Imperial College London

Asymptotic behaviour of randomised fractional volatility models Blanka Horvath, Antoine Jacquier & Chloé Lacombe

In particular, if the rate function *I* is continuous on \overline{A} , then the lim inf and lim sup coincide and

allowing for random initial value in the volatility process, which is, in manifold ways, natural to financial modelling setups: uncertain volatility, etc.

Introduction **Large deviations are widely used in Physics as well as in Mathematics to** model the exponential decay of probability measures of rare events. ■ This set of techniques and results have recently been adopted to study small-time or tail behaviours of some variables of interest. **These asymptotics have provided a deeper understanding of the behaviour of** models, and, ultimately, allow for better calibration of real data. **Goal** We wish to prove small-time and tail behaviour of option prices, and implied volatilities, when the underlying stock price follows an extension of Stein-Stein stochastic volatility model. The extensions considered: (i) Randomised model: the SDE driving the instantaneous volatility process is started from a random distribution; ex.: allows to understand the ST behaviour of the so-called forward volatility, simpler distributions also possible. (ii) Fractional model: the volatility is driven by a fractional Brownian motion (with Hurst exponent $H \in (0,1)$); (iii) Extended model: allow for a more general dependence of the stock price on the instantaneous volatility process. Fractional Brownian Motion Fractional stochastic volatility models have recently been extended to the case $H < 1/2$ and have become the go-to types of models for estimation and calibration. \blacksquare A fractional Brownian motion (fBm) \mathcal{W}^H is a continuous centered Gaussian process, starting from zero, with Hurst parameter $H \in (0,1)$ and covariance matrix $\left<{\it W}_t^{\rm H},{\it W}_s^{\rm H}\right>=$ 1 2 $\left($ $|t|^{2H} + |s|^{2H} - |t - s|^{2H}$, for any $0 \leq s, t$. ■ Volterra representation of the fractional Brownian motion: for all $t \in [0, T]$, $W_t^H =$ \int_0^t 0 $\mathcal{K}^H(t,s){\rm d} B_s,$ where B is a standard Brownian motion generating the same filtration as W^H , and K^H is the Volterra kernel. \blacksquare In this paper, we are interested in the case $H\in(0,\frac{1}{2})$ $\frac{1}{2}$. 0.5 1.0 1.5 2.0 Model description We study a generalised version of the fractional Stein-Stein model \int \int $\overline{\mathcal{L}}$ $dX_{\tau} = -$ 1 2 $\sigma(\textit{Y}_{\tau})^2 \mathrm{d} \tau + \sigma(\textit{Y}_{\tau}) (\rho \mathrm{d} B_{\tau} + \bar{\rho} \mathrm{d} B_{\tau}^{\perp})$ $(\gamma^\perp_\tau),\;\;X_0=0,$ $dY_{\tau} = (\lambda + \beta Y_{\tau})d\tau + \xi dW_{\tau}^{H},$ $Y_{0} \sim \Theta,$ (0.1) where $\boldsymbol{\Theta}$ is a random variable, \mathcal{W}^H is a fractional Brownian motion, with Hurst parameter $H\in (0,1)$, (B,B^\perp) is an independent two-dimensional standard Brownian motion, $\beta < 0$, $\lambda, \xi > 0$, $\bar\rho := \sqrt{1 - \rho^2}$ with $\rho \in (-1,1)$ the correlation between W^H and B . Assumptions: \bullet σ^2 is Lipschitz continuous, such that $|\sigma^2(x)|\leq C(1+|x|)$ for $x\in\mathbb{R},$ derivable with its derivative locally Hölder continuous. \bullet σ satisfies 'generalised homogeneity' properties: $\exists \tilde{\sigma}:\mathbb{R}\to\mathbb{R}:\exists b>0:\forall \mathsf{x}\in\mathbb{R},\varepsilon^b\sigma(\mathsf{x}/\varepsilon^b)=\tilde{\sigma}(\mathsf{x})$, for ε small enough. ■ \mathcal{A}_b^{Θ} : ∃ $b > 0$: lim sup ε↓0 h_ε log $\mathbb{P}(\varepsilon^b \Theta > 1) = -\infty$. Tails asymptotics **Rescaling:** for $b, \varepsilon > 0$, $X^{\varepsilon} := \varepsilon^{2b} X$, and $Y^{\varepsilon} := \varepsilon^{b} Y$. **Model:** for $b, \varepsilon > 0$, $\tau \in [0, 7]$, $\sqrt{ }$ \int $\overline{\mathcal{L}}$ dX_{τ}^{ε} $\frac{d\varepsilon}{\tau}=-$ 1 2 $\tilde{\sigma}(\mathsf{Y}^\varepsilon_\tau)$ $(\tau_\tau^\varepsilon)^2 {\rm d} \tau + \varepsilon^b \tilde\sigma(\mathsf{Y}^\varepsilon_\tau)$ $(\ell_{\tau}^{\varepsilon})(\rho \mathrm{d}B_{\tau} + \bar{\rho} \mathrm{d}B_{\tau}^{\perp})$ $(\pi^{\perp}_\tau),\,\, \mathcal{X}^{\varepsilon}_0=0,$ dY_{τ}^{ε} $\mathcal{I}_{\tau}^{\varepsilon}=\big(\varepsilon^{\textbf{D}}\lambda+\beta\textbf{Y}_{\tau}^{\varepsilon}\big)$ Y_{τ}^{ε}) d $\tau + \varepsilon^b \xi$ d W_{τ}^H , $Y_0^{\varepsilon} \sim \varepsilon$ $Y_0^{\varepsilon} \sim \varepsilon^{b}\Theta.$ (0.2) (ii) Small-time Implied volatility asymptotics Small-time asymptotics **Rescaling:** for $b > 0$ and $\tau \in [0, T]$, X_{τ}^{ε} $Y^{\varepsilon}_{\tau}:=\varepsilon^{2H+2b-1} \mathcal{X}_{\varepsilon^2 \tau}$ and Y^{ε}_{τ} $\zeta_{\tau}^{\varepsilon}:=\varepsilon^{b}Y_{\varepsilon^{2}\tau}.$ **Model:** for $b, \varepsilon > 0, \tau \in [0, T]$, $\sqrt{ }$ \int $\overline{\mathcal{L}}$ dX ε τ $=$ ε $2H+1$ 2 $\tilde{\sigma}$ (Y ε τ) 2 $d\tau + \varepsilon$ 2H+b $\tilde{\sigma}$ (Y ε τ $)(\rho \mathrm{d}B_\tau + \bar{\rho} \mathrm{d}B)$ ⊥ τ $), X$ ε $\zeta_0^\varepsilon=0,$ dY ε τ = $\left($ ε $b + \bar{2} \lambda + \beta \varepsilon$ 2γ ε τ $\bigg)$ $d\tau+\varepsilon$ $2H+b$ ξ d W_{τ}^H τ $,$ Y ε $\zeta_0^\varepsilon\sim\varepsilon$ $b\Theta$. (0.3) Large deviations principle \blacksquare The sequence $(X^\varepsilon)_{\varepsilon>0}$ is said to satisfy a Large Deviations Principle on $\mathcal{C}([0,\,T],\mathbb{R}^n)$ as ε tends to 0, with rate function I and speed h_ε , if for any Borel subset $A \subset \mathcal{C}([0, T], \mathbb{R}^n)$, the following inequalities hold: $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $-\inf$ A° $I(\phi) \leq$ lim inf ε↓0 h_{ε} log $\mathbb{P}(X)$ $\epsilon \in A$), lim sup ε↓0 h_{ε} log $\mathbb{P}(X)$ $\epsilon \in A$) $\leq -$ inf A $I(\phi)$. (0.4) ■ We will denote $X^{\varepsilon} \sim \text{LDP}(h_{\varepsilon}, I)$. Main results **Tail asymptotics** For any $H \in (0,1)$ and $b \geq \frac{1}{2}$ $\mathsf{X}^\varepsilon \sim \text{LDP}(\varepsilon^{2b}, \widetilde{\mathsf{\Lambda}}),$ with Λ defined by, The good rate function Λ is known explicitly. **Small-time asymptotics** For any $H \in (0,1)$ and $b \geq \frac{1}{2} - 2H$ such that the Assumptions hold, with I defined by $\mathbf{I}(\chi)$ \int The good rate function I is known explicitly. Applications to Implied Volatility Asymptotics (i) Large-strike implied volatility asymptotics For any $H \in (0,1)$, any $b \geq 1/2$, and any $t \in \mathcal{T}$, we have lim k↑∞ Σ 2 t $(k)t$ k = 1 2 $\sqrt{ }$ inf $y \geq 1$ lim $t\downarrow 0$ t $b\sum$ 2 t $\left($ t $1/2 - H - b$ k \setminus = k 2 2 $\sqrt{ }$ \Rightarrow The implied volatility explodes with rate $t^{-b}.$ Conclusion We extend [1] and [4] by ■ considering an fO-U process for the volatility; References SIAM J. Finan. Math., 8(1): 114-145, 2017. Theoretical Probability, 21(2): 476-501, 2008.

Figure: Simulation of a trajectory of a fractional Brownian motion with $H = 0.2$.

0<mark>.2 0.4 0.6 0.8 1.0</mark>

$$
dX_{\tau}^{\varepsilon} = -\frac{\varepsilon^{2H+1}}{2} \tilde{\sigma} (Y_{\tau}^{\varepsilon})^2 d\tau + \varepsilon^{2H+b} \tilde{\sigma} (Y_{\tau}^{\varepsilon}) (\rho d B_{\tau} + \bar{\rho} d B_{\tau}^{\perp}), \quad X_0^{\varepsilon} = 0, dY_{\tau}^{\varepsilon} = (\varepsilon^{b+2} \lambda + \beta \varepsilon^2 Y_{\tau}^{\varepsilon}) d\tau + \varepsilon^{2H+b} \xi dW_{\tau}^{H}, \qquad Y_0^{\varepsilon} \sim \varepsilon^{b} \Theta.
$$
\n(0)

$$
\left\{\n\begin{array}{l}\n-\inf_{A^{\circ}} I(\phi) \leq \liminf_{\varepsilon \downarrow 0} h_{\varepsilon} \log \mathbb{P}(X^{\varepsilon} \in A),\\ \limsup_{\varepsilon \downarrow 0} h_{\varepsilon} \log \mathbb{P}(X^{\varepsilon} \in A) \leq -\inf_{\overline{A}} I(\phi).\n\end{array}\n\right.\n\tag{0.4}
$$

$$
\lim_{\varepsilon \downarrow 0} h_{\varepsilon} \log \mathbb{P}(X^{\varepsilon} \in A) = - \inf_{A} I(\phi).
$$

 $\Lambda(\phi) := \inf \{ I_6(\chi) \mid \phi = I(\varphi, \varphi \cdot \psi), \chi = (\varphi, \psi), \psi \in BV \}.$

-
-

For any $H \in (0,1)$, any $b \ge 1/2 - 2H$, and any $k \ne 0$, we have

-
-

$$
:= \inf \left\{ \widetilde{I}_5(\varphi, \psi) : \varphi \cdot \psi = \chi, \ \psi \in BV \right\}.
$$

$$
\lim_{k\uparrow\infty}\frac{\Sigma_t^2(k)t}{k}=\frac{1}{2}\left(\inf_{y\geq 1}\widetilde{\Lambda}(y)\right)^{-1}
$$

.

$$
t^{b}\Sigma_{t}^{2}\left(t^{1/2-H-b}k\right)=\frac{k^{2}}{2}\left(\inf_{y\geq k}\mathtt{I}(y)\right)^{-1}
$$

.

[1] M. Forde and H. Zhang. Asymptotics for rough stochastic volatility models. [2] J. Garcia. A large deviation principle for stochastic integrals. Journal of [3] B. Horvath, A. Jacquier and C. Lacombe. Asymptotic behaviour of randomised fractional volatility models, [arXiv:1708.01121,](https://arxiv.org/pdf/1708.01121.pdf) 2017. [4] E. Stein and J. Stein. Stock-price distributions with stochastic volatility - an analytic approach. Review of Financial studies, 4: 727-752, 1991. [5] L. Yan, Y. Lu and Z. Xu. Some properties of the fractional Ornstein-Uhlenbeck process. Journal of Physics A: Mathematical and Theoretical, 41(14): 1-17, 2008.

 $\frac{1}{2}$, such that the Assumptions hold,

 $\mathcal{X}^{\varepsilon} \sim \mathrm{LDP}(\varepsilon^{4H+2b},\mathbb{I}),$