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1 Introduction

In the real finance market, many models are formulated as nonlinear partial differential equations
(PDESs) with optimal stochastic controls. These special PDEs are called Hamilton-Jacobi-Bellman
(HJB) PDEs and the controls are from realistic constraint conditions. It will be the best if analytical
solutions can be found for HJB PDEs. However, for now, there are only a few cases getting close-
form solutions and most cases are usually solved by nsing a numerical method. According to some
research papers|1, 2, 3], we get this powerful numerical theory which can guarantee to convergence
to the viscosity solutions [4] of ILJB PDEs.

In this report, we will apply this numerical approach, which can be found in 3.2, and C++ to
solve optimal control problems. By comparing numerical results with analytic ones in the first three
examples in section 5, we find that this numerical method can generate quite accurate answers.
To prove that it is effective for different kinds of optimal control problems, we then choose several
other examples which are without close-form solutions and solve them with different numerical
schemes. The final data from these schemes are really close, which ensure that the numerical
method 3.2 can be widely used.

The examples in this report involves various kinds of optimal control problems, not only one-
dimensional situation, but also multi-dimensional situation. The example, Stock Borrowing Fees,
in section 5.6 contains three controls. Example 5.3 is with infinite investment period. Moreover,
example 5.7 allows bankruptcy as well as unbounded control. And the last example, Mean-Variance
Asset Allocation (Heston model), in section 5.8, talks about the situation which is with two stochas-
tic variables.

Section 2 introduces optimal control problems and HJB PDEs. The detailed numerical method
and its theoretical convergence proof are given in section 3 and section 4 respectively. Section 5

shows specific examples and their numerical results.

2 Optimal Investment Problem and HJB formula

We are going to give a specific case to show the concepts of optimal control problems and HJB

formulas[6, 7).

2.1 General Optimal Control Problem

We assume that there is a no-arbitrage and self-financing financial market which consists of one
bank account (or bond) and one stock. And this market allows continnously trading on these two

assets. One investor want to do an investment in this market during a finite period T". The price
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process of the riskless asset, the bank account B, is as below

dB
—L = pdt, 0<t<T (2.1)
By

where the riskless interest rate r is a positive constant. We do not consider receiving divident from

stock S and then have the price process (Si)i<p like below

d?f:,_ = p(t)dt + o(t)dWy, 0<t<T, Sy == (2.2)

where p(t) and o(t) are continuous functions of time, which representing stock returns and volatil-
ities. (W})<p is a standard Brownian motion, which is on a complete probability space (€2, F,F),
endowed with a natural filtration F, augmented by all P-null sets.

Let m; represent the proportion of wealth invested in the risky asset S and 1 — 7, is the
proportion to invest into the riskless asset B. The the total wealth process (Xi)i<o satisfies the
following stochastic differential equation (SDE)

dX,;

% = (me(pelt) — 7) + r)dt + meo () dWy + ¢ dy, 0<t<T, Xo==x (2.3)
t

where ¢; is the consuming or additional contribution rate at time ¢. To be more precise, ¢; < 0
for consumption and ¢; > 0 for contribution. Meanwhile, 7; is the control for this problem and
it satisfies my € K a.s. for £ € [0,7] a.e. K comes from real constrains and is a closed convex
cone in B. Usually, there are two choices for K. One is called bounded control which means that
K = [Timins Tmax] € R. The other is unbounded control meaning that K = R.

Note that, in this report, we write deterministic functions as the form of b(¢) and o(¢) and
stochastic processes as S; and .

To assess the investment over the period T°, we need define a utility function. As the purpose of
the investor is maximizing or minimizing the utility function, then assuming that it is maximization
case, we have

sup E[U(X7)] (2.4)
mek

where U is a utility function. For the minimization case, it just needs to change sup into inf.
Actually, by adding a minus at the beginning of the formula, we can then transfer a inf case into a
sup case. What said above is a specific optimal control problem. Apart from this, there are many
other optimal control problems which can be derived by the similar process, you can find some of

them in section 5 and [7).

2.2 HJB formula and Value Functions

The assessment of investment can be divided into two parts. One is the assessment of the consump-
tion during the investment period. The other is about the utility of the rest money at maturity

time. We let V (£, 2) : T'x R — R be a C*? function, which represent the optimal value of (2.4). To




express (2.4) specifically, we divide it into two situations, based on if this problem consider about

time value.

e When it contains time value, we can apply Feynman-Kac Formula [7] to the value function
and have
g = [ r(u, X5 du tax = T r(u,X 5% )du i,z
Vit,z) = sup B[ [ e Je "W IO f(g X 0¥ )ds + 7 e TR a g (X 27)] (2.5)
TEK t
where »(#,2) reflects the instantaneous interest rate. f(s, X1*) represents the utility of
consumption during the investing period and g{X ,;2‘1:) shows the utility of final wealth.

The corresponding nonlinear HJB equation is as following

= + sup[A™V —rV + f] =0
ot TEK

(2.6)
V(T,z) = Ulx)
where ATV = a(t, x, m)Vx x (t, @) + b(t, z, 7)Vx (¢, ) is the partial differential operator.
o But when time value is not considered, the value function|7] are as
T
V(t,z) = sup B[ | F(s, X'®)ds + ®(XE™))) (2.7)

el St
where F(s, X'*) shows the utility of consumption and ®(Xr) is the rest utility of the wealth
at maturity 7.
The corresponding nonlinear HJB equation is like

v

— + sup|F+ A"V] =0
t TEK (2.8)

V(T,z) =Ul(z)

3 Methods for Solving HIB formula

There are many ways to get results of HIB PDEs. The best way is to obtain the close-form
expression of the solution. Meanwhile, we can also use the numerical approach to solve HJB PDEs.
In this report, we introduce three methods. Two methods are for getting analytic expression of

solution. The rest one is the numerical method.

3.1 Close form
3.1.1 Using Candidate Solution

For some special utility functions, we can get the close form solution by guessing the form of
V(t, ), which is called the candidate solution. For example, Merton portfolio allocation problem

in finite horizon can be solved by this approach[7]. We are going to show the details below.
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This Merton portfolio allocation example is based on the optimal control problem in section
2.1. For convenience, we will introduce its basic information here in brief. There is an investment
over a finite horizon 7" in the market which consists of one riskless asset, bond B, and one risky
asset, stock S. We invest the stock with a proportion 7 at price S; and the bond with 1 — m
at price By. The processes of B and S are shown in (2.1) and (2.2). Assuming that there is no
consumption and additional contribution during the whole period, then the wealth process of X;
is (2.3) with ¢; = 0. In this Merton case, the utility functions is with a power form, which is as

2P
U(x]:?, x>0, 0<p<l (3.1)

Since our purpose is maximizing the expectation of utility at maturity T, then the value function
is defined by
zP
V(t,z) = sup E|—] (3.2)
e p
According to the content in 2.2, because this Merton case does not involve time value, we can get

its HJB equation which is like

W supla(al—r) + )V + SaPa?0?Vi] = 0

M cex 2 (3.3)
V(T,z) =Ulz)

where V (£, z) represents the value of the utility with the initial wealth x at time .  is the risk-free

interest rate and o is the volatility of the risky asset S.

We set the candidate solution of (3.3) is in the following form
V(t,z) = p()U(z) (34)

where ¢(t) is a positive function. By substituting (3.4) into (3.3), we deduce the following ordinary

differential equation (ODE)

(1) + po(t) =0, H(T)=1

1,4 (3.5)
p=psup[r(p—r)+r+ -7c“(p—1)]
TEK 2
By dealing with the equation 3.5, we can get
6(t) = exp(p(T — 1))U(z), (t,2) € [0,T] x Ry, (3.6)

To get ¢(t), we should obtain p, which means solving the sup part in (3.5). By solving concave
function (g — ) 4+ r 4 im?0?(p — 1), we can attain its maximum value and the final solution of

(3.3). When K = R, we have

ﬁ:fﬁ% (3.7)

L —1)2
o= p(% +7) (3.8)
Vit,x) = exp(p(T — t))£ (3.9)

P
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However, for real cases, we usually set K = [0,1]. Under this situation, we just need to adjust
# above to let it in [0,1], and then get the corresponding p and V(¢ ). There are many other

examples which can be found in book [7].

3.1.2 Using Dual Function and Turnpike Property

Apart from the method above, Dual Function and Turnpike Property can be used to get the close
form solution of HJB. We are going to illustrate its general idea here.

When the trading constraint set of an optimal problem is a closed convex cone and its utility
function can be strictly concave, continuously differentiable as well as satisfying some growth
conditions, we can then transfer this problem and its HJB equation into a dual control problem
and dual H.IB equation. By dealing with this dual HJB, we can get the optimal control and finally
obtain the solution of the original HJB PDE[5, 12].

However, in some optimal problems, their utility functions do not satisfy the conditions of
being differentiable or strictly concave, then Turnpike Property can be used to help relax these
conditions. The detail can be found in paper [6]. Example 5.2 and 5.3 are two examples which can

be solved with this Dual Function and Turnpike Property method.

3.2 Numerical Program

Compared with close form solutions, numerical results are much easier to obtain. In this section,

we illustrate the process of solving HJB PDEs numerically.

3.2.1 Problem Formulation

As said in 2.2, the value functions of optimal problems are (2.7) when time value is not involved
and (2.5) when it is considered. And the HJB equations are (2.8) and (2.6) respectively. We
can generate a more general HJB expression which can contain the both situations. The general
expression is

av -

—(t,z) + sup[L7V (¢, z) + d(t,z,7)] =0

ot ek (3.10)

V(T,z) = Ul(x)
where
LTV(t,z) = A"V (t,2) —c(t,z, m)V(t,x)

Remark 3.1. When the optimal problem is without time value, we let ¢(t, z,7) = 0. Besides, the

meaning of ¢(t, z,7) here is totally different with that of ¢; in (2.3).

Once the utility function is defined, (3.10) equation can be solved by computing backwards in

time from the terminal time ¢ = T, to the present time ¢ = (. To make the process simpler and
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clearer, we let 7 = T — 1, then the HJB equation can be dealt with from 7 =0 to 7 = T and (3.10)

turns into
A%
L (r,2) = suplL™V (r,2) + d(r, z, 7)]
ot ek (3.11)

VI(0,z) = Ul(x)
where

LTV (r,z) = A"V(r,z) — ¢(r,z,7)V (T, z) (3.12)

a(t,z, m)Vxx(1,2) + b(7,2, m)Vx (1, 2) — (7,2, M)V (T, 2)
3.2.2 Boundary Conditions

When using numerical method, it is significant to set the boundary conditions[13, 16, 17] for space
range X. Normally, it contains two parts. One is X — +oo, and the other is X = 0. For the
second part, it is usually easy for us to get the value of V' after imposing X = 0 into the HIB.
We will give the boundary details at X = 0 in every example in the section 5. For the boundary

condition at X — *oc, there are several solutions that can be chose.

e First of all, Dirichlet Boundary Condition, as the simplest method for specifving the boundary
behaviour, is a widely used method to settle value V' down at X — +oc. In this report, you
can find it is much used in section 5. However, this condition is based on that we already
have some additional knowledge about the behaviour at this boundary points. It means that

Dirichlet Boundary Condition is not suitable for all cases.

e Besides, the Linear Boundary Condition is also used a lot, which is based on that the value
of V' is asymptotically linear of X when X — 4oc. It has two way to settle value V' down.
One is assuming that V(, X) = a(t)X + b(t) and implementing it back to HJB PDE. Then,
we can get two ODEs for a(t) and b(t). The V' can be formulated by determining these two
ODEs. The other way is letting Vi, = 0, and applying finite difference schemes to the HJB

PDE at the boundary points. You can find this method in section 5.5, 5.6 and 5.7.

Remark 3.2. The Linear Boundary Condition is usnally judged by the power number of the
utility equation. When the power number is smaller or equal than one, we usnally can use this
method above to get the boundary value. However, when it is larger than one, we sometimes
could still use it after changing the assuming asymptotic form of V. By following the same
process, then the corresponding V' formula will be gotten [9, 11]. There are examples for this

expanded method in section 5.7 and 5.8.

e However, in some cases, we have to use one side differential schemes at the boundary points
as we have no idea about the behavior of at this points. This method is called PDE boundary

condition and we can find its details in [17].
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Remark 3.3. According to [2] and [13], we could decrease the error made in the approximation

of this boundary condition by extending the computational domain of the space.

3.2.3 Discretization of Equation

Given a discrete grid of [0,T] (7, i =0,1,2,...,m) and a discrete grid of [Xmin, Xinas) (X, j =
0,1,2,...,n), we represent the valne of the utility, at time level 7; and space point X, by Vj" =
Vir, X j), and then generate vector Vi which contains all the elements VJ-" at time 7, V' € R™.
To be more specific, Vi = [Vi, V], V4,..., V] and its corresponding control processes is 7« =
[TJ’[J..?'I'L.TTQ.......TI'"]" The operator £V in (3.12) can be discretized using forward, backward or

central differencing in domain X. Then we can get

L™V, = ST @VI + BT @V - (@ (@) + BT () + T () v+ (3.13)

where ﬂ-;“._ ,B;.H can be found in Appendix A and B which is defined in [18]. To let this dis-
cretization method converge to right solution, which is discussed in section 4, with good accuracy,
we have to make sure cr}“, f3;—+1 > 0, as well as using central differencing method as much as

.3!'_+l

possible. Specifically, for every j, we first calculate o't! pand 3700, - I either of them is

j.centra
smaller than zero, we will choose forward or backward method which can let a-_‘;jt,_wm_d Jbackward?
B, orwardjpackwara > 0- The details are discussed in [18].

For the left hand side of (3.11), it can be discretized by using implicit time-stepping scheme,
explicit time-stepping scheme or Crank-Nicolson time-stepping scheme. When using fully implicit
scheme, there comes the final discretization as following

i+1

it -V sup {(C™ VY 4 4 (3.14)
AT ek i
An explicit method would evaluate with the right hand side terms in (3.14) at the old time level
instead of i4-1. A Crank-Nicolson scheme by adding the fully implicit scheme and an explicit scheme
together with an equal weight average. According to [8], implicit scheme is more recommenced, so
we will mainly use this scheme to do numerical computation in this report. Meanwhile, we also
give examples of using Crank-Nicolson scheme in example 5.5 and 5.6. However, as an explicit
method is likely leading to the unstable problem, especially when it is unbounded control, we will
not consider this method here [9].

To make calculation easier, we could adjust eguation (3.14) into a matrix form, and the dis-
cretized representation is as
(I = (1= 0)AT AP (AFHVIHL = [T+ 0AT A (#)V*
+ (F — B 4+ AT D7)
. . (3.15)
+ (1 —OATDH () (0<i<m)

ﬁj-i-l = arg s_up[Ai+1(ﬂ_)Vi+l + D‘H—l (7[‘)]
Tek
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where @ = 1 is fully explicit, § = % is Crank-Nicolson and ¢ = 0 is fully implicit time-weighting

[8]. @' is the optimal control progress at time 7'. Ari*!l = 711 — 71 Fi and F'*! are vectors
in B™ which encodes boundary conditions when using Dirichlet Boundary Condition. Matrix
A € M, (R). For the Linear Boundary Condition, the boundary value are calculating by using the
top and bottom rows of matrix A. The rest of A, reflecting interior points, is modified according
to (3.13). There will be several clear example in the following section 5 to show what A and F
look like. D™1(x) is also a vector designed as
) ! for j is not a boundary point
(D (m) =9
0 for j is a boundary point

However, in real cases, the programming cannot be easily achieved by (3.15) because of the dif-

ficulty for calculating optimal control #°*1. Then, we need more achievable algorithm for equation

(3.15), which is shown in (3.16) [8].

Policy Iteration 1

LC'G (V'i+l ){) — V'i
Let V¢ = (Vr'+1]k
For k =0,1,2,... until convergence

Solve
[7-@1- 9)A7,€+1Ai+1{ﬂ,i;:)]1}k+1 =+ BATHlAi{ﬁ,i}]V:'
{1 = 9]A75+1Df+1{ﬂk]
+OATHIDI(7Y) (3.16)
+(Fit — F)

T(;I € arg sup [AT (m)VE + D ()5
TeK

If £ >0 and
|(}~_k+l _ ffi.l
(max ——~————— < tolerance)
7 maz(scale, V)
then quit

EndFor

The term scale in Policy Iteration 1 (3.16) is used to settle accuracy levels. Typically, scale = 1

for values expressed in dollars and tolerance can be set 0.000001[8].

Theorem 3.4. (Convergence of the Policy Iteration) If the discretization (3.15) satisfies the Posi-

tive Coefficient Condition (4.5), then the Policy Iteration 1 (3.16) converges to the unique solution
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Vit from Vi[18].

Moreover, there is another approach, Policy Iteration 2 [8], which can deal with the problem
of calculating optimal control #*T!. This algorithm use the idea of piecewise constant policy
approximation. To be more precise, this algorithm divide control domain K into finite z parts,
M < Wo < W3 < .. < W, from which we can choose the optimal control # by comparing their
corresponding values of V. The detailed algorithm is in (3.17) and its stability proof can be found

in [8].

Policy Iteration 2

Let V' =U(s) . 7} = arg sup[A™ (m)V° + D(7)];
weK

Fori=0,1,2,...,m— 1 (Timesteps)
For z = 1,2,3, .., Zma=
Solve
I-(1- H]AT‘E‘HA"H[W:}]V;H =[I+ u‘)AT""lA"(f"r"]]V"
+(1 — O)AFHL D (7%)
_ o (3.17)

+OATI D (7Y
+(Fj+1 _ F'i)

EndFor

il ey iy - int s
Vi =maz (V7); (the maximum point is on zopt)

(Vitl — pitl and Vit = Fit! based on the boundary conditions)

EndFor

4 Convergence to the viscosity solution

It is important to ensure that the diseretization method we used can guarantee to converge to
the viscosity solution[l, 4]. This section are mainly analyzing the convergence of the examples
in section 5 except the last one. The last example which contains two-dimensional space will be
analyzed in section 5.8. To prove that the numerical discretization scheme converge to the viscosity

solution, we have the following theorem.

Theorem 4.1. From [20, 1], we know that a numerical scheme can converge to the unique viscosity

solution as long as the strong comparison property [1, 10, 19] holds in equation (4.1) and the
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numerical method is stable (in the || . | norm), consistent and monotone.

Strong Comparison Property According to the conclusions in [19, 21], equation (4.1) satis-
fies the strong comparison property on the computational domain with bounded control 7, which
means that —oo < X Xmar < 400 and K is bounded. In most of the cases in this report, we use
bounded controls, such as K = [0, 1], and set X i, and X4, a specific number for computational
purpose, so the strong comparison holds in this cases .

While, for the unbounded control case, such as 5.7, we could violate one assumption in the
proof of the strong comparison property in [21] and make sure 72 bounded. Then, we could still

guarantee that the discretization is strong comparison [21, 9].
Stability, Consistency and Monotonicity To analyzing stable (in the | . ||~ norm), con-

sistent and monotone, we will firstly define the following terms.
(AT)min = n'.'%in(nﬂ )]
(AT)mas = maz(Tipr = 7i)
(AX)min = '”'?W(XJ'H - X;)
(AX)maz = ?7?__;1-7"[){54—1 - Xj)

where we assume that there are discretization mesh size parameters hy,in, fimae such that

(AT)min = Crhmin

(AT)mar = Coliman
(AX)min = Cahmin
(A

X}ma'! = rlhﬂm:az

with C'1,C5,C3,Cy positive and independent of h. Then we can write the discrete equations (3.15)

into a new form at each node. This new form is as

GJ Y hass V::;"ll V”l V*H V:;H |28 Vi D)
V§+1 V:
= ~d 1 i+l _i+lygritl il ity
e v (1 )Wit:gn(ﬂ (A TV D) (4.1)
F{+L _ Fi
— L J g sup(A’ Vi+ Di(xt
A 0 sup (A + D),

Definition 4.2. (Stability) Discretization (4.1) is stable if
Vit <C, 0<i<m (4.2)

for (AT )min — 0, (A)pmin — 0, where C' is independent of (A7)in, (AZ)min. m is the time steps

number which can be found at the beginning of section 3.2.3
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Definition 4.3. (Consistency) Scheme (4.1) is consistent if, for any smooth function ¢, with
@ = ¢(7;, X;), we have

lim_|(6r = sup{L™p + d};™) = G (hmaa, 6755, 65T 00T, 0640, 05,00 1)| =0 (4.3)

hmaz—0 ek
When the operator degenerates, the definition of consistency becomes into a complicated form
which can be found in [1]. And the degeneration always happens at the boundary points. For

examples in section 5

, the degeneracy occurs all at the boundary point § = 0 or X = 0. And
boundary condition at that point is simply the limit of (3.14) as S — 0 or X — 0. Therefore, this

degeneracy problem does not arise.
Definition 4.4. (Monotonicity) The discrete scheme (4.1) is monotone if for all €, > 0,

GJ H(emaz, Wi—ll ;tll V:H VH—I +f%+1 V+1 Jr",1+1 V:Jrf V% 1+( 1)

(4.4)
it1 it+1 it+1 H—l i i i

< Gj (Peass lf;ﬂ V V V+L ViVig)

To prove that the numerical scheme are stable, consistent and monotone, we need to introduce

the following condition[9].
Condition 4.5. (Positive Coefficient Condition)
ait1 >0, git' >0, &1 >0, j=0,1,2,..,n (4.5)

where {.r;H >0, ;8;"'1 > 0 is from (3.13). According to [18], this method ensures the Positive
Coefficient Condition above. In this report, we also apply this method to get the final numerical

results.

From (8] and [9], we can find that if discretization equation (4.1) satisfies Positive Coefficient
Condition, and the boundary condition is using Dirichlet Boundary Condition or Linear Boundary
Condition, then the numerical discretization method is stable, consistent and monotone. Besides,

[8, 22] give simple methods to show that scheme (4.1) satisfies these three properties.

5 Examples by Using Numerical Method

In this section, we introduce several specific optimal control examples and solve them by using the

mumerical method in section 3.2.

5.1 Merton portfolio problem with boundary control

As in section 3.1.1, we know its utility function 3.1, the value function 3.2 and the corresponding

HIB equation 3.3. To make it convenient, we rewrite HJB cquation here,

1%

(,)—I = suple(r(p—r) + )V, + —1 2202 Vg

or TeK &
P (5.1)

Vir=0,z)=—, x>0, 0<p<l
p
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Let p = 0.5, set K = [0, 1] and use fully implicit scheme to get its numerical result.

For the boundary points X = 0, we can impose X = 0 in Merton problem HJB (5.1) and then
get Vi (7,0) = 0, which means that the value of V' will not change with time when X = 0. Then,
V(r,0) = V(r = T,0) = 0. Meanwhile, it does not matter how to choose the value of control 7.
We set the optimal control # = 0 at this point.

When X — +00, we can use Dirichlet Boundary Condition. As this example does not concern
about time value, we assume that V(t, X — +00) = U(X), and still set & = 0 at this point.

For computational purposes, we must truncate this infinite domain to [0, X,,4.]. By setting
Xmax much larger than Xiarger, the behavior at X4, would be similar to that at X — +occ.

For the rest non-boundary points, we mainly use central differencing scheme as well as ensure
Positive Coefficient Condition (4.5) hold. The detailed process can be found in section 3.2.3.

As we said earlier, we will use fully implicit time-weighting to deal with this example, then let

# = 0 in equation (3.15) and the matrix form of this discretization is as below
[[ o AT‘4j+1(Tf\ri+l)]Vi+l = Vi 4= (F‘H-] _ Fi)
7t = arg sup[ATH (1) VT 0<i<m
TeEX

The matrix A™! in equation above is as

0 0 0 0 0 0
o™t —(af 4 it et pitl 0 00
0 (r§+1 —(u;“ - ,5;“ + c;"'l) ;'35"'1 00
0 0 0 0 .. 00

Vector F*! and F' are as below

F4‘+J. = Fi =

0
U (Xma.:r)

We finally choose Policy Iteration algorithm 1 (3.16) to get the numerical results at X = Xyap g0t
and t = 0.

Table 1 shows the parameters used in the Merton portfolio problem. Table 2 is the corre-
sponding numerical results after convergence studies. By comparing these results with those from
analytic solution (3.9) in 3.1.1, we find that the errors are really small, even in a low accuracy

level. Figure 5.1 reflects these errors between the numerical method and the analytic solution.
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Parameter Value
r 0.04
T 0.5
pu(t) 0.05
o(t) 0.30
Tiarget 100.0
Tmin 0.0
Trmax 500.0
scale 1.0
Convergence Tolerance (Policy I'teration) 10-¢

Table 1: Merton Example Parameters

| Level ‘ Nodes ‘ Timesteps | Nonlinear iterations | Option value | Change | Ratio ‘

0 95 100 200 20.206630

1 189 200 398 20.206622 0.000008

2 37T 400 595 20.206618 0.000004 | 2.0
3 753 300 1177 20.206617 0.000001 | 4.0

Table 2: Merton Erxample. Convergence with fully implicit time-stepping method and Policy It

eration I method (3.16). The value at the column of Nodes is the number of spaced nodes. The

Nonlinear iterations shows the iteration times after difference schemes being settled down at each

nodes. The close-form utility value at X = 100, ¢t = 0 is 20.206616
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Figure 1: Merton Erxample. The numerical results are at the aceuracy level 0 and the close-form

results are from (3.9). As we set the spaced step near Xiorger smaller than that in other place, the

points near Xiarger are dense. We show a more detailed figure for these dense points on the right.
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5.2 Turnpike problem 1 with boundary control

This example is still based on the information from section 2.1 and its utility function are as
following

Ux)=H Az H is a positive constant. (5.3)

As this example does not involve the influence of time value, its HIB equation is (2.8). Let

7 =T —t, we have this HJB PDE as

o _ o I 1 222
5 = :gﬂ[.l.(w(p r) + )V, + SO Via|
Vir=0,z) =Ul(x)

where K = [0, 1]. According to [6] we can get its close-form solution which is shown below by using
Dual Function and Turnpike Property method in section 3.1.2.
H@(@—l(%e?'@—”) 40T —1) ,0<z<He T

V(t,z) = (5.
H Lo > He "T—0

[
[
—

where 6 = f%?and @ is the cumulative distribution funetion of a standard normal variable.
When computing this example numerically, we need firstly analyzing its boundary conditions.
For the point X = 0, the HJB (5.4) becomes to V(7,0) = 0 which can be seen as an ODE since
X = 0. As we have already know the initial condition V(7 = 0,2z = 0) = U(0) = 0, then we can
get V(7,0) = 0 by dealing with this ODE. It is obvious that there is no relationship with control =
when X = 0 and then we simply set # = 0 at this boundary point X = 0. Besides, we use Dirichlet
Boundary conditions to determine the approximate solution of the HIB PDE (5.4) as X — +o0.

And the specific formula for this solution is below:
VinX 2 +40)=U(X)=H

We still let 7+ = 0 at this point. After truncating this infinite domain to a finite interval [ X in. Xinaxs
Xnin < Xtarget << Xmar < +00, we then get the computational space domain. The behavior at
Xinaz would be similar to that at X — +00. The rest interior points will be dealt with by using

the method in section 3.2.3. The matrix A™"! in (3.15) is

0 0 0 0 0 0
altl (ol 4 gitl 4 ity pitl 0 00
0 o §+ 1 - (crf;“ + A §+ 1y cr§+ ! ) I3§+ ! 00
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and vector F* and F'*! is
U{X mirl}

0
Ff = Fl‘+l = 0
0
U{Xnmx}

Table 3 shows the parameters used in this example and the numerical results as well as close-form

results are in Table 4. It is really interesting that the numerical results convergence to close-

form results quickly when Xi,.g.¢ = 100. The reason is that X..4.¢ = 100 is a special point as
Xtarger = H =100 and the value of V. = 0 when X is larger or equal than H. Then we choose

another Xygrger = 97.6 to compute and the corresponding results are in Table 5. By comparing

the data in 5, we find that the errors reduce stably. Figure 2 shows the results from the numerical

method and the analytic expression of the solution, from which we can find that the numerical

results are really close to close-form solutions.

Parameter Value
r 0.04
T 0.5
pu(t) 0.05
a(t) 0.30
H 100.0
Tiarget 100.0
Tmin 0.0
Trmax 500.0
scale 1.0
Convergence Tolerance (Policy Iteration) 1076

Table 3: Turnpike Problem 1 Parameters
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| Level ‘ Nodes | Timesteps | Nonlinear iterations | Option value | Change ‘

0 95 100 100 100

1 189 200 200 100 0
2 377 400 400 100 0
3 753 800 800 100 0

Table 4: Turnpike Problem 1. Convergence with fully implicit time-stepping method and Policy

Iteration 1 method (3.16). The value at the column of Nodes is the number of spaced nodes. The

Nonlinear iterations shows the iteration times ofter difference schemes being settled down at each

nodes. The close-form wtility value at X = 100, t = 0 is 100.

| Level I Nodes l Timesteps | Nonlinear iterations | Option value | Change | Ratio ‘

0 95 100 100 99.146689
1 189 200 200 99.310565 0.163879
2 377 400 400 09.426619 0.116054 | 1.41
3 753 800 800 99.503256 0.076637 | 1.51
Table 5: Turnpike Problem 1. Convergence with fully implicit time-stepping method and Policy

Iteration 1 method (3.16). The value at the column of Nodes is the number of spaced nodes. The

Nonlinear iterations shows the iteration times after difference schemes being settled down at each

nodes. The close-form utility value at X = 97.6, t = 0 is 99.600435.
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Figure 2: Turnpike Problem 1. The numerical results are at the accuracy level 0 and the close-form

results are from (5.5). As we set the spaced step near Xiorger smaller than that in other place, the

points near Xiarger are dense. We show a more detailed figure for these dense points on the right
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5.3 Turnpike problem 2 with boundary control

In this example, we still choose m as the control which represents the proportion invested in risky
assets S. However, the investment period T is set to turn to be infinity which is different from the

background information in section 2.1. The utility function of this example is as following

.

Ulz) = %H_a(:tr) +H Na)+xH(z) , >0 (5.6)

where
2

:{—1+ \/1+4:1')

We use the HJB (2.8) to compute the final results and then compare them with that from the

bl

H(z)

close-form solution. Let 7 = T — ¢, we have the ILIB equation as

?)—V = supla(m(p—r)+r)Ve + %:lrQ?rgcrng]
T mek (5.7)
Vir=0,z) =U(x)

where K = [0,1].

The close-form solution of (5.7) is defined as following according to [6].

V(t,z) = g(y—lef*‘“‘j” + 22y) (5.8)

where

y? - %(c{?‘i—ﬂu]ﬁ + \/{?[1'1»92]!. + 4wc3(i‘+29=]t)
I

We analyze boundary conditions of HIB (5.7) as the same way with Turnpike problem 1 in
section 5.2. At the points X' = 0 and X — 400, the values of V' can be determined both with
Dirichlet Boundary conditions. The specification formula for X — 400 is as below. We set the

optimal control @ = (0 at both points for convenience.
V(r, X = +o00) =U(X)

After truncating this infinite domain to [X,,in, Xynas] and deciding differencing schemes as well
as the time-stepping approach, we can then get the numerical results for this example by using
equation (3.15). The matrix A'*! and vectors F'?, Fi+l in (3.15) have the same forms as those in
Turnpike problem 1.

Table 6 shows the parameters used for the Turnpike problem 2. Table 7 shows the numerical
results as well as close-form results. Figure 3 shows the difference of the results from numerical
method and analytic solution more clearly. By comparing these data in Table 7 and Figure 3, we
find that the errors are not small enough, even in a high accuracy level and the numerical results
converge really slow to the close-form value. The reason is that we give a small value, 0.5, to the

parameter 17" which violates the original condition, 17" — +oc¢, of the analvtic solution. However, if
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we increase the value of T, we need to give a considerably large value to Timesteps to maintain

aceuracy which leads to a really time-consuming computation. But from the results in Table 7,

we still guess that the numerical results will converge slowly to the close-form results with the

accuracy increase. To prove it, we change the value of T', and get Table 8. The results in Table 8

shows that the errors is going to be smaller with the decrease of time step even the T is not large

enough. From this phenomenon, we could guess that some optimal control problems with infinite

T can be solved numerically by reducing T'.

Parameter Value
r 0.04
T 0.5
ul(t) 0.05
o(t) 0.30
Ttarget 100.0
Foritis 0.0
Trmax 500.0
scale 1.0
Convergence Tolerance (Policy Iteration) 10-5
Table 6: Turnpike Problem 2 Parameters
Level | Nodes | Timesteps | Nonlinear iterations | Option value | Change | Ratio
0 95 100 215 45.97496
1 189 200 413 45974933 0.000027
2 377 400 789 45.974919 0.000014 | 1.93
3 753 800 1476 45.974913 0.000006 | 2.33

Table 7: Turnpike Problem 1. Convergence with fully implicit time-stepping method and Policy

Iteration 1 method (3.16). The value at the column of Nodes is the number of spaced nodes. The

Nonlinear iterations shows the iteration times after difference schemes being settled down at each

nodes. The close-form utility value at X = 100, ¢t = 0 is 45.2867T87.
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‘ T ‘ Option value | Change ‘ Ratio |
10.0 61.34021
1.0 46.673983 | 14.666227
0.1 45.423557 1.250433 | 11.73
0.01 45.300444 0.123113 | 10.16
0.001 45.288152 0.012292 | 10.02

Table 8: Turnpike Problem 1. Convergence with fully implicit time-stepping method and Policy
Iteration { method (3.16). The value of Nodes is 95 and Timesteps is 100. The close-form utility
value at X = 100, t = 0 is 45.286787.
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Figure 3: Turnpike Problem 2. The numerical results are at the accuracy level 0 and the close-form
results are from (5.8). As we set the spaced step near Xiupger smaller than that in other place, the

points near Xiarger are dense. We show a more detailed figure for these dense points on the right.

5.4 Uncertain Volatility

In this section, we will consider the case of pricing a butterfly spread [15] on the standpoints of
both purchasers and financial institutions who issue this derivative. This butterfly spread can be
seen as a portfolio of plain vanilla European Call Options on the same underlying asset. It involves
buying (long) a low strike K, option, selling (short) two middle strike K5 options, and buying
(long) a high strike K3 option, all with identical maturities T. The volatility of the price for this
butterfly spread contract is uncertain, thus, we need to build an optimal control problem to price
this derivative, which is with the uncertain volatility as the control term.

We assume there are three financial products in the market, one riskless bond B with a process
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(2.1), one risky stock S with the stochastic process (2.2) and this butterfly spread V. Let V(t,s) be
the value of the contract written on the stock asset S with the strike price Ky, K2, K3. Moreover,
the volatility o(f) is uncertain, which is the control process of this example.
In this example, if we stand at the spread issuers side, we want to maximize the price of the
butterfly spread. Hence, the utility function is the price function, which is defined as
U(S) = max{0,5 — K1} — 2max{0,5 — K2} + max{0,S — K3} (5.9)
Consequently, the value function is
V(t,s) = sup E[U(S)] (5.10)
€D
where £ = [0min, Omaa]. As this optimal control problem considers time value, then according
to section 2.2, we can get the corresponding HJB equation (2.6). Let 7 = T — ¢, then HJB is as
following
a2

Vr = sup{ Vs + uSVg — rV'}
sex 2 (5.11)

Of course, from the perspective of purchasers, this represents the worst case. To get the best
price for purchasers, it is just needed to replace the sup with an inf in the HJB equation above.
We will show the results of both cases in this section.

For the boundary points § = 0, we can impose it in HJB equation (5.11) and get V.(7,0) =
—rV(7,0). By using time-stepping approach, it will then be discretized. As it is not relevant to
control process o, we easily set & = oqz-

When § — +o0, we can use Dirichlet Boundary conditions to get the value. We let & = o000

and determine the following formula:
V(8 = +00,7) = U(S)e "T-7)

For computational purposes, we must truncate this infinite domain to [0, Spax], by setting Spax
much larger than Sirgee. Then, the behavior at S,,4, would be similar to that at S — +oc.

To increase accuracy, we still prefer to use central differencing scheme at the rest non-boundary
points. Then, together with the analysis about boundary conditions and fully implicit approach

in computation, we can get the matrix A**+!

—r 0 0 0 ... 00
aitt —(ait + B + M) pL+ 0 ... 00
Atl=| 0 ot —(@gM" + BT+ ST BT . 000
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and vector Fit! s

Fr’+l =

0
U(8)e =)

All the input parameters are provided in Table 9. Table 10 and Table 11 show the numerical results

of the best and the worst cases by doing convergence studies for this problem, from which we can

find that the numerical results converge stably with the increase of Nodes and Timesteps. Figure

4 shows these two results in a more perspicuous way.

Parameter Value
r 0.04
T 0.5
K 95.0
Jie 100
Ky 105.0
ul(t) 0.04
Tmin 0.30
Tmax 0.45
Starget 100.0
Smin 0.0
Simas 500.0
scale 1.0
Convergence Tolerance (Policy Iteration) 1076

Table 9: Uncertain Volatility Example Parameters
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| Level ‘ Nodes ‘ Timesteps | Nonlinear iterations | Option value

Change | Ratio ‘

0 95 100 226 0.79674718

1 189 200 443 0.79830842 | 0.00156124

2 377 400 852 0.79940966 | 0.00110124 | 1.41
3 753 800 1675 0.80036542 | 0.00095576 | 1.15

Table 10: Best Cases of Uncertain Volatility Ezample at S = 100, t = 0. Convergence by using

fully implicit control approach and the Policy Iteration 1 method (3.16). The value at the column

of Nodes is the number of spaced nodes. The Nonlinear iterations shows the iteration times after

difference schemes being settled doun at each nodes.

| Level ‘ Nodes ‘ Timesteps | Nonlinear iterations | Option value

Change | Ratio ‘

0 95 100 235 0.13148352

1 189 200 446 0.12907525 | 0.00240827

2 377 400 857 0.12746878 | 0.00160647 | 1.5
3 753 800 1677 0.12666878 0.0008 2.0

Table 11: Worst Results of Uncertain Volatility Example at S = 100, t = 0. Convergence by using

Sully implicit control approach and the Policy Iteration 1 method (3.16). The value at the column

of Nodes is the number of spaced nodes. The Nonlinear iterations shows the iteration times after

difference schemes being settled down at each nodes.
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Figure 4: Uncertain Volatility Example. The numerical results are at the accuracy level 0. As we

set the spaced step near Siarger smaller than that in other place, the points near Siapger are dense.

We show a more detailed figure for these dense points on the right.
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5.5 Unequal Borrowing/Lending Rates

This section shows the optimal control problem of the case where the borrowing rate r, and the
lending rate r; are unequal and r, > r; [8]. In other words, if we need money to invest in stocks
or other assets, the bank will lend to us at an interest rate r,. While we can also lend (deposit)
money to the bank at a lower interest rate r;. Next, we will price an option V' under this condition.

Assuming the financial market consists of a bank account, one stock and one option. It does
not matter what this option here is, and we choose European Straddle Option with strike price K

for this section. Therefore the utility function is
U(s) = maz{s — K,0} + maz{K — 5,0} (5.12)

If we stand from the option issuer’s view, the pricing process begin with shorting this option
and we want the price to be as high as possible. Conversely, we have to assume to long this option
from the perspective of investors and we want to pay as little money as possible. The price of the

option V' is then given by the nonlinear HIB PDE

- 2 g2
Short Position : d(,}—‘: % %Vss +p(V = SVe)(SVs - V) =0
' 5.13
LoV o%s? (513)
Long Position : % + 5 Ves + p(SVeg = V))(SVe - V) =0

where the control process is
T foraxz=0
ple) =
rp forax <0
The detail of the proof can be seen in [8]. Let 7 = T — ¢. Considering time value, the HJB for

Short Position is as following:

a1” 2g2
O o o viss +q(sVs - V) (5.14)
07' qeQ 2

where @ = {ry,71}. When analysing Long Position case, we just need to replace sup in above PDE
(5.14) to inf.

For the boundary points S = 0, we can impose it in its HJB (5.14) and get V:(r,0) =
3112"){—{;‘/{1', 0)}, which just needs to be discretized in time. The optimal control value at this
;;f)f11t. is by dealing with sup{—qV (7,0)}. To be more specific, ¢ = rp when —V(7,0) > 0. Other-
wise, § = 1y. e

When § — 400, we determine the asymptotic form of the solution by Linear Boundary Con-
dition which can be found in section 3.2.2. We can assume that Vgg = 0 when S — 400 because

the degree of S in utility function (5.12) is one. Then implement V' in a linear form which is

V('T-_S — +OC) = a{)(T)S+ I!)I-'I(T)
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By substituting the form above into HIB (5.14), we will obtain ODEs for both a(t) and b(t).
ag(1) =10
b;)(’") = —qby(7)
Together with the condition V(r = 0,5 — +o0) = U(S — 40o0) = §— K, then we can determined
the final ag(7) = 1 and bg(7) = —Ke 97. As we have to truncate this infinite domain of S to

[Sinins Smaz| for computational purposes, then the value of V' at S0, will be as following as long

as Sae 18 sufficiently large.
V(T: Snm:i:) = a’U(T)SHFﬂﬁ! + bU(T) = Srmaz — Ke™"

Consequently, the corresponding control g can be determined by maximizing the payoff above.
Central differencing scheme is still the first choice for discretization at the rest non-boundary
points. And for this example, we try both fully implicit time-stepping and Crank-Nicolson time-

stepping to get the numerical value. The matrix A™*! and vector F'*+! are built as following

—q 0 0 0 .. D0
ot —(eft + Bt + ) gitt 0 ... 00
At =1 o astt —(aft 4 gt ATy B 0 0
0 0 0 0 0 0
0
0
F:’+L: 0
0

V[T‘:-'—l-.X?na:r)

Besides, we use both Policy Iteration 1 (3.16) and algorithm (3.17) to gain numerical results.
The results of both Short and Long Position will be shown in the following content. Table 12
shows all the parameters necessary to use in computation. Table 13 shows the data of using Policy
Iteration 1 (3.16) with fully implicit time-stepping approach and Crank-Nicolson time-stepping
approach. Table 14 shows the results by using Policy Iteration 2 (3.17) with fully implicit time-
stepping approach and Crank-Nicolson time-stepping approach. Figure 5 and Figure 6 show the
results of Short and Long Position cases respectively. It is clearly that the numerical results are
close to each other when we using different time-stepping approaches with different policy iteration

algorithms.
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Parameter Value
Ty 0.05
I 0.03
T 1.0
K 100.0
a(t) 0.30
Starget 100.0
Smin 0.0
Smazx 500.0
scale 1.0
Convergence Tolerance (Policy Iteration) 10-6

Table 12: Unequal Borrowing/Lending Rates Example

Level ‘ Nodes ‘ Timesteps | Nonlinear iterations | Option value | Change | Ratio

Fully Implicit: Short

0 101 100 200 23.909523

1 201 200 400 24.021877 0.112354

2 401 400 800 24054311 0.032434 3.5
3 801 800 1600 24.064406 0.010095 3.2

Crank-Nicolson: Short

0 101 100 202 23.940077

1 201 200 408 24.037514 0.097437

2 401 400 825 24.061907 0.024393 3.9
3 801 800 1654 24.068353 0.006446 3.8

Fully Implicit: Long

0 101 100 201 22.940066

1 201 200 401 23.058689 0.118623

2 401 400 800 23.092736 0.034047 | 35
3 801 800 1600 23.103214 0.010478 | 3.2

Crank-Nicolson: Long

0 101 100 202 22970174

1 201 200 408 23.074024 0.10385

2 401 400 847 23.100513 0.026489 | 3.9
3 801 800 1655 23.107051 0.006538 | 4.0

Table 13: Results of Unequal Borrowing/Lending Rates Example at S = 100, t = 0 with Policy
Iteration 1 (3.16). Convergence for fully implicit time-stepping and Crank-Nicolson time-stepping.
The value at the column of Nodes is the number of spaced nodes. The Nonlinear iterations shows

the iteration times after difference schemes being settled doun at each nodes.
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Level | Nodes | Timesteps | Option value ‘ Change ‘ Ratio

Fully Implicit: Short

0 101 100 23.900759

1 201 200 24.017376 0.116617

2 401 400 24.052026 0.03465 33

3 801 800 24.063253 0.011227 | 3.0
Crank-Nicolson: Short

0 101 100 23.937905

1 201 200 24.036375 0.09847

2 401 400 24.061015 0.02464 3.9

3 801 800 24.068052 0.007037 | 3.5
Fully Implicit: Long

0 101 100 22.948961

1 201 200 23.063254 0.114293

2 401 400 23.095051 0.031797 | 3.6

3 801 800 23.104382 0.009331 | 3.4
Crank-Nicolson: Long

0 101 100 22.972377

1 201 200 23.07518 0.102803

2 401 400 23.101017 | 0.025837 | 3.9

3 801 800 23.107358 0.006341 | 4.0

Table 14: Results of Unequal Borrowing/Lending Rates Ezample at S = 100,

t = 0 with Policy

Iteration 2 (3.17). Convergence for fully implicit time-stepping and Crank-Nicolson time-stepping.

The value at the column of Nodes is the number of spaced nodes. The Nonlinear iterations shows

the iteration times after difference schemes being settled down at each nodes.
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Figure 5: Short Position case in Unequal Borrowing/Lending Rares Erample.
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The numerical

results are at the accuracy level 0. As we set the spaced step near Sparger smaller than that in other

place, the points near Siarger are dense. We show a more detailed figure for these dense points on

the right.
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Figure 6: Long Position case in Unequal Borrowing/Lending Rares Evample. The numerical results

are at the accuracy level 0. As we set the spaced step near Sgarger smaller than that in other place,

the points near Siarger are dense. We show a more detailed figure for these dense points on the

right.
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5.6 Stock Borrowing Fees

The borrowing/lending model in Example 5.5 can be extended to include stock borrowing fees [8].
Such fees are effectively paid to stock lenders when an investor borrows a stock. Specifically, the
stock lenders can receive fees from borrowers at an interest rate ;. Therefore, when investors sell
the borrowing stocks and reinvest the money at a rate r;, they totally gain in rate r; —ry and
vy # 7. For the borrowing part and the utility function, it is the same as that in example Unequal
Borrowing/Lending Rates model 5.5. We also divide this example into two part, Short Position
and Long Position, based on issuers’ view and purchasers’ view respectively. The nonlinear pricing

PDE in these two cases are :

v 028
Short Position : B + TVSS + H(V)[p(V — SVs)(SVs — V)]
+H{7Vg)[(ﬁ = 'l‘f)SVs = ?‘;V] =10
W 028 (5.15)

Long Position :

S0t g Ves + H(-Va)[p(SVs — V)(SVs — V)]

+H(V3)[(’.’"; — ’."f)SVS — 'r;,}V] =1
where
T foraxz =0 1 fory=0
plz) = H(y) =
T forz <0 0 fory <0
The derivation process of the PDEs (5.15) can be found in [8]. By modifying the Short Position

above and setting 7 = T —t, we can then get a general HJB PDE for this optimal control problem

as below

oV 262
(‘d_ = b'ﬂ-i‘){g Vss + a3 (SVs — V) + (1 — @3)[(r1 — 75)SVs — g2V} (5.16)
T Qeq 2

where @ = {q1,¢2.q3} and Q = ({r1, 7}, {r1, 7}, {0, 1}). The pricing HJB equation for the Long

Position is evolved by replacing sup by inf.

Remark 5.1. When it is Short Position, we have g2 = r; in (5.16). Meanwhile, there is g2 = 7,

in Long Position. Therefore, the control process is two-dimensional.

For the boundary condition analysis, differencial scheme choice and algorithms choosing, we
also use the same analysis method as discussed in Unequal Borrowing/Lending Rates 5.5.

Table 15 shows all the parameters necessary to use in computation. Table 16 shows the data by
using Policy Iteration 1 (3.16) with fully implicit time-stepping and Crank-Nicolson time-stepping.
Tablel7 shows the results by using Policy Iteration 2 (3.17) with fully implicit time-stepping and
Crank-Nicolson time-stepping. Figure 7 shows the numerical results of Short Position case. Figure
8 shows the numerical results of Long Position case. These two figures reflect a large difference

between implicit time-stepping scheme and Crank-Nicolson time-stepping scheme when S is much




5.6 Stock Borrowing Fees 32

large than Siarger with the same Policy Iteration 1. The reason is that the space step away from

Starget is not small enough. And the results near Siarq4e¢ are close to each other.

Parameter Value
Ty 0.05
r 0.03
Ty 0.004
T 1.0
K 100.0
ol(t) 0.30
Starget 100.0
Smin 0.0
Smax 500.0
scale 1.0
Convergence Tolerance (Policy Iteration) 10-6

Table 15: Stock Borrowing Fees Example

g

The Ogtira Valse

g

Figure 7: Short Position case in Stock Borrowing Fees Example. The numerical results are af the
accuracy level 0. As we set the spaced step near Siarger smaller than that in other place, the points

near Starger are dense. We show a more detailed figure for these dense points on the right.
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Level ‘ Nodes ‘ Timesteps | Nonlinear iterations | Option value | Change | Ratio

Fully Implicit: Short

0 101 100 201 23.974735

1 201 200 401 24.086269 0.111534

2 401 400 801 24.118499 0.03223 34
3 801 800 1600 24.128554 0.010055 | 3.2

Crank-Nicolson: Short

0 101 100 202 24.005438

1 201 200 415 24.101989 0.096551

2 401 400 828 24.126415 0.024426 | 39
3 801 800 1655 24.132525 0.00611 3.9

Fully Implicit: Long

0 101 100 201 22.514086

1 201 200 400 22.633284 0.119198

2 401 400 800 22.667582 0.034298 | 34
3 801 800 1600 22.678194 0.010612 | 3.2

Crank-Nicolson: Long

0 101 100 203 22.54526

1 201 200 417 22.649137 0.103877

2 401 400 830 22.675525 0.026388 | 3.9
3 801 300 1646 22.682162 0.006637 | 3.9

Table 16: Results of Stock Borrowing Fees Example at S = 100, t = 0 with Policy [Iteration 1
(3.16). Convergence for fully implicit time-stepping and Crank-Nicolson time-stepping. The value
at the column of Nodes is the number of spaced nodes. The Nonlinear iterations shows the iteration

times after difference schemes being settled down at each nodes.
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Figure 8: Long Position case in Stock Borrowing Fees Example. The numerical results are at the
accuracy level 0. As we set the spaced step near Siqrger smaller than that in other place, the points

near Stargetr are dense. We show a more detailed figure for these dense points on the right.
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Level | Nodes | Timesteps | Option value ‘ Change ‘ Ratio

Fully Implicit: Short

0 101 100 23.964579

1 201 200 24.081047 | 0.116468

2 401 400 24.115848 0.034801 | 3.4

3 801 800 24.127215 0.011367 | 3.0
Crank-Nicolson: Short

0 101 100 24.002923

1 201 200 24.100667 | 0.097747

2 401 400 24.125732 0.025065 | 3.9

3 801 800 24.132175 0.006443 | 3.9
Fully Implicit: Long

0 101 100 22.522665

1 201 200 22.637735 0.11507

2 401 400 22.669849 0.032114 | 35

3 801 800 22.67934 0.009491 | 3.3
Crank-Nicolson: Long

0 101 100 22.547378

1 201 200 22.650273 0.102895

2 401 400 22.676115 0.025842 | 4.0

3 801 800 22.682465 0.00635 4.0

Table 17: Results of Stock Borrowing Fees at S = 100, t = 0 with Policy lteration 2 (3.17).
Convergence for fully implicit time-stepping and Crank-Nicolson time-stepping. The value at the
column of Nodes is the number of spaced nodes. The Nonlinear iterations shows the iteration times

after difference schemes being settled down at each nodes.

5.7 Mean-Variance Asset Allocation
Assuming that the financial market have two assets, one is a bond and the other is a stock. The
dynamics process of the bond B is (2.1), and, S follows the process below

ds,

't

= (r+&o)dt + odZ, (5.17)

where r is the risk-free interest rate, o is the volatility, dZ; is the increments of Wiener processes.
The market price of volatility risk is £, which generates a risk premium price o [9].

Assuming one investor want to do investment in this market, which allows bankruptcy and
unbounded borrowing, over a period of T with an initial wealth of X;,,4e:, his purposes are gaining

as much profit as possible with as little as possible risk. During this time, he also continuously
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pays constant contribution C' into the total investment wealth for every unit time.
Still let m denote the fraction of this wealth invested in the risky asset S;, consequently (1 — )
denotes the proportion of wealth invested in the bond B;. Then, the investor’s wealth process

follows

dX, = [(r + n€o) X, + C|dt + o X,dZ,
(5.18)
X[O] = Xt(u'_q(*t
According to the purposes which are maximizing the terminal expectation of the wealth and

minimizing its variance, we then set the following formula as the assessment of this investment.

1;1&15:{Et=0[X1-|X(0} = Xtarget] — AWVart=[X1|X (0) = Xiarget]}, A =0 (5.19)

where A is a given Lagrange multiplier, which can be interpreted as a coefficient of risk aversion,

and the control problem is then to determine the optimal control = over the period T'.

Remark 5.2, Note that the expectation and variance in equation (5.19) are both seen at t =
0. Then the optimal results of E*="[X¢|X(0) = Xiarget] and Var'="[Xz|X(0) = Xippget] are
B Xp|X(0) = Xtarget) and Vart=0[X7|X(0) = Xiarget] respectively. For convenience, we will

omit ¢ = 0 sometime in the following content.

Tor a fixed v = i + 2B (X 1| X(0) = Xyargee), with A > 0, equation (5.19) is equivalent to

min B=0(Xp = 2)?X(0) = Xuargel] (5.20)

The proof can be seen in [9, 24, 23].

Let J(t,x,7) = E[(X7 - })?|X; = z] and we define the value function of this example as below

Vir,z) = 1?61{ J(T —7,z,7) = ité E[(Xy - %}2|X{T —7) =g (5.21)

where 7 = T —t. As the process does not consider time value, then according to the (2.8) in section

2, HJB equation for this problem is

O = inf{l(r+ 760z + W, + 3 (10)°V,)
TeEK (522]

Vir=0z)=(x— %)2

After we pick an arbitrary value of 4 and solve problem (5.22), the optimal control 7 is deter-

mined. Then, we can also determine the corresponding EX=0[X7| X (0) = Zrarget]-
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Let U(t,2) = EX7p|X(t =T -7)=a,7(t =T - 1,2) =7t =T — 7,2)] . Then U is given

from the solution to

U

1
W . {[{? + ﬂE”}I + C]U‘L + E(””I}qua:}w{T—f.n:]:f‘.(T—r‘x}

Ulr=0,z)=x
Since 7 is known, then solution of equation (5.23) is very straightforward and inexpensive.
Because bankruptey is allowed, X can be negative. Then the boundary conditions are at
x — *oo. We still use Linear Boundary Condition to determine the asymptotic form of the
solution at boundary points. By according to the power number of V(7 = 0,z) and U(r = 0,x),

we assume that

Vir,x = £o0) = ay(T)a? + by (T)x + ¢ (7)

(5.24)
Ulr,z = £o0) = a(7)a + ba(7)
Then, taking into account the initial conditions (5.22) and (5.23), we have
V(r,a — £oo) = elhitha)r,2 (5.25)
U, — 4o00) ~ 1 7g (5.26)

where ky = r 4 w0 and ks = (70)>.

Remark 5.3. Actually, we omit the terms of & whose power is smaller than the largest power
number. The reason is that the value of low power terms will be much smaller than that from

(5.25) and (5.26) when & — foc. Therefore, we omit these parts for easy.
Then, the optimal control at @ — £00 can be determined by maximizing (5.25) and it is

7(t,x — +oc) = - (5.27)

Besides, [9] also gives the same control value at these boundary points. For computational purposes,
we truncate the space domain [—00, +00] t0 [Xin. Xias). Then, at X = X, or X400, We use
the Linear Boundary Condition (5.25), (5.26) and (5.27) above to give the optimal value V" and U.
As what previous examples did, we use fully implicit time-stepping scheme in the discretization
of HIB (5.22) and Policy Iteration 1 method (3.16) to get the final optimal value V.
Similarly to V, the equation (5.23) of U can also be written into diseretization form which is
as below

Uitt - Ui i
f ={(L7 U™ }rivizgin

i+l i i i i i i i
(£ U, = o (m UG + BT (UL — (0T (m) + 8T () UG
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By applying 7 into this discretization equation, we can then get the value U(T = T, Xjarget) by
using fully implicit time-stepping scheme from 7 = 0 to 7 = T". To be more specific, we nse the
following matrix form of the discretization (5.28) to calculate the value U at every next time 7i+!

step by step.
[I _ ATAi+1(fri+1)]Ui+l = U'E + (F‘H—l _ Fi) (0 <i< :m') (529)

where matrixes A**! and vectors F+', F' are determined by both the discretization (5.28) and

the boundary condition (5.26).

Remark 5.4. For the wealth case with allowing bankruptey, we have 2 < 0. In this case, our X

grid are likely contains

[-'rmin-. v Tog, g = 0,27, ---smnmx]
(5.30)
Tmin < ... <2 <zo=0<> <... < Triax
with large |2in| and 2,,0... However, our X grid cannot contain the node zp = 0, because if =0
is in the grid, no information can be passed between the negative value nodes and positive value
nodes [9]. When the space grid (5.30) above happens, we need to modify it by delete point @p =0
and add two more points between |z_;| and x;, which are 29" = % and a7 = %L After that,

the grid will become

["l;min- verg =1, Jf’iﬁlm-. 3'?“”‘1’1 yreny wma;a:]

(5.31)

Topin < e < T <2 <0 <27 <y <l < Tipan

Finally, by combining these equations below
= 7 2
V(L’!':'}_D[XT‘XU = O) = X!,m-_qct] = V(T = T3 X!,m‘get) - T -U (T = T3 Xtm-_qr?t)
+ '}"U(T = T3 X!.m‘get)
I/(T = T, Xt.m‘gnf.) = E%=I][X%|X(t = 0) = Xtm'gct,] (532)

2
— VB Xr| X (t = 0) = Xiarged) + -

U(T = T.- X!.m-gr?t) = E:‘;—:”[XT|XU = 0) = Xtm‘ge!,]

we can finally get the efficient frontier pair[9] (Vart="[X¢|X (t = 0) = Xiapger), B[ Xp| X(t =
0) = Xi'.ui‘get.])-

The algorithm for calculating efficient frontier is as below [9]
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Policy Iteration for Efficient Frontier

For v = Ymin, V15 s Ymaz
For i =0,1,2,...m (Timesteps)
Solve equation (5.22) by using Policy Iteration 1 method (3.16)
Solve equation (5.23) by using (5.28) where 7 is from solving V'
EndFor
Given the initial z4rget (5.33)
If (3 — EX9[X7| X (0) = target]y > 0) (for making sure A > 0)
Use (5.32) to get
(Varf2[Xr| X (0) = Zrarget], E5°[X7]X (0) = @targes])
Then get
(StAO[X7| X (0) = @rargerls EEO[XTIX (0) = Trarger))
EndIf
EndFor
Construct the upper convex hull of the points

{Sfd:“:[][XI'X{O] = xtur_q(et.]-. E%=0[XI'|X{O] = x!.arget]] where e hmius'}'ﬂwx]

In the algorithm above, we trace out the efficient frontier by varving ¥ € [Ymin, Yma=). Hence,
we have to detect invalid internal for 4 by using the condition that A > 0.

As said before, v = %+ 2B X 1| X(0) = ¢arger] for every Xygrger and A > 0. Then pi,, can
be determined by letting A — -+00 which means that the investor cannot bear any risk. At this

situation, to minimize risk, the investor would invest all her wealth in the risk-free bond for the all

e’T—1
~

time. Then, her wealth at maturity 7" would be xtm-gﬂe‘"’r +C with zero standard deviation.

Therefore,
T er'l‘ =1
Ymin = z{xmrget.er + 07} {534]

It is obvious that there is no upper bound for 4 under the condition A > 0. For numerical purpose,
we set Ymae = 50 [9] which is large enough to plot the efficient frontier over a reasonable range of
interest.

By using the parameters in Table 18, we can get the results V(T Ziarge:) in Table 19 and the
results U(T, @4qrget) in Table 20. Figure 9 shows the final efficient frontiers (Stdi="[Xp|X(0) =
Ttarget]s E}:.=U[XT|X (0) = Ztarges]). It is clear that the expectation of the total wealth rises with
the increase of its variance and the less risk aversion A is, the larger the expectation and variance

are.
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Parameter Value
r 0.03
T 1.0
C 0.1
o(t) 0.15
Trarget 1.0
Tmin -5925.0
Trmax 5925
'3 0.33
Vmin 2.2639
Ymaz 50.0
scale 1.0
Convergence Tolerance (Policy Tteration) 10~6

Table 18: Continuous Time Mean-Variance Asset Allocation Example

| Level ‘ Nodes | Timesteps ‘ Nonlinear iterations ‘ V(T Ztarget)

Change ‘ Ratio |

0 732 50 100 0.10199058
1 1462 100 200 0.058185082 | 0.043805498
2 2921 200 400 0.030634507 | 0.027550575 | 1.6

Table 19: Results V (T, Z4arger = 1.0) of Continuous Time Mean-Variance Asset Allocation att = 0,

Y = Ymin = 2.2639 with Policy Iteration 1 (3.16). Convergence for fully implicit time-stepping.

The value at the column of Nodes is the number of spaced nodes. The Nonlinear iterations shows

the iteration times after difference schemes being settled down at each nodes

Level | Nodes | Timesteps | Var(T, ziarget) | U(T, Ttarget)
0 732 50 0.31554535 1.0827391
1 1462 100 0.23991713 1.1069529
2 2921 200 0.17457723 1.1194082

Table 20: Results U(T, 240rgee = 1.0) and Var(T,2ur9ee = 1.0) of Continuous Time Mean-

Variance Asset Allocation at t = 0, v = ~pin = 2.2639 with Policy Iteration 1 (3.16). Convergence

Sor fully implicit time-stepping.
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Figure 9: The final efficient frontiers (Std:="[Xr|X(0) = 1.0], E="[X7| X (0) = 1.0]) at ¢ = 0 with
Policy Iteration 1 (3.16). Convergence for fully implicit time-stepping. The numerical results are

at the accuracy level 1.

5.8 Mean-Variance Asset Allocation (Heston model)
5.8.1 Problem Formulation

Apart from optimal control problems with one-dimensional space factor, what we are going to
talk about is a multi-dimentional problem which uses Heston Model [25] to process a stock price
volatility [11].

The rest background is the same with section 5.7 except two points. One is that bankruptcy
is prohibited in the market and there is a leverage constraint for borrowing. The other is that the
process of S which follows Heston’s model under the real probability measure

dS; .
5 = (r+ &u(t))dt + \/v(t)dZ, (5.35)
where the variance, v(t), follows a mean-reverting square-root process [25]:

dv(t) = k(0 — v(t))dt + o/ v(1)dZs (5.36)

with dZ, dZs being standard Brownian motion. The correlation between 2y and Z is dZydZs =
pdt. The price for volatility risk is £v(t), which generates a risk premium proportional to v(t).
Still assuming one investor want to do investment in this market over a period of T" with an

initial wealth of Wiarget, his purposes is the same as that in last section 5.7.
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7 is the control process denoting the proportion invested in S(£). Then, the investor's wealth

process follows

AW (t) = (r + 7€o(t))W(#)dt + 7/ v ()W (t)dZ,

(5.37)
W(0) = Wiarget
According to the purposes, we can the following assessment of this investment.
rllé:%{Et:”[W'Tﬂ’V(O) = Wiarget] — AVar="[Wp|W(0) = Wiarget]}, A =0 (5.38)
which is equivalent to
2161’? Ef:u[(”';T - %)QIH;(D) = nfia r'_qc.t] (539)
where v = % + 2EEO[Wr|W(0) = Wiarget) for every Wiapget.
Let V(r,w) be the value function where 7 = 7" — ¢, then we have
V(r,w,v) = inf E[(W(T) — 1)2|‘W(T - 7)=w] (5.40)
TeEK 2

As this example does not consider time value, then the corresponding HIB equation for this

problem is
v 1 " 1 s
— =inf{(r + m€v)wV, + k(0 — V)V, + =(mv/ow)? + wpoowVy, + =c2vV,,}
9T rek 2 2 (5.41)

V&wwﬁﬁw—%V
Still let U(r,w,v) = ELY[W(T)|[W(T — 7) = w] and it is give by the following PDE
&) 1 . 1.

(,—U = (r + #év)wly + &(0 — v)U, + = (& uw)‘! + fpovowlye + 20U,y

ar 2 2 ( 5‘42)
U(0,w,v) =w

where # is obtained from the solution of the HIB equation (5.41).

The boundary conditions for this problem is a little complicate.

When v = 0, the variance and the risk premium vanishes, then equation (5.41) is

av
—— = rwVy + sV, (5.43)
ar

which is not related to control 7 and we can simply define #(r,w,v = 0) = 0 as risky asset and
risk-free asset are same at this situation. On the upper boundary v — +oo, the value of V' will

not change with the changing of v, meaning that V,, = (0. Then we can get

av =inf{(r + mév)wV, + l[?r\/t_rw)sz..;} (5.44)
ar TeX 2

and the optimal # is by solving (5.44).
On w = 0, the equation (5.41) reduces to without =

i

1 .
o = k(0 — )V, + §O'Z’UV,”, (5.45)
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we still can simply define #(7,w = 0,v) = 0. When w — 400, the investor prefers the risk free
asset because his wealth is very large. Then, we make the assumption that 7 = 0 at this boundary
point because investors do not want any risk at this situation. As the initial condition in (5.41) is
independent of v with the power number two, we can apply Linear Boundary Conditions to assume

that asymptotic form of the solution at this boundary point is
VT, w = +00,v) = V(w) = ag(T)w? + bs(T)w + ¢5(7) (5.46)

For these boundary conditions (5.43), (5.44), (5.45) and (5.46), their discretizations are shown in
Appendix B [11].

For the interior points, we have to consider how to deal with the cross derivative term V., in
(5.41). Since a classic finite difference method can not produce such a monotone scheme, we will
adopt the wide stencil method developed in paper [3, 11] to deal with this second derivative terms.
Suppose we discretize equation (5.41) at grid node (wj;,,v;,) for a fixed control m, then we can get

a virtual rotation of the local coordinate system clockwise by the angle #;, ;.

1 2pmow;, v;
ne . = —tan=1 31 Y52
G R N T I N

And the new transformed coordinate system (y;,y2) is obtained by using the following matrix

) (5:47)

w cos(n;, j.)  —sin(n;, ) n (
v sin(15,.5.)  cos(,.i.) Yo
We denote the rotation matrix in (5.48) as R, j,. Under this rotation, the second order terms in
equation (5.41) are below, which is without the cross derivative term under the new transformed
coordinate system (y1, y2),

a5 IV o, BV
Jisdz2 3_#? Jisdz2 31}%

1 2 2 ; 1 2 2
@j g = (5(“\! v.‘izwj|) COS(njldz) + mpaw;, 'szS?.'IL(?}j,‘jz)COS(?’,Pj,JZ) + 5(‘7 'sz) s*”(”jl -J'z) )
1 . . 1
bjige = (E(W Via ‘LEL)QSJ'”(?Fju‘jz)Q = TPoW;, ”szm(?Fj.‘jz)t‘%(ﬁj.‘jz) + 5( 'sz)QCOS(nh -jz)Q)

(5.49)
where W(r, ji1, j2) is the value function in the transformed coordinate system. The rotation angle
1;,.5. depends on the grid node and the control, therefore it is impossible to rotate the global
coordinate system by a constant angle and build a grid over the entire space (y1,42). The local
coordinate system rotation is only used to construct a virtual grid which overlays the original mesh.

Let us rewrite the HIB equation (5.41) as

io)% .
sup{—(m) = L7V
f)t‘(fr) =Vr — (r+mév)wVy (5.50)

LV =k(@—v)V, + %(fr ’UTL‘]? + mpo/rwV,y, + %O'Q’UV;H,
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the Vi, is discretized by a standard backward or forward finite differencing discretization, depending
on the sign of x(# — v) [26).

For the first term of the equation (5.50), it can been seen as the change of V' with respect of
we give a new

7 after eliminating the influence of the change of W by time. So, for each V:f:jl-.u

off-grid point (wj;,v;,) = (wj, e("*'“‘f"‘-lz}ATI.I1..'3-2] to approximate the %(ﬂ').. by using following
formula ity
Dv did2 T J'%{ Jz
— () = — 5.51
o (m) (5.51)

ATt

And the second term, £V, can be discretized into the following form which is denoted by L}

i+1 _ KO = vj,) it KO0 = vj,) i1
WVirds = Un0-v)200 =5 Vi1 = Us(o-viy)<0} = Vi a1

@ ,j: i @i s )
+ BTV (5 + Vh(Rj, )1) + 'LJEJZ'J:;V‘+l(wj. g2 — VR(R;, o)1)
bivia 7, by
+ %.ﬂ Vitl(z, . + \/E[thjzjzj + %‘Z‘V&L{Ijuja B \/H(Rj-[_.jg}Z}

k(0 — vj,) K0 —vi,) 285,05,  2bj, 0o n
- [1{5(9—1}}2)20} I L _1{5(9—1)_;2){[]} h 120 ':;; 12 4 “;; = }V;l-*_—jkz

where h is the discretization parameter which is defined in above in section 4 , 7,V is an interpolant,

Ly Gp = and (Ry, j, )i is k-th column of the rotation matrix. For convenience, we defined
Yja
L = . : . .
‘l;iu-in =Tj g T \/‘E(Rjujz)l

LI’.?I do = Tjrga — \/E(le‘jz)l

o3

Jiga = Ly ja + \/E(Rju‘jz )2

U} i =g — VARG, 52

Then, equation (5.50) will be solved backwards in time from 7 = 0 to 7 = T by combining
(5.51) and (5.52).

It is convenient to use a matrix form to represent the discretized equations for computational
purposes. Let V;I j» be the approximate solution of the equation (5.41) at (wj,, v;,,4), 1 < ji < Ny,
1<y < Npand 0 <i <M. Weset V' = 1@-‘1 . Where [ =i+ (j—1)Ny. The final matrix form of

the discretized equations is then

[ = AFLA ()] Vi = 1 (m)VP + AriGH () + FiH - F
: : - . . (5.53)
1 € arg min[® T (V' + ATH LI @)V + GHFY()),
mel

For the boundary points, [L'F!(#)]; is developed from D}j"/}‘ﬁz while Lit1Vi+tl and Gi+!

consist of LTV**! at unboundary points. As said before, the corresponding discretized form of
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Dﬂ is given in Appendix B. Gi“(?r) is used to adjust the situation when the new system points
lIJI.Q,_."}.-’L

i are out of the space domain. And G (7) is defined as

N
1{‘1»’_:| o Bdomain} % V(‘I’;| 2 )

A5y, 5o 77y 7, 2
+ 1{\Itfl 2 ddomain} % V(‘I’jl ‘.ji)

. by e
G'* (m)e = +1{\Lrjl_j2gdomo‘m}%V(w?hjz}

by i —
1. 4 . . :
+ l{q_,-JI_I ., Fdomain} }—?? V(W5 5)  for (wj,,vj,) in domain

0 otherwise

$H () V7 gives the new value V after adjusting grid point (w;, , v;,) to new off-grid point (w;; ,vj,).

Specifically, it is as following

, ) TJiVE . for (wj-,v4,) in domain
[(I)x+l(ﬂ)vah — L P ] Jir M (555)
boundary condition(5.46) otherwise

By using above discretization method, we then can get final V(T 2444¢¢) and optimal control
process . Consequently, U(T. Zyqrger) = EE°[Wr] will be got. And we can then get the variance
of Wy, Var(T, #4arget), by using (5.32). After using the same process as in 5.7 of calculating ¥,,,,
we can then get ~ynin = 2H’}“,‘_,;,,_,_e”‘. Still using the Policy Iteration for Efficient Frontier (5.32),

we can finally obtain the efficient frontier pair of this example.

5.8.2 Convergence to the Viscosity Solution

We still illustrate the convergence of this example from four parts, Strong Comparison Property,
Stability, Monotonicity and Consistency by using the theorem 4.1. The detailed proof can be found

in [3, 11].

(Strong Comparison Property) As the control 7 is bounded in this example, we can get that

(5.41) satisfies strong comparison property which has been said in section 4.

(Stability) From (5.53), it is obvious that [T — AfiLi+L[fr)] has positive diagonals and non-
positive off-diagonals. Besides, and the sum of l;;, row on the matrix is larger than zero.
Then, according to [28], this is an M-matrix and diagonally dominant. Finally, from [29], we

can get the Stability property by using a straightforward maximum analysis as in .

o (Monotonicity) Since we use a wide stencil to deal with the second derivative term in the L7
in (5.52), we can get the proof of monotonicity from [27]. Besides, .,‘7,: the linear interpolant

in the semi-Lagrangian time-stepping scheme also ensures monotonicity.

e (Consistency) Since we either use the limitation PDE of equation (5.41) at w = 0 and

v = () or use Linear Boundary Conditions at w — 4oc¢ and v — 400, we can then use the
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same proof in [27] to show consistency at both boundary points and the interior. For the

points (wj;,vj, ), as this point can only exceed upper boundary wy, .. where we can use the

asymptotic solution (5.46) from Linear Boundary Conditions, thus, we do not need the more

general definition of consistency [3] to handle the boundary data.

5.8.3 Numerical Results

Table 23 shows all the parameters necessary to use in computation. Table 21 shows the results

V(T target) by using Policy Iteration 1 (3.16) with fully implicit time-stepping. Table 22 shows

the results U(T, z4qrget ) by using Policy Iteration 1 (3.16) with fully implicit time-stepping. Figure
10 shows the final efficient frontiers (Std:="[We|W(0) = wiarget], =W |W(0) = wiarged]). 1t is

obvious that the expectation of wealth increases with the rise of variance when wgger and veqpget

are fixed. When the number of the W Nodes, V' Nodes and Timesteps increase together, the

results will come up after a thousands-dimensional vector converging for hundreds times, which

would take a few days to finish on my computer. Therefore, we only give the following results.

| Level ‘ W Nodes | V' Nodes | Timesteps | V(T Zarger)

0

13

11

100

6.580916

1

22

21

200

2.6709329

Table 21: Results V(T, T1arget) of Mean-Variance Asset Allocation with Heston Model at W = 98.0,

t =0, = Ymin = 201.969 with Policy lteration 1 (3.16). Convergence for fully implicit time-

stepping.

| Level ‘ W Nodes ‘ V Nodes | Timesteps | Var(T, orarget) | U(T, Trarger)

0

13

11

100

6.5807664

100.99677

1

22

21

200

2.6679456

101.0392

Table 22: Results U(T, &yarget) of Mean-Variance Asset Allocation with Heston Model at W = 98.0,

t =0, = Ynin = 201.969 with Policy lteration I (3.16). Convergence for fully implicit time-

stepping.
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Parameter Value
r 0.03
T 1.0
K 5.07
0 0.0457
o 0.48
P -0.767
£ 1.605
Vmin 201.969
Vmazx 1000.0
Pmin 0.0
Pmaz 2.0
Winin 0.0
Wnaz 400
Vinin 0.0
Umax 0.047
Wiarget 98.0
Vtarget 0.0456
scale 1.0
Convergence Tolerance (Policy Iteration) 1076

Table 23: Mean-Variance Asset Allocation Example (Heston Model) Parameters

101.18

10116

101.14 -

10112

1011

101.08 - |

The Expectation of Wealth

101.06 |

101.04 |

101.02 : - :
Q 5 10 15
The Variance of Wealth

Figure 10: The final efficient frontiers (Std:="[W.r|W(0)

20 25 30

= 08.0], EX=O[Wr|W(0) = 98.0]) at t =0

with Policy Iteration 1 (3.16). Convergence for fully implicit time-stepping. The numerical results

are at the accuracy level 1.
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A Appendix
Let #}' denote the optimal control 7 at node i, time level n and set
a*! = a(z, 77), U1 = bz, 77, = oz, ),

T

Then, we can use central, forward or backward differencing at any node. Central Differencing:

T T

o = [ 2ai _ b,'
i,centra (2:' — zi—i)(zi+1 - z‘-_kj Zitl — Fi-1

n T

2a; b;

[T
‘51' central —

+
[(Zx+1 - Za)(2x+1 —Zi-1)  Zi+1 — Zi-1

Forward/backward Differencing: (b > 0/ b' < 0)

2a? b
n i i
@ forward/backward = [ + TI?.(IJJJ(O, —)]

sforaamdfbackas (zi — zi1)(2ip1 — 2i-1) 2 — %-1

2al? b

3T — T T
Hi, forward[backward — [ + ??Il‘lfl‘(gr - _
Forward/backwe (zi+1 — 2i)(Zit1 — zi-1) Zitl — %

B Appendix

At the boundary condition, cross-derivative term vanishes. Then we can use a standard finite

difference method. The discrete forms of (5.43), (5.44) and (5.45) are like
DRV = ai;VE i+ 805 Vida 5 + o Vil + BVl — (e + 83 +of ; + B3V

where o:"é, 5,"}, and d" are defined as follows

(Vomw;)?

9 (wi = wie1)(Wig1 — Wwi1)

(Vomw;)®

B =
! (wit1 — wi) (Wi — wi-1)
— \2 (0 — v
aj; = (Vo) + max(0, —M)
(vi = vim1) (Vi1 — vi-1) Uj — V-1
v} e
By = (vvo) + max(0, M]
' (visr — vi)(vips — vi1) Vjg1 — U5

The coefficients a;, 5, af ; and §}; are all non-negative, and is compatible with a monotone

scheme. On the upper boundary © = v,4., the coefficients ni Nav | 37N, 3 degenerate to zero, and On

the lower boundary w = 0, a}’;, 81'; are set to 0. On the lower boundary v =0, oj; =0, 8"} =0,

and j = 1.

T & U wf
afy and By = Pypp—
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Conclusion

This report talks about a numerical approach used to solve optimal control problems with nonlinear
HJB PDEs. Although there have been some methods to get analytic solutions of HJBs, we still
need to explore the numerical approach because it demands less constraint conditions.

We introduce the optimal control problems and HJB PDEs in the section 2 by giving a specific
situation. The detailed numerical method which we use in the whole section 5 is shown in section
3.2, Section 5 gives eight specific optimal control problems.

The first example, Merton portfolio with boundary control, is the basic optimal control problem.
The numerical results in it are really close to the close-form solution. Besides, Turnpike problem 1
5.2 also shows that this numerical method can deal with HJB accurately. By extending the finite
investment period to infinity and applying this condition in the third example, Turnpike Problem
2 5.3, we find that the numerical results converge really slow to the close-form value with the raise
of Timesteps. The reason is that parameter T' does not satisfy the condition T" — +o0o. However,
when we increase the accuracy of time steps by decreasing T, we get a quick convergence. Then,
we may guess that other optimal control problems with infinity investment period could be solved
numerically by using the same way.

The rest five examples are without close-form expressions of solutions. Example 5.4, 5.5 and 5.6
gives both sup and inf cases. In particular, example 5.6 shows the situation when there are more
than one control factor. The results at the target point in this example still converge well. Example
5.7 shows the case when the control is unbounded and the financial market allows bankruptcy. The
conclusion deduced from the data are consistent with the existing knowledge. The last example
has two stochastic variables and the numerical results from it also conform the existed knowledge
which is that the more risk investors can burden, the larger the expectation and variance are.

Overall, the numerical method in section 3.2 can be widely used to deal with various optimal
control problems, as long as it satisfies strong comparison property, stability, consistency and

monotonicity.
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