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Abstract. We study the asymptotic behaviour of a class of small-noise diffusions driven by fractional Brownian

motion, with random starting points. Different scalings allow for different asymptotic properties of the process

(small-time and tail behaviours in particular). In order to do so, we extend some results on sample path large

deviations for such diffusions. As an application, we show how these results characterise the small-time and tail

estimates of the implied volatility for rough volatility models, recently proposed in mathematical finance.

1. Introduction

Large deviations are used extensively in Physics (thermodynamics, statistical mechanics) as well as in Math-

ematics (information theory, stochastic analysis, mathematical finance) to estimate the exponential decay of

probability measures of rare events. Varadhan [62], Schilder [59], Freidlin and Wentzell [33] proved, in different

degrees of generality, large deviations principles (in Rn and on path space) for solutions of stochastic differential

equations with small noise, and the monographs by Dembo and Zeitouni [22] and Deuschel-Stroock [25] provide

a precise account of those advances (at least up to the mid-1990s). In the past decade, this set of techniques

and results has been adopted by the mathematical finance community: finite-dimensional large deviations (in

the sense of Gärtner-Ellis) have been used to prove small-and large-time asymptotics of implied volatility in

affine models [29, 42], sample-path LDP (à la Freidlin-Wentzell [33]) have proved efficient to determine im-

portance sampling changes of probability [39, 40, 58], and heat kernel expansions (following Ben Arous [10]

and Bismut [13]), have led to a general understanding of small-time and tail behaviour of multi-dimensional

diffusions [6, 7, 23, 24]. These asymptotics have overall provided a deeper understanding of the behaviour of

models, and, ultimately, allow for better calibration of real data; a general overview can be found in [56].

Motivated by financial applications, we derive here asymptotic small-time and tail behaviours of the solution

to a generalised version of the Stein-Stein stochastic volatility model, originally proposed in [60, 61]. We in

particular consider two important (in light of the recent trends in the literature proposed models) extensions:

(i) the SDE driving the instantaneous volatility process is started from a random distribution; this so-called

‘randomised’ type of models was recently proposed in [47, 48, 52], in particular to understand the behaviour of

the so-called ‘forward volatility’; (ii) the volatility process is driven by a fractional Brownian motion. Fractional

stochastic volatility models, originally proposed by Comte and Renault [18, 19] with H ∈ (1/2, 1), have recently

been extended to the case H ∈ (0, 1/2), and a recent flourishing activity in this area [2, 8, 34, 38, 43] has

established these models as the go-to standards for estimation and calibration.
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The original motivation behind randomisation of the initial starting point is rooted in financial practice, where

only the initial value of the stock price process is observed directly and the instantaneous value of volatility is

subject to calibration. The effect of randomisation of the initial volatility on the implied volatility surface was

explored by Jacquier and Roome [46] in a simple ‘random environment’ setting, where the volatility component

was assumed to follow CEV dynamics. Their results give an impetus both on the theoretical and the practical

level: they solve a practical modelling problem in a simple tractable setting and at the same time raise awareness

for the potential prowess of applying random evolution equations for financial modelling. In this paper we follow

up on this direction and blend more involved approaches (proposed by [51, 53]) from the literature around

random environment and random evolution equations into our financial model, where randomness also appears

in the drift and diffusion coefficients of the process. On the practical level, independently from the results of [46],

Mechkov [52] goes a step further in endorsing the idea of randomising the initial volatility and makes a strong case

to move away from modelling hidden variables (such as stochastic volatility) in the traditional way. He argues

that starting the volatility from a fixed starting point heavily underestimates the effect of the hidden variable

on the slope of the implied volatility smile, and therefore ‘hot start’ volatility models (with random starting

point) significantly outperform traditional ones altogether. Indeed, both randomised models [46, 52] produce

the desired explosion in the smile at short maturities. Jacquier and Shi [48] develop this further by providing

a precise link between the rate of explosion of implied volatilities on the short end and the tail distribution of

the initial distribution of the volatility process in a ‘randomised’ Heston model. These outputs confirm that

stochastic volatility models with random starting point constitute a class of counterexamples to the long-standing

belief formulated by Gatheral [37, Chapter 5], that jumps in the stock price process are needed to produce steep

short-dated implied volatility skews. Another example of broadly different design was provided by Caravenna

and Corbetta [15]. In their ‘multiscaling’ model, the stock price process is continuous, while the volatility

process has (carefully designed) jumps, and steepness of the smile is achieved with a heavy-tail distribution of

the small-time distribution of the volatility. Rough fractional volatility models (with continuous volatility paths)

have recently been proposed, and are able to capture the volatility skew [2, 8, 9, 27, 30, 34, 38, 41, 44]. In this

paper we analyse the combined effect of a rough fractional Brownian driver (with Hurst parameter H ∈ (0, 1))

in the volatility and a random starting point. We quantify how the tail behaviour (parametrised by a scaling

coefficient b > 0) of the random starting point modulates the rate of explosion in the implied volatility in the

presence of rough fractional volatility. Finally, in a specific simplified setting we highlight how our model blends

naturally into the setting of forward-start options in stochastic volatility models, whose asymptotic properties

have been studied in [47]. In proving our results, we improve the large deviations literature on both SDEs with

random starting points and fractional SDEs.

In Section 2, we recall some concepts that will be used in the paper and sets the notations. We also

introduce the model (2.6), and the main assumptions on its dynamics and on the initial random starting point.

Section 3 collects the main large deviations estimates in different regimes: tail behaviour (Section 3.1), and small-

time behaviour (Section 3.2). In each case, we present two different scenarios consisting of an appropriately

rescaled fractional model (Theorems 3.1 and 3.7) and a simplified diffusive model (Theorems 3.6 and 3.13) with

more restrictive conditions on the random starting point (allowing for simpler large deviations rate functions).

Section 4 displays applications to implied volatility asymptotics (Corollaries 4.1 and 4.2), and presents an

application to forward-start options. Proofs can be found in Appendix.
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2. Set up and notations

As outlined in the introduction, we prove pathwise large deviations for a two-dimensional system generalising

the Stein-Stein model [60, 61], with random initial datum. In particular, via suitable rescaling, we determine

the small-time and the large-tail behaviours of the system. Before delving into the core of the paper, let us recall

some useful facts about large deviations and Gaussian processes, which shall also serve as setting the notations

for the rest of the paper. Unless otherwise stated, we always work on a finite time horizon, say [0, 1] without

loss of generality, which we denote by T , and we write T ∗ := T \ {0}. We let C := C(T ,R) be the space of

continuous functions from T to R and C2
b the space of twice differentiable functions on T with bounded partial

derivatives up to the second order. We write Xε ∼ LDP(hε, I) when the sequence (Xε)ε>0 satisfies a large

deviations principle (Definition 2.2) on C, as ε tends to zero with good rate function I and speed hε, where hε

denotes a function satisfying limε↓0 hε = 0. For a random variable X, we denote by supp(X) its support.

2.1. Large deviations and fractional Brownian motion. We shall use [22, Chapter 1.2] and [22, Chapter

1] as our guides through large deviations. Given a topological space X and the completed Borel σ-field BX

corresponding to X , for any A ∈ BX , we denote by Å and A respectively its interior and closure, and consider

a sequence (Xε)ε>0 on (X ,BX ).

Definition 2.1. A lower semi-continuous map I : X → [0,∞] is called a (good) rate function if its level sets

{x : I(x) ≤ z} are closed (compact) subsets of X for any z ≥ 0.

Definition 2.2. The sequence (Xε)ε>0 satisfies a large deviations principle (LDP) on (X ,BX ) as ε tends to

zero, with speed hε, and rate function I, if for any Borel subset A ⊂ C, the following inequalities hold:

(2.1) − inf
Ao

I(φ) ≤ lim inf
ε↓0

hε logP(Xε ∈ A) ≤ lim sup
ε↓0

hε logP(Xε ∈ A) ≤ − inf
A
I(φ).

A particularly convenient tool to prove large deviations is the so-called exponential equivalence, which we

recall from [22, Definition 4.2.10] as follows:

Definition 2.3. On a metric space (Y, d), two Y-valued sequences (Xε)ε>0 and (X̃ε)ε>0 are called exponentially

equivalent (with speed hε) if there exist probability spaces (Ω,Bε,Pε)ε>0 such that for any ε > 0, Pε is the joint
law and, for each δ > 0, the set

{
ω : (X̃ε, Xε) ∈ Γδ

}
is Bε-measurable, and

lim sup
ε↓0

hε logPε ({(ỹ, y) : d(ỹ, y) > δ}) = −∞.

Theorem 2.4. Let (Xε)ε>0 and (X̃ε)ε>0 be two exponentially equivalent sequences (with speed hε) on some

metric space. If (Xε) ∼ LDP(hε,Λ
X) for some good rate function ΛX , then (X̃ε) ∼ LDP(hε,Λ

X).

On a real, separable Banach space (E , ∥ · ∥), we denote by B the associated Borel sigma field. Letting E∗

denote the topological dual of E , we define a Gaussian measure as follows:

Definition 2.5. A Gaussian measure µ on (E , ∥ · ∥) is such that every ϑ∗ ∈ E∗, when viewed as a random

variable via the dual pairing ϑ 7→ ⟨ϑ∗, ϑ⟩E∗E , is a real Gaussian random variable on (E ,B, µ).

We associate a Gaussian process to a Gaussian measure in the usual way [16, Section 3.2]. Particular examples

of Gaussian processes, crucial for the rest of the paper, include standard Brownian motion on the time interval T ,

where E = C equipped with the supremum norm and with the topology of uniform convergence, and E∗ is the
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space of signed measures on T . In fact, this construction applies to all (centered) continuous Gaussian processes,

which are uniquely characterised by their covariance operator. A fractional Brownian motion WH with Hurst

parameter H ∈ (0, 1) is such a Gaussian process, starting from zero, with covariance⟨
WH
t ,W

H
s

⟩
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, for any s, t ∈ T .

Of primary importance in understanding small-noise behaviours of Gaussian systems is the concept of repro-

ducing kernel Hilbert spaces (RKHS), which we recall following [16, Definition 3.3]:

Definition 2.6. Let µ be a Gaussian measure on E and define the map R : E∗ → E by Rx∗ :=
∫
E⟨x

∗, x⟩xµ(dx).
The RKHS Hµ of µ is the completion of the image RE∗ for the norm ∥Rx∗∥Hµ := (⟨x∗,Rx∗⟩)1/2, for all x∗ ∈ E∗.

To characterise the RKHS of fractional Brownian motion, the usual tool is its Volterra representation [55]

(2.2) WH
t =

∫ t

0

KH(t, s)dBs,

which holds almost surely for all t ∈ T , where B is a standard Brownian motion generating the same filtration

as WH , and KH is the Volterra kernel defined, for any s, t ∈ T with 0 < s < t, by [55, Theorem 5.2]

(2.3) KH(t, s) =



κH
sH−

[
(t(t− s))

H− −H−

∫ t

s

(u− s)H−

u1−H−
du

]
, if H <

1

2
,

κHH−

sH−

∫ t

s

uH−du

|u− s|1−H−
, if H >

1

2
,

1, if H =
1

2
,

with H± := H ± 1
2 and κH :=

(
2HΓ(1−H−)

Γ(H+)Γ(2− 2H)

)1/2

. For t ∈ T ∗, the map KH(t, ·) is square integrable

around the origin, and the reproducing kernel Hilbert space of the fractional Brownian motion is given by

HKH :=

{∫ t

0

KH(t, s)f(s)ds, t ∈ T : f ∈ L2(T )

}
with inner product ⟨∫ ·

0

KH(·, s)f1(s)ds,
∫ ·

0

KH(·, s)f2(s)ds
⟩

HKH

:= ⟨f1, f2⟩L2(T ).

The notation HKH , emphasising the link with the underlying kernel, will be useful later (in Definition 2.7) for

more general kernels. In particular, the RKHS associated to (standard) Brownian motion (H = 1/2) is the

Cameron-Martin space, and corresponds to the space of absolutely continuous functions starting at zero, with

square integrable derivatives. In other words, for any H ∈ (0, 1) \ {1/2}, the identity HKH = KKHL2(T ) holds,

where KKH : L2(T ) ∋ f 7→
∫ t
0
KH(t, s)f(s)ds. This characterisation motivates the following definition:

Definition 2.7. For any function Φ : R2
+ → R, the corresponding RKHS is defined as

HΦ :=

{∫ t

0

Φ(t, s)f(s)ds, t ∈ T : f ∈ L2(T )

}
,(2.4)

with inner product ⟨∫ ·

0

Φ(·, s)f1(s)ds,
∫ ·

0

Φ(·, s)f2(s)ds
⟩

HΦ

:= ⟨f1, f2⟩L2(T ).
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Reproducing Kernel Hilbert Spaces, together with their inner products, turn out to provide the right

spaces to characterise large deviations rate functions. In particular, for a given Gaussian Volterra process

of the form
∫ ·
0
Φ(·, s)dBs, for some Volterra kernel Φ, it follows from [25, Theorem 3.4.5] that the sequence

(ε
∫ ·
0
Φ(·, s)dBs)ε>0 satisfies a large deviations principle with speed ε2 and rate function

(2.5) ΛΦ(φ) =


1

2
∥φ∥2L2(T ), if φ ∈ HΦ,

+∞, otherwise.

An obviously special role is played by the standard Brownian motion H = 1/2, and we shall adopt the simplified

notation H (the classical Cameron-Martin space) and Λ in place of HK1/2 and ΛK1/2 .

2.2. Setting and assumptions. The particular system we are interested in is

(2.6)

 dXt = −1

2
σ(Yt)

2dt+ σ(Yt)
(
ρdBt + ρ̄dB⊥

t

)
, X0 = 0,

dYt = (λ+ βYt)dt+ ξdWH
t , Y0 ∼ Θ,

where WH is a fractional Brownian motion, with Hurst parameter H ∈ (0, 1), (B,B⊥) is a two-dimensional

standard Brownian motion, independent of WH , β < 0, λ, ξ > 0, ρ ∈ (−1, 1), ρ̄ :=
√
1− ρ2, and Θ is a

square-integrable continuous random variable. In order to guarantee existence and uniqueness of a strong

solution, we further assume [54, Theorem 3.1.3] that σ2 is Lipschitz continuous, satisfies the growth condition

|σ2(y)| ≤ C(1 + |y|) for y ∈ R, and is differentiable with locally Hölder continuous derivative. In order to prove

our main results below, we make the following technical assumptions:

Assumption Ab: There exists a measurable function σ̃ : R → R, with locally Hölder continuous derivative,

such that σ̃2 is Lipschitz continuous, satisfying the growth condition |σ̃2(y)| ≤ C(1 + |y|) for y ∈ R, as well as
a constant b > 0 such that, for ε > 0 small enough, the scaling property εbσ(y/εb) = σ̃(y) holds for all y ∈ R.
Assumption A′

b: There exists a family of continuous functions (σn)n≥0 on R such that

(i) (σn)n≥0 converges uniformly to σ̃ on R;
(ii) for all δ > 0, lim

n↑∞
lim sup
ε↓0

hε logP (|σn(Y ε)− σ̃(Y ε) ≥ δ|) = −∞.

Assumption AΘ
b (tail behaviour of Θ): The limit lim sup

ε↓0
hε logP(εbΘ > 1) = −∞ holds.

In the Assumptions A′
b and AΘ

b above, the large deviations speed hε (see beginning of Section 2) takes the

value ε2b in Section 3.1 and ε4H+2b in Section 3.2 respectively. The constant b (which may vary in the results

below) plays an essential role in subsequent large deviations estimates, via exponential equivalence techniques

(Definition 2.3). Assumptions Ab and A′
b are naturally satisfied in the fractional Stein-Stein case (where

σ(y) ≡ y), but imposing them allow us to state our results for more general σ, in particular when using

extended Contraction Principles [50, Proposition 2.3].

3. Main results

Centrepiece of our analysis are large deviations estimates for suitably rescaled versions of the process (2.6).

The first rescaling (presented in Section 3.1) is tailored to the analysis of the tail behaviour of (2.6), while the

second rescaling (Section 3.2) is bespoke to its short-time asymptotic properties. In addition to these asymptotic

results in the general fractional case (Theorems 3.1 and 3.7), we present two special simplified diffusive cases,

where particularly tractable rate functions can be obtained (Theorems 3.6 and 3.13 respectively). For this

we impose stronger conditions (Assumption 3.4) on the random starting point. This allows us to establish,
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following [53] in Section 3.1.2, an exponential equivalence between (2.6) and an analogous process with fixed

starting point. In Section 3.2.2 we construct a third rescaling (3.10) inspired by Mellouk [51] in the short-time

diffusive case under the assumption that the support of the random starting point is bounded.

3.1. Tail behaviour.

3.1.1. The general case. For b, ε > 0, introduce the rescaling (Xε, Y ε) := (ε2bX, εbY ), so that (2.6) becomes dXε
t = −ε

2b

2
σ

(
Y εt
εb

)2

dt+ ε2bσ

(
Y εt
εb

)
(ρdBt + ρ̄dB⊥

t ), Xε
0 = 0,

dY εt =
(
εbλ+ βY εt

)
dt+ εbξdWH

t , Y ε0 ∼ εbΘ,

which, under Assumption Ab, simplifies to

(3.1)

 dXε
t = −1

2
σ̃(Y εt )

2dt+ εbσ̃(Y εt )(ρdBt + ρ̄dB⊥
t ), Xε

0 = 0,

dY εt =
(
εbλ+ βY εt

)
dt+ εbξdWH

t , Y ε0 ∼ εbΘ.

The particular rescaling considered here is perfectly suited for tail behaviour, as large deviations provide esti-

mates for P(Xε ≥ 1), which is precisely equal to P(X ≥ ε−2b). Our main result is as follows, and its proof is

postponed to Appendix A.1.3:

Theorem 3.1. For any H ∈ (0, 1), the following hold:

(i) for any b > 0 such that AΘ
b holds, Y ε ∼ LDP(ε2b,ΛFH ), with ΛFH in (2.5) and FH in Lemma 3.2;

(ii) for any b ≥ 1
2 such that Assumptions Ab, A′

b, AΘ
b hold, Xε ∼ LDP(ε2b, Λ̃), with Λ̃ in (A.3).

The proof of the theorem, developed later, requires a precise analysis of the Reproducing Kernel Hilbert

Spaces of the processes under consideration, and we first state the following two key ingredients (proved in

Appendices A.1.1 and A.1.2), which are also of independent interest:

Lemma 3.2. For any H ∈ (0, 1) and β > 0, there exists a standard Brownian motion Z, such that

(3.2)

∫ t

0

eβ(t−s)dWH
s =

∫ t

0

FH(t, s)dZs,

holds almost surely for t ∈ T , where FH : T × T → R is defined for 0 < s < t, with κH in (2.3), as

FH(t, s) :=



κH
sH−

[
[t(t− s)]H− +

∫ t

s

{
1− 2H

2u
+ β

}
[u(u− s)]H−eβ(t−u)du

]
, if H <

1

2
,

κHH−

sH−

∫ t

s

uH−eβ(t−u)du

(u− s)1−H−
, if H >

1

2
,

eβ(t−s), if H =
1

2
.

The case β = 0 is excluded since, in that case, the lemma boils down to the classical Volterra representation

of the fractional Brownian motion (2.2) and the function FH is nothing else that KH given in (2.3). For

H ∈ ( 12 , 1), the expression for FH is in agreement with [65, Definition 2.1], but, for H ∈ (0, 12 ), it corrects the

slightly erroneous expression therein. This function FH allows us to fully characterise the following RKHS:

Proposition 3.3. For any H ∈ (0, 1), β > 0, the space HFH is the RKHS of the Gaussian process
∫ ·
0
eβ(·−s)dWH

s .
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3.1.2. The Millet-Nualart-Sanz approach. In [53], Millet, Nualart and Sanz consider a perturbed stochastic

differential equation of the form

(3.3) dXεt = b(ε,Xεt )dt+ εa(Xεt )dWt.

Here, for any ε > 0, the functions b(ε, ·) : Rn → Rn and a : Rn → M(n,d)(R) are bounded Borel measurable

and uniformly Lipschitz, b(ε, ·) converges uniformly to a function b(·) as ε tends to zero, W is a d-dimensional

Brownian motion, and Xε0 is an Rn-valued square-integrable random variable. Existence and uniqueness of a

strong solution can be found in [32, Chapter 5, Theorem 2.1]. Following classical large deviations steps, consider,

for any φ ∈ H, the controlled ordinary differential equation on T :

(3.4) ψ̇t = a(gt)φ̇t + b(ψt),

the solution flow of which, starting from x0 ∈ Rn is denoted by Sx0(φ). Millet, Nualart and Sanz [53] proved a

large deviations principle [53, Theorem 4.1] for the sequence (Xε)ε>0 under the following assumption:

Assumption 3.4. Both a(·) and b(·) belong to C2
b , and there exists x0 ∈ Rn such that, for any δ > 0,

(3.5) lim sup
ε↓0

ε2 logP (|Xε0 − x0| > δ) = −∞.

Theorem 3.5. Under Assumption 3.4, (Xε)ε>0 ∼ LDP(ε2, I) with I(ψ) = inf{Λ(φ) : φ ∈ H, ψ = Sx0(φ)}.

Condition (3.5) is an exponential equivalence property between the initial random variable Xε0 and the

constant x0, and ensures that large deviations are preserved under exponentially small perturbations of the

starting point. Therefore, in the standard diffusion case H = 1
2 , it is possible to obtain a similar result to

Theorem 3.1 with a simplified rate function (albeit with slightly more restrictions on the starting point), by an

extension of the approach considered by Millet-Nualart-Sanz in [53]. For this, we extend (the bivariate version

of) (3.3) to the correlated case resulting in the system (3.6) below, where the Brownian motion W := (W1,W2)
′

now has correlated components:

(3.6) dXεt = b(ε,Xεt )dt+ εa(Xεt )dWt,

with W1,t = ρW2,t + ρ̄W⊥
2,t, ρ̄ :=

√
1− ρ2 and Xε0 is an R2-valued random variable. This corresponds to (3.1),

albeit with stronger assumptions on the coefficients, with Xε = (Xε, Y ε), H = 1/2, ε→ εb, Xε0 = (0, εΘ),

b(ε,Xεt ) =

(
−1

2 σ̃(Y
ε
t )

2

ελ+ βY εt

)
and a(Xεt ) =

(
ρ̄σ̃(Y εt ) ρσ̃(Y εt )

0 ξ

)
.

Theorem 3.6. Under Assumption 3.4, the solution Xε to (3.6) satisfies (Xε)ε>0 ∼ LDP(ε2, I) with I(χ) =

inf {Λ(φ) : φ ∈ H, χ = Sx0(Ψ
ρ(φ))} and Ψρ : R2 ∋ z 7→

(
ρ̄ ρ

0 1

)
z,.

Proof. The proof of Theorem 3.5 relies first on proving a large deviations principle for the flow Sx0 using

Schilder’s theorem [22, Theorem 5.2.3], then on extending this LDP to the original system. One can easily

extend it to include a correlation parameter ρ ∈ (−1, 1), the main difference being the rate function. Indeed,

sinceW⊥
2 andW2 are independent, Schilder’s theorem yields that ε(W⊥

2 ,W2)
′ ∼ LDP(ε2,Λ). Since the map Ψρ

is continuous on (C, ∥ · ∥∞) and εW′ = Ψρ(ε(W⊥
2 ,W2)

′), the theorem follows from the Contraction Principle

giving an LDP for εW′ as ε tends to zero with speed ε2 and good rate function

(3.7) Λρ(ψ) := inf {Λ(φ) : φ ∈ H, ψ = Ψρ(φ)} .
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�

3.2. Small-time behaviour. We now tackle the small-time behaviour of the process (2.6). Under the general

set of assumptions Ab, A′
b, AΘ

b , we need to introduce a particular rescaling, both in time and in space in order

to observe some weak convergence. This is different from the classical Itô diffusion case (with fixed starting

point), where solutions of such SDEs generally converges in small time. In the Itô case, though, assuming that

the distribution of the random starting point has compact support, we show in Section 3.2.2 that space rescaling

is not required any longer.

3.2.1. The general case. With the rescaling (Xε
t , Y

ε
t ) := (ε2H+2b−1Xε2t, ε

bYε2t), with b > 0, (2.6) becomes dXε
t = −ε

2H+1+2b

2
σ

(
Y εt
εb

)2

dt+ ε2H+2bσ

(
Y εt
εb

)(
ρdBt + ρ̄dB⊥

t

)
, Xε

0 = 0,

dY εt =
(
εb+2λ+ βε2Y εt

)
dt+ ε2H+bξdWH

t , Y ε0 ∼ εbΘ,

which, under Assumption Ab, simplifies to

(3.8)

 dXε
t = −ε

2H+1

2
σ̃(Y εt )

2dt+ ε2H+bσ̃(Y εt )
(
ρdBt + ρ̄dB⊥

t

)
, Xε

0 = 0,

dY εt =
(
εb+2λ+ βε2Y εt

)
dt+ ε2H+bξdWH

t , Y ε0 ∼ εbΘ.

Our main result is as follows:

Theorem 3.7. For any H ∈ (0, 1),

(i) for any b > 0 such that AΘ
b holds Y ε ∼ LDP(ε4H+2b,ΛGH

0
), with ΛGH

0
as in (2.5);

(ii) if b ≥ 1
2 − 2H such that Ab, A′

b, AΘ
b hold, Xε ∼ LDP(ε4H+2b, I), with I defined in (A.4).

The proof of (i) is similar to that of Theorem 3.1(i) and relies on proving LDP for an auxiliary process, defined

in (A.1), exponentially equivalent to the original (rescaled) process Y ε. The proof of (ii) is more involved and

postponed to Appendix A.2. In order to state the following key result, define, for any ε > 0, GHε as the

function FH in Lemma 3.2, replacing β by βε2, and for s, t ∈ T with 0 < s < t, its pointwise limit

GH0 (t, s) := lim
ε↓0

GHε (t, s) =



κHH−

sH−

∫ t

s

uH−

(u− s)1−H−
du, for H ∈

(
1

2
, 1

)
,

κH
sH−

(
(t(t− s))

H− −H−

∫ t

s

(u− s)
H−uH−−1du

)
, for H ∈

(
0,

1

2

)
,

1, for H =
1

2
.

The following proposition is similar to Proposition 3.3, as GH0 (t, ·) ∈ L2(T ) and for all 0 < s < t, GH0 (t, s) > 0,

and its proof is omitted.

Proposition 3.8. For any H ∈ (0, 1), the space HGH
0

is the RKHS of the Gaussian process
∫ ·
0
GH0 (·, s)dZs.

3.2.2. Small-time asymptotics for bounded support in the diffusion case. In the standard case H = 1
2 , the

rescaling in the previous subsection is not really ‘natural’, in the sense that small-time weak convergence usually

holds for Itô diffusions without space rescaling. In this case, using an approach introduced by Bezuidenhout [11]

and further developed by Mellouk [51], we can obtain simpler large deviations estimates if the support of the

initial datum Θ is bounded. A simplified version of Mellouk considers, for any ε > 0, the system, on T ,

(3.9) dXεt = b(Xεt ,Z)dt+ εa(Xεt ,Z)dWt, Xε0 = x0 ∈ Rn,
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where b : Rn × Rm → Rn and a : Rn × Rm → M(n,d) are bounded Borel measurable, uniformly Lipschitz

continuous, Z is a random variable with compact support on Rm and W a d-dimensional standard Brownian

motion, independent of Z. The main result of the paper is a large deviations principle on Cα(T ,Rn), the space

of α-Hölder continuous functions, for 0 ≤ α < 1
2 , for the sequence (Xε)ε>0, under the following assumptions:

Assumption 3.9.

(H1) b(·, ·) is jointly measurable on Rn × Rm and there exists C > 0 such that, for all x, x′ ∈ Rn, z, z′ ∈ Rm,

|b(x, z)| ≤ C(1 + |x|) and |b(x, z)− b(x′, z′)| ≤ C(|x− x|+ |z− z′|).

(H2) a(·, ·) is jointly measurable on Rn ×Rm and there exists C > 0 such that, for all x, x′ ∈ Rn, z, z′ ∈ Rm,

∥a(x, z)∥ ≤ C and ∥a(x, z)− a(x′, z′)∥ ≤ C(|x− x′|+ |z− z′|).

For f ∈ H, u ∈ supp(Z) and x0 ∈ Rn, let Sx0(f, u) denote the unique solution to the controlled ODE

gt = x0 +
∫ t
0
b(gs, us)ds +

∫ t
0
a(gs, us)ḟsds, for t ∈ T . In order to state the main result, let us introduce the

following definition:

Definition 3.10. Let α ∈ [0, 12 ) and Ba be the ball of radius a in the α-Hölder norm. The lower semi-continuous

regularisation Ĭ : Cα(T ,Rm) → Cα(T ,Rm) of a functional I : Cα(T ,Rm) → Cα(T ,Rm) is defined as

Ĭ(ψ) := lim
a↓0

inf {I(φ) : φ ∈ Ba(ψ)} .

Theorem 3.11 (Theorem 2.1 in [51]). Under Assumption 3.9, (Xε)ε>0 ∼ LDP(ε2, Ĭα), where (with Λ in (2.5))

Iα(ψ) := inf {Λ(φ) : φ ∈ H,Sx0(φ, u) = ψ, for some u ∈ supp(Z)} .

Coming back to our model, the rescaling (Xε
t , Y

ε
t ) := (Xε2t, Yε2t), equivalent to that of Section 3.2.1 with

b = 0 and H = 1
2 , the small-noise system (2.6), under Assumption Ab, becomes, similarly to Section 3.2.1,

(3.10)

 dXε
t = −ε

2

2
σ̃(Y εt )

2dt+ εσ̃(Y εt )
(
ρdBt + ρ̄dB⊥

t

)
, Xε

0 = 0,

dY εt =
(
ε2λ+ βε2Y εt

)
dt+ εξdBt, Y ε0 ∼ Θ,

with B a standard Brownian motion. Subtracting the initial random datum Xε0 = X0 = (0,Θ)′, this system can

be expressed in the form (3.9) with Xε = (Xε, Y ε),

(3.11) b(ε,Xε) = ε2

−1

2
σ̃(Y εt +Θ)2

λ+ β(Y εt +Θ)

 and a(Xε) =

(
ρσ̃(Y εt +Θ) ρ̄σ̃(Y εt +Θ)

ξ 0

)
,

and note that b(ε, ·) converges to the null map as ε tends to zero. The assumptions imposed in [51] on the

drift and diffusion coefficients are clearly satisfied here. While Mellouk allows the drift and diffusion to depend

explicitly on external random factors, we can write our setting (dependence on a random starting point) into

this framework. The large deviations estimate for the sequence (Xε)ε>0 = (Xε, Y ε)ε>0 thus obtained is stronger

than that in the previous section, as it holds on Cα(T ,Rn), for any 0 ≤ α < 1
2 . Note that the mild conditions

on the coefficients [51, (H0)-(H2)] are easily satisfied in our case, so the only additional assumption is the

boundedness of the support on Θ. We remark here that [51] is not directly applicable to the current setting

but has to be extended to include ε-dependence in the drift, and we do so following the Azencott [4]’s inspired

approach developed by Peithmann [57, Subsection 2.2.1]. In order to state LDP (proved in Section A.3), we

impose the following assumption:
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Assumption 3.12. For u ∈ supp(X0) and φ ∈ H, the ODE ψt =
∫ t
0
a(ψs, us)φ̇sds has a unique solution on T ,

denoted by S0(φ, u).

Theorem 3.13. Under Assumption 3.12, and if Θ has compact support, then (Xε)ε>0 ∼ LDP(ε2, Ĭα), with

Iα(ψ) := inf {Λρ(φ) : φ ∈ H, such that S0(φ, u) = ψ, for some u ∈ supp(X0)} ,

with Λρ defined in (3.7).

4. Applications to Implied volatility asymptotics

As announced in the introduction, we unify here two branches of research, both aimed at reproducing the

steepness of the implied volatility surface on the short end via models with continuous paths. While there are now

numerous outputs [2, 8, 9, 30, 34, 38, 44] in the literature confirming that a fractional driving noise (with Hurst

exponent H < 1/2) in the volatility leads to the observed steepness of the smile, recent results [46, 48] reproduce

this effect by randomising the initial volatility in classical diffusive models. In this section we demonstrate how

to modulate the two effects with respect to one another. In the Black-Scholes-Merton model, the price of a

European Call option is CBS(t, ek,Σ), with associated volatility Σ. Considering a market with observed Call

option prices Cobs(t, ek), with maturity t and strike ek, we denote by Σt(k) the implied volatility, defined as the

unique non-negative solution to CBS(t, ek,Σt(k)) = Cobs(t, ek).

4.1. General fractional case. From Theorems 3.1 and 3.7, we can deduce the asymptotic behaviour of the

implied volatility for large strikes and for small maturities. We state those below, and postpone the proofs to

Appendix A.4 and Appendix A.5.

Corollary 4.1. (Large-strike implied volatility asymptotics) For any H ∈ (0, 1) and any b ≥ 1/2 such that

Theorem 3.1 holds, we have the following large-strike asymptotic estimates of the implied volatility:

lim
k↑∞

Σ2
t (k)t

k
=

1

2

(
inf
y≥1

Λ̃(y)

)−1

with Λ̃ as in (A.3), and for any t ∈ T .

Similarly, from Theorem 3.7 we can deduce the asymptotic behaviour of the implied volatility when time

becomes small. The following Corollary generalises [30, Corollary 4.10].

Corollary 4.2 (Small-time Implied volatility asymptotics). For any H ∈ (0, 1) and any b ≥ 1/2 − 2H such

that Theorem 3.7 holds, the following small-time estimate is true for any k ̸= 0:

(4.1) lim
t↓0

tbΣ2
t

(
t1/2−H−bk

)
=
k2

2

(
inf
y≥k

I(y)

)−1

, with I as in (A.4).

This implies that the implied volatility explodes with rate t−b. For b = 0, it is identical to [30, Formula (26)].

4.2. Refined asymptotic results in the special diffusive case from Sections 3.1.2 and 3.2.2.

4.2.1. Large-strike asymptotics. Going back to Millet-Nualart-Sanz’s setting, under Assumption 3.4, we have

Proposition 4.3. Assume that there exist b0(ε, ·) : Rn → Rn and a0 : R2 → M(n,d)(R), such that for ε > 0

small enough, εb(ε, x/ε) = b0(ε, x) and a(x/ε) = a0(x) hold for all x ∈ Rn. Assume further that b0(ε, ·) converges
uniformly to b0(·) as ε tends to zero. If there exists x0 ∈ Rn such that for any δ > 0, lim supε↓0 ε

2 logP(|ζ−x0| >
δ) = −∞, then, for any t ∈ T , with Xζ denoting the process started at ζ,

lim
ε↓0

ε2 logP(εXζt ≥ 1) = lim
ε↓0

ε2 logP(εXx0
t ≥ 1).
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The proof is postponed to Appendix A.6. The assumption of the random initial condition Xζ0 = ζ being F0-

measurable distribution can be relaxed. Indeed, the filtration F is the filtration generated by the d-dimensional

Brownian motion W. Instead, one could work on a filtration F ′ := (F ′
t)t∈T ∗ generated by F ′

t := σ({Wu, u ≤ t}∪
{ζ}), for all t ∈ T ∗. Then the random initial point Xζ

0 has a F ′
0-measurable distribution and the results above

still hold, in particular Theorem 3.5 and Proposition 4.3, on the new filtered probability space (Ω,F ′, (F ′)t∈T ,P).
In the context of implied volatility asymptotics, this result has the following meaning:

Corollary 4.4. The wings of the smile are independent of the starting point (ζ or x0).

Proof. Gao and Lee [35] show that asymptotic behaviour of the implied volatility can be directly inferred from

comparing tail probabilities to those of the Black-Scholes model. It is straightforward to see that the scaling of

Proposition 4.3 is the same in Black-Scholes, and the corollary follows immediately. �

4.2.2. Small-time asymptotics for the ‘forward’ Stein-Stein model. We are interested in a ‘forward’ process, as

defined by Jacquier and Roome [46] in the context of forward-start European options:

E
(
St+τ
St

− ek
)+

= E
(
eXt+τ−Xt − ek

)+
=: E

(
eX

(t)
τ − ek

)+
,

with (X
(t)
τ )τ≥0 the so-called ‘forward’ process, defined path-wise by X

(t)
τ := Xt+τ −Xt, for some fixed t > 0,

and for all τ ≥ 0. The ’forward’ process (X
(t)
τ )τ≥0 then satisfies the following stochastic differential equation:

(4.2)

 dX(t)
τ = −1

2
(Y (t)
τ )2dτ + Y (t)

τ dW1,τ , X
(t)
0 = 0,

dY (t)
τ = (λ+ βY (t)

τ )dτ + ξdW2,τ , Y
(t)
0 ∼ σt.

The stochastic differential equation for (X
(t)
τ , Y

(t)
τ )τ≥0 is the same as that for (Xt, Yt)t≥0, albeit with an initial

random distribution (δ0, σt), where σt is Gaussian with mean eβt(σ0 +
λ
β ) −

λ
β and variance ξ2

2β (e
2βt − 1). We

now apply the results of Section 3.2.2 to obtain small-time asymptotics for a version of the Stein-Stein ‘forward’

model with a generalised random starting point.

Proposition 4.5. With the scalings (Xε
τ , Y

ε
τ ) := (X

(t)
ε2τ , Y

(t)
ε2τ ) for ε, t > 0, the randomised Stein-Stein rescaled

model (4.2) is the same as (3.10) with coefficients given in (3.11), with σ̃(y) ≡ y, and Theorem 3.13 applies.

And we can translate this result into implied volatility asymptotics directly using [28, Theorem 2.4]:

Corollary 4.6. The small-time forward smile reads lim
τ↓0

Σ2
τ (k) =

k2

2

(
inf
y≥k

Ĭα(y)

)−1

, with Ĭα in Theorem 3.13.
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Appendix A. Proofs

A.1. Proof of Theorem 3.1.

A.1.1. Proof of Lemma 3.2. From [65, Definition 2.1], for any smooth function f on T with bounded derivatives

such that ∥f∥ :=
∫
T (Γ∗

H,tf(t))
2
dt <∞, define, for t ∈ T ,

∫ t
0
f(u)dWH

u :=
∫ t
0
Γ∗
H,tf(u)dZu, with

Γ∗
H,tf(s) := − κH

sH−

d

ds

∫ t

s

uH−(u− s)
H−f(u)du, for all s ∈ (0, t].

Applying this to f(s) := eβ(t−s), one obtains the following:

(1) for H < 1
2 , using integration by part and Leibniz’s integration rule,

d

ds

∫ t

s

uH−(u− s)
H−f(u)du

=
d

ds

{
(t− s)H+tH−

H+

}
+

d

ds

{
−H−

H+

∫ t

s

(u− s)H+

u1−H−
eβ(t−u)du+

β

H+

∫ t

s

(u− s)
H+uH−eβ(t−u)du

}
= −(t− s)

H−tH− +H−

∫ t

s

(u− s)H−

u1−H−
eβ(t−u)du− β

∫ t

s

(u− s)
H−uH−eβ(t−u)du.

Hence,

Γ∗
H,tf(s) := − κH

sH−

d

ds

∫ t

s

uH−(u− s)
H−f(u)du

=
κH
sH−

(
(t− s)H−tH− + β

∫ t

s

(u− s)
H−uH−eβ(t−u)du−H−

∫ t

s

(u− s)H−

u1−H−
eβ(t−u)du

)
.

(2) for H > 1
2 , using Leibniz’s integration rule,

d

ds

∫ t

s

uH−(u− s)
H−f(u)du =

∫ t

s

d

ds
uH−(u− s)

H−eβ(t−u)du = −H−

∫ t

s

uH− (u− s)H−−1eβ(t−u)du,

and hence

Γ∗
H,tf(s) := − κH

sH−

d

ds

∫ t

s

uH−(u− s)
H−f(u)du =

κHH−

sH−

∫ t

s

uH− (u− s)H−−1eβ(t−u)du

A.1.2. Proof of Proposition 3.3. The operator KFH acting on L2(T ) defined by (KFHf)(t) :=
∫ t
0
FH(t, s)f(s)ds

satisfies KFHL2(T ) =: HFH and is surjective. It is also injective on HFH : let f ∈ L2(T ) a non-zero function

such that (KFHf) = 0 on T ∗. Similar to [30], there is an interval [t1, t2] ⊂ T where f has constant sign. Using

previous notations, FH is defined, for t ∈ T ∗ and s ∈ (0, t], as FH(t, s) := Γ∗
H,te

β(t−s). The function g(s) :=∫ s
t
uH−(u− s)

H−eβ(t−u)du is increasing, hence FH(t, ·) is a positive function on [0, t] and
∫ t2
t1
FH(t, s)f(s)ds > 0,

leading to a contradiction. Thus KFH is injective on HFH , hence bijective from L2(T ) to HFH . Since KFH is

a linear operator, one can then define ⟨KFHf1,KFHf2⟩HFH
:= ⟨f1, f2⟩L2(T ) as an inner product.

The second part of the proof consists in showing that HFH := KFHL2(T ) is dense in C. We claim that

FH(t, ·)−1 ∈ L2(T ). Indeed, as shown in the proof of [65, Theorem 3.1], the following hold for all 0 < s < t:

• if 0 < H < 1
2 , F

H(t, s) ≥ κHs
1
2−HτH−(t− s)

H− > 0, leading∫ t

0

ds

FH(t, s)2
≤ 1

κ2Ht
2H−

∫ t

0

(
s

t− s

)2H−

ds ≤ 1

κ2Ht
4H−

∫ t

0

s2H−ds =
t2−2H

2Hκ2H
<∞;
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• if 1
2 < H < 1, FH(t, s) ≥ κHe−β(s−t)(t− s)H− , so that∫ t

0

ds

FH(t, s)2
≤ 1

κ2He2βt

∫ t

0

e2βsds

(t− s)2H−
≤ 1

κ2He2βtt2H−

∫ t

0

e2βsds =
1− e−2βt

2βκ2Ht
2H−

<∞.

Given a > 0, take for s ∈ [0, t], fa(s) := sa

FH(t,s)
∈ L2(T ). Then,

∫ t
0
FH(t, s)fa(s)ds = ta+1

a+1 . Hence, HFH

contains all polynomials null at the origin, and by the Stone-Weierstrass Theorem, is dense in C.

A.1.3. Proof of Theorem 3.1(i). Let Y
ε
denote the solution to the second SDE (3.1), starting from zero. The

product rule for (fractional) Brownian motion [54, Theorem 3.1.4] yields, for any t ≥ 0,

(A.1) Y
ε

t = −λε
b

β

(
1− eβt

)
+ ξεb

∫ t

0

eβ(t−u)dWH
u ,

Since ξ
∫ ·
0
eβ(·−u)dWH

u is Gaussian, Lemma 3.2 combined with [25, Theorem 3.4.5] yields a large deviations

principle on C for the sequence
(
εb
∫ ·
0
eβ(·−s)dWH

s

)
ε>0

, with speed ε2b and good rate function ΛFH as in (2.5).

Since the two sequences (Y
ε
)ε>0 and (ξεb

∫ ·
0
eβ(·−s)dWH

s )
ε>0

only differ by some deterministic quantity, they

are clearly exponentially equivalent: for any δ > 0 and t ∈ T ∗,

lim sup
ε↓0

ε2b logP
(∣∣∣∣Y εt − ξεb

∫ t

0

eβ(t−s)dWH
s

∣∣∣∣ > δ

)
= lim sup

ε↓0
ε2b logP

(
λεb

β
(eβt − 1) > δ

)
= −∞,

so that Y
ε ∼ LDP(ε2b,ΛFH ). Finally, the LDP for Y ε follows again by exponentially equivalence: for t, ε, δ > 0,

P
(∣∣∣Y εt − Y

ε

t

∣∣∣ > δ
)
= P

(∣∣∣∣εbΘ+ β

∫ t

0

(Y εs − Y
ε

s)ds

∣∣∣∣ > δ

)
≤ P

(
Θ >

δ

εbeβt

)
,

by Grönwall’s inequality, and the theorem follows from Assumption AΘ
b .

A.1.4. Proof of Theorem 3.1(ii). We first prove large deviations for the Gaussian drivers of the process, which

we then, by means of iterated Contraction Principles, translate to large deviations for the whole scaled process.

(1) When H ̸= 1
2 , Lemma B.1 in [30] implies that (ρB,WH) is Gaussian, so that εb(ρB,WH) satisfies a

large deviations principle on C(T 2,R2), with speed ε2b and good rate function

(A.2) I1(φ,ψ) :=


1

2

∫
T
f(s)2ds, (φ,ψ) ∈ HH ,

+∞, (φ,ψ) /∈ HH ,

where HH is the RKHS for (ρB,WH) defined as

HH :=

{
(φ,ψ) ∈ C2 : φ(·) = ρ

∫ ·

0

f(s)ds and ψ(·) =
∫ ·

0

KH(·, s)f(s)ds, for some f ∈ L2(T )

}
.

By independence of B⊥ with respect to B and WH and using the Contraction Principle, εb(ρ̄B⊥ +

ρB,WH) satisfies a large deviations principle on C(T 2,R2), with speed ε2b and good rate function

I3(φ,ψ) := inf
φ=u+w

{I1(u, ψ) + I2(w)} = inf
u∈H

{I1(u, ψ) + I2(φ− u)} ,

where, with Hρ̄ as in (2.4),

I2(w) :=


ρ̄

2

∫ T

0

f(s)2ds, w ∈ Hρ̄,

+∞, w /∈ Hρ̄.

(2) For H = 1
2 , using the proof of Theorem 3.6, εb(ρ̄B⊥ + ρB,B)′ satisfies a large deviations principle on

C(T 2,R2), when ε tends to zero with speed ε2b and good rate function Λρ defined in (3.7).
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We now translate this large deviations into one for the sequence Xε. Since the proof for the H ̸= 1
2 case

is the same as the one for H = 1
2 , albeit with a different rate function, we concentrate on the former case.

Since Y εt = εbeβtΘ− λεb

β (1− eβt) + εbξ
∫ t
0
eβ(t−u)dWH

u , one can define a continuous map G on (C, ∥ · ∥∞), such

that (εb(ρB + ρ̄B⊥), Y ε) = (εb(ρB + ρ̄B⊥), G(εbWH)(ε, t)). The Contraction Principle thus yields (εb(ρB +

ρ̄B⊥), Y ε) ∼ LDP(ε2b, I4), with I4 : (φ,ψ) 7→ inf{I3(φ, v) | ψ ∈ C : ψ = G(v)}.
Under A′

b, one can apply the extended Contraction Principle proved in [50, Proposition 2.3], so that (εb(ρB+

ρ̄)B⊥, σ̃(Y ε)) ∼ LDP(ε2b, I5) with I5(φ,ψ) := inf {I4(φ, v) | ψ = σ̃(v)} = inf {I3(φ, v) | ψ = σ̃(G(v))}. Finally,
setting b ≥ 1

2 , the sequence of semi-martingales (εbW ) is uniformly exponentially tight (UET) in the sense

of [36, Definition 1.1], and the sequence (σ̃(Y ε)) is càdlàg (Assumption Ab), and adapted to the filtration F .

Denoting X · Y :=
∫
XdY the stochastic integral with respect to a semi-martingale, Theorem 1.2 in [36] yields

a large deviations principle on C(T 3,R3) for (εb(ρBs+ ρ̄B
⊥
s ), σ̃(Y

ε), εb
∫ ·
0
σ̃(Y εs )(ρdBs+ ρ̄dB

⊥
s )), with speed ε2b

and good rate function I6 defined as I6(ϕ) := I5(φ,ψ) if ϕ = φ · ψ and ψ ∈ BV (the space of functions of finite

variation), and infinity otherwise. The last step is another Contraction Principle, since, for t ∈ T ∗,

Xε
t = −1

2

∫ t

0

σ̃(Y εs )
2ds+

∫ t

0

εbσ̃(Y εs )dWs =: I
(
σ̃(Y ε), σ̃(Y ε) · εb

(
ρBs + ρ̄B⊥

s

) )
(ε, t).

Hence Xε ∼ LDP(ε2b, Λ̃) with

(A.3) Λ̃(ϕ) := inf{I6(χ) | ϕ = I(φ,φ · ψ), χ = (φ,ψ), ψ ∈ BV}.

Remark A.1. For computational purposes, such infinite-dimensional optimisation problems are discretised

over a set of basis functions, such as orthonormal polynomials. If we then consider φ continuously dif-

ferentiable and I1 finite, we can simplify I1(φ) = I1(φ,ψ) = 1
2ρ2

∫
T [φ̇(t)]

2dt. Further, if u ∈ C1, then

I3(φ) ≃ 1
2 infu∈H∩C1

{∫ t
0

(
u̇s

ρ

)2
ds+ 1

ρ̄

∫ t
0
(φ̇s − u̇s)

2ds

}
, and I4(φ) = I3(φ).

A.2. Proof of Theorem 3.7.

A.2.1. Proof of Theorem 3.7(i). Let us introduce the process Y
ε
defined, for t ∈ T ∗, as the unique solution of

dY
ε

t = (εb+2λ+ βε2Y
ε

t )dτ + ε2H+bξdWH
t , with Y

ε

0 = 0, i.e.

Y
ε

t = −λε
b

β

(
1− eβε

2t
)
+ ξε2H+b

∫ t

0

eβε
2(t−u)dWH

u .

From Lemma 3.2, Proposition 3.8 and Theorem 3.4.5 in [25], the sequence
(
ε2H+b

∫ ·
0
GH0 (·, s)dZs

)
ε>0

satisfies

a large deviations principle on C, with speed ε4H+2b and good rate function ΛGH
0

as in (2.5). Moreover,

(1) When H ̸= 1
2 , (ε

2H+b
∫ t
0
GHε (t, s)dZs)ε>0

and (ε2H+b
∫ t
0
GH0 (t, s)dZs)ε>0

are exponentially equivalent:

indeed the asymptotic expansion of the Gaussian density [3, Formula (26.2.12)] yields, for any δ > 0,

P
(∣∣∣∣ε2H+b

∫ t

0

GHε (t, s)dZs − ε2H+b

∫ t

0

GH0 (t, s)dZs

∣∣∣∣ > δ

)
= P

(∣∣∣∣∫ t

0

(GHε (t, s)−GH0 (t, s))dZs

∣∣∣∣ > δ

ε2H+b

)
= P

(
|N (0, 1)| > δ

Vεε2H+b

)
,

=

√
2

π

Vεε
2H+b

δ
exp

(
− δ2

2ε4H+2bV 2
ε

)(
1 +O(ε4H+2b)

)
,

with V 2
ε :=

∫ t
0

(
GHε (t, s)−GH0 (t, s)

)2
ds and note that limε↓0 V

2
ε = 0. Now, for ε > 0 and 0 < s < t,
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(i) if H < 1
2 ,[

GHε (t, s)−GH0 (t, s)
]2 ≤ 2κ2H

s2H−

{
H2

−

(∫ t

s

(u− s)H−

u1−H−
(eβε

2(t−u) − 1)du

)2

+ β2ε4
(∫ t

s

(u− s)H−uH−eβε
2(t−u)du

)2
}

≤ 2κ2H

[
H2

−
s2H−

(∫ t

s

(u− s)H−

u1−H−
du

)2

+
β2ε4

s2H−

(∫ t

s

(u(u− s))
H−du

)2
]
.

Using [65, Lemma A.3], we further obtain, for ε > 0 and 0 < s < t, V 2
ε ≤ 2κ2H

[
CHt

2H + β2ε4C̃Ht
2H+2

]
,

with CH , C̃H > 0 two constants depending on H. Hence,

0 < ε4H+2bV 2
ε ≤ 2κ2H

(
CHε

4H+2bt2H + β2ε4H+2b+4C̃Ht
2H+2

)
;

(ii) if H > 1
2 ,[

GHε (t, s)−GH0 (t, s)
]2

=
κ2H
s2H−

H2
−

(∫ t

s

uH−

(u− s)1−H−
(eβε

2(t−u) − 1)du

)2

≤ κ2H
s2H−

H2
−

(∫ t

s

uH−

(u− s)1−H−
du

)2

≤ κ2H
s2H−

H2
−t

2H−

(∫ t

s

(u− s)H−−1du

)2

,

=
κ2H
s2H−

t2H−(t− s)2H− .

Hence, for H ̸= 1
2 , as b > 0, limε↓0 ε

4H+2bV 2
ε = 0 as well as limε↓0 ε

2H+bVε = 0.

(2) When H = 1
2 , (ε

1+b
∫ t
0
eβε

2(t−s)dBs)ε>0
and (ε1+bBt)ε>0 are exponentially equivalent: the asymptotic

expansion of the Gaussian density near infinity [3, Formula (26.2.12)] yields, for any δ > 0,

P
(∣∣∣∣∫ t

0

eβε
2(t−s)dBs −

∫ t

0

dBs

∣∣∣∣ > δ

ε1+b

)
= P

(∣∣∣∣∫ t

0

(eβε
2(t−s) − 1)dBs

∣∣∣∣ > δ

ε1+b

)
= P

(
|N (0, 1)| > δ

Vεε1+b

)
=

√
2

π

Vεε
1+b

δ
exp

(
− δ2

2ε2+2bV 2
ε

)(
1 +O(ε2+2b)

)
,

with V 2
ε :=

∫ t
0

(
(eβε

2(t−s) − 1)
)2

ds = t+ 1
2βε2 (e

2βε2t − 1) + 2
βε2 (1− eβε

2t). Hence,

0 < ε2+2bV 2
ε ≤ ε2+2bt+

ε2b

2β
(eβε

2t − 1),

and, as b > 0, limε↓0 ε
2+2bV 2

ε = 0. Besides, note that limε↓0 V
2
ε = 0. The required exponential

equivalence then follows, and hence for all H ∈ (0, 1), (ε2H+b
∫ ·
0
GHε (·, s)dZs)ε>0

∼ LDP(ε4H+2b,ΛGH
0
).

The final step is exponential equivalence between Y
ε
and (ε2H+bξ

∫ ·
0
GHε (·, s)dZs)ε>0

. For any δ, t > 0,

P
(∣∣∣∣Y εt − ε2H+bξ

∫ t

0

GHε (t, s)dZs

∣∣∣∣ > δ

)
= P

(∣∣∣∣Y εt − ε2H+bξ

∫ t

0

eβε
2(t−s)dWH

s

∣∣∣∣ > δ

)
= P

(∣∣∣∣−λεbβ (1− eβε
2t)

∣∣∣∣ > δ

)
.

Hence lim supε↓0 ε
4H+2b logP(|Y εt−ε2H+bξ

∫ t
0
Gε(t, s)dZs| > δ) = −∞, yielding exponential equivalence

and Y
ε ∼ LDP(ε4H+2b,ΛGH

0
). Finally, since for any δ > 0,

P
(
|Y εt − Y

ε

t | > δ
)
= P

(∣∣∣∣εbΘ+ βε2
∫ t

0

(Y εs − Y
ε

s)ds

∣∣∣∣ > δ

)
≤ P

(
εbΘeβε

2t > δ
)
,
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by Grönwall’s inequality, Y
ε
and Y ε are exponentially equivalent, and Y ε ∼ LDP(ε4H+2b,ΛGH

0
) by

Assumption AΘ
b .

A.2.2. Proof of Theorem 3.7 (ii). The idea of the proof is the same as the proof of Theorem 3.1(ii).

(1) H ̸= 1
2 : we already established that ε2H+b(ρ̄B⊥ + ρB,WH) satisfies a large deviations principle on

C(T 2,R2), with speed ε4H+2b and good rate function I3 defined earlier.

(2) H = 1
2 : using the proof of Theorem 3.6, εb+1(ρ̄B⊥ + ρB,B)′ satisfies a large deviations principle on

C(T 2,R2), with speed ε2+2b and good rate function Λρ defined in (3.7).

Similar to above, we only prove the case H ̸= 1
2 , the other one being analogous. Using that for ε > 0

and t ∈ T ∗0, Y εt = εbeβε
2tΘ − λεb

β (1 − eβε
2t) + ε2H+bξ

∫ t
0
eβε

2(t−u)dWH
u , one can define a continuous map

G̃ on (C, ∥ · ∥∞), such that (ε2H+b(ρB + ρ̄B⊥), Y ε) = (ε2H+b(ρB + ρ̄B⊥), G̃(ε2H+bWH)(ε, t)). Hence, the

Contraction Principle yields an LDP on C(T 2,R2) for (ε2H+b(ρB + ρ̄B⊥), Y ε), with speed ε4H+2b and good

rate function Ĩ4 : (φ,ψ) 7→ inf{I3(φ, v) | ψ ∈ C : ψ = G̃(v)}. Under A′
b, the extended Contraction Principle [50,

Proposition 2.3] yields an LDP on C(T 2,R2) for (ε2H+b(ρB + ρ̄B⊥), σ̃(Y ε)), with speed ε4H+2b and good rate

function Ĩ5 : (φ,ψ) 7→ inf
{
Ĩ4(φ, v) | ψ = σ̃(v)

}
= inf

{
I3(φ, v) | ψ = σ̃(G̃(v))

}
. Finally, setting b ≥ 1

2 − 2H,

the sequence of semi-martingales (ε2H+bW ) is UET and the sequence (σ̃(Y ε)) is càdlàg (Assumption Ab), and

adapted to the filtration F . Theorem 1.2 in [36] thus gives an LDP on C for the sequence of stochastic integrals

ε2H+b
∫ ·
0
σ̃(Y εs )(ρdBs + ρ̄dB⊥

s ), with speed ε4H+2b and good rate function

(A.4) I(χ) := inf
{
Ĩ5(φ,ψ) : φ · ψ = χ, ψ ∈ BV

}
.

The last step consists in proving that Xε and ε2H+b
∫ ·
0
σ̃(Y εs )(ρdBs + ρ̄dB⊥

s ) are exponentially equivalent.

P
(∣∣∣∣Xε

t − ε2H+b

∫ t

0

σ̃(Y εs )dWs

∣∣∣∣ > δ

)
= P

(∣∣∣∣−1

2

∫ t

0

(εH+ 1
2 σ̃(Y εs ))

2
ds

∣∣∣∣ > δ

)
= P

(∫ t

0

(σ̃(Y εs ))
2ds >

2δ

ε2H+1

)
,

≤ P
(∫ t

0

|Y εs |ds >
2δ

Cε2H+1
− t

)
,

using the growth condition assumption |σ̃2(x)| ≤ C(1 + |x|) for x ∈ R. Since Y εs = εbeβε
2sΘ+ εb λβ (e

βε2s − 1) +

ε2H+bξ
[
WH
s + βε2

∫ s
0
WH
u e−βε

2udu
]
, we obtain for s ∈ T , recalling that β < 0,

|Y εs | ≤ εbeβε
2sΘ+ εb

λ

β

(
eβε

2s − 1
)
+ ξε2H+b|WH

s |,

so that
∫ t
0
|Y εs |ds ≤ εbtΘ− εb λβ t+ ξε2H+b

∫ t
0
|WH

s |ds. Introducing Jt :=
∫ t
0
|WH

s |ds, we obtain for any a > 0,

P
(∫ t

0

|Y εs |ds >
2δ

Cε2H+1
− t

)
≤ P

(
εbtΘ− εb

λ

β
t+ ξε2H+bJt >

2δ

Cε2H+1
− t

)
≤ P

(
εbtΘ− εb

λ

β
t+ ξε2H+bJt >

2δ

Cε2H+1
− t

∣∣∣∣ ξε2H+bJt < a

)
P
(
ξε2H+bJt < a

)
+ P

(
εbtΘ− εb

λ

β
t+ ξε2H+bJt >

2δ

Cε2H+1
− t

∣∣∣∣ ξε2H+bJt ≥ a

)
P
(
ξε2H+bJt ≥ a

)
≤ P

(
Θ >

1

εb

(
2δ

Ctε2H+1
− 1 + εb

λ

β
− a

t

)∣∣∣∣ ξε2H+bJt < a

)
+ P

(
ξε2H+bJt ≥ a

)
.
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Since x 7→ x2 is increasing on R+, one can use an extended version of Markov’s inequality for monotonically

increasing functions:

P
(∣∣ξε2H+bJt

∣∣ ≥ a
)
≤

E
[(
|ξε2H+bJt|

)2]
a2

=
ξ2ε4H+2b

a2
E

([∫ t

0

|WH
s |ds

]2)
.

Indeed, apply Markov’s inequality to
(
|ξε2H+bJt|

)2
and a2 gives P

(∣∣ξε2H+bJt
∣∣ ≥ a

)
≤ P

(∣∣ξε2H+bJt
∣∣2 ≥ a2

)
.

Since V(WH
s ) = s2H , Jensen’s inequality yields the upper bound

P
(
ξε2H+bJt ≥ a

)
≤ ξ2ε4H+2b

a2
t2H+1

2H + 1
.

Hence, there exists η ∈ [0, 1) and ε̄ > 0 such that for all ε ≤ ε̄, P(ξε2H+bJt < a) ≥ 1 − η. Moreover, the

assumption AΘ
b implies that there existM, ε̃ > 0 such that for all ε ≤ ε̃, P

(
Θ > 1

εb

[
2δ

Ctε2H+1 − 1 + εb λβ − a
t

])
≤

exp
(
−M/ε4H+2b

)
. Thus, for all ε ≤ min{ε̃, ε̄}, Bayes’ Theorem yields

P
(
Θ >

1

εb

(
2δ

Ctε2H+
− 1 + εb

λ

β
− a

t

)∣∣∣∣ ξε2H+bJt < a

)
≤

P
[
Θ > 1

εb

(
2δ

Ctε2H+
− 1 + εb λβ − a

t

)]
P(ξε2H+bIHt < a)

≤
exp

(
− M
ε4H+2b

)
1− η

.

Finally, for all ε ≤ min{ε̃, ε̄},

P
(∫ t

0

|Y εs |ds >
2δ

Cε2H+
− t

)
≤ P

(
Θ >

1

εb

(
2δ

Ctε2H+
− 1 + εb

λ

β
− a

t

)
|ξε2H+bIHt < a

)
+ P

(
ξε2H+bIHt ≥ a

)
,

≤ e−M/ε4H+2b

1− η
+
ξ2ε4H+2b

a2
t2H+

2H+
,

so that Xε and ε2H+b
∫ ·
0
σ̃(Y εs )(ρdBs + ρ̄dB⊥

s ) are exponentially equivalent.

A.3. Proof of Theorem 3.13. The proof is similar to that of [57, Theorem 2.9], with some minor modifications.

One key ingredient in the proof of the theorem is an exponential equivalence between (Xε,x)ε>0 and its limit

system (as ε tends to zero). In this proof, we denote Xε by Xε,x to stress the dependence on the starting point.

Lemma A.2. Under Assumption 3.12, for each R, δ, β > 0, there exists γ, ρ, ε0 > 0 such that

ε2 logP (∥Xε,x − S0(φ, u)∥ > δ, ∥εW − φ∥ ≤ γ) ≤ −R

holds when ε ≤ ε0 for all u ∈ supp(X0) and all φ ∈ H satisfying Λρ(φ) ≤ β, x ∈ Bρ((0, 0)).

Proof. First, introduce the Radon-Nikodym derivative Dε(φ) := exp
{

1
ε

∫
T φ̇sdWs − 1

2ε2

∫
T ∥φ̇s∥2ds

}
. Follow-

ing [57], consider the family (Y
ε
)ε>0 of (unique strong ) solutions of dY

ε

t = c(ε, t,Y
ε

t ,X0)dt + εa(Y
ε

t ,X0)dB
ε
t ,

for t > 0, with initial condition Y
ε

0 = (0, 0)′ ∈ R2. We denote c(ε, t, x, y) := b(ε, x, y) + a(x, y)ḟt, for x, y ∈ R2,

t ∈ T and ε > 0, and Bεt :=Wt − 1
ε ḟt, for t ∈ T . Peithmann’s assumptions are here updated as:

(i) c : (0,∞)× T × R2 × R2 → R2 converges to c0 : T × R2 × R2 → R2 in the sense that

lim
ε↓0

∫
T

sup
x∈R2

∥c(ε, t, x, y)− c0(t, x, y)∥dt = 0, for all y ∈ R2.

In particular, note that c0(t, x, y) = a(x, y)ḟt;

(ii) there exists ϱ ∈ L2(T ) such that for all x, y ∈ R2, ∥c(ε, t, x, y)∥+ ∥c0(t, x, y)∥ ≤ ϱ(t), for t ∈ T ;

(iii) there exists κ ∈ L1(T ) such that for all y, x1, x2 ∈ R2, ∥c0(t, x1, y)− c0(t, x2, y)∥ ≤ κ(t)∥x1 − x2∥ on T .

Partitioning T into {tk := kT
n }k=0,...,n, set Y

ε,n

t := Y
ε

tk
for tk ≤ t < tk+1, and Peithmann’s arguments yield
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(i) for any δ > 0, lim
n↑∞

lim supε↓0 ε
2 logP(∥Y ε −Y

ε,n∥ > δ) = −∞ uniformly with respect to y0 ∈ R2;

(ii) given Mε
t := ε

∫
T a(Y

ε

s,X0)dWs and Mε,n
t := ε

∫
T a(Y

ε,n

s ,X0)dWs, for all δ > 0,

lim
β↓0

lim sup
ε↓0

ε2 logP (∥Mε −Mε,n∥ > δ, ∥Yε − Y ε,n∥ ≤ β) = −∞,

uniformly with respect to n ∈ N, y0 ∈ R2;

(iii) for all δ > 0, limγ↓0 lim supε↓0 ε
2 logP(∥Mε∥ > δ, ∥εW∥ ≤ γ) = −∞;

(iv) let ζ denote the solution of the ordinary differential equation ζ̇t = c0(t, ζt, Yt) starting from ζ0 = y. For

all R > 0, δ > 0, there exists γ, ρ, ε0 > 0 such that P({∥Yε, ζ∥ > δ}∩ {∥εW∥ ≤ γ}) ≤ exp
(
−R/ε2

)
, for all

y0 ∈ R2, y ∈ Bρ(y0) and ε ≤ ε0.

The theorem follows from Girsanov’s theorem with Radon-Nikodym derivative Dε(f). �

We start with the lower bound. For any open subset G of C(T ,R2), let η > 0 and choose ψ ∈ G such that

Iα(ψ) ≤ infψ∈G I
α(ψ) + η. Then, let u ∈ supp(X0) and φ ∈ H such that S0(φ, u) = ψ and Λρ(φ) = Iα(ψ). Let

δ > 0 such that Bδ(ψ) ⊂ G. Then, for each γ > 0, x ∈ R2,

P(Xε,x ∈ G) ≥ P(∥Xε,x − ψ∥ ≤ δ) ≥ P(∥εW − φ∥ ≤ γ)− P(∥Xε,x − ψ∥ > δ, ∥εW − φ∥ ≤ γ).

Schilder’s Theorem [22, Theorem 5.2.3], then yields the lower bound

lim inf
ε↓0

ε2P(∥εW − φ∥ ≤ γ) ≥ −Λρ(φ) = −Iα(ψ) ≥ − inf
ψ∈G

Iα(ψ)− η.

Then, we bound the second probability from above using Lemma A.2: fix β ≥ Λρ(φ) and R > infψ∈G I
α(ψ)+η,

and find γ, ρ, ε0 > 0 such that, for x ∈ Bρ((0, 0)′), ε ≤ ε0, the bound ε2 logP(∥Xε,x −ψ∥ > δ, ∥εW−φ∥γ) ≤ −R
holds. These two bounds then imply the required lower bound:

lim
ε↓0

inf
ρ↓0

ε2 log inf
x∈Bρ((0,0)′)

P (Xε,x ∈ G) ≥ min

{
−R,− inf

ψ∈G
Iα(ψ)− η

}
= − inf

ψ∈G
Iα(ψ)− η.

We now prove the upper bound. For any closed set F of C(T ,R2), take β ∈ (0, infψ∈G I
α(ψ)) and R > β.

Let u ∈ supp(X0) and ψ ∈ H with Iα(ψ) ≤ β. We find δ > 0 such that Bδ(ψ) ∩ F = ∅ and φ ∈ {Λρ ≤ β} such

that S0(φ, u) = ψ. Using Lemma A.2, there exists γ, ρ, ε0 > 0 such that for x ∈ Bρ((0, 0)′), ε ≤ ε0,

ε2 logP(∥Xε,x − ψ∥ > δ, ∥εW − φ∥ ≤ γ) ≤ −R.

The set {Bγ(φ) : ψ ∈ H, Iα(ψ) ≤ β} forms a cover of the compact set {Λρ(φ) ≤ β}, so that we can extract a

finite sub-cover {Bγi(φi)}i=1,...,k and set A := ∪ki=1Bγi(fi) and ψi := S0(φi, r). For any i = 1, . . . , k, there exist

δi, ρi, εi > 0 such that, for any x ∈ Bρi((0, 0)′) and ε ≤ εi,

ε2 logP(∥Xε,x − ψi∥ > δ, ∥εW − φi∥ ≤ γ) ≤ −R.

Set ε0 := min {ε1, . . . , εk}, ρ0 := min {ρ1, . . . , ρk}, take ε ≤ ε0 and x ∈ Bρ0((0, 0)′). Since F ∩ Bδi(ψi) = ∅ for

every i = 1, . . . , k, we obtain

P(Xε,x ∈ F ) ≤ P(Xε,x ∈ F, εW ∈ A) + P(εW ∈ Ac)

≤
k∑
i=1

P(∥Xε,x − gi∥ > δi, ∥εW − φi∥ ≤ γi) + P(εW ∈ Ac) ≤ k exp

(
−R

ε2

)
+ exp

(
− β

ε2

)
,

since Iα(ψi) ≤ β by definition of β. Finally, since R > β, the theorem follows from the upper bound

lim
ε↓0

sup
ρ↓0

ε2 log sup
x∈Bρ(Xε

0)

P (Xε,x ∈ F ) ≤ − inf
ψ∈F

Iα(ψ).
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A.4. Proof of Corollary 4.1. This is a straightforward application of [35, Corollary 7.1]. Taking ε−2b to be k

we have, from Theorem 3.1, that ε2bXt ∼ LDP(ε2b, Λ̃) as ε goes to zero. Then,

lim
k↑∞

P(Xt ≥ k) = exp

(
− infy≥1 Λ̃(y)

k−1

)
.

Similarly, in Black-Scholes, lim
k↑∞

P(Xt ≥ k) = exp

(
− k2

2tΣ2
t (k)

)
, and the proof follows from [35, Corollary 7.1].

A.5. Proof of Corollary 4.2. This is a straightforward application of [35, Corollary 7.1]. Taking ε2 to be t

and bH := H + b− 1/2, from Theorem 3.7, tbHX ∼ LDP(t2H+b, I), as t goes to zero,

lim
t↓0

P
(
tbHX ≥ k

)
= exp

(
− infy≥k I(y)

t2H+b

)
.

Similarly, in the Black-Scholes model, we obtain

lim
t↓0

P
(
tbHX ≥ k

)
= lim

t↓0
P
(
X ≥ t−bHk

)
= exp

(
− t−2bHk2

2tΣ2
t (t

−bHk)

)
,

and the result follows from [35, Corollary 7.1].

A.6. Proof of Proposition 4.3. For any ε > 0, the pathwise rescaled process Xε,ζ := εXζ satisfies

dXε,ζt = εdXζt = εb

(
ε,

Xε,ζt
ε

)
dt+ εa

(
Xε,ζt
ε

)
dWt, for t ∈ T ,

with initial condition Xε,ζ0
∆
= εζ. The proof of the proposition relies on the (more general) theorem proved by

Millet, Nualart and Sanz [53], recalled in Section 3.1.2, and whose validity is guaranteed by Assumption 3.4.

Note first that, from standard large deviations considerations (and in particular contraction mappings), the

process Xε,0 satisfies a large deviations principle with good rate function I given in Theorem 3.5. Recall that

by construction b0(ε, ·) : R2 → R2 and a0 : R2 → M(2,2)(R), satisfy for ε > 0 small enough, εb(ε, x/ε) = b0(ε, x)

and a(x/ε) = a0(x), and that b0(ε, x) converges uniformly to b0(x) as ε tends to zero. Therefore, Theorem 3.5

yields a large deviations principle for the sequence (Xε,ζ)ε≥0 as ε tends to zero, with good rate function I and

speed ε2. In particular, for A := {ψ ∈ C(T ,Rn),∀x ∈ Rn, ψ(1, x) ≥ 1}, we have
− inf
ψ∈Å

I(ψ) ≤ lim inf
ε↓0

ε2 logP(Xε,ζt ≥ 1) ≤ lim sup
ε↓0

ε2 logP(Xε,ζt ≥ 1) ≤ − inf
ψ∈Ā

I(ψ),

− inf
ψ∈Å

I(ψ) ≤ lim inf
ε↓0

ε2 logP(Xε,x0

t ≥ 1) ≤ lim sup
ε↓0

ε2 logP(Xε,x0

t ≥ 1) ≤ − inf
ψ∈Ā

I(ψ).

Since the map Λ is continuous on H, it is in particular upper semi-continuous on A. Therefore, by [1, Lemma

2.41], the good rate function I is upper semi-continuous on A. As a good rate function, it is also lower semi-

continuous, and hence continuous, on A. Translating the two sets of inequalities above in terms of εXζt and εX
x0
t ,

and using the continuity of I proves the proposition.
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