∂µg” mean?



Right version of the Pontryagin principle
• Adjoint equations take the form

dXt = b
(
Xt,L(Xt), α̂(t,Xt,L(Xt),Yt)

)
dt + σdWt

dYt = −∂xH
(
Xt,L(Xt), α̂(t,Xt,L(Xt),Yt),Yt

)
dt

− E′
[
∂µH(X′t ,L(Xt), α̂(X′t ,L(Xt),Y ′t )

)
(Xt)

]
dt + ZtdWt

YT = ∂xg(XT ,L(XT )) + E′
[
∂µg

(
X′T ,L(XT )

)
(XT )

]
◦ (X′t ,Y

′
t ) independent copy of (Xt,Yt) on (Ω′,F′,P′)

• example f (µ, α) = 1
2

∫
Rd

∫
Rd f (x − y)dµ(x)dµ(y) + 1

2 |α|
2, f symmetric

◦ g(µ) = 1
2

∫
Rd

∫
Rd g(x − y)dµ(x)dµ(y)

◦ b(α) = α

∂µH(·) = ∂µf (L(Xt))(Xt) = E′
[
∂f (Xt − X′t )

]
= ∂|x=XtE

′[f (x − X′t )
]

◦ same as an MFG with
∫
Rd f (x − y)dµ(y) + 1

2 |α|
2{ potential

game!


