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2. Data Extraction & Manipulation 

2.1.1 Study Screening and Selection for Inclusion 

Identification of relevant serological studies was carried out using the `SeroTracker` dashboard 1, an 
ongoing and continuously updated systematic review. From `SeroTracker`, a total of 175 severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) serological studies were screened according to a 
predefined set of inclusion and exclusion criteria, the details of which are described further in 
Supplementary Table 1.  

After screening the studies available on SeroTracker, 10/175 were selected for inclusion. Further 
information and details of these studies can be found in Supplementary Table 2. Excluded studies and the 
specific reason for exclusion are included as Additional File 1. 

 

Supplementary Table 1 - Inclusion and Exclusion Criteria for Seroprevalence Studies: We assumed that 
dexamethasone treatment was considered routine clinical practice approximately one-month after the RECOVERY 
trial results were released (*; PMID: 32678530). Studies conducted after the introduction of dexamethasone were 
excluded, as we assumed that this change in clinical practice caused shifts in the IFR that were not comparable to 
pre-treatment periods. 

Inclusion Criteria Exclusion Criteria 

● Serosurvey in a defined geographic area 
representing a national or subnational 
geographic unit for which data on COVID 
deaths in all age groups are also available up 
to the date of the serosurvey. 

● Sampling framework is defined.  
● Sample sizes available for serosurvey, or 

uncertainty in the seroprevalence is explicitly 
quantified.  

● Sero-assay sensitivity and specificity estimates 
available.  

● At least 100 COVID-19 deaths observed in the 
study area by the serosurvey midpoint. 

● First date of the serosurvey is before the 
introduction and widespread use of 
dexamethasone treatment (August 17, 2020)* 

● Study participants selected based on being 
healthcare workers, having symptoms of 
COVID, referring themselves for a test or self-
selection into the study (for example, choosing 
to go for an antibody test in a clinic or 
responding to an advert). 

● Studies of outbreaks within a confined setting 
that does not include a representative sample 
of the general population (e.g. a school, a 
military ship). 

● Studies exclusively or primarily in a narrow age 
group (e.g. school survey). 

● Surveys of patients in clinical settings 
(assumed higher contact with health systems 
and healthcare workers). 

 

 

 

 

https://paperpile.com/c/VilxKA/J9MlZ
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2.1.2 Data Extraction and Collation 

Observed seroprevalences, disaggregated by age and location where possible, were extracted from the 
manuscripts and other sources associated with the studies identified in the review. For the majority of 
studies (7/10), raw counts for the number of seropositives and number tested were available and 
extracted. However, this information was not available for three studies (conducted in Italy, Sweden and 
Denmark) and reported seroprevalence was extracted instead, alongside the stated confidence intervals. 
As a result, we used the reported confidence intervals to capture standard errors and used a logit-
transformation instead of a binomial approach in our Age-Based model likelihood (Age-Based Model 
Derivation). Further uncertainties in the data extraction process include:  

● For the Swedish study, seroprevalence data was extracted from public health reports that were 
being constantly updated and did not provide exact dates of the period in which the serostudy 
was conducted. It was therefore assumed that the serostudy was carried out in contiguous weeks 
across the study period, based on the provided figure in the report (accessed September 11, 
2020). 

● For the second seroprevalence survey carried out in the Netherlands, information was extracted 
from a news article (reporting an approximately 5.5% seropositivity among 7,000 participants: 
Supplementary Table 2). We therefore assumed there were 385/7,000 test-positives.  

● In 5/10 studies (Zurich, Switzerland; Denmark; Sweden; Netherlands [second time point]), the 
age-specific seroprevalences were from broad age-groups or did not overlap well with reported 
death age-groups, only a national prevalence was available, or the report did not have sufficient 
detail to extract full information on sample sizes and seroprevalence. As a result, we assumed a 
constant attack rate (seroprevalence) across age-groups for these studies.  

In addition to extracting this seroprevalence data, we also collated additional data required to estimate 
the IFR. These included: 

(1) Daily time-series of COVID-19 deaths were preferentially obtained from the relevant Ministries of 
Health and other national public health agencies (further details in Supplementary Table 2). In some 
instances when this data was not available, daily deaths were extracted from the COVID-19 Data 
Repository by the Center for Systems Science and Engineering at Johns Hopkins University 2,3 (and to which 
we applied a lagged difference to convert the cumulative counts to daily incidence). In a limited number 
of cases, Ministries of Health have retrospectively removed previously reported deaths, leading to 
negative reported deaths on particular days - these observations were set to zero. This age-aggregated 
data (i.e. deaths summed across age-groups) was used in the absence of age-specific COVID-19 death time 
series data being available. 

(2) The proportion of COVID-19 deaths occurring by age in each location, again extracted from official 
reports put out by Ministries of Health and public health agencies (detailed in Supplementary Table 2). 
We assume that the age distribution of deaths is constant over time.  

(3) For 6/10 of studies (Denmark; England; Spain; Geneva, Switzerland; Zurich, Switzerland; New York 
State, USA) the proportion of overall deaths that occured in care homes was available and extracted so 
that an adjusted IFR estimate excluding these deaths could be calculated. We assumed that all deaths 
attributed to care homes occurred among individuals aged 65-years or older. We assumed that 
seroprevalence across different age-groups was the same in the care home population as the general 
population (see main text for discussion of this).  

https://paperpile.com/c/VilxKA/W3ocP+UOsw
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(3A) In the Zurich study, over 40% of the daily observed deaths recorded a single death, which resulted in 
problems when rounding and trying to recalculate deaths occurring in the care homes. As a result, the 
adjusted IFR estimate excluding care home deaths for Zurich was not considered. 

(4)  Demographic data (i.e. age-specific population counts) were obtained from Ministries of Health and 
other national public health agencies (further details in Supplementary Table 2).  

(5) Demographic data required in order to generate our standardized pooled IFR calculations for settings 
representative of each of the World Bank Income Strata - specifically Low Income Countries (LICs), Lower-
Middle Income Countries (LMICs), Upper Middle Income Countries (UMICs) and High Income Countries 
(HICs). Consistent with previous analyses that have identified the representative countries in each of these 
strata 4, we selected Madagascar, Nicaragua, Grenada and Malta: information on their demographic 
structure was downloaded from the United Nations World Population Prospects 2019 site 5.   

 

Supplementary Table 2 - Data Extraction Sources: The various sources of data for each respective study (reference 
numbers). For some regions, population demographic data was taken from the City Population (CP) website: 
http://citypopulation.de/ 

 

Study Location 

Seroprevalence & 

Serovalidation 

Data 

Number of 

Serostudy 

Timepoints 

Age-Specific 

Death Data 

Time-Series Death 

Data Demographic Data 

Care Home Death 

Source 

Brazil 6,7 1 8 8 9, CP - 

Denmark 10,11 4 12 
13 
 14 15 

England  16,17 1  18  19 20 21 

Italyተ 22,23 1 22 24 25 - 

Netherlands 26,27 2 28 29 30 - 

Spain 31,32 3 33 33 34 15 

Sweden 35,36* 8 37 38 39 - 

Geneva, Switzerland 40,41 5 42 42 43 44 

Zurich, Switzerland 45 2 42 42 43 44 

New York State, USA 46 1 47 2,3 48 49 

* Sweden seroprevalences were limited April 20 - June 12, 2020 when multiple regions were considered (Jämtland-
Härjedalen, Jönköping, Kalmar, Skåne, Stockholm, Uppsala, Västerbotten, Västra Götaland, and Örebro). These 
provinces include the majority of the Swedish population and were assumed to be nationally representative.  
ተ Serovalidation data has not yet been released for the Italy study. As a result, serovalidation data from a comparable 
study in San Francisco, USA, which used the same Abbot seroassay, were used as priors for the regional model and 
re-estimation of the test sensitivity and specificity.  

 

 

 

https://paperpile.com/c/VilxKA/Yv6R
https://paperpile.com/c/VilxKA/Pruf
https://paperpile.com/c/VilxKA/ZQOu+kuqn
https://paperpile.com/c/VilxKA/eGWX
https://paperpile.com/c/VilxKA/eGWX
https://paperpile.com/c/VilxKA/iu9d
https://paperpile.com/c/VilxKA/Q2a8+iuLV
https://paperpile.com/c/VilxKA/R37e
https://paperpile.com/c/VilxKA/nECn
https://paperpile.com/c/VilxKA/Kzpz
https://paperpile.com/c/VilxKA/zrbv
https://paperpile.com/c/VilxKA/8Pb6+uxAW
https://paperpile.com/c/VilxKA/5ZNH
https://paperpile.com/c/VilxKA/Dmcg
https://paperpile.com/c/VilxKA/MWjD
https://paperpile.com/c/VilxKA/1HEl
https://paperpile.com/c/VilxKA/yYBv+eR9E
https://paperpile.com/c/VilxKA/yYBv
https://paperpile.com/c/VilxKA/7OW3
https://paperpile.com/c/VilxKA/IiCK
https://paperpile.com/c/VilxKA/5ZUd+LRT6
https://paperpile.com/c/VilxKA/o4fh
https://paperpile.com/c/VilxKA/uUOr
https://paperpile.com/c/VilxKA/azWe
https://paperpile.com/c/VilxKA/NGBL+hDyh
https://paperpile.com/c/VilxKA/CCCJ
https://paperpile.com/c/VilxKA/CCCJ
https://paperpile.com/c/VilxKA/dKIq
https://paperpile.com/c/VilxKA/zrbv
https://paperpile.com/c/VilxKA/BUwL+hiZU
https://paperpile.com/c/VilxKA/8Oh7
https://paperpile.com/c/VilxKA/rW6T
https://paperpile.com/c/VilxKA/UAqE
https://paperpile.com/c/VilxKA/0cAq+x5jf
https://paperpile.com/c/VilxKA/Dlj1
https://paperpile.com/c/VilxKA/Dlj1
https://paperpile.com/c/VilxKA/6jj7
https://paperpile.com/c/VilxKA/rXzc
https://paperpile.com/c/VilxKA/v7Ly
https://paperpile.com/c/VilxKA/Dlj1
https://paperpile.com/c/VilxKA/Dlj1
https://paperpile.com/c/VilxKA/6jj7
https://paperpile.com/c/VilxKA/rXzc
https://paperpile.com/c/VilxKA/f9tN
https://paperpile.com/c/VilxKA/2Us3
https://paperpile.com/c/VilxKA/W3ocP+UOsw
https://paperpile.com/c/VilxKA/J2NV
https://paperpile.com/c/VilxKA/LbUI
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Supplementary Figure 1 - Seroprevalence versus Age: Observed seroprevalence by age (mean age within each age-
group plotted) and binomial proportion 95% confidence intervals for the seven studies where age-specific 
information was reported. With the exception of the Italian study (where reported seroprevalences and confidence 
intervals are plotted), the results presented are based on the raw number of individuals seropositive and number 
tested. The results of the latest seroprevalence survey are plotted among locations where multiple seroprevalence 
surveys had been conducted (except for the Netherlands where age specific seroprevalence was only available in 
the first survey). In our analysis we assumed a uniform seroprevalence across age-groups among the remaining three 
studies included that did not contain age-specific seroprevalence data. 
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2.2 Age-Based Statistical Model Derivation 

2.2.1 Daily and age-stratified deaths 

For individuals who die following infection, we assume that the time from infection to death follows a 

gamma distribution with shape 𝛼 and rate 𝛽. If an individual is infected at time 𝑡 then the probability that 

they die at time 𝑡𝑑 is: 

 

 
We make the simplifying assumption that time is discrete and measured in days, defining 𝜏(𝑇|𝑡) to be the 

probability of death on day 𝑇 ∈ ℤ>0 given infection at the start of day 𝑡 ∈ ℤ>0 where 𝑡 ≤ 𝑇: 

 
(the +1 term in the above comes about because we assume infections occur at the start of the day, but 

deaths can be registered until the end of the day, hence 𝜏(1|1) returns a positive value). 

 

Our population is split into different age strata, each with their own probabilities of infection and death. 

Let there be 𝐴 ∈ ℤ>0 age groups in total, and let 𝑝𝑎 be the proportion of the total population in age group 

𝑎 ∈ 1: 𝐴. In the simplest model we would expect infections to occur in a given age group in proportion to 

the number of people in that group. To allow for variation in age-specific attack rates, and in order to fit 

to age-specific seroprevalence data, we include a multiplicative attack rate scalar 𝑘𝑎 within each group, 

allowing the final attack rate to be higher or lower than expected from proportions alone. Hence the 

overall probability of infection in age group 𝑎, which will be written 𝜌𝑎, is given by: 

 
 

Once infected, the probability of death in age group 𝑎 (i.e. the IFR in this age group) is defined as 𝑚𝑎. 

Hence, the overall probability of an individual in age group 𝑎 dying on day 𝑇 given infection on day 𝑡 can 

be written 𝜌𝑎𝑚𝑎𝜏(𝑇|𝑡). 

 

Our raw data do not consist of individual-level outcomes, but rather aggregate counts. Specifically, two 

marginal distributions were available for each study: 1) daily counts of the number of COVID-19 deaths, 

summed over all age groups, and 2) the cumulative number of COVID-19 deaths at a single point in time, 

but broken down by age. Both marginal distributions were fit within a single statistical framework. 

 

Let 𝐼𝑡 be the number of new SARS-CoV-2 infections in the population on day 𝑡. The true infections curve 

is unknown, and was modelled using an exponentiated natural cubic spline, subject to the constraint that 

the total number infected (i.e. the area under the curve) could not exceed the total population size 𝑁. It 

follows from the definitions above that the number of infections in age group 𝑎 on day 𝑡 is given by 𝜌𝑎𝐼𝑡, 
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and the number of ultimately fatal infections is given by 𝜌𝑎𝑚𝑎𝐼𝑡. The expected total deaths on day 𝑇, 

denoted 𝜇𝑇, is obtained by summing over all age groups and all possible times of infection as follows: 

 
The observed number of COVID-19 deaths on day 𝑇, denoted 𝐷𝑇, is assumed to be Poisson distributed 

around this expectation: 

 
The likelihood for this part of the model is simply the product of Poisson probabilities over all days in our 

time series: 

 
Moving on to the second marginal distribution, the expected cumulative deaths in age group 𝑎 up until 

time 𝑌 can be written: 

 
These expected values are converted into expected proportions of deaths in each age group as follows: 

    
Finally, the observed cumulative COVID-19 deaths up until day 𝑌, denoted by the vector 𝑪 with elements 

𝐶𝑎 for 𝑎 ∈ 1: 𝐴, are assumed to be multinomially distributed with these proportions: 

 
This is the second component of the likelihood: 

 
 

2.2.2 Incorporating serology data 

The third data type used in fitting comes from serological studies. For a given individual infected on day 𝑡 

we model the probability of having seroconverted by day 𝑡𝑠 using the following formula: 

 
where 𝑋 is a binary variable that equals 1 if the individual has seroconverted and 0 otherwise. This is 

equivalent to assuming seroconversion with a constant hazard 1/𝜆. Translating to the population level, 
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the expected number of people to have seroconverted by time 𝑇 in age group 𝑎, denoted 𝜃𝑇,𝑎, is given 

by: 

         
This can be translated to an expected proportion via the expression 𝜃𝑇,𝑎/𝑁𝑎, where 𝑁𝑎 is the total 

population size in age group 𝑎, such that ∑ 𝑁𝑎 = 𝑁𝐴
𝑎=1 . 

 

The observed prevalence of seropositive individuals (the seroprevalence) is expected to deviate from this 

proportion due to both sampling effects and imperfect test characteristics. If 𝛾 ∈ [0,1] is the sensitivity of 

the test and 𝛿 ∈ [0,1] is the specificity then the test-adjusted expected seroprevalence, 𝜙𝑇,𝑎, can be 

calculated using the classic Rogan-Gladen correction 64: 

 
Let the total number of people tested on day 𝑇 in age group 𝑎 be denoted 𝑠𝑇,𝑎, and let the observed 

number of seropositives be denoted 𝑛𝑇,𝑎. We model the observed counts as binomially distributed around 

the Rogan-Gladen-corrected proportion: 

 
Finally, the likelihood for this component of the model is the product of the binomial probability over all 

age groups, and over all serology study dates 𝑇𝑦: 

 
 

2.2.3 Extension for seroreversion 

As part of a sensitivity analysis, we allowed for individuals to “serorevert” over time under an assumption 

of natural waning antibodies. We assumed that individuals experience a constant hazard 1/𝜆 of 

seroconverting, followed by a probability of seroreverting characterized by a Weibull distribution with 

shape 𝜅 and scale 𝜇. Under these conditions, the probability of being seropositive by the end of day 𝑡𝑠 

following infection on day 𝑡 is given by: 

 
All subsequent steps are identical to those described above in equations (12)-(15), resulting in an 

alternative version of the likelihood component ℒ3. 

 

 

  



29 October 2020  Imperial College COVID-19 response team 
 

DOI: https://doi.org/10.25561/83545  Page 10 of 40 
 

2.2.4 Full model 

The full likelihood is the product of the individual likelihood components listed above:  

 

3. Prior Information and Model Fitting  

3.1 Symptom Onset to Seroreversion Parameter Estimation 

We estimated the time to seroreversion (i.e. becoming antibody negative), from previously published 
longitudinal Abbott SARS-CoV-2 IgG assay data collected among non-hospitalized participants with real-
time PCR-confirmed SARS-CoV-2 infections 50. We chose to estimate seroreversion times from the Abbott 
assay, as it showed the most striking decline in sensitivity over time compared to other serological assays 
50. As a result, we present the most conservative IFR estimates with respect to the effects of seroreversion 
(i.e. the number of previously infected individuals, the IFR denominator, is inflated due to assumed 
“reverted” infections) to highlight the differences between estimates of IFR with and without the 
assumption of seroreversion to the greatest degree. All included participants had relatively mild COVID-
19 disease and were not hospitalised. Of the 97 convalescent participants analyzed, three participants 
had missing information on days post-symptoms and were excluded. Of the remaining 94 participants, six 
did not seroconvert during follow-up (i.e. they were negative at baseline and remained so during the 
follow-up period). Among the final 88 participants, 62 were female and the median age was 48.5 years 
(range: 21 - 65 years). Seronegative status (i.e. the outcome) was defined as titres below an optical density 
of 1.4 50.  
 
To estimate the time of seroreversion after symptom onset, we fit a Weibull survival model using interval 
censoring to account for the uncertainty in the observed time of seroreversion. As a comparison to our 
parametric fit, we also fit a Kaplan-Meier survival curve with interval-censoring. Models were fit using the 
`survival` R-package 51,52. The `survminer` R-package was used in plotting the Kaplan-Meier survival curve 
(Figure 1A) 53.  

From the Weibull survival model, we found that the Weibull shape and scale parameters were 3.67 and 
143.7, respectively. In order to conform with the mathematical derivation of the model (Equation 16 
above), we subtracted 13.3 (days) from the Weibull scale parameter to account for the time of symptom 
onset to seroconversion (as an approximation) 54.   

3.2 Onset-Outcome Delay Distributions and Serological Test Characteristics 

The delay from onset of symptoms to death was assumed to follow a gamma distribution with a mean of 
14.8 days and coefficient of variation of 0.85 (unpublished data from the COVID-19 Hospitalisation in 
England Surveillance System and Public Health England). The delay from onset of symptoms to 
seroconversion was assumed to follow an exponential distribution with a mean time of seroconversion of 
13.3 days 54. For both distributions, the incubation period was assumed to be fixed at five days 55,56, 
thereby providing overall means of onset of infection to death and seroconversion of 19.8 and 18.3 days, 
respectively. Priors for the onset-delay means were truncated Gaussian distributions while the onset-to-
death coefficient of variation had a Beta distributed prior (Supplementary Table 3). When seroreversion 
was considered, the prior for rate of seroreversion after seroconversion was assumed to have a truncated 
Gaussian distribution (Supplementary Table 3). 

https://paperpile.com/c/VilxKA/1zW9G
https://paperpile.com/c/VilxKA/1zW9G
https://paperpile.com/c/VilxKA/1zW9G
https://paperpile.com/c/VilxKA/i0P8+NIlG
https://paperpile.com/c/VilxKA/dQRp
https://paperpile.com/c/VilxKA/EbAkL
https://paperpile.com/c/VilxKA/EbAkL
https://paperpile.com/c/VilxKA/OgWIl+rTuDO
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The prior distributions for the sensitivity and specificity were assumed to follow Beta distributions with 
the number of true positives that were correctly identified considered for sensitivity, and the number of 
true negatives correctly identified considered for specificity, among the total number of samples tested 
(Supplementary Table 3). To allow for some uncertainty -- even among studies that found 100% specificity 
during serovalidation -- we added 0.5 to our Beta scale and shape parameters (the Jeffreys prior; 
Supplementary Table 3). For the subset of studies where regional seroprevalence information was 
available (6/10), we used the posterior estimates of sensitivity and specificity from the region-based 
models without time delays to re-inform the priors for the age-based IFR model. The new Beta distribution 
shape parameters were calculated from the regional-based model sensitivity and specificity posteriors 
using a method of moments approach with `fitdistplusr` R-package 57 (Supplementary Table 7). 

The prior distributions for the age-specific IFR estimates were assumed to be uniform with  minimum and 
maximum values of 0% and 40%, respectively. The 40% maximum was selected as not more than three-
times the upper credible interval of three early IFR studies 58–60 (Supplementary Table 3).   

Spline curves were fit with five knots to estimate the incidence of infections over time, with uniform priors 
on the x- and y-axis positions. The minimum and maximum values of the y-axis positions were zero and 
the total population size, while the maximum x-axis position was allowed to range from fourteen days 
prior to the last observed death date and the last observed death date, respectively (Supplementary Table 
3).  

To estimate the proportion of infections occurring in each age group, we assumed that the attack rate 
was proportional to the population fraction within that age group multiplied by an additional scaling 
parameter assumed to follow a truncated Gaussian distribution (Supplementary Table 3). The modelled 
seroprevalence by age was fit to the age specific seroprevalence data. Given that serostudies were 
conducted over a given timeframe (e.g. two-weeks), we took the average of the model seroprevalences 
over the serostudy time-period to propagate uncertainty in collection times. These modelled prevalences 
were then compared with the reported seroprevalence.  

Models were fit using Metropolis-Coupled Markov Chain Monte Carlo (MC3) with the ̀ drjacoby` R package 
61. For each model, 10,000 burnin-in and 10,000 sampling iterations with 50 rungs across 10 chains were 
considered. The thermodynamic power between rungs was sequentially ranged from 5.0 to 2.5 for all sites 
except England and Spain, where the thermodynamic power was ranged from 5.0 to 3.5, to ensure high 
swap rates. Model convergence was assessed by analyzing the acceptance rate between rungs, 
visualization of chains, and a Gelman-Rubin’s convergence diagnostic lower than 1.1 62.  

 

 

 

 

 

 

 

 

https://paperpile.com/c/VilxKA/lTSL
https://paperpile.com/c/VilxKA/vjFcb+COF7w+3diVR
https://paperpile.com/c/VilxKA/xPJF5
https://paperpile.com/c/VilxKA/Y5DMx
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Supplementary Table 3 - Prior Distributions used in Age-Specific Model: For each parameter, the prior distribution 
is indicated alongside the parameter count. For the age-specific infection fatality ratios (IFRs), younger age-groups 
were reparameterized as relative risk to the oldest age group in order to improve model mixing. Similarly, the spline 
knots were reparameterized relative to the last observed day, where E was the last observed day and E-14 was 
fourteen days prior. The first knot was always fixed at one to allow for a common time origin. The spline y-positions 
were similarly set relative to the third y-position, which was allowed to range between zero and the approximate 
size of the population (popN).  

Parameter Count Distribution 

Age-Specific IFRs Number of Age Groups Uniform(0,1); Uniform(0, 0.4) 

Knots 5 Uniform(0,1); Uniform(E-14, E) 

Spline Y-Positions 5 Uniform(0,1); Uniform(0, popN) 

Attack Rate Noise Scalars Number of Age Groups Truncated-Normal(1, 0.05) 
Bounds: 0.5, 1.5 

Mean of Onset from Infection to 
Seroconversion 

1 Truncated-Normal(18.3, 0.1) 
Bounds: 16, 21 

Mean of Onset from Infection to 
Death 

1 Truncated-Normal(19.8, 0.1) 
Bounds: 18, 20 

Coefficient of Variation of Onset from 
Infection to Death  

1 Beta(2550, 450) 

Weibull Shape Pattern for 
Seroreversion 

1 Truncated-Normal(3.67, 0.5) 
Bounds: 2, 5 

Weibull Scale Pattern for 
Seroreversionn 

1 Truncated-Normal(130.4, 0.1) 
Bounds: 127, 133 
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3.3 Estimating Specificity: Region-based Statistical Model Description 

An adapted version of the statistical model described above was used to estimate serological test 
specificity in six studies where data were available by region within the larger serosurvey, as described in 
the main text. The underlying assumption is that deaths in each region are proportionally related to the 
true cumulative incidence in the region, estimated by seroprevalence, after adjusting for serological test 
performance. As before, we incorporated test sensitivity and specificity into this model using the reported 
validation data from each study as priors, and we then estimated regional and age-specific 
seroprevalence, specificity, sensitivity and deaths. The age-specific IFRs were assumed to be the same in 
each region, but incorporated region-specific demography so that the overall regional IFRs could vary (e.g. 
London, England has a much younger population than the rest of the country, and therefore a lower 
overall IFR). The delays from onset-death and onset-seroconversion were removed for analytical 
tractability, and we used cumulative mortality data up to the midpoint of the serosurvey, making the 
assumption that most deaths and seroconversion had occurred by the time of the serosurvey. This 
assumption is reasonable for serosurveys conducted some weeks after the first wave of the epidemic. We 
did not have seroprevalence data broken down by both age and region at the same time, but we fit the 
model to both the marginal age and regional seroprevalence, assuming the same risk ratios of being 
seropositive by age in all regions. We did not include seroreversion in this analysis. The model was fit with 
`RStan` using 4 chains, each having 10,000 burn-in and 10,000 sampling iterations 63. Convergence was 
assessed by visualizing the posterior distributions as well as requiring Gelman-Rubin’s convergence 
diagnostic lower than 1.1 62. The underlying code is available on Github (mrc-
ide/reestimate_covidIFR_analysis/analyses/Rgn_Mod_Stan) . 

 

  

https://paperpile.com/c/VilxKA/UyLW
https://paperpile.com/c/VilxKA/Y5DMx
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4. Insights from Simulated Data  

Accurate inference of the IFR based on serological data is challenging due to a number of factors that can 
bias estimates away from the true value. These factors include: (1) the delay between infection and death, 
(2) the dynamical process of seroconversion and seroreversion, and (3) serological test characteristics -- 
all of which are expected to interact leading to complex effects on the IFR. In order to understand how 
these factors might bias the IFR, and understand the extent to which they could be disentangled, we first 
developed a statistical simulator that modelled these factors and their respective effects on the IFR.  

From simulations assuming seroconversion without seroreversion, we found that the crude IFR tended to 
underestimate the true IFR when the epidemic was growing, or overestimate the true IFR when the 
epidemic was contracting. Moreover, even after adjusting the IFR for test performance using the Rogan-
Gladen correction, a common approach to adjust for test sensitivity and specificity 64, the true IFR was 
only captured when the epidemic was nearly over (Supplementary Figure 2A). These biases result from 
failing to account for the delays from onset of infection to death and seroconversion. When considering 
the possibility of seroreversion after seroconversion, we found that after the epidemic peaked, both the 
crude IFR and the tested-adjusted IFR increasingly overestimated the true IFR as more time passed from 
the first wave of the epidemic to when the serological study was undertaken (Supplementary Figure 2B). 
This underestimation is expected, since reducing seroprevalence deflates the denominator (i.e. total 
number infected) while the numerator (i.e. cumulative deaths) remains constant or increases.  

Following our better understanding of these biases, we developed a statistical framework that accounted 
for onset-outcome delay distributions alongside serologic test characteristics (e.g. specificity, sensitivity, 
and the duration of the serosurvey). We found that our model allowed for correct inference of the 
simulated true IFR when the potentiality for seroreversion was not and was considered (Supplementary 
Figure 2). Full details on this Age-Based model framework and its mathematical derivation are detailed 
above.  

 

 

 

https://paperpile.com/c/VilxKA/wizhj


29 October 2020  Imperial College COVID-19 response team 
 

DOI: https://doi.org/10.25561/83545  Page 15 of 40 
 

 

Supplementary Figure 2: (A) Schematic illustrating how the effects of the various factors needed to correctly infer 
the IFR can bias crude and test-adjusted (Test Adj.) estimates of the IFR. Factors shown include delays from infection 
to death (I-D), to seroconversion (I-S), and to seroreversion (I-R) as well as serological test sensitivity (Sens), and 
specificity (Spec). Seroprevalence was simulated from days 145-155 and 195-205 using a serologic test with 95% 
specificity and 85% sensitivity and assuming that 0.1% of the total population was sampled. These simulations, 
without and with seroreversion, were used as the inputs for the results displayed in panels (B) and (C). The daily 
infection curve used as input for the simulation is shown as the plot inset. (B) Estimated IFR over time based on 
fitting a statistical model to the simulated data that does not include seroreversion. Here, the underlying true IFR 
associated with the simulated data is indicated by the dashed black line and the grey lines indicate 100 posterior 
draws from the fitted statistical model (based on the posterior probability), indicating the capacity for our model 
framework to correctly recover the true IFR. Red and yellow lines represent the crude and test characteristic-
adjusted (Rogan-Gladen correction) IFR estimates, calculated as if the serosurvey had been conducted on each 
respective day (after day 50). The crude IFR calculation did not include cumulative deaths in the denominator (see 
main text). (C) As for (B), but fitting a model that included seroreversion instead of one that lacked this feature. The 
IFR values are shown as a probability instead of a percentage. Early in the outbreak, when the true seroprevalence 
is less than the false positive rate, adjusting for the serologic test characteristics can result in unstable IFR estimates.   



29 October 2020  Imperial College COVID-19 response team 
 

DOI: https://doi.org/10.25561/83545  Page 16 of 40 
 

Supplementary Figure 2 highlights the capacity for our statistical framework to recover the true underlying 
IFR for a simple epidemic. We next assessed whether our model was robust to more complex epidemic 
shapes. Infection curves were simulated with three shapes: exponential (unmitigated) growth, 
exponential growth followed by interventions that led to resolution of the outbreak, and exponential 
growth followed by interventions that lead to a nadir but were followed by a “second wave” as 
interventions were relaxed. These simulations are respectively referred to as the Exponential Growth, 
Outbreak Control, and Second Wave scenarios. Simulations were assumed to have two observed 
seroprevalence time points (Midday: 125 and 175, where simulated serostudies were conducted over ten 
days). In each instance, we found that our age-specific IFR model was able to capture the simulated true 
IFR value within the 95% credible interval when seroreversion was and was not considered 
(Supplementary Figures 3-4). Overall, the model appeared to be most sensitive to the unmitigated 
exponential growth scenario, where the number of infections was slightly underestimated in some 
posterior draws. In some instances, this resulted in the younger age groups having IFRs that were slightly 
over-estimated (e.g. 0.11-0.14% insead of 0.1%) whilst the older age-groups’ true IFR was always captured 
by the 95% credible intervals. This is due to the fact that the delay of onset of infection to death results in 
a “lagged” infection curve, where those infected have not yet died and there is little information to fit to 
a continued exponential growth versus any other shape (e.g. a continued linear line, a plateau, etc.), 
particularly when there are very few deaths in the younger age-groups.  

Additionally, we show that our age-specific IFR model remains able to capture the true underlying IFR in 
simulated data when only only a single serostudy day is considered, rather than the two sequential 
serostudies assumed for the Supplementary Figure 3 and 4 results (Supplementary Figure 5). The results 
in Supplementary Figure 5 show that the uncertainty in the IFR estimates is often increased when only a 
single serostudy day is considered.  
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Supplementary Figure 3 - Posterior Draws of Several Epidemic Shapes versus Simulated Infection Curve without 
Seroversion: (A) Using simulated data, we created three outbreak scenarios where individuals who seroconverted 
could not serorevert: exponential growth, outbreak control, and second wave (grey lines are simulated infection 
input) under two different serological tests (Sensitivity: 85%; Specificity 95% vs. Sensitivity: 85%; Specificity 99%). 
The blue shading represents 100 posterior draws (based on the posterior probability) of the modelled infection curve 
(using an exponentiated natural cubic spline), where draws were selected based on their posterior probability. (B) 
The inferred median and 95% credible intervals (blue) versus the simulated true IFR (grey, dashed line) for each of 
the scenarios under the two serological test characteristics. Overall, the model accurately captures both the 
simulated infection curve and the simulated IFR despite complex epidemic shapes. For all epidemic scenarios 
considered, we assume that there are two seroprevalence surveys that range over days 120-130 and 170-180 and 
that 0.1% of the population was sampled. 
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Supplementary Figure 4 - Posterior Draws of Several Epidemic Shapes versus Simulated Infection Curve with 
Seroversion:  (A) Simulated data representing the same three outbreak scenarios featured in Supplementary Figure 
3 (exponential growth, outbreak control, and second wave) were generated, but now with the additional feature 
that individuals who seroconverted could potentially serorevert. Grey lines indicate the simulated true infection 
curve under two different serological tests (Sensitivity: 85%; Specificity 95% vs. Sensitivity: 85%; Specificity 99%). 
The blue shading represents 100 posterior draws (based on the posterior probability) of the modelled infection curve 
(using an exponentiated natural cubic spline), where draws were selected based on their posterior probability. (B) 
The inferred median and 95% credible intervals (blue) versus the simulated true IFR (grey, dashed line) for each of 
the outbreak scenarios with respect to the two different serological test characteristics. As above, the model 
accurately captures both the simulated infection curve and the simulated IFR while accounting for the potentiality 
of seroreversion. For all epidemic scenarios considered, we assume that there are two seroprevalence surveys that 
range over days 120-130 and 170-180 and that 0.1% of the population was sampled. 
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Supplementary Figure 5 - Comparison of the Number of Serosurveys: Data was simulated for three age-groups 
(ma1, ma2, ma3) with IFRs of 0.1%, 1%, and 10%, respectively. Follow-up time was assumed to be 200-days. The 
simulations differed in the number of serological time points considered (i.e. simulated serosureys) with (A) 
consisting of a single serosurvey ranging from days 145-155 versus (B) consisting of two serosurveys: days 120-130 
and 170-180, respectively. In both simulations, we assume that 0.1% of the population was sampled and that the 
simulated serologic test had a sensitivity and specificity of 0.85% and 0.95%, respectively. Although both models 
capture the true simulated IFR values in the 95% credible intervals (grey) for each age group, there is greater 
uncertainty when only a single serosurvey is considered. The IFR values are shown as a probability instead of a 
percentage.  

  



29 October 2020  Imperial College COVID-19 response team 
 

DOI: https://doi.org/10.25561/83545  Page 20 of 40 
 

5. Age-Based Statistical Model Posteriors 

5.1 Posterior Parameter Estimates 

 

Supplementary Table 4- Overall IFR Estimates when Standardized by Population Demography and Inferred Attack 
Rates: The overall IFR estimates were calculated by standardizing for demography and the inferred attack rate, 
following the definition from the age-based model (columns 3-4) or by standardizing for solely the demography and 
assuming the same attack rate in each age-group (columns 5-6). Generally, the overall IFRs were very similar 
between the two approaches with England as a notable exception, where the lower attack rate in the oldest age 
group (consistent with the seroprevalence data) drove down the IFR.  

Study Location Crude IFR (95 CI%) 

Pop.-Attack Rate 

Standardized 

Modelled IFR without 

Seroreversion (95% 

CrI) 

Pop.-Attack Rate 

Standardized 

Modelled IFR with 

Seroreversion (95% 

CrI) 

Pop. Standardized 

Modelled IFR 

without 

Seroreversion (95% 

CrI) 

Pop. Standardized 

Modelled IFR with 

Seroreversion (95% 

CrI) 

Brazil 0.99 (0.92, 1.06) 1.03 (0.93, 1.17) 0.99 (0.89, 1.13) 1.05 (0.95, 1.21) 1.01 (0.91, 1.17) 

Denmark 0.33 (0.23, 0.48) 0.53 (0.37, 1.01) 0.52 (0.37, 0.99) 0.53 (0.38, 1.02) 0.52 (0.37, 0.98) 

England 1.41 (1.38, 1.45) 1.18 (0.99, 1.34) 1.04 (0.84, 1.19) 1.53 (1.26, 1.79) 1.34 (1.07, 1.55) 

Italy 2.3 (1.94, 2.72) 2.53 (2.31, 2.77) 2.23 (2.03, 2.45) 2.53 (2.3, 2.79) 2.23 (2.02, 2.46) 

Netherlands 0.6 (0.58, 0.63) 0.62 (0.58, 0.68) 0.59 (0.55, 0.66) 0.62 (0.58, 0.68) 0.6 (0.56, 0.66) 

Spain 1.12 (1.08, 1.16) 1.14 (1.08, 1.22) 1.07 (1.01, 1.14) 1.04 (0.97, 1.12) 0.98 (0.91, 1.05) 

Sweden 0.68 (0.46, 1) 1.03 (0.88, 1.37) 0.99 (0.84, 1.35) 1.03 (0.87, 1.37) 0.99 (0.84, 1.36) 

Geneva, Switzerland 0.48 (0.42, 0.56) 0.49 (0.42, 0.59) 0.48 (0.4, 0.58) 0.52 (0.43, 0.63) 0.5 (0.42, 0.61) 

Zurich, Switzerland 0.51 (0.45, 0.58) 0.52 (0.41, 0.67) 0.5 (0.39, 0.64) 0.53 (0.41, 0.67) 0.5 (0.39, 0.65) 

New York State, USA 0.75 (0.74, 0.76) 0.77 (0.72, 0.83) 0.75 (0.7, 0.8) 0.82 (0.77, 0.89) 0.8 (0.74, 0.86) 
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Supplementary Table 5 - Delay Distribution Posteriors: The posterior 95% credible intervals (CrI) for the mean delay 
from infection onset to seroconversion (Serocon.) and death as well as the coefficient of variation (Coeff. of 
Variation) for the onset of infection to death gamma distribution are shown for each study when seroversion was 
not and was considered. Similarly, the mean of the onset from seroconversion to seroreversion (Serorev.) posterior 
distribution is given for fits where seroreversion was modelled.  

Study Location 

Model 

Consideration 

Onset to Serocon. 

Mean (95% CrI) 

Onset to Death Mean 

(95% CrI) 

Onset to Death 

Coeff. of Variation 

(95% CrI) 

Serocon. to Serorev. 

Mean (95% CrI) 

Brazil Without Serorev. 18.3 (18.11, 18.5) 19.76 (19.56, 19.95) 0.85 (0.84, 0.86)  

Brazil With Serorev. 18.3 (18.1, 18.49) 19.76 (19.57, 19.95) 0.85 (0.84, 0.86) 132.97 (132.85, 133) 

Denmark Without Serorev. 18.3 (18.1, 18.5) 19.8 (19.61, 19.97) 0.85 (0.84, 0.86)  

Denmark With Serorev. 18.3 (18.11, 18.5) 19.8 (19.61, 19.97) 0.85 (0.84, 0.86) 132.88 (132.37, 133) 

England Without Serorev. 18.3 (18.11, 18.5) 19.79 (19.59, 19.96) 0.87 (0.85, 0.88)  

England With Serorev. 18.3 (18.1, 18.5) 19.79 (19.59, 19.96) 0.87 (0.85, 0.88) 132.95 (132.71, 133) 

Italy Without Serorev. 18.3 (18.1, 18.5) 19.87 (19.69, 19.99) 0.86 (0.85, 0.87)  

Italy With Serorev. 18.3 (18.11, 18.5) 19.87 (19.69, 19.99) 0.86 (0.85, 0.87) 132.93 (132.61, 133) 

Netherlands Without Serorev. 18.31 (18.11, 18.51) 19.8 (19.6, 19.96) 0.85 (0.84, 0.86)  

Netherlands With Serorev. 18.31 (18.11, 18.51) 19.8 (19.6, 19.97) 0.85 (0.84, 0.86) 130.4 (130.21, 130.6) 

Spain Without Serorev. 18.29 (18.1, 18.49) 19.71 (19.53, 19.88) 0.84 (0.83, 0.85)  

Spain With Serorev. 18.3 (18.11, 18.49) 19.71 (19.52, 19.88) 0.84 (0.83, 0.85) 132.26 (129.24, 132.97) 

Sweden Without Serorev. 18.3 (18.11, 18.5) 19.79 (19.6, 19.96) 0.85 (0.84, 0.86)  

Sweden With Serorev. 18.3 (18.11, 18.5) 19.79 (19.6, 19.96) 0.85 (0.84, 0.86) 130.41 (130.21, 130.6) 

Geneva, Switzerland Without Serorev. 18.3 (18.11, 18.5) 19.77 (19.57, 19.95) 0.85 (0.84, 0.86)  

Geneva, Switzerland With Serorev. 18.3 (18.11, 18.5) 19.77 (19.57, 19.95) 0.85 (0.84, 0.86) 130.4 (130.21, 130.6) 

Zurich, Switzerland Without Serorev. 18.3 (18.1, 18.49) 19.79 (19.59, 19.96) 0.85 (0.84, 0.86)  

Zurich, Switzerland With Serorev. 18.3 (18.1, 18.49) 19.79 (19.6, 19.96) 0.85 (0.84, 0.86) 130.4 (130.21, 130.6) 

New York State, USA Without Serorev. 18.3 (18.1, 18.49) 19.74 (19.55, 19.94) 0.87 (0.86, 0.89)  

New York State, USA With Serorev. 18.3 (18.1, 18.49) 19.75 (19.55, 19.93) 0.87 (0.86, 0.88) 132.81 (131.98, 132.99) 
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Supplementary Table 6- Age Specific Estimates of the Infection Fatality Ratio across Included Studies: The age-
specific IFR estimates (without standardization) are provided with 95% credible intervals (CrI) for models where 
seroversion was not and was considered. The crude IFRs and 95% confidence intervals (CI) are included for 
comparison. In addition, the inferred observed seroprevalence -- from 100 posterior draws based on the posterior 
probabilities and corrected for test sensitivity and specificity with the Rogan-Gladen equation -- is provided alongside 
the observed seroprevalence for the latest serosurvey with respect to each study and age-group. Ages of “999” 
indicate an upper bound.   

Study Location 

Age 
Group 
(years) 

Seroprev. 
Midday 

Observed 
Seroprev. 

Modelled Seroprev. 
without Serorev. 

Modelled 
Seroprev. with 
Serorev. Crude IFR (95% CI) 

IFR without 
Serorev.      (95% CrI) 

IFR with Serorev.     
(95% CrI) 

Brazil (0,9] 2020-06-06 1.74 2.24 (2.07, 2.42) 2.23 (2.07, 2.42) 0.03 (0.02, 0.05) 0.03 (0.02, 0.03) 0.02 (0.02, 0.03) 

Brazil (9,19] 2020-06-06 1.82 2.23 (2.09, 2.41) 2.22 (2.08, 2.39) 0.03 (0.02, 0.04) 0.02 (0.02, 0.03) 0.02 (0.02, 0.02) 

Brazil (19,29] 2020-06-06 2.48 2.31 (2.16, 2.47) 2.32 (2.15, 2.51) 0.06 (0.05, 0.08) 0.07 (0.06, 0.08) 0.07 (0.06, 0.08) 

Brazil (29,39] 2020-06-06 2.61 2.34 (2.17, 2.51) 2.34 (2.17, 2.48) 0.19 (0.16, 0.22) 0.2 (0.18, 0.24) 0.2 (0.17, 0.23) 

Brazil (39,49] 2020-06-06 3.17 2.44 (2.3, 2.61) 2.44 (2.28, 2.63) 0.39 (0.33, 0.46) 0.49 (0.43, 0.57) 0.47 (0.41, 0.55) 

Brazil (49,59] 2020-06-06 2.65 2.38 (2.24, 2.56) 2.39 (2.22, 2.56) 1.06 (0.9, 1.27) 1.17 (1.03, 1.36) 1.13 (0.99, 1.31) 

Brazil (59,69] 2020-06-06 1.85 2.15 (1.98, 2.3) 2.15 (2.01, 2.29) 3.61 (2.96, 4.56) 3.18 (2.8, 3.7) 3.06 (2.67, 3.57) 

Brazil (69,79] 2020-06-06 2.17 2.23 (2.08, 2.42) 2.25 (2.11, 2.43) 6.25 (4.93, 8.32) 6.31 (5.49, 7.39) 6.05 (5.27, 7.11) 

Brazil (79,999] 2020-06-06 2.02 2.23 (2.02, 2.43) 2.24 (2.09, 2.45) 13.18 (9.19, 21.46) 13.47 (11.65, 16.13) 12.94 (11.22, 15.69) 

Denmark (0,59] 30/04/2020 2.4 2.13 (1.9, 2.33) 2.11 (1.95, 2.39) 0.01 (0.01, 0.02) 0.02 (0.01, 0.04) 0.02 (0.01, 0.04) 

Denmark (59,69] 30/04/2020 2.4 2.15 (1.89, 2.34) 2.12 (1.93, 2.39) 0.28 (0.19, 0.41) 0.45 (0.29, 0.88) 0.44 (0.28, 0.86) 

Denmark (69,79] 30/04/2020 2.4 2.14 (1.88, 2.35) 2.1 (1.94, 2.4) 0.96 (0.66, 1.39) 1.57 (1.06, 3.03) 1.51 (1.03, 2.92) 

Denmark (79,999] 30/04/2020 2.4 2.14 (1.86, 2.32) 2.12 (1.96, 2.37) 4.02 (2.79, 5.76) 6.76 (4.7, 13) 6.55 (4.58, 12.4) 

England (0,44] 26/06/2020 6.87 6.62 (6.5, 6.78) 6.64 (6.42, 6.82) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 0.02 (0.01, 0.02) 

England (44,64] 26/06/2020 6.18 6.1 (5.91, 6.25) 6.1 (5.96, 6.23) 0.52 (0.5, 0.54) 0.45 (0.38, 0.51) 0.4 (0.32, 0.46) 

England (64,74] 26/06/2020 3.89 4.38 (4.17, 4.64) 4.38 (4.23, 4.63) 3.19 (2.97, 3.45) 2.57 (2.13, 2.98) 2.25 (1.8, 2.65) 

England (74,999] 26/06/2020 3.96 4.76 (4.46, 5.02) 4.8 (4.53, 5.14) 17.34 (15.75, 19.21) 15.06 (12.33, 17.82) 13.2 (10.47, 15.44) 

Italy (0,9] 20/06/2020 2.2 2.41 (2.24, 2.57) 2.49 (2.3, 2.64) 0 (0, 0.01) 0 (0, 0.01) 0 (0, 0.01) 

Italy (9,19] 20/06/2020 2.2 2.43 (2.21, 2.58) 2.49 (2.3, 2.7) 0 (0, 0) 0 (0, 0) 0 (0, 0) 

Italy (19,29] 20/06/2020 2.1 2.39 (2.28, 2.56) 2.43 (2.27, 2.64) 0.01 (0.01, 0.01) 0.01 (0.01, 0.02) 0.01 (0.01, 0.02) 

Italy (29,39] 20/06/2020 2.25 2.41 (2.26, 2.55) 2.46 (2.31, 2.63) 0.04 (0.04, 0.05) 0.04 (0.03, 0.06) 0.04 (0.03, 0.05) 
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Italy (39,49] 20/06/2020 2.4 2.45 (2.28, 2.62) 2.49 (2.34, 2.65) 0.14 (0.12, 0.16) 0.15 (0.13, 0.18) 0.13 (0.11, 0.16) 

Italy (49,59] 20/06/2020 3.1 2.64 (2.49, 2.77) 2.69 (2.53, 2.86) 0.4 (0.35, 0.46) 0.52 (0.46, 0.59) 0.46 (0.4, 0.52) 

Italy (59,69] 20/06/2020 2.6 2.47 (2.34, 2.66) 2.54 (2.37, 2.68) 1.75 (1.49, 2.04) 2.02 (1.78, 2.3) 1.78 (1.58, 2.03) 

Italy (69,79] 20/06/2020 2.5 2.47 (2.27, 2.67) 2.5 (2.34, 2.65) 5.64 (4.83, 6.55) 6.58 (5.83, 7.46) 5.82 (5.15, 6.57) 

Italy (79,89] 20/06/2020 2.5 2.47 (2.32, 2.61) 2.51 (2.32, 2.66) 12.47 (10.78, 14.3) 15.72 (13.95, 17.83) 13.89 (12.27, 15.74) 

Italy (89,999] 20/06/2020 2.5 2.46 (2.33, 2.6) 2.51 (2.36, 2.69) 19.44 (16.99, 22.03) 26.6 (23.56, 30.13) 23.46 (20.75, 26.66) 

Netherlands (0,49] 15/05/2020 5.5 5.49 (5.14, 5.87) 5.48 (5.21, 5.75) 0.01 (0.01, 0.01) 0.01 (0, 0.01) 0.01 (0, 0.01) 

Netherlands (49,59] 15/05/2020 5.5 5.38 (5.07, 5.62) 5.37 (5.04, 5.69) 0.11 (0.1, 0.12) 0.11 (0.09, 0.14) 0.11 (0.09, 0.13) 

Netherlands (59,69] 15/05/2020 5.5 5.45 (5.15, 5.72) 5.39 (5.15, 5.66) 0.45 (0.41, 0.5) 0.46 (0.41, 0.53) 0.44 (0.39, 0.5) 

Netherlands (69,79] 15/05/2020 5.5 5.43 (5.18, 5.7) 5.44 (5.15, 5.76) 2 (1.82, 2.21) 2.09 (1.89, 2.34) 2 (1.82, 2.25) 

Netherlands (79,89] 15/05/2020 5.5 5.47 (5.14, 5.71) 5.43 (5.17, 5.75) 6.38 (5.84, 7.01) 6.98 (6.35, 7.82) 6.69 (6.09, 7.48) 

Netherlands (89,999] 15/05/2020 5.5 5.42 (5.17, 5.67) 5.42 (5.11, 5.67) 10.65 (9.8, 11.65) 12.2 (10.9, 13.76) 11.7 (10.49, 13.22) 

Spain (0,9] 15/06/2020 3.07 3.76 (3.58, 3.98) 3.67 (3.48, 3.87) 0 (0, 0) 0 (0, 0.01) 0 (0, 0) 

Spain (9,19] 15/06/2020 3.81 4.38 (4.17, 4.56) 4.23 (4.03, 4.42) 0 (0, 0) 0 (0, 0.01) 0 (0, 0.01) 

Spain (19,29] 15/06/2020 4.73 5 (4.79, 5.17) 4.86 (4.65, 5.04) 0.01 (0.01, 0.02) 0.01 (0.01, 0.02) 0.01 (0.01, 0.02) 

Spain (29,39] 15/06/2020 4.54 4.91 (4.71, 5.1) 4.73 (4.56, 4.92) 0.03 (0.03, 0.04) 0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 

Spain (39,49] 15/06/2020 5.61 5.67 (5.55, 5.82) 5.48 (5.35, 5.67) 0.07 (0.06, 0.07) 0.07 (0.06, 0.08) 0.06 (0.06, 0.07) 

Spain (49,59] 15/06/2020 5.95 5.93 (5.76, 6.1) 5.74 (5.59, 5.87) 0.21 (0.2, 0.23) 0.21 (0.19, 0.24) 0.2 (0.18, 0.22) 

Spain (59,69] 15/06/2020 6.22 6.07 (5.88, 6.25) 5.87 (5.67, 6.03) 0.73 (0.67, 0.79) 0.75 (0.69, 0.81) 0.7 (0.65, 0.77) 

Spain (69,79] 15/06/2020 6.52 6.18 (5.98, 6.35) 6 (5.77, 6.23) 2.46 (2.24, 2.72) 2.64 (2.44, 2.86) 2.48 (2.29, 2.69) 

Spain (79,89] 15/06/2020 5.59 5.55 (5.24, 5.89) 5.39 (5.15, 5.66) 7.78 (6.76, 9.1) 8.57 (7.81, 9.47) 8.03 (7.33, 8.85) 

Spain (89,999] 15/06/2020 7.71 5.56 (5.27, 5.88) 5.4 (5.14, 5.74) 10.05 (7.73, 13.85) 15.52 (13.97, 17.42) 14.56 (13.06, 16.36) 

Sweden (0,9] 2020-10-06 7.1 5.57 (5.15, 5.99) 5.47 (4.96, 5.83) 0 (0, 0) 0 (0, 0.01) 0 (0, 0.01) 

Sweden (9,19] 2020-10-06 7.1 5.54 (5.17, 5.96) 5.44 (5.08, 5.8) 0 (0, 0) 0 (0, 0) 0 (0, 0) 

Sweden (19,29] 2020-10-06 7.1 5.58 (5.19, 5.96) 5.41 (5.16, 5.9) 0.01 (0.01, 0.01) 0.01 (0.01, 0.03) 0.01 (0.01, 0.03) 

Sweden (29,39] 2020-10-06 7.1 5.59 (5.15, 5.9) 5.46 (5.1, 5.91) 0.01 (0.01, 0.02) 0.02 (0.01, 0.04) 0.02 (0.01, 0.04) 

Sweden (39,49] 2020-10-06 7.1 5.54 (5.2, 5.89) 5.44 (5.11, 5.87) 0.05 (0.03, 0.07) 0.08 (0.05, 0.11) 0.07 (0.05, 0.11) 

Sweden (49,59] 2020-10-06 7.1 5.57 (5.19, 5.92) 5.43 (5.04, 5.82) 0.17 (0.11, 0.25) 0.26 (0.2, 0.35) 0.25 (0.19, 0.34) 
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Sweden (59,69] 2020-10-06 7.1 5.61 (5.27, 5.92) 5.42 (5.11, 5.89) 0.44 (0.3, 0.65) 0.67 (0.54, 0.91) 0.65 (0.52, 0.89) 

Sweden (69,79] 2020-10-06 7.1 5.56 (5.18, 6.04) 5.45 (5.09, 5.96) 1.53 (1.05, 2.25) 2.36 (1.94, 3.17) 2.26 (1.87, 3.13) 

Sweden (79,89] 2020-10-06 7.1 5.57 (5.07, 5.91) 5.47 (5.13, 5.83) 6.22 (4.33, 8.94) 10.05 (8.34, 13.51) 9.69 (8.01, 13.3) 

Sweden (89,999] 2020-10-06 7.1 5.54 (5.2, 5.98) 5.42 (5.05, 5.8) 15.22 (10.93, 20.98) 27.28 (22.61, 36.67) 26.18 (21.55, 35.99) 

Geneva, 
Switzerland (0,9] 2020-07-05 0 9.09 (8.31, 10.09) 9.04 (8.31, 9.85) 0 (0, 0.01) 0 (0, 0.01) 

Geneva, 
Switzerland (9,19] 2020-07-05 14.77 9.5 (8.54, 10.33) 9.45 (8.49, 10.31) 0 (0, 0) 0 (0, 0.01) 0 (0, 0.01) 

Geneva, 
Switzerland (19,29] 2020-07-05 11.41 9.77 (9.13, 10.44) 9.69 (9.08, 10.35) 0 (0, 0) 0 (0, 0.01) 0 (0, 0.01) 

Geneva, 
Switzerland (29,39] 2020-07-05 11.41 9.73 (8.86, 10.53) 9.67 (8.99, 10.44) 0.02 (0.02, 0.03) 0.02 (0, 0.06) 0.02 (0, 0.06) 

Geneva, 
Switzerland (39,49] 2020-07-05 11.41 9.69 (8.94, 10.64) 9.68 (8.9, 10.41) 0 (0, 0) 0 (0, 0.01) 0 (0, 0.01) 

Geneva, 
Switzerland (49,59] 2020-07-05 11.49 9.14 (8.39, 10.16) 9.19 (8.45, 10.31) 0.11 (0.08, 0.16) 0.12 (0.05, 0.21) 0.11 (0.05, 0.2) 

Geneva, 
Switzerland (59,69] 2020-07-05 11.49 9.1 (8.32, 10.06) 9.11 (8.44, 10.01) 0.26 (0.19, 0.39) 0.28 (0.15, 0.45) 0.27 (0.14, 0.44) 

Geneva, 
Switzerland (69,79] 2020-07-05 7.34 8.99 (8.02, 9.77) 8.91 (8.26, 9.76) 1.75 (1.01, 4.53) 1.28 (0.91, 1.74) 1.24 (0.88, 1.69) 

Geneva, 
Switzerland (79,999] 2020-07-05 7.34 8.84 (8.09, 9.71) 8.8 (7.98, 9.7) 9.33 (5.55, 21.53) 7.42 (6.03, 9.26) 7.18 (5.82, 8.96) 

Zurich, 
Switzerland (0,9] 16/05/2020 1.59 1.54 (1.38, 1.68) 1.55 (1.39, 1.72) 0 (0, 0) 0.01 (0, 0.02) 0.01 (0, 0.02) 

Zurich, 
Switzerland (9,19] 16/05/2020 1.59 1.54 (1.4, 1.71) 1.55 (1.37, 1.7) 0 (0, 0) 0.01 (0, 0.02) 0.01 (0, 0.02) 

Zurich, 
Switzerland (19,29] 16/05/2020 1.59 1.54 (1.38, 1.68) 1.54 (1.38, 1.68) 0 (0, 0) 0.01 (0, 0.02) 0.01 (0, 0.02) 

Zurich, 
Switzerland (29,39] 16/05/2020 1.59 1.54 (1.4, 1.69) 1.54 (1.39, 1.69) 0 (0, 0) 0.01 (0, 0.01) 0.01 (0, 0.01) 

Zurich, 
Switzerland (39,49] 16/05/2020 1.59 1.54 (1.41, 1.69) 1.53 (1.38, 1.69) 0 (0, 0) 0.01 (0, 0.01) 0.01 (0, 0.01) 

Zurich, 
Switzerland (49,59] 16/05/2020 1.59 1.52 (1.42, 1.66) 1.54 (1.38, 1.7) 0.12 (0.08, 0.18) 0.11 (0.02, 0.24) 0.11 (0.02, 0.24) 
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Zurich, 
Switzerland (59,69] 16/05/2020 1.59 1.54 (1.42, 1.69) 1.55 (1.38, 1.71) 0.42 (0.3, 0.64) 0.42 (0.19, 0.73) 0.4 (0.18, 0.69) 

Zurich, 
Switzerland (69,79] 16/05/2020 1.59 1.54 (1.4, 1.67) 1.54 (1.41, 1.72) 0.91 (0.66, 1.39) 0.93 (0.52, 1.45) 0.89 (0.5, 1.39) 

Zurich, 
Switzerland (79,999] 16/05/2020 1.59 1.52 (1.36, 1.72) 1.54 (1.35, 1.66) 7.35 (5.42, 10.82) 8.01 (6.03, 10.53) 7.68 (5.82, 10.16) 

New York 
State, USA (0,9] 23/04/2020 12.49 12.26 (11.95, 12.71) 

12.25 (11.81, 
12.69) 0 (0, 0) 0 (0, 0) 0 (0, 0) 

New York 
State, USA (9,19] 23/04/2020 12.49 12.26 (11.81, 12.62) 

12.27 (11.87, 
12.71) 0 (0, 0) 0 (0, 0) 0 (0, 0) 

New York 
State, USA (19,29] 23/04/2020 12.49 12.27 (11.76, 12.73) 

12.26 (11.86, 
12.74) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 

New York 
State, USA (29,39] 23/04/2020 12.49 12.24 (11.89, 12.7) 12.27 (11.89, 12.7) 0.07 (0.07, 0.07) 0.07 (0.06, 0.08) 0.07 (0.06, 0.08) 

New York 
State, USA (39,49] 23/04/2020 12.49 12.25 (11.86, 12.75) 

12.34 (11.86, 
12.73) 0.2 (0.19, 0.22) 0.21 (0.19, 0.23) 0.2 (0.18, 0.23) 

New York 
State, USA (49,59] 23/04/2020 12.49 12.26 (11.88, 12.69) 12.3 (11.85, 12.7) 0.51 (0.48, 0.54) 0.53 (0.48, 0.58) 0.51 (0.47, 0.56) 

New York 
State, USA (59,69] 23/04/2020 10.89 11.12 (10.62, 11.61) 11.22 (10.79, 11.7) 1.4 (1.3, 1.5) 1.41 (1.29, 1.56) 1.37 (1.25, 1.51) 

New York 
State, USA (69,79] 23/04/2020 10.89 11.2 (10.71, 11.84) 

11.26 (10.65, 
11.69) 3.05 (2.85, 3.28) 3.13 (2.85, 3.46) 3.04 (2.77, 3.35) 

New York 
State, USA (79,999] 23/04/2020 10.89 11.18 (10.74, 11.68) 

11.15 (10.65, 
11.72) 7.2 (6.74, 7.71) 7.73 (7.05, 8.53) 7.51 (6.84, 8.25) 
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5.2 Posterior Predictive Checks 

 

 
 

Supplementary Figure 6 - Posterior Draws of Modelled Seroprevalence without Seroreversion for the Oldest Age-

Group: Results are presented from the statistical modelling framework where seroreversion was not included. For 

each study and its associated model fits, we selected 100 posterior draws of the modelled true seroprevelance 

(yellow) based on their posterior probabilities. Due to space constraints, we only show here the results for the oldest 

age group, although younger age-groups showed similar results. Given this true inferred seroprevalence, the 

expected observed seroprevalence, with the Rogan-Gladen correction, is also displayed (blue). The observed 

seroprevalence for the oldest age group is indicated along with its 95% confidence interval are indicated in black 

with the serostudy time-period demarcated by a grey box. The 95% confidence intervals were calculated using a 

binomial proportion with the exception of the Denmark, Italy, and Sweden studies, where reported seroprevalences 

and confidence intervals are plotted (binomial counts were not available). Overall, observed seroprevalences 

matched closely with modelled seroprevalence and varied in some instances due to the modelled differences in the 

distributions of infections across age-groups (Supplementary Table 6). 
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Supplementary Figure 7 - Posterior Predictive Check: Inferred Deaths without Seroreversion for the Oldest Age-

Group: Results are presented from the statistical modelling framework where seroreversion was not included. For 

each study and its associated model fits we selected 100 posterior draws of the modelled IFR and delay of infection 

onset to death based on the posterior probabilities (grey). Inferred deaths were projected forward in time according 

to the gamma distribution fit and compared to the age-specific time-series deaths (i.e. model input: blue). Due to 

space constraints, we only show here the results for the oldest age group, although younger age-groups showed 

similar results.  
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Supplementary Figure 8 - Posterior Draws of Modelled Seroprevalence with Seroreversion for the Oldest Age-

Group: Results are presented from the statistical modelling framework where seroreversion was explicitly included. 

The seroreversion sensitivity analysis was used to present a conservative estimate of the IFR, as we assumed a fast 

rate of antibody waning from the Abbott assay ( Muecksch et al. 2020). For each study and its associated model fits 

we selected 100 posterior draws of the modelled true seroprevelance (yellow) according to the posterior 

probabilities. Due to space constraints, we only show here the results for the oldest age group, although younger 

age-groups showed similar results. The rate of seroreversion after seroconversion was estimated from previously 

published data on the Abbott SARS-CoV-2 IgG assay, which demonstrated the greatest decay of sensitivity over time 

among the four assays evaluated (Muecksch et al. 2020). Given the true inferred seroprevalence, the expected 

observed seroprevalence, with the Rogan-Gladen correction, is also displayed (blue). Overall, observed 

seroprevalences matched closely with modelled seroprevalence and varied in some instances due to the modelled 

differences in the distributions of infections across age-groups (Supplementary Table 6). The effect of seroreversion 

later in the pandemic is apparent, particularly in Italy.  
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Supplementary Figure 9 - Posterior Predictive Check: Inferred Deaths with Seroreversion for the Oldest Age-

Group: Results are presented from the statistical modelling framework where seroreversion was explicitly included. 

The seroreversion sensitivity analysis was used to present a conservative estimate of the IFR, as we assumed a fast 

rate of antibody waning from the Abbott assay ( Muecksch et al. 2020). For each study and its associated model fits, 

we selected 100 posterior draws of the modelled IFR and delay of infection onset to death based on the posterior 

probabilities (grey). Inferred deaths were projected forward in time according to the gamma distribution fit and 

compared to the recasted age-specific time-series deaths (i.e. model input: blue). Due to space constraints, we only 

show here the results for the oldest age group, although younger age-groups showed similar results. The rate of 

seroreversion after seroconversion was estimated from previously published data on the Abbott SARS-CoV-2 IgG 

assay, which demonstrated the greatest decay of sensitivity over time among the four assays evaluated (Muecksch 

et al. 2020).   
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6. Estimating Specificity: Region-based Statistical Model Posteriors  

6.1 Posterior Parameter Estimates 

 

 

Supplementary Figure 10 - Expected relationship between seroprevalence and deaths per 100,000 under different 
values of serological test sensitivity and specificity, when overall IFR=0.7% and both IFR and population age structure 
are constant across all attack rates (seroprevalence values). 
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Supplementary Table 7 - Observed serovalidation results for each included studies and posterior estimates of 

sensitivity and specificity from regional and age-specific models: For each study, the number of test positives versus 

true positives reported were used to parameterize the sensitivity Beta-distributed prior in the age-specific IFR model. 

Similarly, the number of test negatives versus true negatives reported were used to parameterize the specificity 

Beta-distributed prior in the age-specific IFR model. For a subset of studies (6/10), regional information was used to 

re-estimate the true study sensitivity and specificity (using the region-based model). The resulting posterior medians 

and 95% credible intervals by study and model (without and with seroreversion) are provided for both the region-

based and age-based model.  

Study 

Location 

Regional Re-

estimation of 

Sensitivity (95% CrI) 

Regional Re-

estimation of 

Specificity (95% CrI) 

Age-Specific 

Posterior Sensitivity 

without 

Seroreversion (95% 

CrI) 

Age-Specific 

Posterior 

Specificity without 

Seroreversion 

(95% CrI) 

Age-Specific 

Posterior 

Sensitivity with 

Seroreversion 

(95% CrI) 

Age-Specific 

Posterior 

Sensitivity with 

Seroreversion (95% 

CrI) 

Brazil 85.14 (81.93, 87.97) 99.72 (99.55, 99.85) 85.32 (82.12, 88.15) 99.76 (99.6, 99.86) 85.3 (82.11, 88.16) 99.76 (99.6, 99.86) 

Denmark 82.09 (75.51, 87.58) 99.25 (98.94, 99.56) 82.46 (76.14, 87.77) 

99.16 (98.72, 

99.46) 82.4 (76.04, 87.7) 

99.16 (98.72, 

99.46) 

England 78.4 (65.68, 88.15) 99.44 (99.11, 99.71) 79.89 (67.73, 89.43) 

99.59 (99.34, 

99.78) 

80.05 (68.17, 

89.24) 99.6 (99.34, 99.78) 

Italy 96.04 (89.84, 99.05) 99.7 (99.59, 99.79) 96.52 (91.04, 99.13) 

99.69 (99.57, 

99.78) 

96.53 (91.07, 

99.18) 

99.69 (99.57, 

99.78) 

Netherlands   98.22 (95.6, 99.5) 

99.83 (99.45, 

99.98) 

98.24 (95.53, 

99.52) 

99.85 (99.46, 

99.99) 

Spain 81.84 (75.67, 87.01) 98.79 (98.55, 99.02) 84.73 (83.09, 88.44) 

99.04 (98.85, 

99.21) 

84.74 (83.09, 

88.46) 

99.05 (98.86, 

99.22) 

Sweden   99.3 (97.22, 99.94) 

99.16 (98.13, 

99.76) 99.3 (97.21, 99.94) 

99.14 (98.04, 

99.75) 

Geneva, 

Switzerland   91.44 (86.93, 94.87) 99.89 (98.73, 100) 

91.45 (86.77, 

94.84) 99.89 (98.75, 100) 

Zurich, 

Switzerland   91.76 (83.18, 96.89) 

99.87 (99.74, 

99.95) 

91.78 (83.49, 

96.92) 

99.87 (99.74, 

99.95) 

New York 

State, USA 89.39 (85.57, 92.55) 98.73 (98.15, 99.27) 89.69 (85.89, 92.72) 98.69 (98, 99.2) 

89.68 (85.89, 

92.82) 

98.69 (98.03, 

99.19) 
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Spain 

 

Italy 

 

Denmark (average seroprevalence across all ages assumed to be the same due to lack of overlap of 

mortality and seroprevalence data age groups) 
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New York State 

 

England 

 

Brazil 

 

Supplementary Figure 11 - Regional model fits to data for six studies where serosurvey data and mortality could 

be broken down by region: For each country: (A) relationship between seroprevalence and COVID-19 mortality per 

100,000 population in the data (observed seroprevalence not adjusted for test sensitivity and specificity) and model-

estimated true seroprevalence (adjusted for test sensitivity and specificity) and mortality with 95% credible intervals. 

(B) as A but showing model-estimated observed seroprevalence (as would be observed given the model-estimated 

sensitivity and specificity). (C) Specificity posterior distribution (solid line) versus the value reported in the study 

(dashed line) (D) Observed versus model-estimated age-specific seroprevalence (as would be observed given the 

model-estimated sensitivity and specificity). 
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7. Pooled IFR Calculation 

We pooled the posterior age-specific IFR estimates across studies using weighted log-linear regression, 

where weights were calculated as the posterior precision of age- and study-specific IFR estimates. After 

fitting the weighted log-linear regression model, we found that there was heteroskedasticity in the model 

residuals (Supplementary Figure 12). To account for this, we modelled variance as a quadratic equation 

with respect to the mean age within each age-group for each study categorized into one of the 10-year 

age bands (Table 3). Our final model therefore consists of a fitted linear model for the mean of the log(IFR) 

by age, with the variance in log(IFR) changing with age. Under the assumption of normally distributed 

residuals in log space, this corresponds to a log-normal model in linear space, in which the mean is a 

function of both the mean and the variance in log(IFR). This log-normal model was used to produce the 

final predictive intervals in 5-year age bands.    

 

We then standardized these age-specific estimates to the population demographies of four countries: 

Madagascar, Nicaragua, Grenada and Malta, which have previously been identified as representative 

countries for each of the World Bank Income Strata: LIC, LMIC, UMIC, and HIC (see Data Extraction and 

Collation section above) 4. The overall IFR prediction interval was estimated using a Monte Carlo sampling 

approach: repeatedly drawing from the appropriate log-normal distribution (as described above) and 

combining values as weighted sums, where weights were calculated from the age-specific demographics. 

 

 

 
Supplementary Figure 12 - Weight Log-Linear Model Residuals: The model residuals from the weighted log-linear 

pooled fits are shown when seroreversion was not considered (A) and was considered (B). The residuals show 

heteroscedasticity, particularly among the middle age-groups.  

 

 

 

https://paperpile.com/c/VilxKA/Yv6R
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Supplementary Table 8 - Variance within the 10-year Age-Groups for the Pooled IFR estimates Log-Linear Model 

Residuals: The corresponding variance for the 10-year age-groups calculated from the modelled residuals and used 

in the pooled IFR calculations. 

Age Variance from Modelled Estimates without 
Seroreversion 

Variance from Modelled Estimates with 
Seroreversion 

5 0.9935 0.9916 

15 2.8285 2.8956 

25 0.7423 0.7289 

35 1.0318 1.0319 

45 3.4969 3.468 

55 0.6755 0.6583 

65 0.6404 0.6227 

75 0.4056 0.3794 

85 0.0967 0.0765 

95 0.1335 0.1222 
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