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Abstract. We consider the fractional Heston model originally proposed by Comte, Coutin and Renault [12].

Inspired by recent ground-breaking work on rough volatility [2, 6, 24, 26] which showed that models with

volatility driven by fractional Brownian motion with short memory allows for better calibration of the volatility

surface and more robust estimation of time series of historical volatility, we provide a characterisation of the

short- and long-maturity asymptotics of the implied volatility smile. Our analysis reveals that the short-memory

property precisely provides a jump-type behaviour of the smile for short maturities, thereby fixing the well-known

standard inability of classical stochastic volatility models to fit the short-end of the volatility smile.

1. Introduction

Since the Black-Scholes model was introduced forty years ago, practitioners and academics have been propos-

ing refinements thereof in order to take into account the specific behaviour of market data. In particular, sto-

chastic volatility models, turning the constant Black-Scholes instantaneous volatility of returns into a stochastic

process, have been studied and used heavily. Monographs such as [23, 25, 29, 30, 40, 47] are great sources of

information regarding this large class of models, both from a theoretical point of view (existence and uniqueness

of these processes, asymptotic behaviour), and with practitioner’s insights (how these models actually perform,

how they should behave compared to market data). Despite the success of these models, it is now widely un-

derstood that calibration of the observed implied volatility surface fails for short maturities, the observed smile

being steeper than that generated by diffusions with continuous paths. To remedy this issue, several authors

have suggested the addition of jumps, either in the form of an independent Lévy process [5] or within the more

general framework of affine processes [33, 39]. Jumps (in the stock price dynamics) imply an explosive behaviour

for the implied volatility for short maturities (see [51] for a review of this phenomenon), but are able to capture

the observed steepness of the implied volatility. This could be the end of the modelling story; however, this

approach has also had (and still has) his share of controversy since the jump part of the process is notoriously

difficult to hedge, making its practical implementation a rather delicate (and sometimes philosophical) issue.

From a time series modelling point of view, classical stochastic volatility models, driven by a Brownian

motion, have been criticised for not taking into account the long memory of the observed volatility of returns.
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In ARCH and GARCH models, memory (quantified through the autocorrelation function) decays exponentially

fast, whereas it does not decay at all for integrated versions of these. In the discrete-time setting, this has led to

the introduction of fractionally integrated models, such as ARFIMA [27] and FIGARCH [3]. In continuous time,

this long-memory behaviour has been modelled through fractional Brownian motion [11, 12] with Hurst exponent

strictly greater than 1/2. Fractional Brownian motion has its pitfalls though, since it is not a semimartingale,

and yields arbitrage opportunities [48, 50]. This can be avoided using heavy machinery [10, 19, 28, 32], but as a

by-product introduces non-desirable economic features [9]. As documented in [52], these issues are however not

relevant when the fractional Brownian motion drives the instantaneous volatility rather than the stock price

itself.

These fractional stochastic volatility models, somehow popular in the econometrics and statistics commu-

nities, have however received little attention from more classical mathematical finance and stochastic analysis

groups. Gatheral, Jaisson and Rosenbaum [26] have recently suggested to consider the Hurst exponent, not

as an indicator of the historical memory of the volatility, but as an additional parameter to be calibrated on

the volatility surface. Their study reveals that H ∈ (0, 1/2), which seems to indicate short memory of the

volatility, thereby contradicting decades of time series analyses. By considering a specific fractional volatility

model, directly inspired by the fractional version of the Heston model [12, 31], we provide a theoretical jus-

tification of this result. We show in particular that, when H ∈ (0, 1/2), the implied volatility in this model

explodes in the jump-sense. Probabilistically speaking, this means that a rescaled (by time) version of the log

stock price process converges weakly, but not the process itself, which is reminiscent of what happens in the

case of jump-diffusions. In the case H ∈ (1/2, 1), heuristically, long memory does not have time to affect the

dynamics of the process and the implied volatility converges to a strictly positive constant. For large maturities,

the phenomenon is reversed, in the sense that short memory gets somehow averaged out and the behaviour of

the implied volatility is similar to the standard Brownian-driven diffusion case, whereas long memory yields

a different asymptotic behaviour. Finally, we comment that recently another fractional version of the Heston

model was proposed and analysed in [16, 17, 18], in which the authors defined a different structure for the

variance process through fractional integration. In particular, El Euch, Fukasawa and Rosenbaum [18] bridge

the connection between market microstructure and rough volatility by proposing a microscopic price model

and by showing that it converges to a rough Heston setting in the long term. We also refer interested readers

to [1, 6, 7, 22] for more recent developments on fractional volatility modelling.

This paper is structured as follows: in Section 2, we introduce the model and study its main properties. We

in particular show that the characteristic function of the stock price is available in closed form. In Section 3, we

derive the main, probabilistic and financial, results of the paper, namely large deviations principles for rescaled

versions of the log stock price process and the asymptotic behaviour of the implied volatility, both for short and

for large maturities. In Section 4 we provide several numerical examples. Section 5 contains the proofs of the

main results, and we add a short reminder on large deviations in the appendix.



ASYMPTOTIC BEHAVIOUR OF THE FRACTIONAL HESTON MODEL 3

2. The Model and its properties

2.1. The fractional Heston model. Let (Ω,F , (Ft)t≥0,P) be a given filtered probability space supporting

two independent standard Brownian motions B and W . We denote by (St)t≥0 the stock price process, and let

Xt := log(St) be the unique strong solution to the stochastic differential equation

(2.1)

dXt = −1

2
V d
t dt+

√
V d
t dBt, X0 = 0,

dVt = κ(θ − Vt)dt+ ξ
√
VtdWt, V0 = v0 > 0,

V d
t = η + Id0+Vt,

where d ∈ (−1/2, 1/2) and the coefficients satisfy κ, θ, ξ > 0. The operator Id0+ is the classical left fractional

Riemann-Liouville integral of order d:

Id0+ϕ(t) :=


∫ t

0

(t− s)d−1

Γ(d)
ϕ(s)ds, for d ∈

(
0,

1

2

)
,

d

dt
Id+1
0+ ϕ(t), for d ∈

(
−1

2
, 0

)
,

valid for any function ϕ ∈ L1([0, t]), where Γ is the standard Gamma function. For more details on these

integrals, we refer the interested reader to the monograph [49, Chapter 1, Section 2], and for the application

to discretisation schemes, we refer to [12, Section 5]. The couple (X,V ) corresponds to the standard Heston

stochastic volatility model [31], which admits a unique strong solution by the Yamada-Watanabe conditions [37,

Proposition 2.13, page 291]). The additional parameter η ≥ 0, as explained in [12] allows to loosen the

tight connection between the mean and the variance of Vt. The process V can be written, in integral form,

as Vt = v0e
−κt + θ (1− e−κt) + ξ

∫ t

0
e−κ(t−s)

√
VsdWs, and therefore Itô isometry implies that the covariance

structure reads, for any t, u > 0,

⟨Vu, Vt⟩ =
ξ2θ

2κ
e−κ|t−u| +

ξ2

κ
(v0 − θ)e−κ(t∧u) − ξ2

2κ
(2v0 − θ)e−κ(t+u).

The Feller condition [38, Chapter 15], 2κθ ≥ ξ2, ensures that the origin is unattainable (otherwise it is

regular, hence attainable, and strongly reflecting); under this condition, since the Riemann-Liouville oper-

ator preserves positivity, V d
t ≥ η almost surely for all t ≥ 0. Now, for any t ≥ 0, we have E(V d

t ) =

η + Id0+ (v0e
−κt + θ (1− e−κt)), and, for any t, h ≥ 0,

⟨V d
t+h, V

d
t ⟩ =

∫ t+h

0

∫ t

0

(t+ h− s)d−1(t− u)d−1

Γ(d)2
⟨Vs, Vu⟩duds.

The motivation for such a fractional volatility model comes from the seminal work by Comte and Renault [11]

on the Ornstein-Uhlenbeck process. Consider the unique strong solution to the stochastic differential equation

dX(t) = −κX(t)dt + σdW d(t) starting at zero, with d ∈ (0, 1/2), κ, σ > 0 and W d a fractional Brownian

motion; its fractional derivatives X−d defined via the identity Xt = I1+d
0+ X−d(t), for all t ≥ 0, or

X−d(t) =
d

dt

[∫ t

0

(t− s)−d

Γ(1− d)
Xsds

]
=

∫ t

0

(t− s)−d

Γ(1− d)
dXs
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satisfies the SDE dX−d(t) = −κX−d(t)dt+σdB(t), with X−d(0) = 0, where B is a standard Brownian motion.

Conversely, if X(t) satisfies the Ornstein-Uhlenbeck SDE dX(t) = −κX(t)dt+ σdW (t), with X(0) = 0, then

dI1+d
0+ X(t) = −κI1+d

0+ X(t)dt+ σdW d(t), with I1+d
0+ X(0) = 0.

Finally, note that the fair strike of a continuously monitored variance swap with maturity T reads

1

T
E

(∫ T

0

V d
t dt

)
=

1

T

∫ T

0

{
η + Id0+

[
v0e

−κt + θ(1− e−κt)
]}

dt

= η +
v0T

d

Γ(d+ 2)
+
κ(θ − v0)e

−κT

TΓ(d+ 2)

∫ T

0

td+1eκtdt.(2.2)

Note in particular that, when η = d = 0, this representation coincides with the expected variance formula in

the standard Heston case, provided in [25, Chapter 11]. Furthermore, for small T > 0, Equation (2.2) reads

1

T
E

(∫ T

0

V d
t dt

)
=

v0T
d

Γ(d+ 2)
+ η +O(T d+1),

so that in the rough Heston case the variance swap rate explodes when d < 0 with a rate of T d.

Figure 1. We generate five smooth (d = 0.4, above) and rough (d = −0.3, bottom) paths for

the stock prices (left) and their volatility movements (right). Other parameters for the variance

process are (κ, θ, ξ, v0, η) = (2.1, 0.05, .2, 0, 0.03).
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2.2. Cumulant generating function. Let m(u,w, t) ≡ logE(euXt+wV d
t ), for any t ≥ 0 and (u,w) ∈ D̃t,

denote the cumulant generating function of the couple (X,V d), where D̃t :=
{
(u,w) ∈ R2 : |m(u,w, t)| <∞

}
is

the effective domain of m. The following theorem provides a closed-form expression for it:

Theorem 2.1. For any t ≥ 0,

(2.3) logE
(
euXt+wV d

t

)
= wη +

u(u− 1)ηt

2
−B(t)v0 +A(t), for all (u,w) ∈ D̃t,

where the functions A and B satisfy the ordinary differential equations

(2.4)
A′(s) + κθB(s) = 0,

B′(s) + κB(s) +
ξ2

2
B(s)2 +

u(u− 1)

2Γ(d+ 1)
sd +

w

Γ(d)
sd−1 = 0,

for 0 ≤ s ≤ t, with the initial conditions A(0) = B(0) = 0, and where Γ is the usual Gamma function.

It is interesting to note that the couple (X,V d) remains affine in the sense of [15]. As outlined in Remark 2.2,

correlation would break the Markovian property of the process, as well as its affine property. When η = d = w =

0, the Riccati equations (2.4) are the same as in the standard (uncorrelated) Heston model. This in particular

implies that, when correlation is null, our model (2.1) and the Heston model have the same marginals. The

analysis of the asymptotic behaviour of the implied volatility below will only require the knowledge of the

function m evaluated at w = 0, and we shall write m(u,w, t) = m(u, t) with effective domain Dt.

Proof. The map (s, u) → 11{0≤s≤u}
(s−u)d−1

Γ(d) Vu is non-negative on [0, t]× [0, t] a.s., so that, by Tonelli’s theorem,∫ t

0

(V d
s − η)ds =

∫ t

0

∫ s

0

(s− u)d−1

Γ(d)
Vududs =

∫ t

0

∫ t

0

11{0≤u≤s}
(s− u)d−1

Γ(d)
Vudsdu =

∫ t

0

(t− u)d

Γ(d+ 1)
Vudu.

Since moments of the integrated CIR exist, up to explosion [36, Part I, Chapter 6.3], the Novikov condition

then justifies the introduction, for any u ∈ Dt, of the measure P̃ via the Radon-Nikodym derivative

(2.5)
dP̃
dP

∣∣∣∣∣
Ft

:= exp

(
u

∫ t

0

√
V d
s dBs −

u2

2

∫ t

0

V d
s ds

)
.

The moment generating function can then be written as

E
[
euXt+wV d

t

]
= ewηẼ

[
exp

(
u(u− 1)

2

∫ t

0

V d
s ds+ w

∫ t

0

(t− s)d−1

Γ(d)
Vsds

)]
= exp

(
wη +

u(u− 1)ηt

2

)
Ẽ
[
exp

(∫ t

0

Vs

(
u(u− 1)

2Γ(d+ 1)
(t− s)d +

w(t− s)d−1

Γ(d)

)
ds

)]
.

Furthermore, under P̃, the process V satisfies

(2.6) dVt = κ (θ − Vt) dt+ ξ
√
VtdWt.

Set now ψ(z, s) := Ẽ
[
exp

{∫ t

s
Vr

(
u(u−1)
2Γ(d+1) (t− r)d + w(t−r)d−1

Γ(d)

)
dr
}∣∣∣Vs = z

]
. We want ψ(v0, 0) and ψ solves

the following PDE using the Feynman-Kac formula:

∂sψ(z, s) + κ(θ − z)∂zψ(z, s) +
1

2
zξ2∂2zψ(z, s) +

(
u(u− 1)

2Γ(d+ 1)
(t− s)d +

w

Γ(d)
(t− s)d−1

)
zψ(z, s) = 0,
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for 0 ≤ s ≤ t, with terminal condition ψ(z, t) = 1 for z ≥ 0. The change of variables φ(z, s) ≡ ψ(z, t− s) yields

−∂sφ(z, s) + κ(θ − z)∂zφ(z, s) +
1

2
zξ2∂2zφ(z, s) +

(
u(u− 1)

2Γ(d+ 1)
sd +

w

Γ(d)
sd−1

)
zφ(z, s) = 0,

for 0 ≤ s ≤ t and with initial condition φ(z, 0) = 1 for all z ≥ 0. Using the ansatz φ(z, s) = eA(s;u,t)−B(s;u,t)z,

we find that A(·;u, t), B(·;u, t) solve the Ricatti ODEs in (2.4). �

Remark 2.2. For non-zero correlation, the variance dynamics under P̃ in (2.6) change to

dVt = κ (θ − Vt) dt+ ρξu
√
VtV d

t dt+ ξ
√
VtdWt,

which is non-Markovian, hence not amenable to Feynman-Kac techniques, and is left for future research.

Remark 2.3. In the case where κ = 0, the ODEs (2.4) can be solved explicitly [46], and

m(u, t) =
u(u− 1)ηt

2
−2v0
ξ2

∂t log

(
√
t

[
C1J 1

d+2

(
ξ

d+ 2

√
u(u− 1)

Γ(d+ 1)
td/2+1

)
+ C2Y 1

d+2

(
ξ

d+ 2

√
u(u− 1)

Γ(d+ 1)
td/2+1

)])
,

where J and Y are the Bessel functions of respectively the first and the second kind, and C1, C2 are constants de-

termined by the boundary conditions. Using J1/2(x) =
√
2/(πx) sinx and Y1/2(x) = −

√
2/(πx) cosx we recover

the Heston mgf [20] (with κ = 0) when d = 0 and η = 0, namely m(u, t) = v0

ξ

√
u(u− 1) tan

(
ξt
√
u(u− 1)/2

)
.

Figure 2. We numerically compute the mgf of Xt using the ODE in Theorem 2.1 with t = 1.

On the left (κ, θ, ξ, v0, η, d) = (2.1, 0.05, 0.2, 0.03, 0.03,−0.3). As a sanity check on the right we

compare the numerically solved mgf for d = 0, v0 = 0.06, η = 0 with the explicit representation

of the mgf in a Heston setting (circles), provided in [25, Chapter 2].

3. Large deviations and implied volatility asymptotics

3.1. Large deviations of the log stock price process. This section gathers the main results of the paper,

namely a large deviations principle for a rescaled version of the log stock price process X defined in (2.1) when

time becomes large or small. We refer the reader to Appendix A for a brief reminder of large deviations and
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to [13, 14] for thorough treatments. Before stating (and proving) the main results of the paper, introduce the

functions λ∗±,Λ
∗
± : R → R+, Λ+ : [0, 1] → R and Λ− : R → R:

(3.1)

Λ+(u) ≡ − κθ

ξ(1 + d/2)

√
u(1− u)

Γ(1 + d)
, Λ−(u) ≡

1

2
u(u− 1)η,

Λ∗
+(x) ≡ u∗(x)x+

κθ

ξ(1 + d/2)

√
u∗(x)(1− u∗(x))

Γ(1 + d)
, Λ∗

−(x) :=


(x+ η/2)2

2η
, if x ∈ [Λ′

−(u−),Λ
′
−(u+)],

u+x− Λ−(u+), if x > Λ′
−(u+),

u−x− Λ−(u−), if x < Λ′
−(u−),

λ∗+(x) ≡
x2

2η
, λ∗−(x) ≡

Γ(2 + d)x2

2v0
.

where the real numbers u−, u+ are defined in Theorem 3.3 and

u∗(x) ≡ 1

2

1 + sgn(x)

√√√√√1−

1 + 1

4

(
xξ
√
Γ(1 + d)

κθ

)2
−1

 ,

with sgn(x) := 11{x≥0} − 11{x<0}. The expressions Λ′
−(u−) and Λ′

−(u+) are shorthand notations for, respectively

limu↓u− Λ′
−(u) and limu↑u+ Λ′

−(u). Straightforward computations show that the function u∗ is smooth on R∗,

decreasing and concave on R∗
− and increasing and concave on R∗

+, with u∗(0) = 1/2 and

lim
x↑0

u∗(n)(x) = − lim
x↓0

u∗(n)(x), if n is odd;

lim
x↑0

u∗(n)(x) = lim
x↓0

u∗(n)(x) = 0, if n is even.

Therefore, Λ∗
+ is strictly convex and smooth and maps R to R+. Straightforward computations also yield that

the function Λ∗
− is smooth on the real line. Note that Λ∗

− and Λ∗
+ are nothing else than the Fenchel-Legendre

transforms of Λ− and Λ+. Likewise, the functions λ∗+ and λ∗− are clearly strictly convex on the whole real line.

Theorem 3.1.

(i) As t tends to zero,

(a) if d ∈ (0, 1/2), then (Xt)t≥0 satisfies a LDP with good rate function λ∗+ and speed t−1;

(b) if d ∈ (−1/2, 0), then (Xt)t≥0 satisfies a LDP with good rate function λ∗− and speed t−(1+d);

(ii) As t tends to infinity,

(a) if d ∈ (0, 1/2), then
(
t−(1+d/2)Xt

)
t>0

satisfies a LDP with good rate function Λ∗
+ and speed t−(1+d/2);

(b) if d ∈ (−1/2, 0), then
(
t−1Xt

)
t>0

satisfies a partial LDP on (Λ′
−(u−),Λ

′
−(u+)) with rate function Λ∗

−

and speed t−1, where u−, u+ are defined in Proposition 3.3.

In practice, the partial LDP in case (ii)(b)is enough here since strikes are of the form ext, for large maturity t

and fixed x; furthermore 0 ∈ (Λ′
−(u−),Λ

′
−(u+)), so that for fixed small x, and t large enough, even large strikes

can be computed, see Theorem 3.6 (ii)(b) for details. For the effective domain Dt of m(·, t) defined in Section 2.2,

let D∞ := ∩t>0 ∪s≤t Dt = ∪t>0 ∩s≤t Dt, and D(δ)
0 the effective domain of the pointwise limit u 7→ m(t−δu, t)

as t tends to zero (δ > 0). The proof of Theorem 3.1 relies on the study of the limiting behaviour of the
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cumulant generating function of (a rescaled version of) the process (Xt)t≥0, which we state in the following two

propositions (and defer their proofs to Sections 5.1 and 5.2):

Proposition 3.2. The following hold as t tends to zero:

(i) if d ∈ (0, 1/2], let δ = 1, then D(δ)
0 = R and lim

t↓0
tm
(u
t
, t
)
= η

u2

2
, for u ∈ D(δ)

0 ;

(ii) if d ∈ [−1/2, 0), let δ = 1 + d, then D(δ)
0 = R and lim

t↓0
t1+dm

( u

t1+d
, t
)
=

v0u
2

2Γ(2 + d)
, for u ∈ D(δ)

0 .

Proposition 3.3. As t tends to infinity, we have the following behaviours for the cumulant generating function:

(i) if d ∈ (0, 1/2), then D∞ = [0, 1] and lim
t↑∞

t−(1+d/2)m(u, t) = Λ+(u), for u ∈ D∞;

(ii) if d ∈ (−1/2, 0), then there exist u− ≤ 0, u+ ≥ 1 such that lim
t↑∞

t−1m(u, t) = Λ−(u), for u ∈ D∞ = [u−, u+].

Remark 3.4. The limits above are not continuous in d at the origin. In the case d = 0 (standard Hes-

ton), the pointwise limit of the rescaled cumulant generating function was computed in [21] and is such that

limt↑∞ t−1m(u, t) is a smooth convex function on some interval [u0−, u
0
+] ⊃ [0, 1]. In Proposition 3.3, the char-

acterisation of the limiting domain D∞ is not fully explicit. However, using comparison principles between the

ODEs (2.4) and the corresponding ones in the standard (uncorrelated) Heston model, it is easy to see that

the interval [u−, u+] is contained in [uH− , u
H
+ ], which is the limiting domain of the rescaled moment generating

function in the uncorrelated Heston model (see [21] for details and explicit expressions for uH± ).

Proof of Theorem 3.1. From Proposition 3.2, the large deviations principle stated in (i)(a)-(b) follows from a

direct application of the Gärtner-Ellis theorem (Theorem A.3). Consider now the large-time behaviour, and

start with Case (ii)(a), i.e. d ∈ (0, 1/2). From Proposition 3.3, the function Λ+ is essentially smooth on D∞, but

the origin is not in the interior of D∞, and hence the Gärtner-Ellis theorem does not apply directly. However,

in the one-dimensional case, one can use the refined version in [45], which relaxes this assumption. Case (ii)(b)

is a direct application of the Gärtner-Ellis theorem on the effective domain [u−, u+]. �

Remark 3.5. One could prove the lower bound on the whole real line even when the steepness condition is

not satisfied, by introducing a well chosen time-dependent change of measure, as in [8] or [34]; however, this

requires knowledge of higher orders of the asymptotic behaviour of the cumulant generating function. We leave

this for future research.

3.2. Implied volatility asymptotics. We now translate the large deviations principles derived above into

asymptotics of the implied volatility. For any (x, t) ∈ R × R+, let Σ(x, t) denote the implied volatility corre-

sponding to European option prices with maturity t and strike ex. The following theorem is proved in Section 5.3

(small time) and in Section 5.4 (large time).

Theorem 3.6.

(i) As t tends to zero,

(i) If d ∈ (0, 1/2], then for any x ̸= 0, Σ(x, t)2 converges to η;
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Figure 3. We compute the rescaled cgf of Xt (blue), and compared it with the small-time

limits (red) given in Proposition 3.2. The time parameter is t = 1/10 on the left column, and

t = 10−3 on the right. The first row is the rough case where d = −0.3, and for the smooth case

we have d = 0.2 at the bottom. (κ, θ, ξ, v0, η) = (2.1, 0.06, 0.2, 0.03, 0.03).

(ii) if d ∈ [−1/2, 0), then for any x ̸= 0, t−dΣ(x, t)2 converges to v0/Γ(d+ 2);

(ii) as t tends to infinity, the implied volatility behaves as follows:

(a) if d ∈ (0, 1/2), then lim
t↑∞

t−d/2Σ(xt1+d/2)2 = 2
(
2Λ∗

+(x)− x+
√
Λ∗
+(x)

(
Λ∗
+(x)− x

))
, for all x ∈ R;

(b) if d ∈ (−1/2, 0), then D∞ ⊃ [0, 1] and limt↑∞ Σ(xt, t)2 = η, for all x ∈ (Λ′
−(u−),Λ

′
−(u+));

For large maturities, as d approaches zero from above, we recover the standard Heston implied volatility

asymptotics derived in [21]; in the long memory case (d > 0), the steepness of the implied volatility is more

pronounced for very large maturity due to the td/2 factor than the standard Heston model. The small-maturity

case is especially interesting. In the case of long memory (d > 0), the implied volatility converges to a constant at

the same speed as Black-Scholes (or for that matter as any diffusion with continuous paths). In the short-memory

regime, the implied volatility blows up at the speed td/2. It is well documented [4] that classical stochastic

volatility models (driven by standard Brownian motions) are not able to capture the observed steepness of the

observed implied volatility smile. Several authors [43, 51] have suggested the addition of jumps in order to fit

this steepness. Assume that the martingale stock price is given by S = eX , where X is a Lévy process with

Lévy measure supported on the whole real line. As the maturity t tends to zero, the corresponding implied

volatility behaves as limt↓0 2t log(t)Σ(x, t)
2 = −x2, for all x ̸= 0. The speed of divergence t log(t) is then to

be compared with the td (d ∈ (−1/2, 0)) in the fractional framework above: clearly, for small enough t, the

Lévy implied volatility blows up much faster. Note further that, in the limit as maturity tends to zero, the

latter does depend on the strike, but the fractional implied volatility does not. Our results therefore show

that fractional Brownian motion (driving the instantaneous volatility) are an alternative to jumps, and provide
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smiles steeper than standard stochastic volatility, but less steep than Lévy models. They further have the

advantage of bypassing the hedging issues in jump-based models. One should also compare this explosion rate

to that of the implied volatility in the standard Heston model, where the instantaneous variance is started from

an initial distribution. In [34], the authors chose a non-central chi-squared initial distribution and showed that,

under some appropriate rescaling, the implied volatility blows up at speed t−1/2. Jacquier and Shi [35], also

inspired by [42], pushed this analysis further by studying the impact of the random initial data on the short-time

explosion of the smile.

4. Numerics

In this section we provide numerical examples describing the behaviour of our model, with parameters

(κ, θ, ξ) = (2.1, 0.06, 0.2). In Figure 4 we provide a comparison of volatility surfaces generated by fractional

and standard Heston models. We observe that in the case where the Hurst parameter is less than 1
2 (d < 0), a

larger value of v0 pushes up the small-time volatility smile, resonating our small-time analysis in Theorem 3.6.

Also notice that with similar parameter choices the at-the-money implied volatilities are higher in the fractional

case. This is further confirmed by Figure 5 representing the term structure of the at-the-money total variance.

Figure 4. Comparison of volatility surfaces. The first row represents the fractional case with

(v0, η, d) = (0.03, 0.02,−0.3) on the left and (v0, η, d) = (0.02, 0.02,−0.3) on the right. The

bottom plot is the standard Heston case (d = 0) with v0 = 0.06.
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Figure 5. Term structure of the at-the-money total variance in fractional (blue, (v0, η, d) =

(0.03, 0.02,−0.3)) and standard Heston (cyan, v0 = 0.06).

Figure 6. Term structure of the expected annualised variance (blue) in (2.2) where (v0, η, d) =

(0.03, 0.02,−0.3). Cyan dashed lines represent its small-time approximation
(

v0T
d

Γ(d+2) + η
)
.

5. Proofs

5.1. Proof of Proposition 3.2. We separate the κ = 0 and κ > 0 in the proof.

5.1.1. The κ = 0 case. One could use the explicit knowledge of the moment generating function in Remark 2.3

to compute its limiting behaviour. However, we follow a different route here, which we can adapt later to the

κ > 0 case. The function B is the solution of the ODE

(5.1) B′(t) = −ξ
2

2
B2(t) +

u(1− u)

2Γ(d+ 1)
td,

with boundary condition B(0) = 0. Let ζ := u(1−u)
2Γ(d+2) , and consider the ansatz B(t) =

∑
i≥1

αiζ
itid+2i−1, for some

sequence of real numbers (α)i≥1. Therefore

B′(t) +
ξ2

2
B2(t)− u(1− u)

2Γ(d+ 1)
td =

∑
i≥1

αiζ
i(id+ 2i− 1)tid+2i−2 +

ξ2

2

∑
i,j≥1

αiαjζ
i+jt(i+j)d+2(i+j)−2 − u(1− u)

2Γ(d+ 1)
td

=

(
α1(1 + d)ζ − u(1− u)

2Γ(d+ 1)

)
td +

∑
i≥2

[
αi(id+ 2i− 1) +

ξ2

2

i−1∑
k=1

αkαi−k

]
ζitid+2i−2.

This polynomial (in t) is null everywhere if and only if α1 = 1 and αi = − ξ2

2(i(d+ 2)− 1)

i−1∑
k=1

αkαi−k, for

i ≥ 2. We now make the above derivation rigorous. Consider the map f : R+ → R defined by f(t) :=
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t−1
∑

i≥1 αi

(
ζtd+2

)i
, for t ≥ 0. For i large enough,

∣∣∣ ξ2

2(i(d+2)−1)

∣∣∣ < 1, and hence |αi| < |γi|, where the sequence

(γ)i≥1 is defined by γ1 = 1 and γi =
∑i−1

k=1 γkγi−k, for i ≥ 2. Tedious but straightforward computations show

that the power series m(x) ≡
∑

i≥1 γix
i has a radius of convergence 1/4, and m′(x) =

∑
i≥1 γiix

i−1 for all

x ∈ (−1/4, 1/4). Therefore, the power series g(x) ≡
∑

i≥1 αix
i has a radius of convergence greater than 1/4

and g′(x) =
∑

i≥1 αiix
i−1 for all x ∈ (−1/4, 1/4). For |ζxd+2| small enough,

d

dx

∑
i≥1

αi

(
ζxd+2

)i
= (d+ 2)ζxd+1

∑
i≥1

αii(ζx
d+2)i−1,

so that f ′(x) =
∑

i≥1 αiζ
i(id+ 2i− 1)tid+2i−2. Moreover, using Tonelli’s theorem, for |ζtd+2| small enough,

∑
i≥1,j≥1

|αi||αj ||ζ|i+jt(i+j)d+2(i+j)−2 =

∑
i≥1

|αi||ζ|itid+2i−1

2

is finite. A direct application of Fubini’s theorem then yields f2(t) =
∑

i,j≥1 αiαjζ
i+jt(i+j)d+2(i+j)−2, and

hence f is the solution of 5.1 for small |ζtd+2|.
We first prove the proposition in the case d ∈ (0, 1/2). The function B, solution to (5.1), satisfies:

t1−dB
(u
t
, t
)

= t−d
∑
i≥1

αi

(
utd+1

2Γ(2 + d)
− u2td

2Γ(2 + d)

)i

= t−d
∑
i≥1

αit
id

(
ut

2Γ(2 + d)
− u2

2Γ(2 + d)

)i

=
∑
i≥1

αit
(i−1)d

(
ut

2Γ(2 + d)
− u2

2Γ(2 + d)

)i

=
ut

2Γ(2 + d)
− u2

2Γ(2 + d)
+
∑
i≥1

αi+1t
id

(
ut

2Γ(2 + d)
− u2

2Γ(2 + d)

)i+1

.

Moreover, for t small enough,∣∣∣∣∣∣
∑
i≥1

αi+1t
id

(
ut

2Γ(2 + d)
− u2

2Γ(2 + d)

)i+1
∣∣∣∣∣∣ ≤ td/2

∣∣∣∣∣∣
(

ut

2Γ(2 + d)
− u2

2Γ(2 + d)

)∑
i≥1

αi+1

(
ut1+d/2

2Γ(2 + d)
− u2td/2

2Γ(2 + d)

)i
∣∣∣∣∣∣ .

Since for t small enough,
∣∣∣ ut1+d/2

2Γ(2+d) −
u2td/2

2Γ(2+d)

∣∣∣ < 1
4 , then

∑
i≥1 αi+1

(
ut1+d/2

2Γ(2+d) −
u2td/2

2Γ(2+d)

)i
is well defined. Hence

the left-hand side
∑

i≥1 αi+1t
id
(

ut
2Γ(2+d) −

u2

2Γ(2+d)

)i+1

converges to zero as t tends to zero, and so does

t1−dB(u/t, t) to − u2

2Γ(2+d) .

In the case d ∈ [−1/2, 0), the function B, solution to (5.1), satisfies

t1+dB(u/t1+d, t) = td
∑
i≥1

αi

(
ut

2Γ(2 + d)
− u2t−d

2Γ(2 + d)

)i

=
ut1+d

2Γ(2 + d)
− u2

2Γ(2 + d)
+ td

∑
i≥1

αi+1

(
ut

2Γ(2 + d)
− u2t−d

2Γ(2 + d)

)i+1

=
ut1+d

2Γ(2 + d)
− u2

2Γ(2 + d)
+

(
ut1+d

2Γ(2 + d)
− u2

2Γ(2 + d)

)∑
i≥1

αi+1

(
ut

2Γ(2 + d)
− u2t−d

2Γ(2 + d)

)i
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Moreover, for t small enough,

∣∣∣∣∑i≥1 αi+1

(
ut

2Γ(2+d) −
u2t−d

2Γ(2+d)

)i∣∣∣∣ ≤ t−d/2

∣∣∣∣∑i≥1 αi+1

(
ut1+d/2

2Γ(2+d) −
u2t−d/2

2Γ(2+d)

)i∣∣∣∣. Since
the series

∑
i≥1 αi+1

(
ut1+d/2

2Γ(2+d) −
u2t−d/2

2Γ(2+d)

)i
is well defined for t small enough,

∑
i≥1 αi+1

(
ut

2Γ(2+d) −
u2t−d

2Γ(2+d)

)i
tends to zero as t tends to zero, and so does t1+dB(u/t1+d, t) tends to − u2

2Γ(2+d) , which proves the proposition.

5.1.2. The κ > 0 case. Similarly to the κ = 0 case, plugging the ansatz B(t) :=
∑
i,j≥1

βi,jt
id+j into (2.4) yields

(
β1,1(d+ 1) +

u(u− 1)

2Γ(d+ 1)

)
td +

ξ2

2

∑
i,j≥1

βi,jt
id+j

2

+ κ

∑
i,j≥1

βi,jt
id+j

+
∑

(i,j)̸=(1,1)

βi,j(id+ j)tid+j−1 ≡ 0.

The following statements hold, and are related to the case κ = 0 above:

(1) βi,j = 0 for any i ≥ 2 and for 1 ≤ j ≤ 2i− 2;

(2) βi,2i−1 = αiζ
i for any i ≥ 1.

Combining terms of the same order yields β1,1 = α1ζ. Moreover, for any (i, j) ∈ N∗
+ ×

(
N∗

+ \ {1}
)
,(

βi,j(id+ j) + κβi,j−1 +
ξ2

2

(
i−1∑
p=1

j−2∑
q=1

βp,qβi−p,j−1−q

))
tid+j−1 ≡ 0.

Then the two statements above can be easily verified by induction, from which B(t) =
∑
i≥1

∑
j≥2i−1

βi,jt
id+j , with

(5.2) βi,j =

[
−κβi,j−1 −

ξ2

2

(
i−1∑
p=1

j−2i+2p∑
q=2p−1

βp,qβi−p,j−1−q

)]
1

id+ j
.

We show that the series is absolutely convergent. Notice that

(5.3)∑
i≥1

∑
j≥2i−1

|βi,j |tid+j =
∑
i≥1

tid+2i−1

 ∑
j≥2i−1

|βi,j |tj−2i+1

 =
∑
i≥1

|βi,2i−1|tid+2i−1

1 +
∞∑

j=2i

∣∣∣∣ βi,j
βi,2i−1

∣∣∣∣ tj−2i+1

 .

Following Lemma 5.1, 1 +
∑∞

j=2i

∣∣∣ βi,j

βi,2i−1

∣∣∣ tj−2i+1 < 2i−1eiκt holds for any i ≥ 1, and (5.3) then reads

(5.4)
∑
i≥1

∑
j≥2i−1

|βi,j |tid+j < t−1
∑
i≥1

2i−1|αi|
(
|ζ|td+2eκt

)i
.

We already show that |αi| < γi for i large enough, then the series (
∑

i≥1 2
i−1|αi|xi) has a radius of convergence

no less than 1/8. Since (d+2) is strictly positive, then (5.4) implies that the series B(t) =
∑

i≥1

∑
j≥2i−1 βi,jt

id+j

is absolutely convergent for small t such that |ζ|td+2eκt < 1/8 holds. Therefore the previous ansatz B(t) is the

solution to the Riccati equation for small t. The rest of the proof is essentially the same as the case where κ = 0,

and we therefore omit the details.

Lemma 5.1. For any i ≥ 1, the following estimation for βi,j defined in (5.2) holds for any j ≥ 2i:

|βi,j | <
2i−1(iκ)j−2i+1

(j − 2i+ 1)!
|βi,2i−1|.
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Proof. We prove by induction. In the case where i = 1, direct computations yield∣∣∣∣β1,jβ1,1

∣∣∣∣ = Γ(d+ 2)

Γ(d+ 1 + j)
κj−1 ≤ κj−1

(j − 1)!
, for any j ≥ 1.

Assume that the upper bound holds for |βp,q| for any p ≤ i− 1. Then we have

|βp,q| ≤
2p−1(pκ)q−2p+1|βp,2p−1|

(q − 2p+ 1)!
, |βi−p,j−1−q| ≤

2i−p−1((i− p)κ)j−q−2i+2p|βi−p,2(i−p)−1|
(j − q − 2i+ 2p)!

.

As a result, for any fixed 1 ≤ p ≤ i− 1,

j−2i+2p∑
q=2p−1

|βp,qβi− p, j − 1− q| ≤
j−2i+2p∑
q=2p−1

2i−2(pκ)q−2p+1((i− p)κ)j−q−2i+2p|βp,2p−1βi−p,2(i−p)−1|
(q − 2p+ 1)!(j − q − 2i+ 2p)!

=
2i−2|βp,2p−1βi−p,2(i−p)−1|

(j − 2i+ 1)!

j−2i+2p∑
q=2p−1

(j − 2i+ 1)!(pκ)q−2p+1((i− p)κ)j−q−2i+2p

(q − 2p+ 1)!(j − q − 2i+ 2p)!

=
2i−2(iκ)j−2i+1

(j − 2i+ 1)!
|βp,2p−1βi−p,2(i−p)−1|.

Plug it into (5.2), and notice that |βi,2i−1| = ξ2

2(id+2i−1)

∑i−1
k=1 |βk,2k−1βi−k,2(i−k)−1| which follows from the fact

that all the terms βk,2k−1βi−k,2(i−k)−1 have the same sign for any k, then

|βi,j | ≤
κ|βi,j−1|
id+ j

+
ξ2

2(id+ j)

i−1∑
p=1

j−2i+2p∑
q=2p−1

|βp,qβi−p,j−1−q|

≤ κ|βi,j−1|
id+ j

+
ξ2(id+ 2i− 1)2i−2(iκ)j−2i+1

2(id+ j)(id+ 2i− 1)(j − 2i+ 1)!

i−1∑
p=1

|βp,2p−1βi−p,2(i−p)−1|

≤ κ|βi,j−1|
id+ j

+
2i−2(iκ)j−2i+1(id+ 2i− 1)

(j − 2i+ 1)!(id+ j)
|βi,2i−1|.

Iterating the inequality above, we finally obtain

|βi,j | ≤
κj−2i+1|βi,2i−1|∏j

k=2i(id+ k)
+ 2i−2κj−2i+1|βi,2i−1|

j∑
k=2i

ik−2i+1(id+ 2i− 1)

(k − 2i+ 1)!
∏j

m=k(id+m)

≤ 2i−2κj−2i+1|βi,2i−1|
(j − 2i+ 1)!

j∑
k=2i−1

ik−2i+1 =
2i−2κj−2i+1|βi,2i−1|(ij−2i+2 − 1)

(j − 2i+ 1)!(i− 1)

<
2i−2(iκ)j−2i+1|βi,2i−1|i
(j − 2i+ 1)!(i− 1)

≤ 2i−1(iκ)j−2i+1

(j − 2i+ 1)!
|βi,2i−1|.

�

Remark 5.2. In the case d = 0, η = 0 and κ = 0, the cgf m(u, t) corresponds to the standard Heston model

with ρ = 0 and mean reversion speed κ = 0. Here it is well known [20] that limt↓0 tm(u/t, t) = v0u/(ξ cot(ξu/2)).

Using the series expansion solution to (5.1) above we find that limt↓0 tm(u/t, t) = v0
∑

i≥1(−1)i+1αi(u
2/2)i.

Explicitly computing the first few terms we find that
∑

i≥1(−1)i+1αi(u
2/2)i = u2/2 + ξ2u4/24 + ξ4u6/240 +

O(ξ6u8), which is in exact agreement with a Taylor expansion of u/(ξ cot(ξu/2)) for small ξ2u.
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5.2. Proof of Proposition 3.3. We start with the case d ∈ (0, 1/2). Let B be the solution to the ordinary

differential equation (2.4), and α := d/2, β0 := 1
ξ

√
u(1−u)
Γ(d+1) , β1 := − κ

ξ2 . The function f(t) ≡ B(t) − β0t
α − β1

satisfies f ′(t) = − 1
2ξ

2f(t)2 − ξ2β0t
αf(t) + κ2

2ξ2 − β0αt
α−1, for t > 0. Define now ψ−, ψ+ : R+ → R by

(5.5) ψ±(t) ≡ − κ

ξ2
± 1

ξ

√
κ2

ξ2
+
u(1− u)td

Γ(d+ 1)
.

We now claim that for any t > 0, the following inequalities hold:

(5.6) ψ−(t) ≤ B(t) ≤ ψ+(t).

Note that

(5.7) ψ′
±(t) = ± αβ2

0t
2α−1√

β2
1 + β2

0t
2α
,

which implies that ψ′
−(t) ≤ 0 ≤ ψ′

+(t), for all t > 0, and

lim
t↓0

ψ′
−(t) = −∞, B′(0) = 0, lim

t↓0
ψ′
+(t) = +∞,

ψ−(0) = −2κ/ξ2 ≤ B(0) ≤ ψ+(0) = 0.

Furthermore, note that

(5.8) B′(t) = −ξ
2

2
(B(t)− ψ+(t))(B(t)− ψ−(t)).

If τ := sup{t > 0 : ψ−(s) ≤ B(s) ≤ ψ+(s), for all 0 ≤ s ≤ t} is finite, then from monotonicity and continuity

of B on [0, τ ] we have B(τ) = ψ+(τ) and B′(τ) = 0. As a result, B′′(τ) = ξ2(ψ+(τ) − ψ−(τ))ψ
′
+(τ)/2 > 0,

implying that there exists τ∗ > τ such that B′(t) > B′(τ) = 0 for t ∈ (τ, τ∗], hence B(t) ∈ (ψ−(t), ψ+(t)) for

t ∈ (τ, τ∗], contradicting the finiteness of τ , and therefore τ = ∞. We now prove that lim
t↑∞

t−αB(t) = β0. Define

the functions ϕ+, ϕ− : (t∗,+∞) → R by

ϕ±(t) = −β0tα ±
{
β2
0t

2α +
1

ξ2

(
κ2

ξ2
− 2β0αt

α−1

)}1/2

,

where t∗ ≥ 0 is large enough so that ϕ±(t) exists as a real number (α− 1 < 0) for t > t∗. For large t, we have

(5.9) ϕ+(t) =
κ2

2ξ4β0
t−α +O(t−3α) and ϕ−(t) = −2β0t

α +O(t−α).

For large t, ϕ′+(t) < 0 and ϕ′−(t) < 0. Since f ′(t) = − ξ2

2 (f(t)− ϕ+(t))(f(t)− ϕ−(t)), two cases can occur:

• there exists t0 > 0 such that ϕ+(t0) ≤ f(t0);

• for all t > t∗, ϕ+(t) > f(t);

In the first case, the comparison principle implies that for all t > t0, ϕ+(t) ≤ f(t) (similarly to the proof

of (5.6)). Therefore (5.6) and the definition of f yield β0t
α + β1 + ϕ+(t) ≤ B(t) ≤ ψ+(t), which proves the

result. In the second case, let us prove first that there exists t1 > 0 such that f(t1) > ϕ−(t1): if for all t such

that ϕ− is well defined we have f(t) ≤ ϕ−(t), then

ψ−(t) ≤ B(t) = f(t) + β1 + β0t
α ≤ ϕ−(t) + β1 + β0t

α,
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which implies B(t) ∼ −β0tα, which contradicts the positivity of B′ (see (5.6) and (5.8)). Thus there exists

t1 > 0 such that f(t1) > ϕ−(t1). Therefore, since, for all t > t∗,

ϕ′−(t) = −β0αtα−1 −
(
β2
0αt

2α−1 +
β0α(1− α)

ξ2t2−α

)[
β2
0t

2α +
1

ξ2

(
κ2

ξ2
− 2β0αt

α−1

)]−1/2

< 0,

the comparison principle implies that ϕ−(t) ≤ f(t) ≤ ϕ+(t) for all t > t1. Therefore f is non-decreasing on

(t1,∞); being bounded by ϕ+, which tends to zero at infinity, it converges to a constant, and lim
t↑∞

t−αB(t) = β0.

We now prove that the effective domain Dt converges to [0, 1] as t tends to infinity. For any u ∈ R \ [0, 1],

B′(t) = −ξ
2

2

(
B2(t) +

2κB(t)

ξ2

)
+

u(1− u)

2Γ(1 + d)
td = −ξ

2

2

(
B(t) +

κ

ξ2

)2

+
κ2

2ξ2
+

u(1− u)

2Γ(1 + d)
td.

Therefore, B′(t) ≤ κ2

2ξ2 + u(1−u)
2Γ(1+d) t

d, so that B(t) ≤ κ2t/2ξ2 + u(1−u)
2Γ(d+2) t

1+d, and hence lim
t↑+∞

t−d/2B(t) = −∞.

Since A(t) = −κθ
∫ t

0
B(s)ds, and since [0, 1] is always in Dt, for any t ≥ 0 (since the process is a martingale),

Part (i) of the proposition follows from Theorem 2.1.

We now move on to part (ii) of the proposition, when d ∈ (−1/2, 0). Let us first prove that lim
t↑∞

B(t) = 0.

Consider the functions ψ−, ψ+ as defined in (5.5). As t tends to zero, ψ+ diverges to +∞ and ψ− to −∞, so

that lim
t↓0

ψ−(t) < B(0) < lim
t↓0

ψ+(t), and hence, from (5.8), B′ is positive in the neighbourhood of the origin.

Moreover, for all t > 0, Equation (5.7) implies that ψ′
+(t) < 0 < ψ′

−(t). Let t0 := sup{t > 0 : ψ−(s) <

B(s) < ψ+(s), for all 0 < s < t}. If t0 is finite, then B(t0) ≥ ψ+(t0) because ψ−(t) < 0 and B is positive and

increasing in (0, t0). Therefore, B(t0) = ψ+(t0) and B(t) ≥ ψ+(t) for all t > t0 by comparison principle, and

hence B is decreasing on (t0,+∞). Since it is bounded below by lim
t↑∞

ψ+(t) = 0, it converges at infinity to some

constant C ≥ 0. From the Riccati equation (2.4), B′ then converges to −κC − 1
2ξ

2C2, and necessarily C = 0.

If t0 is infinite, then B is increasing and bounded from above by ψ+, which tends to 0 at infinity; this yields

a contradiction since B is increasing, so that lim
t↑∞

B(t) = 0. Finally, since S is a martingale and the moment

generating function is convex, [0, 1] ⊆ Dt for all t > 0 and hence [0, 1] ⊆ D∞.

5.3. Proof of Theorem 3.6(i). In this section and the next, the process (XBS
t )t≥0 shall denote the unique

strong solution starting from the origin to the Black-Scholes stochastic differential equation dXBS
t = −1

2Σ
2dt+

ΣdBt, for some given Σ > 0, for t > 0. In this model, the price of a European Call option with maturity t and

strike ex (x ∈ R) is given by

CBS(x, t,Σ) = N
(
− x

Σ
√
t
+

Σ
√
t

2

)
− exN

(
− x

Σ
√
t
− Σ

√
t

2

)
,

whereN denotes the Gaussian cumulative distribution function. Straightforward computations yield logE
(
euX

BS
t

)
=

1

2
u(u − 1)Σ2t, for all u ∈ R. In [21], the authors proved that the process (XBS

t )t≥0 satisfies a large deviations

principle with speed t−1 and good rate function x 7→ x2/(2Σ2), which implies that the following limits hold:

lim
t↓0

t logE
(
ex − eX

BS
t

)
+
= − x2

2Σ2
for x ≤ 0, and lim

t↓0
t logE

(
eX

BS
t − ex

)
+
= − x2

2Σ2
for x ≥ 0.
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When d ∈ (0, 1/2), from Theorem 3.1(i), we can mimic this proof to obtain

lim
t↓0

t logE
(
ex − eXt

)
+
= −λ∗+(x), for x ≤ 0, and lim

t↓0
t logE

(
eXt − ex

)
+
= −λ∗+(x), for x ≥ 0,

where λ∗± are defined in (3.1), so that, for any real number x, Σ(x, t) converges to
√
η as t tends to zero.

Likewise, in the case d ∈ (−1/2, 0), from Theorem 3.1(i) we obtain

lim
t↓0

t1+d logE
(
ex − eXt

)
+
= −λ∗−(x), for x ≤ 0, and lim

t↓0
t1+d logE

(
eXt − ex

)
+
= −λ∗−(x), for x ≥ 0.

Consider the ansatz Σt(x) = σ0t
d/2, for some σ0 > 0; the Black-Scholes call price then reads

CBS(x, t,Σt(x)) = N
(
σ0t

1/2+d/2

2
− x

σ0t1/2+d/2

)
− exN

(
−σ0t

1/2+d/2

2
− x

σ0t1/2+d/2

)
.

Since N (z) = e−z2/2
(
1
z − 1

2z3 + o(z−3)
)
as z tends to minus infinity, we obtain, after simplifications,

CBS(x, t,Σt(x)) = exp

(
−1

2

[
x2

σ2
0t

1+d
− x+

1

4
σ2
0t

1+d

])(
σ2
0t

3/2+3d/2

2x
+ o

(
t3/2+3d/2

))
.

Therefore, taking σ0 = x√
2λ∗

−(x)
=
√

v0
Γ(2+d) , we obtain limt↓0 t logE(eX

BS
t − ex)+ = −λ∗+(x), for all x > 0.

Similarly, limt↓0 t logE(ex − eX
BS
t )+ = −λ∗+(x), for all x < 0.

5.4. Proof of Theorem 3.6(ii). Consider a Call option in the Black-Scholes model, with log strike xt1+d/2

and time-dependent implied volatility σ̃(x, t) ≡
√
2td/4

(√
Λ∗
+(x) +

√
Λ∗
+(x)− x

)
. Then

CBS (x, t, σ̃(x, t)) = E
(
eX

BS
t − ext

1+d/2
)
+
= N

(
− xt1+d/2

σ̃(x, t)
√
t
+
σ̃(x, t)

√
t

2

)
− ext

1+d/2

N
(
− xt1+d/2

σ̃(x, t)
√
t
− σ̃(x, t)

√
t

2

)
= N

(
t1/2+d/4

√
2(Λ∗

+(x)− x)
)
− ext

1+d/2

N
(
−t1/2+d/4

√
2Λ∗

+(x)
)
,

where we used the identity
√

Λ∗
+(x) +

√
Λ∗
+(x)− x+ x√

Λ∗
+(x)+

√
Λ∗

+(x)−x
= 2
√
Λ∗
+(x) in the second line. Since

N (y) = 1− e−y2/2
(
y−1 + o(y−1)

)
for large y, we obtain

1− CBS (x, σ̃(x, t)) =
exp

(
(x− Λ∗

+(x))t
1+d/2

)
√
2t1/2+d/4

(
1√

Λ∗
+(x)

+
1√

Λ∗
+(x)− x

+ o(1)

)
,

and therefore limt↑∞ t−(1+d/2) log
(
1− CBS (x, t, σ̃(x, t))

)
= x− Λ∗

+(x).

Let us now return to the proof of the theorem, following the lines of [33, Theorem 13]. Let f be a function

diverging to infinity at infinity such that that the pointwise limit Λ(u) := limt↑∞ f(t)−1 logE
(
euXt

)
exists

for all u ∈ DΛ ⊂ R. Since the stock price is a true positive martingale, we can define a new probability

measure P̃ via dP̃/dP
∣∣∣
Ft

= St. Under P̃, the limiting cumulant generating function of (Xt/t)t≥0 reads Λ̃(u) :=

limt↑∞ f(t)−1 log Ẽ
(
euXt

)
, and clearly Λ̃(u) = Λ(u + 1) for all u ∈ DΛ̃ = {v ∈ R : 1 + v ∈ DΛ}. Note that

0 ∈ D◦
Λ̃
if and only if 1 ∈ D◦

Λ. This identity also shows that the Fenchel-Legendre transforms are related via
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Λ̃∗(x) = Λ∗(x) − x, for all x ∈ R. Now, if the family (Xt/f(t))t≥1 satisfies a large deviations principle under

both P and P̃ with speed f(t) and good rate functions Λ∗ and Λ̃∗, then the following behaviours hold:

(Put option) lim
t↑∞

f(t)−1 logE
(
exf(t) − eXt

)
+

=

{
x− Λ∗(x) if x ≤ x∗,

x if x > x∗,

(Call option) lim
t↑∞

f(t)−1 logE
(
eXt − exf(t)

)
+

=

{
−Λ̃∗(x) if x ≥ x̃∗,

0 if x < x̃∗,

(covered Call option) lim
t↑∞

f(t)−1 log

[
1− E

(
eXt − exf(t)

)
+

]
=


0 if x > x̃∗,

x− Λ∗(x) if x ∈ [x∗, x̃∗] ,

x if x < x∗,

(5.10)

where x∗ and x̃∗ are where the functions Λ∗ and Λ̃∗ attain their minimum, and satisfy x∗ = Λ′
+(0) ≤ Λ′

−(1) = x̃∗.

Furthermore the convergence in (i)-(iii) is uniform in x on compact subsets of R.
We first prove the theorem in the case d ∈ (0, 1/2]. For f(t) ≡ t1+d/2, Equations (5.10) imply

limt↑∞ t−(1+d/2) logE
(
ext

1+d/2 − eXt

)
+

= x, for all x ∈ R,

limt↑∞ t−(1+d/2) logE
(
eXt − ext

1+d/2
)
+

= 0, for all x ∈ R,

limt↑∞ t−(1+d/2) log

(
1− E

(
eXt − ext

1+d/2
)
+

)
= x− Λ∗(x), for all x ∈ R.

Therefore, the implied volatility satisfies limt↑∞ t−d/4Σ(xt1+d/2) =
√
2
(√

Λ∗
+(x) +

√
Λ∗
+(x)− x

)
for all x in R.

The proof of the theorem in the case d ∈ (−1/2, 0) is analogous to that in [33], and is therefore omitted.

Appendix A. The Gärtner Ellis Theorem

We provide here a brief review of large deviations and the Gärtner-Ellis theorem. For a detailed account

of these, the interested reader should consult [13]. Let (Xn)n∈N be a sequence of random variables in R, with
law µn and cumulant generating function Λn(u) ≡ logE(euXn). For a Borel subset A of the real line, we shall

denote respectively by Ao and Ā its interior and closure (in R).

Definition A.1. The sequence Xn is said to satisfy a large deviations principle with speed n and rate function I

if for each Borel mesurable set E in R,

− inf
x∈Eo

I(x) ≤ lim inf
n↑∞

1

n
logP (Xn ∈ E) ≤ lim sup

n↑∞

1

n
logP (Xn ∈ E) ≤ − inf

x∈Ē
I(x).

Furthermore, the rate function is said to be good if it is strictly convex on the whole real line.

Before stating the main theorem, we need one more concept:

Definition A.2. Let Λ : R → (−∞,+∞] be a convex function, and DΛ := {u ∈ R : Λ(u) < ∞} its effective

domain. The function Λ is said to be essentially smooth if

• The interior Do
Λ is non-empty;

• Λ is differentiable throughout Do
Λ;
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• Λ is steep: lim
n↑∞

|Λ′(un)| = ∞ for any sequence (un)n≥1 in Do
Λ converging to a boundary point of Do

Λ.

Assume now that the limiting cumulant generating function Λ(u) := limn↑∞ n−1Λn(nu) exists as an extended

real number for all u ∈ R, and let DΛ denote its effective domain. Let Λ∗ : R → R+ denote its (dual) Fenchel-

Legendre transform, via the variational formula Λ∗(x) := supλ∈DΛ
{λx− Λ(λ)}. Then the following holds:

Theorem A.3 (Gärtner-Ellis theorem). If 0 ∈ Do
Λ, Λ is lower semicontinuous and essentially smooth, then the

sequence (Xn)n satisfies a large deviations principle with rate function Λ∗.

When partial conditions of the Gärtner-Ellis theorem are satisfied, a full large deviations principle might not

be available, but one can define a partial one, as follows:

Definition A.4. We shall say that the sequence (Xn) satisfies a partial large deviations principle with speed n−1

on some interval I ′ with rate function Λ∗ if Definition A.1 holds for all subsets A ⊂ I ′.

It is clear that if 0 ∈ Do
Λ and Λ is lower semicontinuous and strictly convex on some interval I ⊂ R, then (Xn)

satisfies a partial large deviations principle on I ′ = Λ′(I) with rate function Λ∗(x) := supu∈I{ux− Λ(u)}.
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[15] D. Duffie, D. Filipović and W. Schachermayer. Affine processes and applications in finance. Annals of Applied Probability,

13(3): 984-1053, 2003.

[16] O. El Euch and M. Rosenbaum. Perfect hedging in rough Heston models. arXiv:1703.05049, 2017.

[17] O. El Euch and M. Rosenbaum. The characteristic function of rough Heston models. arXiv:1609.02108, 2016.

[18] O. El Euch, M. Fukasawa and M. Rosenbaum. The microstructural foundations of leverage effect and rough volatility.

arXiv:1609.05177, 2016.

https://ssrn.com/abstract=2983180
https://arxiv.org/abs/1703.05132
https://arxiv.org/abs/1703.05049
https://arxiv.org/abs/1609.02108
https://arxiv.org/abs/1609.05177


20 HAMZA GUENNOUN, ANTOINE JACQUIER, PATRICK ROOME, AND FANGWEI SHI

[19] R. Elliott and J. van der Hoek. A general fractional white noise theory and applications to finance. Mathematical Finance, 13:

301-330, 2003.

[20] M. Forde and A. Jacquier. Small-time asymptotics for implied volatility under the Heston model. IJTAF, 12(6): 861-876, 2009.

[21] M. Forde and A. Jacquier. The large-maturity smile for the Heston model. Finance and Stochastics, 15(4): 755-780, 2011.

[22] M. Forde and H. Zhang. Asymptotics for rough stochastic volatility models. SIAM Journal Fin. Math., 8: 114-145, 2017.

[23] J.P. Fouque, G. Papanicolaou, R. Sircar and K. Solna. Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit

Derivatives. CUP, 2011.

[24] M. Fukasawa. Asymptotic analysis for stochastic volatility: martingale expansion. Finance and Stochastics, 15: 635-654, 2011.

[25] J. Gatheral. The Volatility Surface: a practitioner’s guide. Wiley, 2006.

[26] J. Gatheral, T. Jaisson and M. Rosenbaum. Volatility is rough. Preprint, arXiv:1410.3394, 2014.

[27] C.W.J. Granger and R. Joyeux. An introduction to long memory time series models and fractional differencing. Journal of

Time Series Analysis, 1: 15-39, 1980.

[28] P. Guasoni. No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math. Fin., 16: 569-582, 2006.

[29] A. Gulisashvili. Analytically tractable stochastic stock price models. Springer Finance, 2012.

[30] P. Henry-Labordère. Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing. CRC, 2008.

[31] S. Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The

Review of Financial Studies, 6: 327-342, 1993.

[32] Y. Hu and B. Oksendal. Fractional white noise calculus and applications to finance. Infinite Dimensional Analysis, Quantum

Probability and Related topics, 6: 1-32, 2003.
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