

Statistical methods for separating human and automated activity in computer network traffic

Francesco Sanna Passino

francesco.sanna-passino16@imperial.ac.uk

Supervisor: **Dr Nicholas Heard**

PhD project

"Latent factor representations of dynamic networks in cyber-security"

1. Problem

Most datasets used for cyber-security can be considered as mixtures of human and automated events. For example, it is estimated that the proportion of automated traffic in Network Flow data is approximately 95%. For statistical purposes, it is essential to correctly separate these two types of activity, in order to build sound models of normal behaviour of the network.

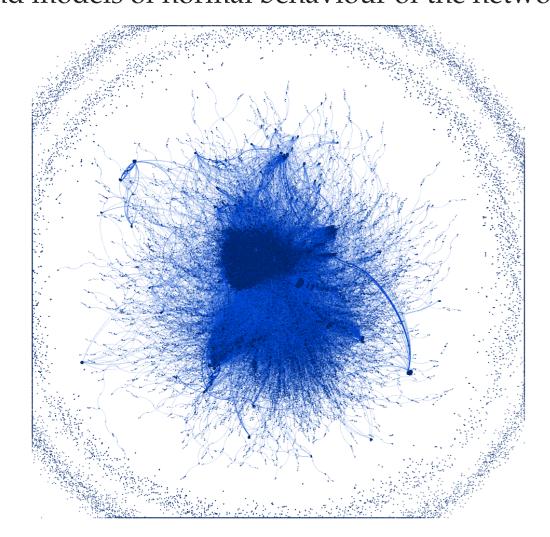


Figure 1: Imperial College network graph on June 7, 2017, 11:15 – 11:16am. Each node corresponds to an IP address, an edge is drawn if the two IPs have connected within the observation period.

2. Detection of periodicities

Methodology developed in Heard, Rubin–Delanchy and Lawson (2014):

- $t_1, t_2, \dots, t_N \to \text{timestamps of the NetFlow events}$ involving a client X and a server Y,
- N(t), $t \ge 0 \to \text{counting process: number of NetFlow records involving the client } X$ and the server Y at each time point t, starting from t = 0,
- *Periodogram* $\hat{S}(f)$ at frequency f > 0:

$$\hat{S}(f) = \frac{1}{T} \left| \sum_{t=1}^{T} \left(dN(t) - \frac{N(T)}{T} \right) e^{-2\pi i f t} \right|^{2}$$

where dN(t) = N(t) - N(t - 1).

• Fourier's g-test for the null H_0 of no periodicities:

$$g = \frac{\max_{1 \le k \le \lfloor T/2 \rfloor} \hat{S}(f_k)}{\sum_{1 \le j \le \lfloor T/2 \rfloor} \hat{S}(f_j)}, \ f_k = \frac{k}{T\Delta t}$$

• Setting $\lambda = \min\{\lfloor 1/g \rfloor, \lfloor T/2 \rfloor\}$, the *p*-value is:

$$\mathbb{P}(g > g_{\star}) = \sum_{j=1}^{\lambda} (-1)^{j-1} \cdot \frac{m}{j} \cdot (1 - jg_{\star})^{m-1}$$

3. Transforming the data

Suppose that an edge is periodic at significance level α with periodicity $p = T\Delta t/\mathrm{argmax}_{1 \leq k \leq \lfloor T/2 \rfloor} \, \hat{S}(f_k)$. Let t_1, \ldots, t_N be the sequence of **arrival times** on the edge. The quantity of interest for inference is a **latent assignment** z_i , defined as follows:

$$z_i = \begin{cases} 0 & \text{if } t_i \text{ is human} \\ 1 & \text{if } t_i \text{ is automated} \end{cases}$$

where $\mathbb{P}(z_i = 1) = \theta$ and $\mathbb{P}(z_i = 0) = 1 - \theta$.

Two quantities are used to model the arrival times:

• the wrapped arrival time x_i :

$$x_i = (t_i \mod p) \times 2\pi/p$$

• the daily arrival time y_i :

$$y_i = (t_i \mod 86400) \times 2\pi/86400$$

where 86400 is the number of seconds in one day.

4. The model

• For simplicity, assume $T \mod 86400 = 0$ and $T \mod p = 0$. Then the density of an arrival time can be decomposed as:

$$f(t_i|z_i) \propto f_A(x_i)^{z_i} f_H(y_i)^{1-z_i}$$

- Human events are modelled using the daily arrival time y_i , automated events using the wrapped arrival time x_i .
- Fixed phase polling: event times occur every p seconds plus a random zero-mean error.

$$x_i|(z_i=1,\mu,\sigma^2) \stackrel{d}{\sim} \mathbb{WN}_{[0,2\pi)}(\mu,\sigma^2)$$

Unknown density of the daily arrival times → step function:

$$p(y_i|z_i = 0, \boldsymbol{h}, \boldsymbol{\tau}, B) = \sum_{i=1}^{B} \frac{h_j}{\tau_{(j+1)} - \tau_{(j)}} \mathbb{1}\{y_i \in [\tau_{(j)}, \tau_{(j+1)})\}$$

where B is the number of bins, $\boldsymbol{\tau} = (\tau_1, \dots, \tau_{B+1})$ are the bin locations, and $\boldsymbol{h} = (h_1, \dots, h_B), \ \sum_j h_j = 1, h_j \ge 0 \ \forall \ j$ are the bar heights.

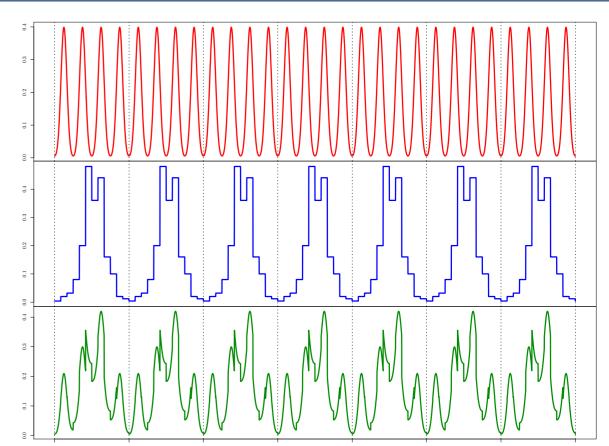


Figure 2: Densities used in the model, p = 6 hours, $\mu = \pi$, $\sigma^2 = 1$, $\theta = 0.5$, B = 12, $\tau_j = \frac{2\pi j}{B}$, $j = 0, \ldots, B$. Top plot (**red**): unnormalised density of the automated events. Middle plot (**blue**): unnormalised density of the human events. Bottom plot (**green**): unnormalised density of the 50-50 mixture.

- General framework: B, τ, h unknown \longrightarrow inference is easier (conjugate priors available!) when considering $\tau_j = 2\pi j/B, \ j = 0, \dots, B$ for each possible value of an unknown $B \in \{1, \dots, B_{\text{max}}\}$.
- The resulting model, for $T \mod 86400 = 0$ and $\lfloor T/p \rfloor \gg T \mod p$, is a mixture of the two components:

$$f(t_i|z_i) \propto \left(\frac{1}{\sqrt{2\pi\sigma^2}} \sum_{k=-\infty}^{\infty} \exp\left\{-\frac{1}{2\sigma^2} (x_i + 2\pi k - \mu)^2\right\}\right)^{z_i} \left(\sum_{j=1}^{B} \frac{h_j}{\tau_{(j+1)} - \tau_{(j)}} \mathbb{1}\{y_i \in [\tau_{(j)}, \tau_{(j+1)})\}\right)^{1-z_i}$$

- Prior distributions for conjugate analysis in the case of a standard histogram ($\tau_j = 2\pi j/B, \ j = 0, \dots, B$):
 - $(\mu, \sigma^2) \stackrel{d}{\sim} \text{NIG}(\mu_0, \sigma_0^2, \alpha_0, \beta_0)$
 - $-\theta \stackrel{d}{\sim} \mathrm{Beta}(\gamma_0, \delta_0)$
 - $h|B \stackrel{d}{\sim} \text{Dirichlet}(2\pi\eta/B\mathbf{1}^{\top})$
- Straightforward Gibbs sampler available, even when B is unknown \rightarrow it is possible to jointly sample (h, B).
- The algorithm successfully separates human and automated activity in synthetic (labelled) datasets.
- Reasonable results on real edges, where the true labels are not available.

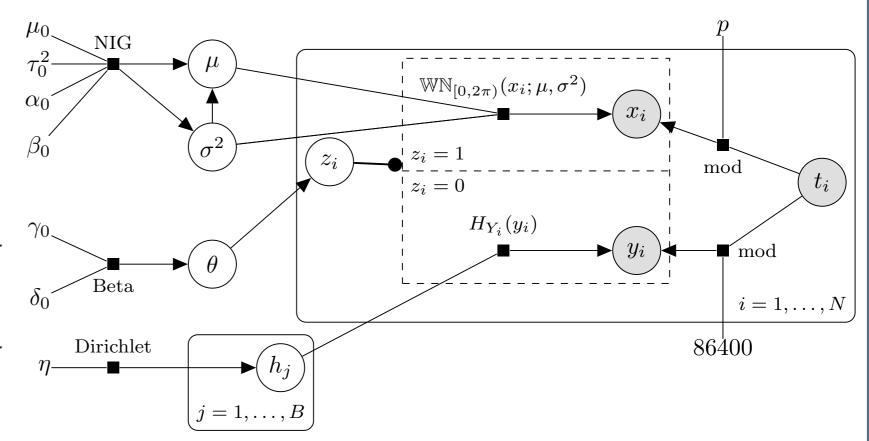


Figure 3: Representation of the histogram model for a fixed number of bins B.

5. Results on a real edge

- 2 weeks of connections between an IP *X* and the Microsoft Live IP 157.56.192.95.
- 13545 events, 1425 filtered human connections.
- The activity slightly increases during the day, suggesting a mixture of human and automated events.
- The distribution of human events obtained from the model shows a clear diurnal pattern, with almost no activity during the night.
- Events are not labeled in this example, but encouraging results have been obtained on synthetic labeled data.

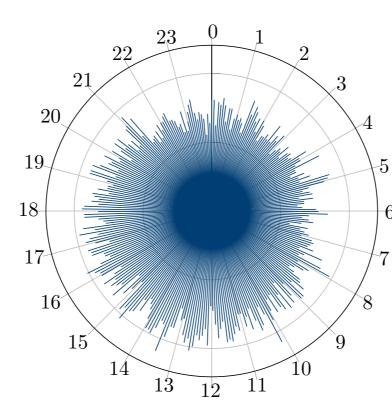


Figure 4: Daily distribution of the data, slight evidence of increased activity during working hours.

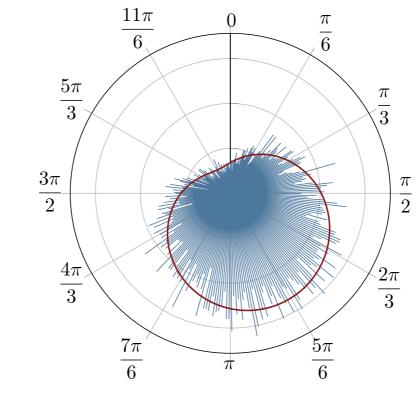


Figure 5: Distribution of the wrapped data, p = 4089.86s and model fit (MAP estimates of μ and σ^2).

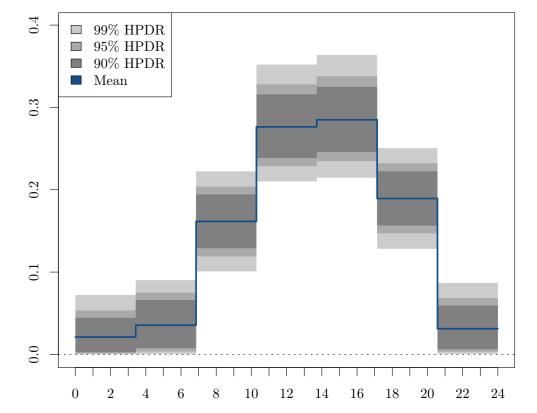


Figure 6: Estimated optimal histogram of human events, $\hat{B}_{\text{opt}} = 7$. Clear diurnal pattern, activity concentrated in working hours only.

6. Comments

- Simple algorithm to separate human and automated activity on a single edge in a computer network.
- Gibbs sampler with conjugate priors → scalable to multiple edges and nodes across the entire network.
- Results on multiple real and simulated dataset show good performance of the model.

References

• Heard, N.A, P.T.G. Rubin–Delanchy, and D.J. Lawson (2014), "Filtering automated polling traffic in computer network flow data". In: Proceedings of the IEEE Joint Intelligence & Security Informatics Conference (JISIC 2014), pp. 268-271 (2014).