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ABSTRACT

This project introduces a sequential algorithm which assesses the 
statistical significance of multiple hypotheses using a procedure 
which controls the False Discovery Rate.

The algorithm doesn't observe all p-values directly, but    
approximates them by Monte-Carlo simulation. It is designed              
and  proven to  give, with  arbitrary high  probability, the                 
same  classification  as  the  one  based  on  the  exact                           
p-values.

FALSE DISCOVERY RATE (FDR)

The FDR controls the expected proportion of   
incorrectly rejected null hypotheses (false positives). 
It is given by E(V/R), where R is the total number of 
hypotheses which have been declared significant 
and V of which come from the null.
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1. Set n:=0, A
0
:={} and A
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:={1,...,m}.

2. While (|A
n
 \ A

n
| > c)

    (a) n:=n+1.
    (b) Compute confidence intervals I

n,i 
∀i=1...m.

    (c) Compute the sets A
n
:=h((max I

n,i
)

i=1,...,m
)

              
  and A

n
:=h((min I

n,i
)

i=1,...,m
).

3. Return the two sets (A
n
,A

n
).

THEORETICAL RESULTS: CONVERGENCE

SETTING

Consider multiple hypotheses H
01

,...,H
0m 

to be 

tested for statistical significance using a 
procedure which controls the False 
Discovery Rate at threshold α, e.g. the 
method by Benjamini and Hochberg (1995).

Algorithm 1

FDR CONTROL BY BENJAMINI-HOCHBERG

Sandve, Ferkingstad and Nygard (2011). Sequential Monte Carlo 
multiple testing. Bioinformatics (Advance Access).
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PERFORMANCE: 
PART I

CHALLENGE

Instead of observing all p-values directly, consider the case 
where they can only be computed by simulation. For example 
this occurs when using bootstrap or permutation tests.

Naively, one could use an equal number of samples for the 
estimation of the p-value of each hypothesis. A more 
sophisticated approach is the one of Algorithm 1, where h 
shall denote an arbitrary function that controls the FDR at 
threshold α.

It can be shown that the 
sequence of sets A

n 
(A

n
) is 

monotonically increasing 
(decreasing) and converges 
to Atrue:=h(p

1
,...,p

m
), the set 

of rejections computed    
using exact p-values.

ALGORITHMIC
APPROACH

Figure: Comparison of MCFDR (in green) by 
Sandve et al. (2011) and Algorithm 1 (in red).

Figure: Runtime complexity to classify all 
m=5000 hypotheses

Figure: Rejecting all 
hypotheses up to the 
last one which satisfies 
i*p

(i)
/m≤α controls the 

FDR at threshold α 
(here α=0.1).

Figure: Convergence of A
n
 and A

n
 to Atrue

As can be seen from the first plot, 
Algorithm 1 mostly outperforms 
MCFDR when using an equal 
number of samples (second plot).

A total of m=5000 p-values 
were drawn from a probability 
distribution which depends on a 
parameter π

0 
є [0,1] and tested 

for significance using both 
algorithms. For each ensemble 
of m p-values, the total number 
of samples drawn and the total 
number of misclassifications 
were recorded.

The two plots show the total 
number of misclassifications, 
where the total number of 
samples drawn by Algorithm 1 
has been adjusted to the number 
drawn by MCFDR.

Assume that every p-value lies in its confidence 
interval. It can then be shown that if a p-value is 

rejected (non-rejected) according to its 
upper (lower) confidence limit, it will 

also be rejected (non-rejected) 
given its true p-value.

Algorithm 1 uses fewer samples 
for all those hypotheses which 

can already be classified with sufficient 
confidence and more samples for all those 
which are still unidentified.

Figure: Benjamini-Hochberg with confidence limits

The algorithm is designed to give, with arbitrary high probability, 
the same classification as the one based on the exact p-values:

PERFORMANCE: PART II

The plot above shows a 
comparison of MCFDR (in green) 
by Sandve et al. (2011) and 
Algorithm 1 (in red) using test 
data from Sandve et al. (2011).

THEORETICAL RESULTS: RUNTIME

•   The probability of classification errors is                                 
bounded above by ε ∀ε>0

•  The runtime needed to classify all hypotheses is infinite

•  The runtime is proven to be finite if all hypotheses are to be 
classified but the two closest ones to the Benjamini-Hochberg 
line

The method by Benjamini and Hochberg (1995) sorts all p-values first and then 
rejects all of them up to the last one which satisfies i*p

(i)
/m≤α (red part).

The Benjamini-Hochberg procedure
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The Benjamini-Hochberg procedure applied to upper (red)
and lower (blue) confidence limits
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Comparison: Number of misclassifications for different datasets
parametrised by π
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Comparison: Corresponding number of samples

N
o.

 o
f 

sa
m

pl
es

http://www.felixbreuer.net/

	Slide 1

