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John Armstrong
Dept. of Mathematics
King’s College London
john.1.armstrong@kcl.ac.uk

Damiano Brigo
Dept. of Mathematics

Imperial College London
damiano.brigo@imperial.ac.uk

First version: Sept. 12, 2015. This version: July 10, 2017

Abstract

We define two new notions of projection of a stochastic differential
equation (SDE) onto a submanifold: the Itô-vector and Itô-jet projec-
tions. This allows one to systematically develop low dimensional approxi-
mations to high dimensional SDEs using differential geometric techniques.
The approach generalizes the notion of projecting a vector field onto a
submanifold in order to derive approximations to ordinary differential
equations, and improves the previous Stratonovich projection method by
adding optimality analysis and results. Indeed, just as in the case of
ordinary projection, our definitions of projection are based on optimal-
ity arguments and give in a well-defined sense “optimal” approximations
to the original SDE in the mean-square sense. We also show that the
Stratonovich projection satisfies an optimality criterion that is more ad
hoc and less appealing than the criteria satisfied by the Itô projections we
introduce.

As an application we consider approximating the solution of the non-
linear filtering problem with a Gaussian distribution and show how the
newly introduced Itô projections lead to optimal approximations in the
Gaussian family and briefly discuss the optimal approximation for more
general families of distribution. We perform a numerical comparison of
our optimally approximated filter with the classical Extended Kalman
Filter to demonstrate the efficacy of the approach.

Keywords: Stochastic differential equations, Jets, SDEs as jets, SDEs
projection on a manifold, SDEs on submanifolds, Stratonovich projection, Itô-
vector projection, Itô-jet projection, Optimal projection, Gaussian Itô-jet filter,
Gaussian Itô-vector filter.
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1 Introduction

In this paper we define three notions of projecting a stochastic differential equa-
tion (SDE) onto a (sub)manifold M . Our aim is to derive practical numerical
methods for solving SDEs and we will illustrate our theory with an example
drawn from signal processing.

To explain the general idea, let us first consider projecting an ordinary dif-
ferential equation (ODE) from the Euclidean space Rr onto an n-dimensional
manifold M ⊆ Rr. An ODE in Rr can be thought of as defining a vector field in
Rr. At every point x ∈M we can use the Euclidean metric to project the vector
at x onto the tangent space TxM . In this way one obtains a vector field on M
which can be thought of as a new ODE on M that approximates the full ODE
in Rr. This is illustrated in Figure 1. It is easy to prove that this will be the
best way of approximating the ODE in Rr with an ODE on M . To be precise,
if the initial condition for an ODE is a point x on the manifold, then any curve
on M with tangent not equal to the projected vector field will diverge from the
solution to the ODE faster than a curve which is tangent to the projected vector
field. In this sense, the projected ODE is the only ODE which is “optimal” at
each point. This paper addresses the question of how projection can be general-
ized from ODEs to SDEs. After some brief preliminaries on Itô–Taylor series in
Section 2, we answer this question by describing three possible generalizations
to SDEs in Section 3.

Figure 1: Left: A pictorial representation of the projection of an ODE defined
on R2 to an ODE defined on the circle. Right: Metric projection from R2 to
the circle.

The first generalization of projection to SDEs has been proposed previously:
what we shall call the Stratonovich projection. The Stratonovich projection is
obtained by simply applying the projection operator to the coefficients of the
SDE written in Stratonovich form. No optimality result has been derived for the
Stratonovich projection. This projection has simply been derived heuristically
from the deterministic case. Nevertheless, it appears to be a good approximation
in practice and it has been used to find good quality numerical solutions to the
non-linear filtering problem (See [9], [10], [3]). The Stratonovich projection is
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a natural first choice from the following point of view. As is obvious to anyone
with experience of stochastic differential equations on manifolds, and we refer
to the monographs and articles [15],[14],[17], [13], [19], [2], simply applying the
projection operator to the coefficients of the SDE written in Itô form will not
work. This is because solutions to the projected equation don’t stay on the
manifold, contrary to the Stratonovich case. Nevertheless, we will be able to
obtain two modifications of this idea, which we will call the Itô-vector projection
and the Itô-jet projection. These both give well-defined SDEs on the manifold.

We derive the Itô-vector projection by seeking an SDE on the manifold
which optimally approximates the original SDE on the manifold when the size
of the errors are measured in the mean square ambient metric of Rr. The mean
squared error between a trajectory following the original SDE and following an
SDE on the manifold will typically grow at a rate O(t

1
2 ). The diffusion term

of the projected SDE is determined by minimizing the coefficient of t
1
2 in this

growth estimate. Choosing the drift term is more delicate, but we give two
minimization arguments that indicate that the optimal choice of drift term is
given by what we call the Itô-vector projection. The first argument identifies
the drift by minimizing the coefficient of the O(t) term in the estimate of the

error, notwithstanding the fact that there is also an O(t
1
2 ) term. The second

argument is to find an SDE on the manifold such that the difference between
the means of the solutions to the original SDE and to the SDE on the manifold
are minimized.

Both of these arguments are somewhat unsatisfying. As an alternative ap-
proach we consider finding the SDE on the manifold that most closely tracks
the metric projection of the solution to the original SDE. The metric projection
is the map that sends a point in the ambient space to the closest point of an
embedded manifold M . It is well known to be well-defined and smooth on a
tubular neighbourhood. The metric projection is illustrated in Figure 1. It is
possible to find an SDE on the manifold such that the mean squared distance
between the solutions on the manifold and the metric projection of the solution
to the original SDE grows at a rate O(t). This requirement determines the dif-

fusion term of the SDE on the manifold and makes the O(t
1
2 ) term coefficient

vanish, rather than merely minimize it. Minimizing the coefficient of the order t
term in this estimate determines the drift. We call the SDE determined in this
way the Itô-jet projection.

It is natural to ask if the Stratonovich projection can also be derived from
an optimality argument. We will show that the Stratonovich projection is op-
timal when using a time-reflection-symmetric optimality criterion anchored to
the deterministic intial condition of the process as a special state. We will
clarify this notion of optimality in the paper. However, as we will see, for our
applications to filtering, the form of optimality achieved by the Stratonovich
projection is not particularly useful. This is because the filtering problem is
inherently asymmetric in time, as indeed are most applications of SDEs. Nev-
ertheless, it is conceivable that in some applications of SDEs to physics, time
reversal symmetry may be a paramount concern. In this case the Stratonovich
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projection may be preferred.
Surprisingly the Itô-vector projection, the Itô-jet projection and the Strat-

onovich projection are all distinct. All of them reduce to classical projection in
the case of ODEs. Thus, while optimality arguments lead to a single best method
for projecting ODEs, the situation is more complex for SDEs. Since both Itô
projections are derived from optimality arguments that are much less ad hoc
than the argument for optimality of the Stratonovich projection, there is a clear
sense in which they are an improvement upon the Stratonovich projection—both
theoretically and in practice.

However, it is not immediately clear whether one should prefer the Itô-vector
or the Itô-jet projection. We investigate this question in Section 4.

We consider a simple toy example in Section 4 which we believe strongly
suggests that the Itô-jet projection is the better approximation. We also prove
a simple theorem that shows how this example can be generalized.

We use this same toy example to illustrate another (entirely non-rigorous)
reason for preferring the Itô-jet projection: mathematical aesthetics. As we shall
see, each of the different notions of projection is best understood using different
formulations of SDEs on manifolds. As its name suggests, the Stratonovich
projection is most readily understood using Stratonovich calculus. The Itô-
vector projection is most readily understood using the formulation of SDEs on
manifolds in terms of Itô calculus first introduced by Itô in [20]. Finally, the Itô-
jet projection is most readily understood using the 2-jet formulation of [2]. As
we will see, the Itô-jet projection has a very elegant formulation in the language
of 2-jets. It is even possible to draw a diagram that allows one to interpret the
Itô-jet projection visually. We will present a diagram that visually represents
the Itô-jet projection of our toy example. In fact, the development of the 2-jet
formulation of SDEs in [2] was originally motivated by the development of these
projection methods. It is for this reason that we have called the projections the
Itô-vector and Itô-jet projections respectively.

Section 5 is devoted to a detailed calculation of the Itô-jet projection in local
coordinates. This calculation amounts to computing the Taylor series for the
metric projection map up to second order. This calculation is essential to using
the projection for applications.

Section 6 demonstrates how the notion of projection can be applied in prac-
tice. In particular, we will apply it to the non-linear filtering problem. We
will derive general projection formulae for the non-linear filtering problem. We
will then apply this to the problem of approximating a non-linear filter using a
Gaussian distribution. A reader who is unfamiliar with non-linear filtering will
want to consult Section 6.1 for a brief review.

Gaussian approximations to non-linear filters are widely used in practice
(see for example [21, 6]). In particular, the Extended Kalman Filter (EKF) is
a popular approximation technique. Other Gaussian approximations exist such
as Assumed Density Filters (ADF) and filters derived from the Stratonovich
projection. Our theory indicates that all these classical techniques can be im-
proved upon by using the Itô projections (at least over small time intervals).
We confirm this with a numerical example.
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The utility of the projection method is by no means restricted to the filtering
problem nor to such simple approximations as Gaussian filters. Our previous
work [5] shows how the Stratonovich projection can be used to generate far
more sophisticated filters and it is clear that the idea of projection should be
widely applicable in the study of ODEs, SDEs, PDEs and SPDEs. Nevertheless
by focussing on Gaussian filters we can examine in detail the idea that there
may be many useful ways of approximating an SDE on a submanifold, but
that the Itô projections are in some sense optimal amongst these approximation
methods. The point we wish to emphasize is that the Itô projections are able
to tell us something new even about the well-worn topic of approximating the
non-linear filtering problem using Gaussian distributions.

Finally in Section 7 we summarize our findings.

2 Stochastic Taylor Series

The main technical tool we will use are stochastic Taylor series. These are
described in detail in [22]. In this section we will recall the main definitions and
results. We will make some minor notational changes so that we can use the
Einstein summation convention.

Let Xt satisfy a d-dimensional stochastic differential equation driven by m
independent Brownian motions Wα

t , α = 1, 2, . . . ,m. We write

dXt = a(X, t)dt+ bα(X, t)dWα
t (1)

where Xt is an random process taking values on Rd. a and bα are also Rd valued
for each α. We are using the Einstein summation convention that when there
are matching indices in an expression one should take the sum over the given
index. Thus (1) is an abbreviation for:

dXt = a(X, t)dt+

m∑
α=1

bα(X, t)dWα
t .

The advantage of the Einstein summation convention is not simply that it makes
formulae shorter. The convention also makes it easier to spot incorrect formulae.
This is because, in formulae that are valid in all coordinate systems, the summed
indices should always consist of one upper and one lower index.

In this section we will use Greek indices to index the different Brownian mo-
tions and Roman indices to index components of vectors in Rd. This additional
convention is not strictly necessary as the range of the index can be deduced
from the position of the index alone.

A multi-index ξ is defined to be a finite list of integer numbers between 0
and m and this definition includes the empty list (). Let l(ξ) denote the length
of ξ. Let n(ξ) denote the number of zeros in ξ. For ξ with length greater than
0, we define: −ξ to be the result of removing the first element from ξ; ξ− for
the result of removing the last element; ξ1 for the first element; and ξ−1 for the
last element.

5



Multi-indices enumerate stochastic integrals with respect to the Brownian
motions Wα

t and time. The following definitions are related to those on page
169 of [22]. We define W 0

t := t so that the indices equal to 0 correspond to time.
We define the multi-integral associated with ξ by:

Iξt1,t2(f) =

{
f(t2) if l(ξ) = 0∫ t2
t1
Iξ−t1,sdW

ξ−1
s otherwise.

For example the multi-index (0, 1, 2) is associated with integrating with respect
first to time, then W 1, then W 2

t .

I
(0,1,2)
t1,t2 (f) =

∫ t2

t1

∫ u

t1

∫ v

t1

f(w) dw dW 1
v dW 2

u .

We re-express the notation in [22] (page 177, Eqs. 3.1–3.3) by defining differen-
tial operators Lξ associated to a multi index as:

Lξf =


f if l(ξ) = 0
∂f
∂t + ai ∂f∂xi + 1

2b
i
αb
j
βg
αβ
E

∂2f
∂xi∂xj if ξ = (0)

biξ1
∂f
∂xi if l(ξ) = 1 and ξ 6= (0)

Lξ1(L−ξf) otherwise.

Here gαβE denotes the covariance matrix of the d Brownian motions Wα
t . Since

we have assumed that the Brownian motions are independent, this will equal
the identity matrix. We choose to write gE instead of using the Kronecker delta
because it transforms as a tensor of type (2, 0). In addition, one can simply
replace gE with the quadratic co-variation tensor if one wishes to consider SDEs
driven by more general continuous semi-martingales.

Since Lξ contains a total of l(ξ) + n(ξ) derivatives, Lξ acts on functions in
Cl(ξ)+n(ξ)(Rd × R+,R).

The following definition is related to Eq. (9.1) page 206 in [22].

Definition 1. The Itô–Taylor expansion of order γ = 0, 1
2 , 1, . . . is given by

Xγ
t =

∑
l(ξ)+n(ξ)≤2γ

Lξ(x)|(t0,Xt0 )I
ξ
t0,t(1)

where x denotes the function x(t,X) = X. When we speak of the expansion of
a given order, we will assume that all the necessary derivatives exist.

The Itô–Taylor expansion allows one to approximate Xt using Xγ
t . Loosely

speaking, this approximation will be accurate in mean squared up to order γ.
A precise statement is given in Proposition 1.

Definition 2. The weak Itô–Taylor expansion of order β = 0, 1, 2, . . . is given
by

ηβ(t) =
∑
l(ξ)≤β

Lξ(x)|(t0,Xt0 )I
ξ
t0,t(1)
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where x denotes the function x(t,X) = X. When we speak of the expansion of
a given order, we will assume that all the necessary derivatives exist.

The weak Itô–Taylor expansion is of interest if one measures the error using
the size of the expectation of the error, rather than the expectation of the size
of the error. We will give a precise statement in Proposition 2.

Given a smooth vector valued function f defined on Rd we have by Itô’s
lemma that

df(Xt) = L0(f)dt+ Lα(f)dWα
t . (2)

The system of equations (1) and (2) define a higher dimensional SDE. We can
use this to compute Itô–Taylor expansions for this higher dimensional system
and hence compute approximations to f(Xt). This calculation gives rise to the
following more general definition.

Definition 3. The Itô–Taylor expansion of order γ = 0, 1
2 , 1, . . . for f(Xt) is

given by

fγt =
∑

l(ξ)+n(ξ)≤2γ

Lξ(f)|(t0,Xt0 )I
ξ
t0,t(1)

When we speak of the expansion of a given order, we will assume that all the
necessary derivatives exist. The weak Itô–Taylor expansion for f(Xt) is defined
similarly.

Lemma 1. We suppose that for all i, W i
0 = 0. Given a time t, and i, j ∈

{1, . . .m}, the integrals

I
(0)
0,t (1) = t

I
(i)
0,t(1) = W i

t

I
(i,j)
0,t (1) =

∫ t

0

W i
sdW

j
s

are orthogonal in expectation.

Proof. We first show that

E
(
I

(i)
0,t(1)I

(j,k)
0,t (1)

)
= E

(
W i
t

∫ t

0

W j
s dW k

s

)
= 0 (3)

for all i, j, k ∈ {1, . . .m}. If i 6= j then we see, by reversing the sign of W j ,
that

E

(
W i
t

∫ t

0

W j
s dW k

s

)
= −E

(
W i
t

∫ t

0

W j
s dW k

s

)
Hence (3) is zero unless i = j. The same argument shows (3) is zero unless
i = k. Finally we note that when i = j = k, (3) simplifies to

E

(
W i
t

∫
W i
sdW

i
s

)
= E

(∫
dW i

s

∫
W i
sdW

i
s

)
= E

(∫ t

0

W i
sds

)
= 0
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by the Itô isometry.
We also need to show that if i 6= k or j 6= l

E
(
I

(i,j)
0,t (1)I

(k,l)
0,t (1)

)
= 0.

This follows from Lemma 5.7.2 on page 191 of [22].
The other cases are trivial.

For completeness, we wish to state some results on the convergence of Itô–
Taylor series. We will first need a few more definitions.

First we define spaces Hξ associated with multi-indices ξ. Associated to the
empty index () we have the set H() of adaptad cadlag processes ft with

|f(t, ω)| <∞

with probability one for each t ≥ 0. H(0) consists of the adapted cadlag processes
with ∫ t

0

|f(s, ω)|ds <∞

with probability one for each t ≥ 0. H(α) has the same definition for any positive
α: it is the set of adapted cadlag processes with∫ t

0

|f(s, ω)|2ds <∞

with probability one for each t ≥ 0. We now recursively define Hξ for ξ of length
greater than 1 to be the set of adapted cadlag processes such that the integral
process Iξ−0,t (f) when viewed as a function of t lies in Hξ1 .

We define M to be the set of all multi-indices.
Given a subset A ⊆M we define the remainder set B(A) to be the set

B(A) = {ξ ∈M \A : −ξ ∈ A.}

Thus the remainder set contains all the indices immediately following the indices
in A. By estimating integrals in the remainder set, one can bound the error of
the Itô–Taylor series as we will see below.

We define
Λk = {ξ ∈M : l(ξ) + n(ξ) ≤ k}.

Thus the order γ Itô–Taylor series is a sum over multi-indexes in Λ2γ .
We can now state a result on the convergence of the Itô–Taylor series. The

following result is a simplified version of Proposition 5.9.1 in [22].

Proposition 1. Suppose that Lξx|Xt0 ,t0 ∈ Hξ for all ξ ∈ Λk. Suppose that
Lξx|Xt,t ∈ Hξ with

sup
0≤t≤T

E
(
|(Lξx|Xt,t)|

2
)
≤ C1
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for all ξ ∈ B(Λk) and some constant C1. Then

E
(
|Xt −X

k
2
t |2
)
≤ C2(t− t0)k+1

for some constant C2. Here X
k
2 is the order k

2 Itô-Taylor expansion with k =
0, 1, . . ..

This next result on the convergence of weak Itô–Taylor series is a restatement
of Proposition 5.11.1 in [22].

Proposition 2. Let β ∈ {1, 2, . . .} and T ∈ (0,∞) be given. Let ClP (Rd,R) de-
note the space of l times continuously differentiable functions whose derivatives
of order up to and including l have polynomial growth. Suppose that ak and
bkj are time-independent and satisfy Lipschitz conditions, linear growth bounds

and belong to C
2(β+1)
P (Rd,R). Then for each g ∈ C

2(β+1)
P (Rd,R) there exist

constants K ∈ (0,∞) and r ∈ {1, 2, . . .} such that

sup
0≤t≤T

|E (g(Xt)− g(ηβ(t)))| ≤ K
(
1 + |X0|2r

)
T β+1

where ηb(t) is the weak Itô–Taylor series and the expectation is taken conditional
on the information at time 0.

A quick note on how we plan to use the above results to obtain optimal ap-
proximations is in order. Take the strong Taylor series to make the point. In our
applications the X we will expand in strong Taylor series will be the difference
between the true solution of a SDE and its approximation on a submanifold.
Knowing that the error in the Taylor series is bounded as per Propositions 1
(and 2 for the weak case), we will then concentrate on minimizing the mean
square of the truncated Taylor series. Minimizing the mean square for the trun-
cated expansion of the difference rather than the mean square of the difference
itself will work in view of the convergence guaranteed by the above proposition.
In this sense when we talk about “minizing the error” or “difference” later on
in the paper we always mean minimizing the truncated expansion mean square.

3 Projecting stochastic differential equations

Let M be an n-dimensional submanifold of Rr with chart ψ : U → Rn for some
open neighbourhood U in M . The inverse φ = ψ−1 gives an embedding of Imψ
into Rr. The setup is illustrated in Figure 2.

Suppose we are given an Itô SDE on Rr, dXt = a(Xt, t) dt+ bα(Xt, t) dWα
t ,

that we write in concise form as

dX = adt+ bα dWα
t , X0 (4)

with X0 ∈M .

9
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Π

Figure 2: Left: An n-dimensional manifold M in Rr, r > n. Right: Tangent
space linear projection used in the Stratonovich and Itô-vector projections

We wish to find an SDE on Rn of the form dYt = A(Yt, t) dt+Bα(Yt, t) dWα
t ,

again written concisely as

dY = A dt+BαdWα
t , Y0 = ψ−1(X0), (5)

whose mapped solution φ(Y ) in some sense approximates the solution X of the
original equation on Rr. We will consider three approaches.

3.1 Stratonovich Projection

Definition 4. Let Wt be an Rm valued Brownian motion. Given a Stratonovich
SDE on Rr

dX = a dt+ bα ◦ dWα
t

and a chart ψ : U → Rn for some neighbourhood inM we define the Stratonovich
projection of the SDE to be:

dY = Adt+Bα ◦ dWα
t

where:

A(Yt, t) = (ψ∗)Πφ(Yt)(a(φ(Yt), t)) (6)

Bα(Yt, t) = (ψ∗)Πφ(Yt)(bα(φ(Yt), t)) (7)

where Π is the projection of Rr onto φ∗(Rn) defined by the Euclidean metric.

Because we know that projection of vector fields can be defined similarly, and
because we know that the coefficients of Stratonovich SDEs transform like vector
fields, we see that the definition above defines a Stratonovich SDE onM . Indeed,
if one is willing to accept that projection of vector fields onto a submanifold is
well-defined, then one could define the projection of a Stratonovich SDE as the
projection of the coefficient functions.

Trying the same method for an Itô SDE does not work. One cannot simply
apply projection to the coefficient functions of an Itô SDE because the coeffi-
cients of an Itô SDE on a manifold do not transform like vector fields.

The Stratonovich projection of an Itô SDE is trivially defined by the recipe:

10



(i) rewrite the Itô SDE as a Stratonovich SDE;

(ii) apply the Stratonovich projection as defined above;

(iii) rewrite the resulting Stratonovich SDE as an Itô SDE.

In other words, while the definition of Stratonovich projection is most conve-
niently expressed using Stratonovich calculus, the notion of projection is inde-
pendent of the calculus used to write down the differential equations.

Linear projection provides the best possible way to approximate vectors in
Rr with vectors in TXM . For ODEs, this implies that the projected ODE is the
best possible approximation in M of the original ODE. However, the situation is
different for SDEs. It is not immediately clear how good an approximation the
projected Stratonovich SDE solution φ(Y ) is for the original SDE X solution.
For example, we cannot immediately extend the optimality argument for ODEs
to Stratonovich SDEs pathwise, because of the rough paths property of SDEs
solutions. In this sense, with the information we have given so far, the definition
of the Stratonovich projection is motivated by purely heuristic considerations.
Neverthless, the Stratonovich projection gives good results when applied to
approximation of non-linear filtering problems (see [9], [10], [3]) and we will
discuss optimality arguments later on, when discussing the Itô-vector projection,
and illustrate the time-symmetric optimality of the Stratonovich projection in
detail.

In the next sections we will use optimality arguments to derive two alterna-
tive notions of projection.

3.2 Itô-vector projection

We wish to consider the minimization problem of finding coefficients A and B
such that the solution of the SDE (5) has the property that φ(Yt) is, in some
sense, as close to the solution Xt of (4) as possible.

The next proposition shows how to give a precise meaning to this notion
using the Itô–Taylor expansion.

Proposition 3. Let f : Rdx → Rd and F : Rdy → Rd be smooth maps. Let x
be a process on Rdx and y be a process on Rdy given by:

dxt = a(xt, t) dt+ bα(xt, t) dWα
t , x0

dyt = A(yt, t) dt+Bα(yt, t) dWα
t , y0

(8)

with f(x0) = F (y0). Define

zt = f(xt)− F (yt).

Let zit denote the components of the order i Itô–Taylor expansion for z. We

11



have that:

E(|z
1
2
t |2) =

∑
α

|f∗(bα(x0, 0))− F∗(Bα(y0, 0))|2t

E(|z1
t |2) =

∑
α

|f∗(bα(x0, 0))− F∗(Bα(y0, 0))|2t

+

(∣∣∣f∗(a(x0, 0))− F∗(A(y0, 0))

+
1

2
(∇bα(x0,0)

f∗)bβ(x0, 0)gαβE −
1

2
(∇Bα(y0,0)

F∗)Bβ(y0, 0)gαβE

∣∣∣2
+R(f, F, b, B)2

)
t2

(9)

where R(f, F, b, B) is a term independent of a, A and t.

Proof. As an example of how to compute the operators Lξ for the system of
equations (8), we write down L(α).

L(α)f = biα
∂f

∂xi
+Biα

∂f

∂yi
.

Let us now the first few terms of the Itô–Taylor expansion for z = f(x)−F (y).

L(0)(z) = f∗(a(xt, t))− F∗(A(yt, t))

+
1

2
(∇bα(xt,t)f∗)bβ(xt, t)g

αβ
E −

1

2
(∇Bα(yt,t)F∗)Bβ(yt, t)g

αβ
E .

L(α)(z) = f∗(bα(xt, t))− F∗(Bα(yt, t)).

L(α,β)(z) = L(α)L(β)(z)

= biα(xt, t)
∂

∂xi
f∗(bβ(xt, t))−Biα(yt, t)

∂

∂yi
F∗(Bβ(yt, t)).

We can now write down the order 1 Itô-Taylor expansion z1
t . It is

z1
t =

(
f∗(a(x0, 0))− F∗(A(y0, 0))

+
1

2
(∇bα(x0,0)f∗)bβ(x0, 0)gαβE −

1

2
(∇Bα(y0,0)F∗)Bβ(y0, 0)gαβE

)
I

(0)
0,t

+
(
f∗(bα(x0, 0))− F∗(Bα(y0, 0))

)
I

(α)
0,t

+

(
biα(x0, 0)

∂

∂xi
f∗(bβ(x0, 0))−Biα(y0, 0)

∂

∂yi
F∗(Bβ(y0, 0))

)
I

(α,β)
0,t

We can now use Lemma 1 to calculate E(|z1
t |2). This gives the desired result.

Remark 1. For readers familiar with the traditional Itô formula in Euclidean
spaces, the term (∇bα(x0,0)

fi,∗)bβ(x0, 0)gαβE for the i-th component of f might be
more familiar when written as

(∇bαfi,∗)bβg
αβ
E = Tr

[
bT (Hfi)b

]
12



where Tr is the trace operator and H is the Hessian operator.

Theorem 1 (Itô–Taylor series and Itô-vector projection). Given any time t > 0,
if we wish to find the coefficients A and B at time 0 for which the solution to
Equation (5) is as close as possible to the solution to Equation (4) in the sense
that the mean square (L2) norm of the order 1

2 Itô–Taylor series for Xt−φ(Yt)
is minimized, we must take

Bα(Y0, 0) = (ψ∗)X0
ΠX0

bα(X0, 0)

where ΠX0
is the projection map onto the tangent space of M at X0. If we

now suppose that B is chosen so that this minimum is achieved at all points of
U , a neighborhood of X0 in M , then the mean square L2 norm of the order 1
Itô–Taylor series is minimized by taking

A(Y0, 0) = (ψ∗)X0
ΠX0

(
a(X0, 0)− 1

2
(∇Bα(Y0,0)φ∗)Bβ(Y0, 0)gαβE

)
.

Proof. We apply Proposition 3 taking f equal to the identity, F equal to φ,
xt = Xt and yt = Yt. To minimize the order 1

2 Itô–Taylor series for Xt − φ(Yt)
we must solve the problem:

Find Bα(Y0, 0) minimizing
∑
α

|φ∗(Bα(Y0, 0))− bα(X0, 0)|2.

The solution to this is given by Bα(Y0, 0) = ψ∗(Vα) where the vectors Vα give a
solution to the problem:

Find Vα ∈ Imφ∗ minimizing
∑
α

|V − bα(X0, 0)|2.

The standard properties of the projection map tell us that Vα = ΠX0
bα(X0, 0).

The same argument is used to find the formula for the coefficient A that
minimizes the order 1 Itô–Taylor expansion.

This theorem motivates the following definition.

Definition 5. The Itô-vector projection of the SDE (4) onto the manifold M
is given in the chart ψ by the SDE (5) with

φ := ψ−1

Bα(Yt, t) := (ψ∗)φ(Yt)Πφ(Yt)bα(φ(Yt), t)

A(Yt, t) := (ψ∗)φ(Yt)Πφ(Yt)

(
a(φ(Yt), t)−

1

2
(∇Bα(Yt,t)φ∗)Bβ(φ(Yt), t)g

αβ
E

)
(10)

Remark 2. The optimal B in the above definition is the same we had in the
Stratonovich projection in Eq. (7). The optimal A is different.

13



Corollary 1. The Itô-vector projection defines an SDE on the manifold M . By
this we mean that SDE defined on the manifold M transforms according to Itô’s
lemma as we change chart ψ. See [2] for a more detailed discussion of the Itô
formulation of SDEs on manifolds.

Proof. The criteria we are using for finding the optimal coefficients of the SDE
is given in terms of an estimate of the growth of the difference between the
solution to the SDE in Rr and the solution to the SDE on the manifold. Since
it is expressed in terms of the solutions to the SDE rather than the coefficients
of the SDE, the criterion is independent of the choice of chart ψ.

It follows that the condition we have derived on the coefficients will transform
according to Itô’s lemma as we change the choice of chart. For an alternative
proof by brute-force calculation see [4].

We will demonstrate that the Itô-vector projection is distinct from the
Stratonovich projection by calculating an explicit example in Section 6.

One criticism of our derivation of the Itô-vector projection is that it is pe-
culiar to worry about minimizing a term of order 1 when we cannot even en-
sure that the projection is accurate to order 1

2 . It seems uncontroversial that
choosing the diffusion coefficient B by the prescription above will yield the best
approximation, but will it make much difference to choose A in the same way?

The reason that choosing A is important is that the errors of order 1
2 due

to the approximation of b will cancel on average. The correct choice of A yields
the optimal average value for the approximation. This is made precise by the
next result.

Theorem 2 (Itô-vector projection and weak Itô-Taylor expansion). If we wish
to find the coefficient A at time 0 for which the solution to Equation (5) is as
close as possible to the solution to Equation (4) in the sense that the norm of the
expectation of the order 1 weak Itô–Taylor series for Xt − φ(Yt) is minimized,
we must take:

A(Y0, 0) = (ψ∗)X0
ΠX0

(
a(X0, 0)− 1

2
(∇Bα(Y0,0)φ∗)Bβ(Y0, 0)gαβE

)
.

where φ = ψ−1.

Proof. The expectation of the weak Itô Taylor expansion of Xt − φ(Yt) is(
a(X0, 0)− φ∗(A(Y0, 0))− 1

2
(∇Bα(Y0,0)φ∗)Bβ(Y0, 0)gαβE

)
t.

The result now follows immediately from the properties of Π.

Thus the Itô-vector projection is the choice of A and B that simultaneously
minimizes the expectation of the error to order 1

2 and the error of the expectation
to order 1.

14



Given the Stratonovich–Taylor expansions described in [22], one might won-
der if there are versions of Theorems 1 and 2 using Stratonovich–Taylor se-
ries in place of Itô–Taylor series? Might these provide a justification for the
Stratonovich projection? The answer is negative. The order 1 Stratonovich–
Taylor expansion of [22] is in fact equal to the order 1 Itô–Taylor expansion.
The difference is simply that the Stratonovich–Taylor expansion is expressed
in terms of Stratonovich coefficients and Stratonovich integrals rather than Itô
coefficients and integrals. Thus there is no different “Stratonovich” version of
Theorem 1.

However, there is a sense in which the Stratonovich projection is optimal in
relation with time symmetry. We will address this optimality after introducing
two different optimal approximations, the Itô vector and Itô jet projections.

3.3 Itô-jet projection

φ

ψ

Rr RnM
Πs

Figure 3: Metric projection Πs of a tubular neighbourhood of M in Rr onto a
neighbourhood U in M . This is used to define the Itô-jet projection.

We now suppose that the open set U inside our manifold M has been chosen
so that we can find a tubular neighbourhood N of U such that the metric
projection Πs is smoothly defined on N . The metric projection is the map
sending a point x ∈ Rr to the nearest point inN . The standard theory of tubular
neighbourhoods tells us that if we choose U small enough, these conditions will
apply.

Note that the superscript s in Πs is short for smooth and is intended to
distinguish this map from the linear projection operator Πφ(x) onto the tangent
space at φ(x) (x ∈ Rn). Since the metric on M is induced by the Rr Euclidean
metric, we will have that the tangent-space linear projection, Πφ(x), will be the
first-order-component or best-linear-approximation of the metric projection, Πs.
See also our explicit calculation in Equation (23) later on.

For ODEs only the first order linear component of the metric projection is
necessary to define the projection. However, Itô SDEs involve explicit second
order effects, so that there is an actual difference in applying the tangent vector
projection or the full metric projection, going beyond the linear term, in ap-
proximating a SDE on a submanifold. As we pointed out in [2], an Itô SDE can
be interpreted as a 2-jet. It is then not completely surprising that the second
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order terms of the metric projection play an important role in understanding
the projection of SDEs.

More specifically, in this section we will solve the problem of finding an SDE
on the manifold M , Yt in ψ coordinates, which minimizes the mean square of
the truncated Taylor expansion of the M geodesic distance between Πs(Xt) and
φ(Yt), or ambient Rr distance between these two points of M . The two distances
will lead to the same result. We call this solution the Itô-jet projection. By
contrast, the Itô-vector projection focuses on the Rr distance between φ(Yt) and
Xt. Thus the Itô-jet projection uses the metric projection of X as a benchmark
to obtain an optimal approximation φ(Y ), whereas the Itô-vector projection
uses directly the original X as a benchmark.

The Itô-jet projection is most neatly defined using the correspondence be-
tween 2-jets and SDEs described in [2]. We recall this correspondence now.

Suppose that at each point, x, of a manifold, M , we are given a smooth map
γx : Rm → M with γx(0) = x. Suppose also that γx depends smoothly on x.
We can then define an SDE on M driven by m dimensional Brownian motion
by:

dXi
t =

1

2
gαβE

∂2γi

∂xα∂xβ
(Xt)dt+

∂γi

∂xα
(Xt)dW

α
t .

Here Xi and γi denote the components in some coordinate chart on M . It
follows by Itô’s Lemma that this SDE is independent of the choice of charts for
M . Since we only use the first two derivatives of γ in this definition, we say
that the SDE depends only on the 2-jet of γ.

We can now write down the definition of the Itô-jet projection.

Definition 6. Let Wα
t be independent Brownian motions with 1 ≤ α ≤ k. Let

γx : Rk → Rr be a smoothly varying family of maps satisfying γx(0) = x for all
x ∈ Rr. We interpret γ as defining an Itô SDE. We define the Itô-jet projection
to be the SDE associated with Πs ◦ γy : Rk →M .

Since this definition only depends upon germs of Πs and γ, the Itô-jet pro-
jection does not depend upon issues such as the tubular neighbourhood used to
define Πs.

We wish to show that the Itô-jet projection solves the problem of finding
the best approximation to the SDE on the manifold, if one measures the quality
of the approximation using the truncated Itô-Taylor expansion of either the
geodesic distance or the distance in the ambient space Rr.

Theorem 3 (Itô-jet projection as optimal approximation). Let λ(x, y) denote
the square of the geodesic distance between two points on M . Let |x−y|2r denote
the square of the distance between two points in the ambient space. If we wish to
find the coefficients A and B at time 0 for which the solution to (5) is as close
as possible to the image on M of the solution of (4) under Πs in the sense that
the expectation of the square of the order 1 Itô-Taylor expansion of λ or of | · |2r
is minimized, we must take

Bα(Y0, 0) = (ψ∗)X0
ΠX0

bα(X0, 0).
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If we use this to define B at all points of M , we have that the expectation of the
square of the order 2 Itô-Taylor expansion of λ or | · |2r is minimized by ensuring
that the the 2-jet associated with (5) at (Y0, 0) is given by Πs ◦ γX0

where γx is
the 2-jet associated with (4). This results in the following drift for (5):

A(Y0, 0) = Π̃s
∗(a(X0, 0)) +

1

2
(∇bα(X0,0)

Π̃s
∗)bβ(X0, 0)gαβE , (11)

where we define Π̃s = ψ ◦Πs.

Proof. We will first prove the result for the geodesic distance.
It will suffice to prove the result in a single chart. Hence we may assume

that our coordinates are normal coordinates based at X0.
We have the following Taylor series expansion for the square of the geodesic

distance (see for example formula 3.4.3 in [7]):

λ(x, y) = gEij(x
i − yi)(xj − yj)

− 1

12
Rikjl(x

i + yi)(xk − yk)(xj + yj)(xl − yl) +O((|x|+ |y|)5).

The first term is just the Euclidean metric on Rn, the term Rikjl denotes the
Riemann curvature tensor of M at the origin.

We can write down the expectation of the order 2 Itô–Taylor expansion of
|Π̃s(Xt)− Yt|2 using Proposition 3, taking f = Π̃s and F to be the identity. It
is: ∑

α

|Π̃s
∗(bα(X0, 0))−Bα(Y0, 0)|2t

+

(∣∣∣∣Π̃s
∗(a(X0, 0)) +

1

2
(∇bα(X0,0)

Π̃s
∗)bβ(X0, 0)gαβE −A(Y0, 0)

∣∣∣∣2
+R(Π̃s, b, B)2

)
t2

(12)

where R(Π̃s, b, B) is a term independent of a and A. Our reasoning is that
we know that this formula for the expectation of |Π̃s(Xt)− Yt|2 is accurate up
to order t2, therefore it must equal the expectation of the order 2 Itô–Taylor
expansion. This allows us to avoid computing the order 2 Itô–Taylor expansion
directly.

The curvature term is fourth order, so it will not influence the order 1 Itô–
Taylor expansion for λ. This is because the differential operators Lξ in this
expansion are all order 2 or less. We deduce that the expectation of the order
1 Itô-Taylor expansion of λ is∑

α

|Π̃s
∗(bα(X0, 0))−Bα(Y0, 0)|2t.

This is minimized by taking B as described in the statement of the theorem.
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The expectation of an integral Iξ(1) is zero if ξ contains any non-zero entries.
This follows by the Martingale property of the Itô integral. Thus the non-zero
terms in the expectation of the order 2 Itô expansion for λ correspond to the
multi-indices (), (0) and (0, 0). Since the curvature term is fourth order, the
only term that will contain a curvature term corresponds to the index (0, 0).
Moreover, only the highest order term of the operator L0,0 is influenced by the
curvature. The coefficient of this highest order term may involve only b and B
but will not involve a or A.

Thus the expectation of the order 2 Itô–Taylor expansion is of the form
(12) since any curvature correction can be absorbed into the term R(Π̃s, b, B)2.
We deduce that the order 2 Itô–Taylor series is minimized by taking A as in
Equation (11). When these conditions are rewritten in the language of 2-jets,
we get the desired result for the metric λ.

The proof for the metric | · | follows from Lemma 2 given below, and is
otherwise essentially identical to that for λ.

Note that in this argument we can ensure that the order 1 expansion of
λ actually vanishes. By contrast, recall that the corresponding term did not
vanish in the derivation of the Itô-vector projection which lead us to give an
alternative derivation using the weak Itô–Taylor expansion.

Lemma 2. Let U be a neighbourhood of the origin in Rn and let φ : U → Rr
be normal coordinates for the Riemannian manifold φ(U) centred at the origin,
then

|φ(x)− φ(y)|2r = |x− y|2n +O((|x|n + |y|n)4).

Here | · |n is the norm on Rn.

Proof. Without loss of generality we may assume that the origin is mapped
to the origin and the coordinate axes in Rn are mapped to the corresponding
axes in Rr. Given a point y ∈ U , we can write the Taylor expansion for the
component φ(y)a in the following form:

φ(y)a = (δrn)ai y
i +Aajky

jyk +O(|y|3n). (13)

Here (δrn) is the tensor representing the projection of Rr onto Rn. The upper
indices of (δrn) range from 1 to r and the lower from 1 to n. (δrn)ij is equal to 1 if
i = j and 0 otherwise. Aajk is a tensor with upper index a ranging from 1 to r
and lower indices j and k ranging from 1 to n and which satisfies Aajk = Aakj .

The components of the metric tensor on U can now be computed as follows:

gij =

〈
∂φ

∂yi
,
∂φ

∂yj

〉
r

=
(
(δnr )ai +Aaiky

k
) (

(δnr )bj +Abjly
l
)

(gr)ab +O(|y|2n)

Here gr is the metric tensor of Rr. Our expression for gij simplifies to give:

gij = (gn)ij +Ajiky
k +Aijky

k +O(|y|2n).
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It is well known that in Riemannian normal coordinates the partial deriva-
tives of the metric tensor vanish at the origin. We compute that

∂kgij |0 = Ajik +Aijk.

So we have Ajik = −Aijk. However, recall that Aijk is symmetric in the indices
j and k. We see that:

Aijk = −Ajik = −Ajki = Akji = Akij = −Aikj = −Aijk.

So all the components of A vanish.
We can now use (13) to compute:

|φ(x)− φ(y)|2r = |(δrn)ai x
i − (δrn)ai y

i|2r +O((|x|n + |y|n)4)

= |x− y|2n +O((|x|n + |y|n)4).

3.4 Time-symmetric optimality of the Stratonovich pro-
jection

Having introduced the Itô vector and Itô jet projections, we are now in a position
where we can clarify that also the Stratonovich projection is optimal in a time
symmetric sense, even if this optimality is somewhat ad hoc.

Consider the x SDE (8), in Stratonovich form:

dxt = ā(x, t)dt+ bα(x, t) ◦ dWα
t , X0. (14)

Recall the Itô Stratonovich transformation

āi = ai −
1

2

dx∑
j=1

∑
α

bjα
∂biα
∂xj

.

More generally, by a bar over the drift of an Itô SDE we will mean the drift
of the equivalent Stratonovich SDE.

We now extend the SDE to negative time as follows. Define

dξt = −ā(ξ, t)dt− bα(ξ, t) ◦ dŴα
t , ξ0 = X0 (15)

where Ŵ is a second standard Brownian motion, independent of W . Given the
symmetric nature of the Stratonovich integral underlying the above SDE and
given that formally the chain rule holds, it makes sense to define x for t < 0 by
setting

x−t := ξt.

We now wonder whether the Stratonovich projection could be indeed optimal
at time 0 for this SDE extended to negative time at time 0. Suppose that we
wish to find the SDE on M

dy = Ā dt+Bα ◦ dWα
t , y0 = x0, (16)
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extended similarly to negative time (giving y−t), that minimizes the mean square
of the truncated Taylor expansion of the vector (f(xt)−F (yt), f(x−t)−F (y−t))
Here f and F are functions as defined in Proposition 3.

This optimality criterion is symmetric under time reversal around an anchor
state given by a deterministic initial condition. For most applications, for exam-
ple, when we apply the projection method to filtering, there will be a clear time
asymmetry in the problem setting. In these cases, a time-symmetric optimality
criterion would not be appropriate. However, in applications to physics one may
possibly seek to approximate SDEs that are symmetric under time-reversal in
a manner that preserves this symmetry. In this case this criterion would be a
natural choice.

Write zit for the terms in the Itô Taylor expansion of zt = f(xt) − F (yt).
Proposition 3 states that for positive t:

E(|z
1
2
t |2) =

∑
α

|f∗(bα(x0, 0))− F∗(Bα(y0, 0))|2t

E(|z1
t |2) =

∑
α

|f∗(bα(x0, 0))− F∗(Bα(y0, 0))|2t

+

(∣∣∣f∗(a(x0, 0))− F∗(A(y0, 0))

+
1

2
(∇bα(x0,0)

f∗)bβ(x0, 0)gαβE −
1

2
(∇Bα(y0,0)

F∗)Bβ(y0, 0)gαβE

∣∣∣2
+R(f, F, b, B)2

)
t2

(17)

The interesting point is that for negative t the correction terms in this second
equation are very different. Recall ξt = x−t and define ηt = y−t so we can write
conventional Itô SDEs for ξt and ηt.

dξt = −(a(ξt,−t)− (∇bα(ξt,−t)bβ)(ξt,−t)gαβE )dt− bα(ξt,−t)dŴα
t

dηt = −(A(ηt,−t)− (∇Bα(ηt,−t)Bβ)(ηt,−t)gαβE )dt−Bα(ηt,−t)dŴα
t .

By proposition 3 we therefore have the following expressions for zit for negative

20



times t.

E(|z
1
2
t |2) =

∑
α

|f∗(bα(x0, 0))− F∗(Bα(y0, 0))|2t

E(|z1
t |2) =

∑
α

|f∗(bα(x0, 0))− F∗(Bα(y0, 0))|2t

+

(∣∣∣f∗ (−a(x0, 0) +∇bα(x0,0)bβ(x0, 0)gαβE

)
− F∗

(
−A(y0, 0) +∇bα(x0,0)bβ(x0, 0)gαβE

)
+

1

2
(∇bα(x0,0)

f∗)bβ(x0, 0)gαβE −
1

2
(∇Bα(y0,0)

F∗)Bβ(y0, 0)gαβE

∣∣∣2
+R′(f, F, b, B)2

)
t2

(18)

Combining our results we have for any t:

1

2
E(|z

1
2
t |2 +

1

2
E(|z

1
2
−t|2) =

∑
α

|f∗(bα(x0, 0))− F∗(Bα(y0, 0))|2t

1

2
E(|z1

t |2) +
1

2
E(|z1

−t|2) =
∑
α

|f∗(bα(x0, 0))− F∗(Bα(y0, 0))|2t

+

(
1

2

∣∣∣f∗ (−a(x0, 0) +∇bα(x0,0)bβ(x0, 0)gαβE

)
− F∗

(
−A(y0, 0) +∇Bα(x0,0)Bβ(x0, 0)gαβE

)
+

1

2
(∇bα(x0,0)

f∗)bβ(x0, 0)gαβE −
1

2
(∇Bα(y0,0)

F∗)Bβ(y0, 0)gαβE

∣∣∣2
+

1

2

∣∣∣f∗a(x0, 0)− F∗A(y0, 0)

+
1

2
(∇bα(x0,0)

f∗)bβ(x0, 0)gαβE −
1

2
(∇Bα(y0,0)

F∗)Bβ(y0, 0)gαβE

∣∣∣2
+R(f, F, b, B)2 +R′(f, F, b, B)2

)
t2

(19)

We can now find the optimal projection in a time symmetric sense by mim-
icking our previous arguments. We will need a lemma that allows us to write
down the minimizing A.

Lemma 3. Let (V, g) be a Hilbert space containing a closed subspace W . Let
v1 and v2 be two vectors in V . Then the optimization problem

minimize
w∈W

|w − v1|2 + |w − v2|2
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has a unique minimizer given by w = ΠW ( 1
2v1 + 1

2v2) where ΠW is orthogonal
projection onto W .

Proof. By translating the problem by ΠW ( 1
2v1 + 1

2v2) we may assume wlog that
ΠW (v1) = −ΠW (v2). Then for w ∈W

|w − v1|2 + |w − v2|2 = |w −ΠW v1|2 + |w −ΠW v2|2 + |ΠW v1 − v1|2 + |ΠW v2 − v2|2

= |w −ΠW v1|2 + |w + ΠW v1|2 + |ΠW v1 − v1|2 + |ΠW v2 − v2|2

= 2|w|2 + 2|ΠW v1|2 + |ΠW v1 − v1|2 + |ΠW v2 − v2|2

This has a unique minimizer, w = 0.

Let us begin with the case f = id and F = φ. Minimizing the order 1
2

expansion requires us to choose B such that Πφ(yt)bα(φ(yt), t) = φ∗(Bα(yt), t)
at every point. By Lemma 3 and (19), minimizing the order 1 expansion then
requires us to choose A such that

φ∗(A(yt, t)) = Πφ(yt)

(
a(φ(y), t)− 1

2
∇bα(φ(yt),t)bβ(φ(yt), t)g

αβ
E +

1

2
φ∗∇Bα(φ(yt),t)Bβ(φ(yt), t)g

αβ
E

)
.

Equivalently
φ∗(Ā(yt, t)) = Πφ(yt) (ā(y, t)) .

Hence we obtain the Stratonovich projection as the time symmetric analogue of
the vector projection.

Now consider the case where f = Πs and F = id. Minimizing the order 1
2

expansion requires us to choose B by (Πs)∗bα = Bα. By Lemma 3 and (19),
minimizing the order 1 expansion then requires us to choose A such that

A(yt, t) = (Πs)∗
(
a(φ(y), t)− 1

2
∇bα(φ(yt),t)bβ(φ(yt), t)g

αβ
E

)
+

1

2
∇Bα(φ(yt),t)Bβ(φ(yt), t)g

αβ
E .

Equivalently
Ā(yt, t) = (Πs)∗ (ā(φ(y), t)) .

Again, this is the Stratonovich projection.

4 A low dimensional example: cross diffusion on
a unit circle

We now look at a concrete example which shows the difference between the
Itô-vector and Itô-jet projections. Consider the SDE in R2 given by

dXt = σYt dWt,

dYt = σXt dWt,
(20)

with deterministic initial condition (X0, Y0). We call this a cross diffusion, since
each state crosses over as diffusion coefficient of the other state and the paths
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tend to lie on a St Andrew cross, see Appendix A for more details on this
process. We wish to project this process equation onto the unit circle given by
X2 + Y 2 = 1. It is easy to check using Itô’s Lemma that if we write (Xt, Yt) in
polar coordinates as (rt cos(θt), rt sin(θt)) then θt = arctan(Yt/Xt) satisfies the
following exact angular position process equation:

dθt = −1

2
σ2 sin(4θt)dt+ σ cos(2θt)dWt, or dθt = σ cos(2θt) ◦ dWt. (21)

Thanks to the special structure of the cross-diffusion, the equation above
is already a closed SDE for θ without needing to apply any of our projection
methods. In this sense we already have the exact angular position SDE and
we do not need to project the original R2 SDE on the circle M to approximate
the exact angular position with a SDE on the circle. However, we might want
to check whether one of our projection methods is consistent with the exact
angular position SDE. Let us check how the different projections behave. If we
use the same polar coordinate θ for the unit circle, we find that the Stratonovich
projection and the Itô-jet projection for the (X,Y ) SDE are also given by (21),
and are thus consistent with the exact θ. However the Itô-vector projection is
different and results in:

dθt = σ cos(2θt)dWt.

For this example at least, the Itô-jet projection and the Stratonovich pro-
jections track the angular position of (Xt, Yt) perfectly. Intuitively one might
therefore feel that the Stratonovich and Itô-jet projections are “better” approx-
imations to the SDE despite the short time optimality arguments given earlier.
It turns out this is a special case of a more general situation, summarized in the
following

Definition 7 (SDE that fibers over a map between manifolds). Let f : M → N
be a smooth map between two manifolds. Let S be an SDE on M determined
by the 2-jets γx : Rm → M given at each point x ∈ M . We say that S fibres
over f if j2(f ◦ γx1

) = j2(f ◦ γx2
) whenever f(x1) = f(x2). This implies that

we can define an SDE on the image of f using the 2-jets j2(f ◦ γx) at f(x). We
call this the SDE induced by f .

Returning to projection, we see that we have the following

Theorem 4 (If SDE fibres over Πs then Stratonovich = Itô-jet proj.). If an
SDE fibres over the smooth projection map Πs then the Stratonovich and Itô-jet
projection will both be equal to the SDE induced by Πs.

Proof. This is an immediate consequence of the Stratonovich chain rule in the
first case. It is a trivial consequence of the definition of the Itô-jet projection in
the second case.

Our two-dimensional example of the cross-diffusion on the circle is simply a
special case of this more general phenomenon.
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It is interesting to note that one can draw a diagram to show the Itô-jet
projection. In [2] it is discussed how the jet formulation of SDEs makes it
possible to draw pictures of SDEs that transform according to Itô’s lemma.
For processes driven by one dimensional Brownian motion, one simply finds
functions γx whose 2-jet represents the SDE and then draws the image of an
interval [−ε, ε] under the map γx at each point x. A picture of this type is shown
in Figure 4. It shows how the 2-jets determining the SDE (20) can be projected
onto the unit circle simply by composition with Πs.

Figure 4: An SDE in R2 and its Itô-jet projection onto the unit circle

It seems paradoxical that we derived the Itô-vector projection using optimal-
ity arguments that seem to be less ad hoc than for the Stratonovich projection,
and yet, for this example, the Itô-vector projection appears manifestly subopti-
mal.

One possible resolution to this paradox is to say that our notions of tracking
Xt optimally are flawed. Theorem 1 has the weakness that we attempt to
minimize a term of order 1 when our approximation is not accurate at order
1
2 . Indeed, looking at Equation (17) we see that when we try to minimize the
relevant expectation we minimize a combination of terms of order t and t2 for
the square. Moreover, Theorem 2 has the weakness that we are using the error
in the mean to measure the accuracy of our solution. By contrast, the Itô-jet
projection has a fully convincing derivation as the optimal approximation of
Πs(Xt) up to order 1.

We will see numerical evidence later that suggests that the Itô-jet projection
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performs better in the long term than the Itô-vector projection which lends some
support to the idea that the Itô-jet projection is the “right” choice.

We summarize the different projections and the optimality criteria used to
determine their drifts in Table 1. The diffusion coefficient is identical for all
three projections.

Projection Properties of drift term

Itô-vector Minimizes norm of the expectation of the order 1
weak Itô–Taylor expansion between X & φ(Y ).
(ii) Given B minimizing mean square of the order 1/2
strong Itô–Taylor expansion of the difference Xt −
φ(Yt), minimizes mean square of order 1 strong Itô–
Taylor expansion of the difference.

Itô-jet Minimizes mean square of 2 Strong Itô–Taylor ex-
pansion for Rr or M distance between Πs(X) & φ(Y )

Stratonovich Similar to Itô vector below but for the Taylor series
of the differences vector [Xt − φ(Yt), X−t − φ(Y−t)]
at positive and negative time, where negative time
processes are defined ad hoc by propagating a second
input Brownian motion backward in time.

Table 1: Projections and the associated optimality criteria

5 The Itô-jet projection in local coordinates

Our definition of the Itô-jet projection is coordinate free and simple. However,
to calculate it in practice we will need an explicit coordinate representation.

We therefore wish to calculate the metric projection map Π̃s = ψ ◦ Πs up
to second order. Then using Itô’s formula for 2-jets we will be able to calculate
the Itô-jet projection associated to Π̃s.

Most of our calculation involves the deterministic map Π̃s. Thus in this
section we will drop the convention of using Greek indices exclusively for com-
ponents of the Brownian motion. In this section we will also use Greek indices
to highlight indices over which we are summing. This makes the formulae a
little easier to read.

We define the metric tensor on U by:

hab =
∂φα

∂xa
∂φα

∂xb
(22)

The differential Π̃s
∗ of Π̃s is well known to be given by the linear projection onto

Imφ∗ composed with the map φ−1
∗ . Hence Π̃s

∗ is the unique linear map with
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Π̃s
∗◦φ∗ equal to the identity and with kernel equal to the orthogonal complement

of Imφ∗. We deduce that Π̃s
∗ has the following components:

Πa
b := (Π̃s

∗)
a
b =

∂φb

∂xα
haα, a ≤ n, α ≤ n, b ≤ r. (23)

We note that the differential or tangent map Π̃s
∗ is the best linear approx-

imation of the metric projection Π̃s around the relevant point x = φ(y) ∈ M ,
and it coincides with the classic linear projection Πφ(y) on the tangent space of
M . Indeed, Equation (23) shows the classic components of the projection on
the tangent space of an n-dimensional manifold M embedded in Rr and realized
as φ-image of a subset or Rn.

Lemma 4. Suppose for simplicity that φ(0) = 0 and

(φ∗)
a
b :=

∂φa

∂xb
= Da

b :=

{
1 a = b and a ≤ n
0 otherwise

then Πs is given up to second order by

Π̃s(y)a = ya − 1

2

∂2φa

∂xαxβ
yαyβ +

∂2φγ

∂xaxβ
(⊥)γαy

αyβ +O(|y|3)

where we define

(⊥)ab =

{
1 a = b and a > n

0 otherwise.

Note that we are using an extension of the Einstein summation convention to
cover tensors where some indices range from 1 to n and some from 1 to r.
Where an index appears twice, we sum over the smaller range. Note also that
we are working in a restricted set of coordinate systems, so it no longer holds
that all summed pairs of indices will consist of an upper and a lower index.

Proof. By our simplifying assumption we may write:

Π̃s(y)a = ya +Aaαβy
αyβ +Baαβγy

αyβyγ +O(|y|4) (24)

where Aaαβ is symmetric in α and β and B is symmetric in α, β and γ. The
Taylor series expansion for φ now allows us to compute the components of
(y − φ(Π̃s(y))).

(y − φ(Π̃s(y)))a = ya −Da
α(yα +Aαβγy

βyγ +Bαβγδy
βyγyδ)

− 1

2

∂2φa

∂xα∂xβ
(yα +Aαδεy

δyε)(yβ +Aβζηy
ζyη) +O(|y|4)

= ya −Da
αy

α

−Da
αA

α
βγy

βyγ − 1

2

∂2φa

∂xαxβ
yαyβ

− ∂2φa

∂xα∂xβ
Aαδεy

δyεyβ −Da
αB

α
βγδy

βyγyδ +O(|y|4)
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We take the partial derivative of this with respect to Apqr to get:

∂

∂Apqr
(y − φ(Π̃s(y)))a = −Da

py
qyr − ∂2φa

∂xp∂xβ
yqyryβ +O(|y|4).

Because of the distance minimizing property of Πs we know that for all p,
q, r and sufficiently small y we have:

∂

∂Apqr
|(y − φ(Π̃s(y))|2 = 0

The left hand side of this expression is equal to:

2

(
∂

∂Apqr
(y − φ(Π̃s(y)))a

)
(y − φ(Π̃s(y)))a.

We have written down explicit expressions for each term in this product. This
enables us to write down the fourth order terms of ∂

∂Apqr
|(y − φ(Π̃s(y))|2. They

are given by:

2Da
pA

a
αβy

αyβyqyr +Da
p

∂2φa

∂xαxβ
yαyβyqyr − 2

∂2φa

∂xp∂xβ
(ya −Da

γy
γ)yβyqyr

=

(
2Apαβy

αyβ +
∂2φp

∂xα∂xβ
yαyβ − 2

∂2φa

∂xp∂xβ
(ya −Da

δ y
δ)yβ

)
yqyr

=

(
2Apαβy

αyβ +
∂2φp

∂xα∂xβ
yαyβ − 2

∂2φa

∂xp∂xβ
(⊥)αay

αyβ
)
yqyr

We know that this must vanish for all sufficiently small y. We deduce that

2Apαβy
αyβ +

∂2φp

∂xα∂xβ
yαyβ − 2

∂2φa

∂xp∂xβ
(⊥)αay

αyβ = 0.

for all sufficiently small y. This gives us an expression for Apαβy
αyβ which

combines with equation (24) to prove the result.

We now use the lemma coupled with some coordinate transformations to
compute a second order expression for the metric projection in the general case.

Proposition 4. Let gφ⊥ be the symmetric two form on Rr defined by:

gφ⊥(X +X⊥, Y + Y ⊥) = g(X⊥, Y ⊥) X,Y ∈ Imφ and X⊥, Y ⊥ ∈ (Imφ)⊥

where g is the Euclidean metric on Rr. Define coordinates ỹ centered on 0 ∈ Rr
by ỹa = ya − ya0 . Then to second order the metric projection is given by

Π̃s(y)a = x0 + Πa
αỹ

α − 1

2

∂2φγ

∂xα∂xβ
Πa
γΠα

δ Πβ
ε ỹ

δ ỹε

+
∂2φγ

∂xα∂xβ
Πβ
δ h

aαỹγ ỹδ − ∂2φγ

∂xα∂xβ
Πβ
ε Πη

γΠζ
δhηζh

aαỹδ ỹε

+O(|y|3)

and where Π is given by equation 23.
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Proof. We assume without loss of generality that x0 = 0 and y0 = φ(x0) = 0.
We can find a coordinate transformation J of Rn which maps an orthonor-

mal basis of Rn to the standard basis vectors. We take x to be our original
coordinates and X to be the coordinates obtained by applying J−1. So we
have:

xa = JabX
b

To satisfy our requirements J must satisfy:

hαβJ
α
a J

β
b = δab

Equivalently:
hab = (J−1)αa (J−1)αb .

So any pseudo square root of hab will give an appropriate choice for J−1. Taking
the matrix inverse of the above expression we have:

hab = JaαJ
b
α (25)

We can now find an orthogonal transformation T of Rr mapping Imφ∗ to Rn ⊆
Rr. Hence Φ = T ◦ φ ◦ J satisfies (Φ∗)ab = Da

b . We will write x for the original
coordinates on Rr and define transformed coordinates X by:

Xa = T aαx
α.

Let us write Π′ for the metric projection associated with the map Φ. The various
maps we have just defined are summarized in the commutative diagram below:

Rn Rr

Rn Rr

Φ

Π′

J T

φ

Π̃s

From Lemma 4 we have:

Π′(Y )a =
∂Φa

∂Xα
Y α − 1

2

∂2Φa

∂Xα∂Xβ
Y αY β

+
∂2Φγ

∂Xa∂Xβ
(⊥)γαY

αY β +O(|Y |3)

=
∂(T−1 ◦ Φ)β

∂Xα
T aβY

α − 1

2

∂2(T−1 ◦ Φ)γ

∂Xα∂Xβ
T aγ Y

αY β

+
∂2(T−1 ◦ Φ)δ

∂Xa∂Xβ
T γδ (⊥)γαY

αY β +O(|Y |3).
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Hence

Π′(Ty)a =
∂(T−1 ◦ Φ)β

∂Xα
T aβT

α
γ y

γ − 1

2

∂2(T−1 ◦ Φ)γ

∂Xα∂Xβ
T aγ T

α
ζ T

β
η y

ζyη

+
∂2(T−1 ◦ Φ)δ

∂Xa∂Xβ
T γδ (⊥)γαT

α
ζ T

η
ε y

ζyη +O(|y|3)

=
∂(T−1 ◦ Φ)β

∂xγ
JγαT

a
βT

α
γ y

γ − 1

2

∂2(T−1 ◦ Φ)γ

∂xι∂xκ
J ιαJ

κ
βT

a
γ T

α
ζ T

β
η y

ζyη

+
∂2(T−1 ◦ Φ)δ

∂xι∂xκ
J ιaJ

κ
βT

γ
δ (⊥)γαT

α
ζ T

β
η y

ζyη +O(|y|3).

We deduce that:

Π̃s(y)a = ((J ◦ π′ ◦ T )(y))a

=
∂φβ

∂xδ
JaλJ

δ
αT

λ
β T

α
γ y

γ − 1

2

∂2φγ

∂xι∂xκ
JaλJ

ι
αJ

κ
βT

λ
γ T

α
ζ T

β
η y

ζyη

+
∂2φδ

∂xι∂xκ
JaλJ

ι
λJ

κ
βT

γ
δ (⊥)γαT

α
ζ T

β
η y

ζyη +O(|y|3).

We now note that:
Πa
b = JaαD

α
βT

β
b = JaαT

α
b .

This allows us to simplify our expression for Πs(y) to:

Π̃s(y)a =
∂φβ

∂xδ
Πa
βΠδ

γy
γ − 1

2

∂2φγ

∂xι∂xκ
Πa
γΠι

ζΠ
κ
ηy
ζyη

+
∂2φδ

∂xι∂xκ
Πκ
ηJ

a
λJ

ι
λT

γ
δ (⊥)γαT

α
ζ y

ζyη +O(|y|3).

The tensor ⊥ab is equal to (gΦ
⊥)ab. So since T is an isometry, we may write

(⊥)αβT
α
a T

β
b = (gφ⊥)ab.

Using this together with equation (25) we may write:

Π̃s(y)a =
∂φβ

∂xδ
Πa
βΠδ

γy
γ − 1

2

∂2φγ

∂xι∂xκ
Πa
γΠι

ζΠ
κ
ηy
ζyη

+
∂2φδ

∂xι∂xκ
Πκ
ηh

aι(gφ⊥)δζy
ζyη +O(|y|3)

The first term can be simplified by repeated applications of equations (22) and
(23):

∂φβ

∂xδ
Πa
βΠδ

γy
γ =

∂φβ

∂xδ
∂φβ

∂xγ
haγ

∂φγ

∂xε
hεδyγ

= hδγh
αγ ∂φ

γ

∂xε
hεδyγ =

∂φγ

∂xε
hεayγ = Πa

βy
β .
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It is a tautology that the first order term is given by Π, nevertheless this calcu-
lation is a reassuring check on our working. Renaming the dummy variables we
now have that:

Π̃s(y)a = x0 + Πa
αy

α − 1

2

∂2φγ

∂xα∂xβ
Πa
γΠα

δ Πβ
ε y

δyε

+
∂2φγ

∂xα∂xβ
Πβ
ε h

aα(gφ⊥)γδy
δyε +O(|y|3)

We would like a formula that can be computed efficiently when n � r, so
we wish to eliminate the term gφ⊥. By splitting vectors V and W in Rr into
components in Imφ∗ and its orthogonal complement, we see that the Euclidean
metric on Rr satisfies the decomposition:

gabV
aW b = (gφ⊥)abV

aW b + habΠ
a
αV

αΠb
αW

β .

Using this formula we obtain:

Π̃s(y)a = x0 + Πa
αy

α − 1

2

∂2φγ

∂xα∂xβ
Πa
γΠα

δ Πβ
ε y

δyε

+
∂2φγ

∂xα∂xβ
Πβ
δ h

aαyγyδ − ∂2φγ

∂xα∂xβ
Πβ
ε Πη

γΠζ
δhηζh

aαyδyε

+O(|y|3)

We can immediately conclude:

Theorem 5 (Itô-jet projection in coordinates). Let φ : Rn → Rr be an embed-
ding with φ(x0) = y0 then the Itô-jet projection of the SDE:

dy = a dt+ bα dWα
t , y0

is
dx = Adt+Bα dWα

t , x0

where:
Biα = Πi

βb
β
α

and:

Ai = Πi
αa

α+(
−1

2

∂2φγ

∂xα∂xβ
Πi
γΠα

δ Πβ
ε

+
∂2φε

∂xα∂xβ
Πβ
δ h

iα − ∂2φγ

∂xα∂xβ
Πβ
ε Πη

γΠζ
δhηζh

iα

)
× bδκbει [Wκ,W ι]t.

Π is given by (23). hab is given by (22). hab is the inverse of hab.
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It is reassuring to check that this formula gives the same result as we found
in Section 4 for projection of a particular SDE onto a circle where the projection
map was known exactly. In fact, we can find an explicit expression for the Itô-
jet projection of any bivariate SDE driven by a single Brownian motion on the
plane on the unit circle.

Example 5.1 (Itô-jet projection of a bivariate SDE on the unit circle). Suppose
that our diffusion process in Rr = R2, driven by a one-dimensional Brownian
motion W = W 1, is

dX = a1(X,Y )dt+ b11(X,Y )dW 1, X0

dY = a2(X,Y )dt+ b21(X,Y )dW 1, Y0

and suppose we wish to approximate this process in the unit circle. If we define
θ = arctan(Yt/Xt), and compute dθt via Itô’s formula, this won’t be in general
a closed SDE for θ, contrary to the special example of the cross diffusion above.
To obtain a closed SDE in θ we have to project. One can check that for the
one-dimensional manifold given by the unit circle, expressed as

M = {(cos(θ), sin(θ)), θ ∈ [0, 2π)}

with coordinates Y = θ in Rn = R1, one has

h = 1, h−1 = 1, Π1 = − sin(θ), Π2 = cos(θ), ∂2
θφ

1 = − cos(θ), ∂2
θφ

2 = − sin(θ),

which allows us to apply Theorem 5 to this system. We obtain (coefficients a
and b are computed in X = cos(θ), Y = sin(θ))

A(θ) = −a1 sin(θ) + a2 cos(θ) +
1

2
sin(2θ)((b11)2 − (b21)2)− cos(2θ)b11b

2
1,

B(θ) = − sin(θ)b11 + cos(θ)b21.

In the special case of a1 = a2 = 0 and b11 = σ sin(θ), b21 = σ cos(θ) this confirms
our previous calculations for the cross-diffusion example.

6 Application of the Projection to Non-linear
Filtering

As a fundamental application of our new projection methods we consider an
area from signal processing, stochastic filtering. This extends our previous work
in [5].

In stochastic filtering one has a signal X that evolves according to a SDE,
and observes a process Y which is a function of this signal plus noise. This is
standard notation, but these X and Y are not to be confused with the pro-
cesses we used earlier in the paper, in that they are not the Rr process to be
approximated and its Rn approximation.
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The filtering problem consists in estimating the signal X given the present
and past observations Y . If t is the current time, the solution of the filtering
problem is the probability density of the state Xt conditional on the observations
from time 0 to time t, call it pt. The density pt follows the Kushner-Stratonovich
(or Zakai) stochastic partial differential equation (SPDE) that, under some tech-
nical assumptions, can be seen as a stochastic differential equation in the infinite
dimensional L2 space of square roots of densities (Hellinger metric) or of densi-
ties themselves (direct L2 metric).

The process we wish to approximate on a low dimensional manifold is pt,
which represents the Xt of our earlier sections. The Rr space of our earlier sec-
tions is the L2 infinite dimensional space, while the submanifold M is a finite
dimensional family of probability densities parametrized by θ, acting as coor-
dinates: {p(·, θ), θ ∈ Θ ⊂ Rn}. θt plays the role of what we were calling Yt
earlier in the paper. We aim at finding a SDE for θ such that p(·, θt) approxi-
mates pt(·) in an optimal way. Note that in the previous part of the paper we
had a dimensionality reduction from r to n, whereas now we go from infinite
dimensional pt to n-dimensional θt.

One may be concerned about taking our finite dimensional results and ap-
plying them in an infinite dimensional setting. However, we have stated our
results in terms of approximating one Ito–Taylor series of a given order with an-
other Ito–Taylor series. This allows us to avoid the analytical issues that might
conceivably arise in considering the convergence of these series. Therefore our
results generalize straightforwardly to the Hilbert space setting. As an example,
the minimization argument used to prove Theorem 1 relies only on properties
of the linear projection operator that remain true in a Hilbert space setting.

In addition the explicit calculation of Section 5 can be generalized unprob-
lematically to the case of a finite dimensional manifold embedded in a Hilbert
space. To see this simply note that the vector space spanned by the first two
derivatives of the map φ at p gives a finite dimensional space V and so one can
simply apply the result for embedding into the space V .

The point where complexities might conceivably arise in the infinite dimen-
sional setting is in the generalizations of Proposition 1 and Proposition 2. Folk
wisdom suggests that such results can be generalized to Hilbert spaces without
difficulty, so we will not attempt to prove that here.

6.1 The Kushner Stratonovich equation

We suppose that the state Xt ∈ Rn of a system evolves according to the equa-
tion:

dXt = f(Xt, t) dt+ σ(Xt, t) dWt

where f and σ are smooth Rn valued functions and Wt is a Brownian motion.
One typically adds growth conditions to ensure a global existence and uniqueness
result for the signal equation, see for example [5] and references therein for the
details.
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We suppose that an associated process, the observation process, Yt ∈ Rd
evolves according to the equation:

dYt = b(Xt, t) dt+ dVt

where b is a smooth Rd valued function and Vt is a Brownian motion independent
of Wt. Note that the filtering problem is often formulated with an additional
constant in terms of the observation noise. For simplicity we have assumed that
the system is scaled so that this can be omitted.

The filtering problem is to compute the conditional distribution of Xt given
a prior distribution for X0 and the values of Y for all times up to and including t.

Subject to various bounds on the growth of the coefficients of this equation,
the assumption that the distribution has a density pt and suitable bounds on
the growth of pt one can show that pt satisfies the Kushner–Stratonovich SPDE:

dp = L∗p dt+ p[b− Ep(b)]T [dY − Ep(b)dt] (26)

where Ep denotes the expectation with respect to the density p,
Ep[f ] =

∫
f(x)p(x)dx, and the forward diffusion operator L∗t is defined by:

L∗tφ = − ∂

∂xi
[fi(x, t)φ] +

1

2

∂2

∂xi∂xj
[aij(x, t)φ] (27)

where a = σσT . Note that we are using the Einstein summation convention in
this expression.

In the event that the coefficient functions f and b are all linear and σ is a
deterministic function of time one can show that so long as the prior distribu-
tion for X is Gaussian, or deterministic, the density p will be Gaussian at all
subsequent times. This allows one to reduce the infinite dimensional equation
(26) to a finite dimensional stochastic differential equation for the mean and
covariance matrix of this normal distribution. This finite dimensional problem
solution is known as the Kalman filter.

For more general coefficient functions, however, equation (26) cannot be
reduced to a finite dimensional problem [18]. Instead one might seek approxi-
mate solutions of (26) that belong to some given statistical family of densities.
This is a very general setup and includes, for example, approximating the den-
sity using piecewise linear functions to derive a finite difference approximation
or approximating the density with Hermite polynomials to derive a spectral
method. Other examples include exponential families (considered in [10, 9])
and mixture families (considered in [3, 5]).

Our projection theory tells us how one can find good approximations on a
given statistical family with respect to a given metric on the space of distribu-
tions. We illustrate this by writing down the Itô-vector and Itô-jet projection
of (26) for the L2 and Hellinger metrics onto a general manifold1.

1Note that it is also possible to consider projecting the Zakai equation. However, as
explained in [5], one expects that projecting the Kushner–Stratonovich will lead to smaller
error terms.
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We will then examine some numerical results regarding the very specific
case of seeking approximate solutions using Gaussian distributions. The idea
of approximating the solution to the filtering problem using a Gaussian distri-
bution has been considered by numerous authors who have derived variously,
the extended Kalman filter [27], assumed density filters [23] and Stratonovich
projection filters [9]. Some of these are related, for example the assumed density
filters and Stratonovich projection filters in Hellinger metrics for Gaussian (and
more generally exponential) families coincide [10]. Using our new projection
methods, we will be able to derive projection filters which outperform all these
other filters (assuming performance is measured over small time intervals using
the appropriate Hilbert space metric).

We note that (26) is an infinite dimensional SDE driven by a continuous semi-
martingale. The definitions and results given in Section 2 were only stated in
the finite dimensional case for SDEs driven by Brownian motion. The definition
of Itô–Taylor series can be generalized straightforwardly to this situation and
hence the definition of the Itô projections can be applied in this context also.

More generally, for the the geometry of infinite dimensional filtering problems
based on L2 or Orlicz charts and for the related differential geometric approach
to statistics with recent advances we refer for example to [29, 25, 26, 16, 10, 5,
11, 12].

6.2 Itô-vector projections

6.2.1 The Itô-vector projection filter in the L2 direct metric

Let us suppose that the density p lies in L2 and so we can use the L2 norm
to measure the accuracy of an approximate solution to equation (26). For a
discussion on conditions under which a unnormalized version of p is in L2 (Zakai
Equation) see for example [1].

We wish to consider an m-dimensional family of distributions p parameter-
ized by m real valued parameters θ1, θ2, . . ., θm. For example we will consider
the 2 dimensional Gaussian family:

p(x) =
1

(θ2)
√

2π
exp

(
− (x− (θ1))2

2(θ2)2

)
. (28)

Note that we have chosen to follow differential geometry convention and use up-
per indices for the coordinate functions θi so we have been careful to distinguish
powers from indices using brackets.

More formally, an m-dimensional family is given by a smooth embedding
φ : Rm → L2(Rn). The tangent vectors φ∗ ∂

∂θi ∈ L
2(Rn) are simply the partial

derivatives
∂p

∂θi
.

Let us write:

gij =

∫
R

∂p

∂θi
∂p

∂θj
dx.
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This defines the induced metric tensor on the manifold φ(Rm). We will write
gij for the inverse of the matrix gij . The projection operator Πφ(θ) is then given
by

Πφ(θ)(v) =

m∑
i,j=1

gij
〈
v, φ∗

∂

∂θi

〉
L2

φ∗
∂

∂θj

=

m∑
i,j=1

gij
(∫

Rn
v(x)

∂p

∂θi
dx

)
φ∗

∂

∂θj
.

Thus

φ−1
∗ Πφ(θ)(v) =

m∑
i,j=1

gij
(∫

Rn
v(x)

∂p

∂θi
dx

)
∂

∂θj
.

We can now write down the Itô-vector projection of (26) with respect to the L2

metric. It is:
dθi = Ai dt+Bi dYt

where:

Bi =

m∑
j=1

gij
(∫

R
(p(b− Ep(θ)(b)))T

∂p

∂θj
dx

)
and

Ai =

m∑
j=1

gij
(∫

Rn

(
L∗p− p(b− Ep(θ)(b))TEp(θ)(b)−

1

2

m∑
k=1

∂2p

∂θj∂θk
Bk
)
∂p

∂θj
dx

)
.

Example 6.1 (Itô-vector projection filter for cubic sensor in direct metric).
Consider as a test case the 1-dimensional problem with f(x, t) = 0, σ(x, t) = 1
and b(x, t) = x+εx3 for some small constant ε. This problem is a perturbation of
a linear filter so one might expect that a Gaussian approximation will perform
reasonably well at least for small times. Thus we will use the 2 dimensional
manifold of Gaussian distributions given in equation (28).

We first calculate the metric tensor gij which is diagonal in this case:

gij =
1

4
√
π(θ2)3

(
1 0
0 3

2

)
.

This is easily inverted to compute gij . We compute the expectation Ep(b):

Ep(b) =
ε
(√

2π(θ1)3(θ2) + 3
√

2π(θ1)(θ2)3
)

√
2π(θ2)

+ (θ1).

One can now see that computing the projection equation will simply involve
integrating a number of terms of the form a polynomial in x times a Gaussian.
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The end result is:

dθ
1

=

(
− 1

4
θ
1
(
θ
2
)2
(

3ε
2

(
4
(
θ
1
)4
− 4

(
θ
2
)2 (

θ
1
)2
− 3

(
θ
2
)4
)

+ 16ε
(
θ
1
)2

+ 4

))
dt

+

(
1

2

(
θ
2
)2
(

3ε

(
2
(
θ
1
)2

+
(
θ
2
)2
)

+ 2

))
dYt

dθ
2

=

− 9ε2
(
θ2
)8

+
(
θ2
)4 (

60ε2
(
θ1
)4

+ 48ε
(
θ1
)2

+ 4
)

+ 6ε
(
θ2
)6 (

9ε
(
θ1
)2

+ 2
)
− 4

8θ2

 dt

+

(
3εθ

1
(
θ
2
)3
)

dYt

6.2.2 The Itô-vector projection filter in the Hellinger metric

The Hellinger metric is a metric on probability measures. In the case of two
probability density functions p(x) and q(x) on Rn, that now need only be in L1,
the Hellinger distance is given by the square root of:

1

2

∫
(
√
p(x)−

√
q(x))2 dx.

In other words, up to the constant factor of 1
2 the Hellinger metric corresponds

to the L2 norm on the square root of the density function rather than on the
density itself (as in the previous subsection). The Hellinger metric has the
important advantage of making the metric independent of the particular back-
ground density that is used to express measures as densities. The L2 direct
distance introduced earlier does not satisfy this background independence.

Now, to compute the Itô-vector projection with respect to the Hellinger
metric we first want to write down an Itô equation for the evolution on

√
p.

Applying Itô’s lemma to equation (26) we formally obtain:

d
√
p =

(
L∗p− p(b− Ep(b))TEp(b)

2
√
p

− p2(b− Ep(b))T (b− Ep(b))
8p
√
p

)
dt

+

(
p(b− Ep(b))T

2
√
p

)
dYt.

=

(
L∗p
2
√
p
− 1

8

√
p(b− Ep(b))T (b+ 3Ep(b))

)
dt

+

(
1

2

√
p(b− Ep(b))T

)
dYt.

A family of distributions now corresponds to an embedding φ from Rm to
L2(Rn) but now p = φ(θ)2. The tangent space is spanned by the vectors:

φ∗
∂

∂θi
=
∂
√
p

∂θi
.

We define a metric on the tangent space by:

hij =

∫
Rn

∂
√
p

∂θi
∂
√
p

∂θj
dx.
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We write hij for the inverse matrix of hij . The projection operator with respect
to the Hellinger metric is:

Πφ(θ)(v) =

m∑
i,j=1

hij
(∫

Rn
v(x)

∂
√
p

∂θi
dx

)
φ∗

∂

∂θj
.

We can now write down the Itô-vector projection of (26) with respect to the
Hellinger metric. It is:

dθi = Ai dt+Bi dYt

where:

Bi =

m∑
j=1

hij
(∫

R

1

2

√
p(b− Ep(θ)(b))T

∂
√
p

∂θj
dx.

)
and

Ai =

m∑
j=1

hij
(∫

Rn

(
L∗p
2
√
p
− 1

8

√
p(b− Ep(θ)(b))T (b+ 3Ep(θ)(b))

−1

2

m∑
k=1

∂2√p
∂θj∂θk

Bk

)
∂
√
p

∂θj
dx.

)
.

Example 6.2 (Itô-vector projection filter for cubic sensor: Hellinger metric).
We may repeat example 6.1 but projecting using the Hellinger metric. We first
calculate the metric tensor hij which is diagonal also in this case:

hij =
1

4θ2
2

(
1 0
0 2

)
This is easily inverted to compute hij . We obtain the following SDEs:

dθ
1

=

(
−θ1

(
θ
2
)2
(

3ε
2

((
θ
1
)4

+ 4
(
θ
2
)2 (

θ
1
)2

+ 6
(
θ
2
)4
)

+ ε

(
4
(
θ
1
)2

+ 6
(
θ
2
)2
)

+ 1

))
dt

+

((
θ
2
)2
(

3ε

((
θ
1
)2

+
(
θ
2
)2
)

+ 1

))
dYt

dθ
2

=

− 27ε2
(
θ2
)8

+
(
θ2
)4 (

15ε2
(
θ1
)4

+ 12ε
(
θ1
)2

+ 1
)

+ 9ε
(
θ2
)6 (

6ε
(
θ1
)2

+ 1
)
− 1

2θ2

 dt

+

(
3εθ

1
(
θ
2
)3
)

dYt

6.3 Itô-jet projections

Using the formulae from Theorem 5 together with the formulae and techniques
of Section 6.2 we can explicitly calculate the Itô-vector projections of the filtering
equation in both the L2 and Hellinger metrics.

To minimize notation, let us concentrate on the 1-dimensional state space
filtering problem and project using the L2 metric.
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We can formally write the filtering equation in the form:

dpt = µ(pt)dt+ Σ(pt)dWt (29)

where pt is an L2 function and

µ(p)(x) :=
1

2

d2(σ(x)2p(x))

dx2
− d(f(x)p(x))

dx

− p(x)

(
b(x)−

∫
R
p(t)b(t)dt

)∫
R
p(t)b(t)dt,

Σ(p)(x) := p(x)

(
b(x)−

∫
R
p(t)b(t)dt

)
.

(30)

We now suppose that pt is parameterized as pt(x) = φ(θ)(x) as in Section 6.2.
Using Theorem 5 we can write down the Itô-jet projection which is an SDE for
the components of θ.

To write down the result it will be useful to define functions πi(θ) by:

πi(θ) = hij
∂φ

∂θj
(θ).

We will also use angle brackets to denote the L2 inner product. With this
understood, the Itô-jet projection of the filtering equations in the L2 metric is
given by:

dθit = Ai(θ)dt+Bi(θ)dWt

where we have in turn

Bi(θ) = 〈πi(θ),Σ(φ(θ))dt

and

Ai(θ) = 〈πi(θ), µ(φ(θ))〉

− 1

2

〈
∂2φ

∂θα∂θβ
(θ), πi(θ)

〉
〈Σ(θ), πα(θ)〉〈Σ(θ), πβ(θ)〉

+

〈
∂2φ

∂θα∂θβ
(θ),Σ(φ(θ))

〉
〈πβ(θ),Σ(φ(θ))〉hiα(θ)

−
〈

∂2φ

∂θα∂θβ
, πη(θ)

〉
〈πβ(θ),Σ(φ(θ))〉〈πξ(θ),Σ(φ(θ))〉hηξ(θ)hiα(θ)

Example 6.3 (Itô-jet projection filter for cubic sensor in direct metric). For
the filtering problem of 6.1 the Itô-jet projection in the L2 metric is

dθ
1

=

(
− 1

4
θ
1
(
θ
2
)2
(

3ε
2

(
4
(
θ
1
)4
− 4

(
θ
2
)2 (

θ
1
)2
− 9

(
θ
2
)4
)

+ 16ε
(
θ
1
)2

+ 4

))
dt

+

(
1

2

(
θ
2
)2
(

3ε

(
2
(
θ
1
)2

+
(
θ
2
)2
)

+ 2

))
dYt

dθ
2

=

 3ε2
(
θ2
)8 − 4

(
θ2
)4 (

15ε2
(
θ1
)4

+ 12ε
(
θ1
)2

+ 1
)
− 2ε

(
θ2
)6 (

15ε
(
θ1
)2

+ 2
)

+ 4

8θ2

 dt

+

(
3εθ

1
(
θ
2
)3
)

dYt
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The Itô-jet projection of the filtering equation in the Hellinger metric can be
computed in the same way. Indeed we can formally write the filtering equation
in the form:

dqt = µ(qt)dt+ Σ(qt)dWt (31)

where qt is the square root of the density and the coefficients now satisfy

µ(q)(x) :=
1

2q(x)

(
1

2

d2(σ(x)2q(x)2)

dx2
− d(f(x)q(x)2)

dx

)
− 1

8
q(x)

(
b(x)−

∫
R
q(t)2b(t)dt

)(
b(x) + 3

∫
R
q(t)2b(t)dt

)
,

Σ(q)(x) :=
1

2
q(x)

(
b(x)−

∫
R
q(t)2b(t)dt

)
.

(32)

Thus we can use the same formulae as above to compute the Hellinger projection
except we must use the coefficients from (32) rather than those from (30).

Example 6.4 (Itô-jet projection filter for cubic sensor: Hellinger metric). For
the filtering problem of 6.1, the Itô-jet projection in the Hellinger metric is

dθ
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+
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(
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dYt

dθ
2

=

− 18ε2
(
θ2
)8

+
(
θ2
)4 (

15ε2
(
θ1
)4

+ 12ε
(
θ1
)2

+ 1
)

+ 3ε
(
θ2
)6 (

15ε
(
θ1
)2

+ 2
)
− 1

2θ2

 dt

+

(
3εθ

1
(
θ
2
)3
)

dYt

6.4 Other Gaussian Approximate Filters

Many other Gaussian approximate filters have been proposed in the past. We
will briefly review a number of different Gaussian approximate filters that can be
found in the literature and calculate the relevant stochastic differential equations
for our example 6.1. We will then compare the performance of these filters
numerically.

6.4.1 The Stratonovich projection filter

Instead of using the Itô-vector projection, one can use the Stratonovich projec-
tion.

Example 6.5 (Stratonovich proj. filter for cubic sensor: direct metric). General
formulae for performing the Stratonovich L2 projection are given in [3]. In the
specfic case of example 6.1 the resulting Itô SDEs are:
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=
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+
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(
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Example 6.6 (Stratonovich proj. filter for cubic sensor: Hellinger metric).
General formulae for performing the Stratonovich Hellinger projection are given
in [10]. In the specfic case of example 6.1 the resulting SDEs are:
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6.4.2 The Extended Kalman Filter

The Extended Kalman Filter (EKF) is a heuristically derived method of finding
approximate solutions to the filtering problem based on the idea of linearising
the problem and then using the solution to the linear problem. In particular one
assumes that the solution can be well approximated by a Gaussian distribution.
For the EKF see [21, 1]. A definition and heuristic derivation is given in [6]
(which is based, in turn, on the derivation given in [27]).

The EKF can be shown to work well on condition that the initial position of
the signal is approximated well, the non-linearities of f are small, b is injective
and the observation noise is small [28]. Moreover, the EKF is widely used in
practice, see [6] for references to applications.

Example 6.7. For the example problem b(x) = x+ εx3 the EKF is:

dθ1 =
((
θ2
)2 (−(3ε (θ1)2 + 1

))(
θ1 + ε

(
θ1
)3))

dt

+
((
θ2
)2 (

3ε
(
θ1
)2

+ 1
))

dYt

dθ2 =

1−
(
θ2
)4 (

3ε
(
θ1
)2

+ 1
)2

2θ2

 dt

+ (0) dYt

6.4.3 Assumed density filters

Assumed density filters (ADFs) provide a finite dimensional method of finding
approximate solutions to the filtering problem. They have been considered in,
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for example, [23], [24] and [10].
The general setup is to consider a statistical family π(·, η) of probability

measures parameterized by some coordinates η = (η1, . . . , ηm). This parame-
terization is not arbitrary. It must be chosen in such a way that, for elements
of the statistical family, the values of η correspond to the expectations of some
twice differentiable scalar functions {c1, . . . , cm} defined on Rn.

ηi = Eπ(·,η)(c
i) =: Eηt(c

i)

where for brevity we are using the abbreviation Eηt for Eπ(·,η).
For example one might take the statistical family of normal distributions

parameterized by its first and second moments η1 and η2, so c1(x) = x, c2(x) =
(x)2.

Given a statistical family parameterized in this way, we define the Itô ADF
to be:

dηit = Eηt(Ltci) dt+
(
Eηt(btc

i)− Eηt(bt)ηit
)T

(dYt − Eηt(bt) dt) .

This is motivated by the fact that under the conditions used to derive equa-
tion (26), we have that the ci-moments of πt, the true solution to the filtering
problem, satisfy the Itô equation:

dπt(ci) = πt(Ltci) dt− 1

2
(πt(bc

i)− πt(b)πt(ci))(dY − πt(b) dt).

Thus if it were true that the true density was a member of our chosen statistical
family then the Itô ADF would certainly be satisfied. One just hopes that the
Itô ADF will continue to give a reasonable approximation even though we know
that the true density isn’t a member of the chosen statistical family.

With a similar motivation we define the Stratonovich ADF to be:

dηit = Eηt(Ltci) dt− 1

2
(Eηt(|bt|2ci)− Eηt(|bt|2)ηit) dt

+
(
Eηt(bc

i)− E(bt)η
i
t

)T ◦ dYt.

If it were true that the density was a member of our statistical family then
the Itô ADF and the Stratonovich ADF would be equivalent equations. Since
we only expect to be able to approximate the true density with our statistical
family, we must expect that the Itô ADF and Stratonovich ADF are in fact
inequivalent equations. Intuitively, we can say that the local moment matching
approximation on which the ADF heuristics are based and the Itô-Stratonovich
transformation do not commute.

The justification just given for ADFs is far from convincing. We are re-
lying on little other than hope that these equations will give good approxi-
mations. However, it was shown in [10] that in fact for exponential families,
the Stratonovich projection filter in the Hellinger metric coincides with the
Stratonovich ADF, and in [8] that for the Gaussian case, this filter approaches
the optimal filter under small observation noise. [12] show that the equivalence
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between projection using the L2 direct structure and the assumed density ap-
proximation holds for the prediction step of the filtering algorithm, namely the
Kolmogorov equation, when using mixture families.

Example 6.8. If we calculate the Itô assumed density filter corresponding to
example 6.1 and the family of normal distributions, and then change coordinates
to θ1 and θ2 as used in the previous examples, we obtain the SDEs:
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Example 6.9. The family of normal distributions is an exponential family,
therefore the Stratonovich assumed density filter is equivalent to the Stratono-
vich projection filter in the Hellinger metric.

6.5 Results

Our explicit calculations show that the two Itô projections give rise to new,
distinct, Gaussian approximations.

All our calculations of the resulting filters for the cubic sensor b(x, t) = x+εx3

are equal when ε = 0. This provides a basic sanity check that our formulae
correspond to the Kalman filter in the case of a linear sensor. In general, if we
know that the solution lies in a particular manifold and we project onto that
manifold, the three projection methods will all be exact.

We simulated the example problem b(x) = x + εx3 for all of the above
approximate filters with ε = 0.05. We also computed an “exact” solution using
a finite difference method on a grid of 1000 intervals spaced evenly from −10.0
to 10.0 and a time step of 0.0002. We define the L2 residual to be the L2

distance between the approximate solution and the “exact” solution. We define
the Hellinger residual similarly, as the L2 distance between the square roots of
the solution densities.

In Figure 5 we see the L2 residuals for the various methods. All the projec-
tion methods shown are taken using the L2 metric in this case. The Itô-vector
projection in the L2 metric results in the lowest residuals over short time hori-
zons. The Stratonovich projection comes a close second. Over medium term
time horizons, the Itô-jet projection out performs the Itô-vector projection. We
have not shown longer term behaviour because over long time horizons, all the
methods become inaccurate and any comparison becomes meaningless. The
projection methods out-performed all other methods. Although our plot shows
only a single run, it is reasonably representative of the typical behaviour.

In Figure 6 we have plotted the ratio of the Hellinger residual for each
method to the residual of the Itô-jet projection w.r.t. the Hellinger metric.
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Figure 5: L2 residuals for each approximation method. All projections are taken
relative to the L2 metric.
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Figure 6: Hellinger residuals for various approximation method divided by resid-
ual for the Itô-jet projection. All projections are taken relative to the Hellinger
metric.

This is because the residuals themselves are too difficult to distinguish visually.
Thus values exceeding 1 show a larger error than the Itô-jet projection and
values less than one show a lower error. All the projection methods shown in
this plot are taken w.r.t. the Hellinger metric.

This plot indicates that the Itô ADF and the Itô-jet projection are almost
indistinguishable in their performance. A look at the explicit formulae reveals
that the difference between these two equations is of order ε2 whereas the dif-
ference between the other equations is of order only ε. Over the short term, the
Itô-vector projection gives the best results. Over the medium term, the Itô-jet
projection and the Itô ADF give the best results. Again, over the longer term
all the filters become highly inaccurate.

7 Conclusions

The notion of projecting a vector field onto a manifold is unambiguous. By
contrast, there are multiple distinct generalizations of this notion to SDEs, as
summarized in Table 1.

The two Itô projections we introduced in this work can both be derived
from minimization arguments. However, the Itô-jet projection has some clear
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advantages.

• The Itô-jet projection is the best approximation to the metric projection
of the true solution and has an error of O(t). By contrast the Itô-vector

projection only tracks the true solution an accuracy of O(t
1
2 ).

• The Itô-jet projection gives a more intuitive answer than the Itô-vector
projection for the low dimensional example considered in Section 4.

• The Itô-jet projection gives better numerical results in the medium term
than the Itô-vector projection in our application to filtering.

• The Itô-jet projection has an elegant definition when written in terms of
2-jets.

• The Itô-jet projection has a pictorial interpretation, shown in Figure 4.

We have also seen that the Stratonovich projection satisfies an ad hoc min-
imization that is less appealing than the ones of the Itô projections, since it
requires a deterministic anchor point. The Itô-jet and Itô-vector projection ar-
guments allow one to derive new Gaussian approximations to non-linear filters.
Unlike previous Gaussian approximations to non-linear filters, these approxima-
tions are derived by minimization arguments rather than heuristic arguments.
Thus the notion of projecting an SDE onto a manifold is able to give new results
even for this well-worn topic.

A Appendix: The cross-diffusion process

We briefly study and give some intuition on the cross-diffusion process (20),
whose equations we repeat here:

dXt = σYt dWt,

dYt = σXt dWt,

with deterministic initial condition (X0, Y0). We call this a cross diffusion, since
each state crosses over as diffusion coefficient of the other state. Moreover, as we
explain below, depending on the location on the plane of the initial condition,
the paths group around the left or right arms of a St Andrew cross. This is
another reason for the name of the process.

The process equation can be solved analytically: add and subtract both sides
and solve the resulting geometric Brownian motion equations for X + Y and
X − Y . One obtains:

Xt = e−
1
2σ

2t (X0 cosh(σWt) + Y0 sinh(σWt)) ,

Yt = e−
1
2σ

2t (Y0 cosh(σWt) +X0 sinh(σWt)) .

One can see that the solution satisfies (Xt + Yt)(Xt − Yt) = Ke−σ
2t, with

K = (X0 + Y0)(X0 − Y0). For large times the product will tend to be closer
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and closer to zero, so that either Y = X or Y = −X, with the solution paths
grouping along these two lines while approaching zero. Notice that if (X,Y) is
in the origin, the process does not move. This behaviour of the process can be
easily seen when plotting a few paths. In Figure 7 we show a few paths of the
cross-diffusion example in coordinates (x, y) and the process θt = arctan(Yt/Xt)
for the angular position. Clearly, when X + Y is near zero θ will tend to be
close to −π/4 = −0.785 . . ., whereas when X − Y is near zero θ will tend to be
close to π/4 = 0.785 . . ..
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Figure 7: Top: Three paths of the cross-diffusion SDE with (X0, Y0) = (1, 0),
σ = 1, up to 5 years time. Bottom: The corresponding three paths for θ plotted
against time.
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