A DUAL BACKWARD REPRESENTATION FOR THE QUANTILE HEDGING OF BERMUDEAN OPTIONS London Géraldine Bouveret, joint work with B. Bouchard (Paris Dauphine) & J.F. Chassagneux (Imperial College London)

PROBLEM FRAMEWORK

On $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$, $\mathbb{F} := \{\mathcal{F}_t, 0 \le t \le T\}$ we define W a d-dim. B.M., and $\forall (t, x, y) \in [0, T] \times (0, \infty)^d \times$ \mathbb{R}^+ , T > 0 and for $s \ge t$ the two processes

$$X_s^{t,x} := x + \int_t^s \mu(r, X_r^{t,x}) \mathrm{d}r + \int_t^s \sigma(r, X_r^{t,x}) \mathrm{d}W_r,$$

$$Y_s^{t,x,y,\nu} := y + \int_t^s \nu_r^\top \mathrm{d} X_r^{t,x}, \nu \in \mathcal{U}_{t,x,y},$$

where $\mathcal{U}_{t,x,y}$ is the set of predictable processes valued in \mathbb{R}^d such that $\mathbb{E}[\int_t^T |\nu_s^{\top} \sigma(s, X_s^{t,x})|^2 ds] < \infty$, $\mu(\cdot, x)$, $\sigma(\cdot, x)$ are Lipschitz continuous and s.t. $X^{t,x} \in (0,\infty)^d \mathbb{P}$ -a.s., σ is invertible and $\lambda(\cdot, x) := (\sigma^{-1}\mu)(\cdot, x)$ is bounded and Lipschitz continuous.

The process X and Y respectively stands for the underlying and portfolio process with ν the strategies.

market is complete and Finally the $= Q_{t,x}$ where for $s \geq t$: $dQ_{t,x}(s) :=$ $\frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mathbb{Q}_{t,x}}$ $\lambda(s, X_{t,x}(s))Q_{t,x}(s)dW_s^{\mathbb{Q}_{t,x}} \in (0,\infty), Q_{t,x}(t) = 1.$

PROBLEM DEFINITION

Set $\mathbb{T}_t := \{t_0 = 0 \leq \cdots \leq t_i \leq \cdots \leq t_n = T\} \cap$ (t,T]. $\forall (t,x,p) \in [0,T] \times (0,\infty)^d \times [0,1]$, we want to solve

$$v(t, x, p) := \inf \Gamma(t, x, p) ,$$

where

$$\Gamma(t, x, p) :=$$

$$\Big\{y \in \mathbb{R}^+ : \exists \nu \in \mathcal{U}_{t,x,y} \text{ s.t.} \mathbb{P}\left[\cap_{s \in \mathbb{T}_t} S_s^{t,x,y,\nu}\right] \ge p\Big\},\$$

with

$$S_s^{t,x,y,\nu} := \Omega \mathbb{1}_{t \ge s} + \mathbb{1}_{t < s} \{ Y_s^{t,x,y,\nu} \ge g(s, X_s^{t,x}) \},$$

and $g : [0,T] \times (0,\infty)^d \to \mathbb{R}^+$ a Lipschitz continuous function. This is an extension to [2]-[4].

MAIN REFERENCES

- Bouchard, B., Elie, R. and Reveillac, A. (2012). BSDE with weak terminal conditions. *Annals of Probability, to appear*. Bouchard B., Elie R. and Touzi N., (2009). Stochastic target problems with controlled loss. SIAM Journal on Control and Opti*mization, 48 (5), pp. 3123-3150.*
- [3] Föllmer H. and Leukert P., (1999). Quantile Hedging. *Finance and Stochastics*, *3*, *3*, 251-273.
- Jiao Y., Klopfenstein, O. and Tankov P., (2013). Hedging under multiple risk constraints. arXiv:1309.5094v1 [q-fin.RM].

PRELIMINARY REMARKS

 $-v(T, \cdot) = 0, v(t, x, p) = +\infty$ when p > 1, by convention, and v(t, x, p) = 0 for all $p \le p_{\min}(t, x)$ with $p_{\min}(t, x) := \mathbb{P}[g(s, X_s^{t, x}) = 0, \forall s \in \mathbb{T}_t].$

- v(t, x, 1) coincides with the continuation value of the super-hedging price of the Bermudean option. In this complete market it should satisfy $v(t, x, 1) = \mathbb{E}^{\mathbb{Q}_{t,x}}[(v \lor g)(t_{i+1}, X_{t_{i+1}}^{t,x}, 1)]$ where $g(t, x, p) := g(t, x) \mathbb{1}_{0 1}, p \in \mathbb{R}.$

- The Lipschitz continuity of g implies that we can restrict to strategies ν such that $0 \leq Y^{t,x,y,\nu} \leq C(1+|X^{t,x}|)$ giving, in particular, $0 \le v(t, x, p) \le C(1 + |x|)$.

PROBLEM REDUCTION

In the spirit of [2] the following proposition holds. **Proposition 1.** Fix $(t, x, p) \in [0, T] \times (0, \infty)^d \times [0, 1]$, then

 $\Gamma(t, x, p) = \{ y \ge 0 : \exists (u, \alpha) \in \hat{\mathcal{U}}_{t, x, y, p},$ s.t. $Y^{t,x,y,\nu} \ge g(\cdot, X^{t,x}, P^{t,p,\alpha}) \text{ on } \mathbb{T}_t \},$

with $\mathcal{U}_{t,x,y,p} := \mathcal{U}_{t,x,y} \times \mathcal{A}_{t,p}$, with $\mathcal{A}_{t,p}$ the set of predictable square integrable processes valued in \mathbb{R}^d and such that $P^{t,p,\alpha} \in [0,1]$ on [0,T].

PROBABILISTIC REPRESENTATION

Theorem 1. Fix $0 \leq i \leq n-1$ and $(t, x, p) \in$ $[t_i, t_{i+1}) \times (0, \infty)^d \times [0, 1],$

 $v(t,x,p) = \inf_{\alpha \in \mathcal{A}_{t,p}} \mathbb{E}^{\mathbb{Q}_{t,x}} \left[(v \lor g)(t_{i+1}, X_{t_{i+1}}^{t,x}, P_{t_{i+1}}^{t,p,\alpha}) \right]$

As a consequence, there exists C > 0 such that $|v(t, x, p) - v(t, x', p)| \le C(1 + |x| + |x'|)|x - x'|$. *Remark* 1. $(v \lor g)$ can be replaced by its convex envelope with respect to *p* (see [1] and [2]).

on the different time steps, with the boundary conditions $v^{\sharp}(t_{i+1}, \cdot) = (v \lor g)^{\sharp}(t_{i+1}, \cdot)$. By the Feynman-Kac representation, this corresponds to the following backward algorithm

 \Rightarrow MAIN DIFFICULTY: control the propagation of the differentiability and growth properties of w^{\sharp} , backward in time.

DUAL REPRESENTATION OF THE SOLUTION

From Theorem 1 standard arguments should lead to a characterization of v as a viscosity solution on each interval $[t_i, t_{i+1})$, i < n of^a

$$\sup_{a \in \mathbb{R}^d} \left\{ -\partial_t \varphi + a^\top \lambda \partial_p \varphi - \frac{1}{2} \left(\operatorname{Tr} \sigma \sigma^\top \partial_{xx}^2 \varphi + 2 \operatorname{Tr} a^\top \sigma^\top \partial_{xp}^2 \varphi + |a|^2 \partial_{pp}^2 \varphi \right) \right\} = 0,$$

with the boundary condition $v(t_{i+1}, \cdot) = (v \lor g)(t_{i+1}, \cdot)$.

 \Rightarrow **BUT** the control $a \in \mathbb{R}^d$ is not bounded making the use of numerical schemes delicate in practice....

 \Rightarrow **IDEA**: consider the Fenchel transform of $v, v^{\sharp} := \sup_{p \in \mathbb{R}} (pq - v(t, x, p))$. Heuristically a formal change of variable argument suggests that v^{\sharp} should be solution of the linear PDE (see [2] for the case n = 1) $+ |\lambda|^2 q^2 \partial_{aa}^2 \varphi) = 0,$

$$-\partial_t \varphi - \frac{1}{2} \left(\operatorname{Tr}[\sigma \sigma^\top \partial_{xx}^2 \varphi] + 2q \operatorname{Tr} \lambda^\top \sigma^\top \partial_{xq}^2 \varphi \right)$$

$$\begin{cases} w(T, x, q) &:= q + \infty \mathbb{1}_{\{q < 0\}}, \\ w(t, x, q) &:= \mathbb{E}^{\mathbb{Q}_{t,x}} \left[(w^{\sharp} \lor g)^{\sharp}(t_{i+1}, X_{t_{i+1}}^{t,x}, Q_{t_{i+1}}^{t,x,q}) \right] \end{cases}$$

\Rightarrow MAIN RESULT:

Theorem 2. $v = w^{\sharp} \text{ on } [0, T] \times (0, \infty)^{d} \times [0, 1].$

^{*a*}A precise statement would require a relaxation of the operator, see [2].

Parameters: r

for $t \in [t_i, t_{i+1}), i < n$,