

Basic details

UID	<input type="text"/>	Cohorts covered	Earliest cohort 2025-26	Latest cohort
Long title	<input type="text" value="Lasers"/>			
New code	<input type="text" value="PHYS70025"/>	New short title	<input type="text"/>	
Brief description of module (approx. 600 chars.)	<p>Lasers underpin much of commercial and research optics and photonics. This module provides a basic introduction to the physics of lasers including 3 and 4-level lasers, the conditions required for gain and laser operation, control of the spectral properties of laser emission, Q-switching, modelocking and the different types of laser gain media, spatial laser modes, Gaussian beam propagation and includes an introduction to the topic of nonlinear optics.</p>			
	456 characters			

Available as a standalone module/ short course?

Statutory details

ECTS	CATS	Non-credit	HECOS codes
Credit value	<input type="text" value="5"/>	<input type="text" value="10"/>	<input type="text" value="N"/>
FHEQ level	<input type="text" value="Level 7"/>		

Allocation of study hours

	Hours	
Lectures	<input type="text" value="19"/>	
Group teaching	<input type="text"/>	<i>Incl. seminars, tutorials, problem classes.</i>
Lab/ practical	<input type="text"/>	
Other scheduled	<input type="text" value="10"/>	<i>Incl. project supervision, fieldwork, external visits.</i>
Independent study	<input type="text" value="96"/>	<i>Incl. wider reading/ practice, follow-up work, completion of assessments, revisions.</i>
Placement	<input type="text"/>	<i>Incl. work-based learning and study that occurs overseas.</i>
Total hours	<input type="text" value="125"/>	
ECTS ratio	<input type="text" value="25.00"/>	

Project/placement activity

Is placement activity allowed?

Module delivery

Delivery mode	<input type="text" value="Taught/ Campus"/>	Other	<input type="text"/>
Delivery term	<input type="text" value="Term 1"/>	Other	<input type="text"/>

Ownership

Primary department	<input type="text" value="Physics"/>
Additional teaching departments	<input type="text"/>
Delivery campus	<input type="text" value="South Kensington"/>

Collaborative delivery

Collaborative delivery?

External institution	N/A
External department	N/A
External campus	N/A

Associated staff

Role	CID	Given name	Surname
Module Leader		Mike	Damzen

Learning and teaching

Module description

Learning outcomes	<p>On completion of this module students will be able to:</p> <ul style="list-style-type: none"> - calculate the conditions for laser action using laser and material rate equations - describe the implementation of the techniques of q-switched and modelocked laser operation to create laser pulses - calculate the charactersitic parameters of a Gaussian beam and its propagation - design laser resonators to achieve a given spatial mode size, and describe the form of higher order spatial modes - solve key equations of nonlinear optics including second harmonic generation, phase matching and intensity-dependent refractive index
Module content	<p>Overview of the key light-matter interactions involved in laser action</p> <p>Two, three and four level laser systems and the development of corresponding rate equations</p> <p>The operation of laser cavities and laser output power</p> <p>Methods used to control and adjust the spectral characteristics of the laser output</p> <p>Methods for q-switched and modelocked laser operation</p>
Learning and Teaching Approach	<p>Students will be taught through lectures and supported by problem sheets and office hours.</p>
Assessment Strategy	<p>A 2 hour written examination provides 100% summative assessment. Examination questions are designed to assess across all of the learning outcomes.</p> <p>Formative assessment is provided through the problem sheets and classworks.</p>
Feedback	<p>Problem sheets and model solutions are provided. An office hour is provided each week during the module to allow for feedback and direct interaction between students and lecturers.</p>
Reading list	<p>Optics by E. Hecht</p> <p>Laser Physics by P. W. Milonni and J. H. Eberly</p> <p>The Principles of Lasers by O. Svelto</p> <p>Solid-state Laser Engineering by W. Koechner</p> <p>Lasers by A. Siegman</p>

Quality assurance

Office use only

Date of first approval		QA Lead	
Date of last revision	July 2025	Department staff	
Date of this approval		Date of collection	
Module leader	Mike Damzen	Date exported	
Notes/ comments		Date imported	

