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1 INTRODUCTION

1 Introduction

1.1 Expected Utility Maximisation

The maximisation of an investor’s expected utility is one of the primary criteria governing the
investor’s decision rules in several financial contexts, such as portfolio selection or determining
the optimal time to sell an asset. In Expected Utility Theory (EUT) developed by Von Neumann
and Morgenstern (1944), it is assumed that decision makers are rational and uniformly risk averse.
However, through extensive experimental studies, it was observed that such features of EUT are

inconsistent with real human behaviour. Specifically, it was concluded that:

B People are not uniformly risk averse: they are risk-averse on gains and risk-taking on losses,
and substantially more sensitive to losses than to gains (known as loss aversion). Gains and
losses are defined with respect to a reference point, that is, amounts above a reference point
are considered gains and those below are considered losses. In the context of asset alloca-
tion, people evaluate assets based on gains and losses (with respect to a reference point),

instead of the final wealth position of the asset - this is known as the framing effect[2].

B People are not completely rational and thus not able to objectively evaluate probabilities:
they tend to overweigh small probabilities and underweigh large probabilities. As de-
scribed in [15], overweighing small probabilities associated with extremely large gains cor-
responds to the human emotion of hope (which prompts people to buy lotteries) and over-
weighing small probabilities associated with extremely large losses corresponds to fear (which

prompts people to buy insurance).

There are also several well known paradoxes that cannot be explained by EUT such as the Allais

paradox (Allais 1953) and the Ellesberg paradox (Ellesberg 1961)[7].

1.2 Tversky and Kahneman's Cumulative Prospect Theory

Kahneman and Tversky (1979) [1] proposed the prospect theory (PT) to address the drawbacks of
EUT, by incorporating human emotions and psychology. This was later modified in Tversky and
Kahneman (1992) [3] into the Nobel prize-winning cumulative prospect theory (CPT), whose main

features are:
B A reference point that distinguishes gains from losses

B A value function (which replaces EUT’s notion of a utility function) that is concave for gains (to
represent risk aversion) and convex for losses (to represent a risk-taking attitude) and steeper

for losses than for gains (to represent loss aversion).
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B A probability distortion function that is a non-linear transformation of cumulative probabilities,

enlarging small cumulative probabilities and diminishing large cumulative probabilities.

The main difference between PT and CPT is that probability distortion is applied to cumulative
probabilities (in the latter) instead of all probabilities (in the former). This modification was made

to rectify the violation of first order stochastic dominance in PT, defined in [4] as follows:

Definition 1.1 (First Order Stochastic Dominance). Random variable A has first order stochastic
dominance over random variable Bif P(A = x) = P(B = x) forallxand P (A = x) > P (B = x)
for some x. In other words, F4(x) < Fg(x) for all x and F4(x) < Fg(x) for some x, where F, and

Fp are the cumulative distribution functions of A and B respectively.

To be precise, in PT framework, it is possible for random variable B to be preferred over random
variable A even though A has first order stochastic dominance over B. This is not even violated in
EUT, because if A has first order stochastic dominance over B, then E [LU(A)] > [E[U(B)], where

U is a non-decreasing utility function, and hence A is preferred to B.

In EUT framework, we aim to maximise expected utility IE [U(X)] of an individual with non-
decreasing concave utility function U : R — R over random variables X : () — R which repre-
sents the outcome (the set of outcomes is denoted by (1) of the decision made by the individual.
This expected utility can be written in terms of integrals of cumulative probabilities:

o o
E[U(X)] = E[Us (X*)] —E [U_ (X)] = fo P (U (X*) > %) dx—/o P(U_ (X~) > x)dx
where Uy : R>p — Ry is concave and U_ : Rz — Ry is convex, and applied to the positive

Uy (x)r x20
and negative parts X* and X~ of X respectively, that is, U(x) =

—U_(-x), x<0
In CPT framework, U is instead S-shaped (concave on R and convex on Ryg) to capture risk
aversion on gains and risk-taking attitude on losses, U- should be steeper than U to capture
loss aversion, and non-linear probability distortion functions w4 : [0,1] — [0,1] and w_ : [0,1] —
[0,1] are applied to cumulative probabilities (enlarging small ones and decreasing large ones)
associated with U (X*) and U_ (X ™) and the following value function is maximised instead:
V(X) = [ wy (P (Uy (X+) > x))dx—/ w_ (P (U= (X7) >x))dx
Jo Jo
which is a difference of nonlinear expectations (a generalisation of expectation), called the Choquet
expectation or Choquet integral of the random variables U (X™) under the capacity w, (P(-)) and
U_ (X7) under the capacity w_ (IP(-)). w, and w_ both have a reverse S-shape in CPT framework,

that is, concave on [0, 4] and convex on [g,1] where g € (0,1) is the inflection point. Figures 1 and
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2 below illustrate the shape of the utility functions and probability distortion functions in CPT

framework.

Figure 1: CPT S-shaped Uti]ir_y Function
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Figure 2: CPT Reverse S-shaped Probability Distortion Function
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1.3 Convex Optimisation

Convex optimisation techniques are crucial in solving the problems in this thesis. It is useful
to identify convex optimisation problems, due to their fundamental property that any locally
optimal point is globally optimal, and that solving these problems is equivalent to solving their
corresponding Lagrange dual problem (since the optimal value of both problems are equal) - this

is also known as strong duality. This section defines the required terminology and outlines the
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techniques used to solve such problems, and is adapted from [5].

Definition 1.2 (Convex Optimisation Problem). A convex optimisation problem is a minimisation
problem of the form:

minimize fy(x)

reR"
subjectto  fi(x) <0, i=1,...m, (L.1)
Jij{x) = a;x - bj =0, j=1,..p

where fy, fi,..., fm are convex functions and hy, ..., h, are affine functions. x € R" is called the
oplimisation variable, fy : R" — R the objective function, f; : R" — R are the inequalify constraint
functions and h; : R" — R are the equality constraint functions. If there are no constraints, that is,

m = p = 0, the problem is unconstrained. The domain of the optimisation problem (denoted by D)

is the set of points for which the objective and all the constraint functions are defined:
nt 4
D= {ﬂ domf,—} N < (1) domi;
i=0 j=1

A point x € D is feasible it satisfies the constraints f;(x) < 0,i = 1,...,m and h;-(x) =0,j=1,..p.
Problem (1.1) is said to be feasible if there exists at least one feasible point, and infeasible otherwise.
The set of all feasible points is called the feasible set. The optimal value (denoted by p*) to problem
(1.1) is defined as

p* =inf{fo(x)|fi(x) <0,i=1,.,mhi(x) =0,j=1,..,p}

If the problem is infeasible, p* = inf@ = co. If there are feasible points x; such that fy (x;) — —o0

as k — oo, then p* = —co and problem (1.1) is said to be unbounded.
Remark 1.3. The following maximisation problem is also a convex optimisation problem:

maximize fp(x)
x € R"
subjectto  fi(x) €0, i=1,..,m,

hj(x) = a}'x -bj=0, j=1,..,p

where f; is concave, fi, ..., fi are convex and hy, ..., J1 are affine, since maximising fo(x) is equiv-

alent to minimising — fo(x), and fy is concave if and only if — fy is convex.

Definition 1.4 (Lagrangian/Lagrange Dual Function/Lagrange Dual Problem). The Lagrangian
associated with the convex optimisation problem above is defined as £ : R" x R" x RV = R,

i

}?
L (x,A,v) = fo(x) + L Aifi(x) + Y vjhi(x)
i=1 j=1
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The Lagrange Dual Function is g : R" x RF — R,

it P
§(Av) = inf £(x,A,v) = inf (fo(x) +YAf(0+ Y u;h;(x))

i=1 j=1

and the Lagrange Dual Problem is

maximize g (A, v)
Av

-

subjectto A; =0, i=1,..m

This thesis involves stochastic optimisation problems, which involves optimising over random vari-
ables instead of deterministic variables. We define a convex stochastic optimisation problem similarly

to its previously defined deterministic version:
mini}r{nize E [fo(X)]

subjectto E[fi(X)] <0, i=1..,m,

E [h;(X)] =0, j=1.,p
where X is a random variable, fy, f1, .., fr are convex functions and hj, ..., I, are affine functions.
This problem is considerably harder to solve than its deterministic version. A possible approach

is to consider converting the problem into a convex optimisation problem over G, the quantile

function of X. Since X 2 G(U), where U ~ UJ[0,1] the problem can be written as
minicr;nize E [fo (G(U))]
subjectto E[f; (G(U))] <0, i=1,.,m,
E [h(GU))] =0, j=1,..,p

and the corresponding Lagrangian and Lagrange dual function are:

m P
L(G,Av)=E |fo (GU))+ Y Aifi (GIU))+ Y vk (G(U)) |, g(Av) = intC(G,A,v)
i=1 j=1
By linearity and monotonicity of expectation, we can solve the following problem, for any given
x € [0,1]:

miniGmize fo (G(x))

subjectto  f; (G(x)) €0, i=1,..,m,
hj(G(x)) =0, j=1,..,p

However, in the CPT framework, stochastic optimisation problems are non-convex, since util-

ity functions are S-shaped. Furthermore, under probability distortion, the objective function or

10
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the constraint functions are no longer linear and the problem becomes much harder to simplify
and solve. Moreover, in dynamic problems, time consistency structure is lost in the presence of
probability distortion and dynamic programming principle cannot be applied. However, certain
techniques have been developed to overcome such difficulties: in particular, a problem may be
decomposed into sub-problems that are solved separately, and a series of transformations are

applied to convert non-convex optimisation problems into convex ones.

1.4 Outline of Thesis

This thesis aims to first review two stochastic optimisation problems under probability distortion,
namely optimal stopping and behavioural portfolio selection, that have been formulated and
solved in [6] and [7] respectively using similar techniques. The optimal stopping chapter also
considers several extensions to the problem and discusses some limitations of the techniques
involved. Similar techniques will then be applied to solve a new problem, that of determining the
optimal contract function in employee stock options, motivated by a model proposed by Spalt in
[9], and we will see that the optimisation involved is more closely related to thatin the behavioural

portfolio selection problem.

2 Optimal Stopping under Probability Distortion

There have been several established approaches to solving classical optimal stopping problems
that do not incorporate probability distortion, most notably the probabilistic approach involving
martingale theory and the PDE approach involving dynamic programming principles or varia-
tional inequalities [6]. However, these approaches crucially rely on the time consistency structure
of the underlying problem, which is lost in the presence of probability distortion, and the well-
known approaches cannot be applied [6]. This motivated Xu and Zhou [6] to develop a novel
approach to tackle the challenges posed by probability distortion, and this chapter aims to review
these techniques. Prior to this, Barberis had studied optimal exit strategies in casino gambling
in the presence of probability distortion, and only managed to obtain numerical solutions via ex-

haustive enumeration [6].

The main ideas of Xu and Zhou's methods can be summarised as follows: suppose that (X;),-.o
is the process we wish to stop optimally. Then we first determine the probability distribution
of the optimally stopped state X+ and then recover the corresponding optimal stopping time
T* either in a clear way in certain important cases or generally via Skorokhod embedding. The
original objective function, a function of stopping times T, is converted into either a functional

of distribution or quantile functions of stopped states (distribution and quantile formulation),

11
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and once the optimal distribution or quantile function is determined, the corresponding optimal

stopping time can be derived.

2.1 Formulation of Problem

The paper considers an optimal stopping problem for a stock in a Black-Scholes model, whose
price process, which we denote by (X;),-, follows a geometric Brownian motion
dXx 1
Tf = pdt + odW; <= X; = Xpexp ((}i - 592) f+tTWg)
!
where yt € R, 7, Xg > 0 are constants, (W; ), is a standard one-dimensional Brownian motion in

a complete filtered probability space (Q, F, { Fi},5 ,P).

Denote by 7 the set of all {F},.,-adapted stopping times 7 satisfying IP (1 < +00) = 1. If the
process (Xt)~, is stopped at T € T, a payoff of U (X+) is obtained, where U : R>g — R isa
given non-decreasing and continuous function. We want to determine the optimal time 7 which
maximises the payoff U (X:). In a financial context, an agent decides on the optimal time T to
liquidate the asset, and U represents the agent’s utility function, and this utility is determined by
the amount she sells the asset for. Alternatively, the agent could be determining the optimal time
to exercise an American option (with payoff function U) written on an asset with price process
(Xt)=o- The standard optimal stopping problem (which does not assume probability distortion
by the agent) is:
maximize J (7) = Ep [U (X)) = fum P (U (X;) > x)dx
subjectto TE T
where [Ep denotes the (linear) expectation under probability measure IP and the second equality
above holds because U (X-) is a strictly positive random variable for all T € 7 (since (X;),-, isa
geometric Brownian motion which implies X; is a strictly positive random variable at all times ¢,
and U(x) = 0 for all x = 0). Probability distortion is incorporated as follows: define a weighting
function w : [0,1] — [0, 1] which is strictly increasing and absolutely continuous, with w(0) = 0
and w(1) = 1. The function w is applied to the exceedance probabilities IP (U (X;) > x) (in the
absence of probability distortion, w(x) = x forall x € [0, 1]) as stipulated in CPT, and the problem
becomes:
o0
maxjrmize T (1) = /0 w(P(U(Xr) > x))dx
subjectto TE T

The above objective function is a nonlinear expectation (a generalisation of expectation), called the

Choquet expectation or Choquet integral of the random variable U (X ) under the capacity w (IP(-)).

12




2.2 Solving the Problem 2 OPTIMAL STOPPING UNDER PROBABILITY DISTORTION

2.2 Solving the Problem

The case when j = %92 = X; = Xpexp (cW;) can be solved easily. Define, for all x € (0, +00),

1
7 :=inf{r;O:Wf=E]0g(Xio)}

Then for all x € (0, +c0), P (1y < +o0) = 1 since a standard one-dimensional Brownian motion
hits any deterministic level in finite time almost surely and therefore 7, € 7. Furthermore, X, =
x almost surely (by construction) and

o0 00 U(x)

Tw)= [ w®UX)>y)dy= [ w@®UE>y)dy= [ w1)dy = U(x)
However, for any T € T, denoting u:= sup U(x),
=0
u u _
IO = [[w®UX)>0)dr< [ wt)dr=T=supJ (v)
x>0

Therefore, the optimal value is I and the optimal stopping time, if it exists, is of the form T.
If there exists at least one x* > 0 such that U (x*) = U, then Ty+ is an optimal stopping time.
However, if on the other hand U(y) < U for all y > 0, then for any stopping time T € T,

U (Xr) < U. Then since w is strictly increasing,

J(t) = me(P(U(xT) > x))dx < f:w(n’(u >x))dx =T

which means that the optimal value is not achievable by any stopping time. Having solved the

case when p = 102, we will subsequently assume that j1 # 102

2.21 Transformation with Scale Functions

In order to solve the problem for the case u # %02, we will eventually apply the Skorokhod em-
bedding theorem, which requires the underlying price process to be a martingale. We will trans-
form the continuous P-semimartingale (X;),, into a continuous (local) P-martingale (St ), via

a scale function, which is defined as follows:

Definition 2.1 (Scale Function). Let (X;),., be a one-dimensional continuous semimartingale
under P. The continuous and strictly increasing function s € C?(R) (twice continuously dif-
ferentiable) is called a scale function if the process (S;),-o = (5 (Xi)),5( is a one-dimensional

continuous local martingale under IP.

The following proposition gives the form of the scale function [11] when (X;),., is specified as a

solution to some stochastic differential equation.
Proposition 2.2, Let (X;), taking values in some interval I be the solution to the one-dimensional SDE

dXi =b(Xy)dt + o (Xi) dWy

13
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where (Wt),~ is a standard one-dimensional Brownian motion in a complete filtered probability space
(Q, F, {Fi},50.P) and b,a € C (R). Then its scale function is given by

0= fow (- [0 (Fep) )

where xy and 1y are points in 1 arbitrarily fixed.

Proof. Let (Y1), = (s (X¢)),»o be acontinuous local martingale under IP and assume s € C? (R).

Then by Itd’s formula,
Vi =5 (X) 0 (X)) Wi + [/ (X0)b (%) + 38" (%) (%, a

Since Y is a local martingale, we set the drift term to zero:

S (XD D(X) + 35" (X7 (X =0 = o (X)) = (—f’(gi)s (%)

Integrating twice, we obtain the required form of the scale function. O

Remark 2.3. The scale function is an increasing function, since for some fixed x( € I,

0 =oe (- [, (Fp) ) >0

for all x € I. The scale function is also unique up to affine transformation, which is clear from the

two integration steps, and can also be illustrated through an application of the optional stopping

theorem in the following example:

Example 2.1. Let (M)~ be a martingale starting at My = x € R almost surely, a > 0, b < 0 and
define the stopping times

Th=inf{tz0: My =a}, Tp=inf{t=z0: M =0b}, 1=TaATy=inf{t Z0: M; € {a,b}}
By the optional stopping theorem,
E [M:] = E[Mg] = x = aP (T, < Tp) + bP (T, > T;)
x—b

=aP (T, <Tp)+b(1-P(T, <Tp)) = P(T,<Tp) = ;::—

=3

If (Xt) > is a semimartingale starting at X

x € Ralmost surely such that (s (Xy)) s is a martingale,

then we can define the stopping times
T, = inf{t 20: X, =a}, T, = inf{t = 0: X; = b},
Ti=T, AT, =inf{t 2 0:5(X,) € {s(a),s(b)}}
and obtain
p(f.<1,) - =20

14
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If we apply an affine transformation to the scale function s and define a new function s by
§(x) = ms(x) +¢

for some m > 0,c € R then clearly we also have

(ms(x) +¢) — (ms(b) +c) _ s(x) —5(b)
(ms(a) +c¢) — (ms(b) +¢c) ~ 3(a) —3(b)

r (Ta < TJ)) =
Therefore s is also a scale function for (Xy). such that (8 (X1)),, is a martingale.

Applying the proposition to our problem, we have

o [Fexp (= [ (2= e (= () [ (2
)= [row (- [ () &) av= Lo (- () [ (5) )

Since the scale function is unique up to affine transformation, if g := 1 — 5‘_} > 0, we may divide

(3) 1
y\e 2 P
by ;"72_!% and then add x{g v ) or equivalently, taking xp = 0 and yg = (1 — %’-}) EF, to obtain

o
the increasing scale function

However, if f <0 < u > %02, we define the increasing scale function as

Il
T
tad
e

T
.

=
N
=

s(x)=—-xf, x>0 < s (x)

In other words, ()54 = (X,’G ) . is an exponential martingale under IP which is the solution to
the SDE

ds; =s' (X;) o X, dW, = BXP o X,dW, = prSdW; <= S; = Spexp (ﬁow, - % ,s%r?r)
Now we define a new utility function i : R~y — R~ by
1
u(x):=U (tﬂ) = (Uos”l) (x) VYxe€(0,+o0)

Since s is an increasing function, s~1is also an increasing function, and since u is a composition

of increasing functions U and s, u is an increasing function. The problem may be rewritten

as:
maxirmize Jix) = /ﬂw w(P(U(X:) >x))dx = -[me(]l’ (1 (5¢) = x))dx

subjectto 1€ T

15
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which we will solve in the remainder of this section. It is worth noting that ¥ may have a different
shape from U, due to the different shapes of s~! (which depends on the value of g). If both U and
s~ 1 are both concave, then u is concave, and if U and s~! are both convex, then  is convex. This

is formalised in the lemma below:
Lemma 2.4. Let f, g € C2 be increasing functions, and h := f og. Then
(i) If f and g are both convex, then h is convex.

(ii) If f and g are both concave, then h is concave.

(iii) If f is convex and g is concave, or if f is concave and g is convex, then the shape of h is inconclusive.
Proof. By the chain rule,

H(x) = £ (2(x)¢'(x) = K'(x) = f" (3(x)) (€ () + f (2(x))g"(x)

By the above equation, the conclusions are obvious. O

Remark 2.5. The case when f and g are not twice differentiable can be analysed similarly. If only
the first derivatives of f and g exist, we can use the fact that f convex implies f’ is increasing and
g concave implies g’ is decreasing, and arrive at the same conclusions. The case where f and g

are not differentiable is presented in [5].

Note that s71 is convex for all § < 1 <= u > 0 (the stock performs well) and concave for
g >1 <= p < 0/(the stock performs badly). The results of the lemma is illustrated in the

following examples:

Example 2.2. (i) If U is the payoff function of a call option with strike price K > 0, that is,

(x%—K)+, B>0
((—x) —K)+, B <0

Since U is convex, u is convex for p < 1, thatis, for p < 0and 0 < p < 1. For B =1, u(x) = 0 for

Ux) = (x—K)" = ux) =

-

. 1 . .
all x < KP and u(x) =xF —Kforallx = KB, and therefore u is convex on (—oo, Klb] and concave

on (Kﬁ,oo), that is, u is S-shaped.

P . ik, g>0
(ii) If U is a power function given by U(x) = ]—(x"f, 7€ (0,1), thenu(x) =<7 "
1-x)F, g<o0

U is concave and therefore u is concave if B > 1. If B < 1 we have three possible cases, p < 0,
0<pB<yandy < p <1 Inthefirst two cases, u is convex and in the third, u is concave.

Therefore u is concave if B > <y and is convex if p < 7.

16
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log(x%-f—l), p=>0
(iii) If U is a log utility function given by U(x) = log(x +1) then u(x) = .
log((—x)F +1), B<0

U is concave and therefore u is concave if § > 1. If p < 1, we can determine the shape of u by exam-

ining its second order derivative: if 0 < p < 1,

1 : 1(1 F=2) 1,31 (1,51
&y d (%x?’ 1) ("““)3(3‘1 (-“” )‘3-“3 (3-‘“ )

4.8 = as 1
dx dx xF 41

Hhen j—?& 20 < x< (lj—ﬁ)ﬁ Therefore u is convex on ({], L;E)ﬁ} and concave on

y T

((%ﬁ)ﬁ,m) . Similarly, if B < 0, we obtain

a0 ()

w ((—x)é + 1)2
d2u 1-B

and o2 0 < x< — (L;E)ﬁ and therefore u is convex on (—oo, - (T)ﬁ] and concave

on (— (1—?)5 ,0), In other words, if B < 1, u is S-shaped.

(iv) If U is an exponential utility function given by U(x) =1 —e™*, & > 0, then

1
1—e®  B>0
u(x) =

T

1—e =" g <0

U is concave and therefore u is concave if § > 1. If p < 1, we can determine the shape of u by

examining its second order derivative: if 0 < p < 1,

2y dfa 14 % a [ 1.4 & 1.9 % /1 1_5
— = - 3 —ax —_ r"; - B —ax —aX - F
2= dx (ﬁx e B x JBx e +e (ﬁ l) x

o 1 1o _ ok & _ o F 2.2
=E E—l xP Te™™ —Be'xf‘

2 _g\B . _g\B
then %‘% = x < ('—aé) . Therefore u is convex on (O, (l—“E) j| and concave on

=0
((‘_;E)P’w)' Similarly, if B < 0, we obtain

du_¢o ((1 - 1) (—x)fl‘fze““(“”% - %e"“(””% -x)

i

d¥2 B \\p

)
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2.2 Solving the Problem 2 OPTIMAL STOPPING UNDER PROBABILITY DISTORTION

and %‘7’ 20 & x< - (%)ﬁ and therefore u is convex on (foo, - (l;—‘b)ﬁ] and concave
an (— (?)ﬁ ,O)‘ In other words, if p < 1, u is S-shaped.
Finally, we may assume without loss of generality that #(0) = 0, since one can consider 7(-) :=
u(-) —u(0)if u(0) # 0.
2,2.2 Distribution and Quantile Formulation

The problem will be solved by reformulating it into its corresponding distribution or quantile
formulation, in which one optimally chooses the probability distribution or quantile function of

the stopped state.

Definition 2.6 (Cumulative Distribution Function (CDF)). A function F : R — [0,1] is called a
cumulative distribution function (CDF) if:

* F(—o0) = .‘_l_l}rlqw}'(x) =0, F(+x) = Jcl_]}r:{lwl-'(x) =1
* Fis non-decreasing and cddldg (right-continuous with left limits)
By right continuity, F(x) = F(x*) where x* := x + ¢ for some ¢ > 0 small.

Definition 2.7 (Quantile Function). A function G : [0,1] — R is called a quantile function if it is

non-decreasing and can be written as a left-continuous inverse function of a CDF F as follows:
G(x)=inf{y e R: F(y) = x} = F (x)
forall x € [0,1). By left-continuity, G(x) = G (x~) where x™ := x — ¢ for some ¢ > 0 small.

In our problem, (S¢)- is an exponential martingale and hence only takes values in R~ at any
time f. Therefore we will restrict ourselves to CDFs satisfying F(x) = 0 for all x < 0, and quantile
functions satisfying G(0) = 0, G(x) > 0forall x € (0,1). We define the distribution set D and

quantile set Q for this problem as follows:

D= {F:R-q — [0,1]|F is the CDF of S;, for some T € T}
Q= {G :0,1] - Rs0|G = F~ for some F € D}

Lemma 2.8. Foranyt € T,
J(t) = Tp(F) = /Um w(1—F(x)) rf{(x)dx
J(1) = Jo(G) = ‘/01 u(G(x)) w (1 - x)dx
where F and G are the CDF and quantile function of St rsepectively. Moreover,

sup J(t) = sup Jp(F) = sup Jp(G)
TeT FeD GeQ
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2.2 Solving the Problem 2 OPTIMAL STOPPING UNDER PROBABILITY DISTORTION

Proof. First assume that u is a strictly increasing C* function with 1(0) = 0. Then we have

I@) = [Tw®(s) >x)dr= [ wPu(s) > uly)) duly)
=f0°°w (P (Sc > x)) du(x)
- f°° (1- F(x)) du(x)
= [T ut)d [~ 1 - Fx)
_] Xw (1 - F(x))dF(x) = ]l w(G(x)w (1—x)dx

where the second and final equality follows by the appropriate substitution, the third equality
follows from the fact that u is strictly increasing, the fourth equality follows by definition of F,

and the fifth equality follows by Fubini’s theorem.

Now assume 1 is absolutely continuous and non-decreasing with #(0) = 0. Then for each ¢ > 0

there exists a strictly increasing C* function 1, such that [u:(x) — u(x)| < € for all x € Rxy. Then

1 ’ 1 !
|] ue (G(x))w (1—x)dx—/0 u(G(x))w (1—x)dx

|f (1t (G(x)) —u (G ()))wl(]—x)dx

< jﬂ |ite (G(x)) — u (G(x))|w' (1 —x)dx
] !
< 5/0 w (1—x)dx=¢(w(l) —w(0)) =¢
It can also be verified similarly that

< E

f:w(]l’(ug(sr) > x))dx—‘/omw(]l’(u (Se) > x))dx
We also have by the above result that
[ w (P (ue (5¢) > x))dx = £1 Ue (G(x))w’ (1-x)dx
= ‘/ (e (St) > x))dx — fomw (P(u(S¢) > x))dx

< €

‘/ e ( )w ]—x)dt—[ﬂmw(]l’(u(sr)>x))dx

Therefore, by the triangle inequality,

‘/] u (G(x})w( (1-—x)dx— [Omw(]l’ (u(S¢) > x))dx

l ’
|[ 1 ( )w ]—I)dt—/ﬂ ue (G(x))w (1 —x)dx

< 2

‘/ ue ( )w l—x)dt—/jw(]l’(u(Sﬂ)x})dx
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2.2 Solving the Problem 2 OPTIMAL STOPPING UNDER PROBABILITY DISTORTION

Since ¢ > 0 is arbitrary, we have shown the second equation. To show the first equation, we have

by change of variables and Fubini’s theorem,
1 , 1
J(t) =/0 u(G(x))w (1—x)dx = /0 i (G(x))d[—w(1—x)]
= [Tu@dl-w-F@)
e /ﬂw w(l — F(x))du(x) = LW w(l— F(I})u:(x)dx

The final assertion is clear by the two equations. O

Remark 2.9. We observe that u and w play symmetric roles in the two formulations. Therefore
we may choose the formulation that is convenient in solving the original stopping problem: if u
is known to be concave or convex while w has an arbitrary shape, it is more convenient to work

with quantile formulation, and vice versa.

The following lemma provides necessary and sufficient conditions for a distribution function to
belong to our distribution set and for a quantile function to belong to our quantile set. This

provides an explicit characterisation for the distribution and quantile sets.
Lemma 2.10. Let s :== Sy = s (Xp). Then we have the following assertions:
00
FeED « [ (1—F(x))dx < s
Jo
1
GelQ = f G(x)dx <s
0

Proof. Suppose F € D, ie. F is the CDF of S; for some T € T, and equivalently, G := F~! €
Q. Then, since (St), is a non-negative (local) martingale, it is a supermartingale (by Fatou’s

lemma), and therefore by the optional stopping theorem,
oo o0
fo (1 - F(x))dx = /0 P(S: >x)dx = E[S:] < E[So] = 5
and by the change of variable y = G(x),
1 =]
/0 G(x)dx = /0 ydF(y) =E|[S;] <s
For the converse implication, assume F is some function satisfying
oo oo =] a A
f (1—F(x))dx €5 < / xdF(x) €5 < / (seb‘”’) dF (seb"”) <s
0 0 —o
=]
= e ) dF (sef™r) <1
fLo () aF (o) <
First assume f > 0. Then we can write

Sy = sexp (,BGW; - %ﬁzazr) =: 5exp (,SJW,)
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2.2 Solving the Problem 2 OPTIMAL STOPPING UNDER PROBABILITY DISTORTION

g o _1 i . . N T . o
where (W{) -~ (W, 2,801) 2 a Brownian motion with negative drift. Denote by Fjz;, and

Fs, as the CDFs of W, and S; respectively. Then for any T € T,
1':],}.'T (x) =P (Wr < x) =P (Sr < Se.BrT.\') =Fs, (seﬁ“"')

Therefore,
[ @) (o) = [ () 0= ] <1

Therefore, since F and Fs_ satisfy the same inequality, by (theorem) F = F5_ for some T € 7 and

therefore F € D, and equivalently, G := F~1 € Q, and satisfies

1 oo
/0 G(x)dx = fo (1-F(x))dx < s

If < 0, then can write
St =:isexp (—.BUIRG)

where (w’).-:-n — (—Wr -+ %ﬁaf)w(] = (— (W; - %ﬁat))’b" is another Brownian motion with

=

negative drift, and so the same arguments in the above analysis can be used to arrive at the same

conclusion. O
Corollary 2.11. D and Q are convex sefs.

Proof. This is a direct application of the lemma above. Let F;,F, € D, A € [0,1] and define
F:=AF; + (1—A) F. Then,

[T a=Fapdr= ["(1- WA@ + -1 BE)dr
=ALM(]—Fl(x)}dx-k[1—A}Lm(1—5(x))dxg As+(1—A)s=s
Similarly, let G|, G, € , A € [0,1] and define G := AG; + (1 — A) G;. Then,
‘[01 G(x)dx = /01 (AGy(x) + (1 — 1) Ga(x)) dx

=)‘L1G1(x)clx+(1—A)Llcg(x)dxg)‘H(] —Ae=s

2.2.3 Determining The Optimal Quantile Function

Xu and Zhou solve for the optimal quantile function for different shapes of # and w, and for
certain cases, easily deduce the optimal stopping time through an application of the optional
stopping theorem. We present their results (readers can refer to [6] for the proofs) for convex u,
concave # and S-shaped u, with w reverse S-shaped in all three cases, as these cases are most

relevant to the CPT framework, and describe their financial implications.
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2.2 Solving the Problem 2 OPTIMAL STOPPING UNDER PROBABILITY DISTORTION

Theorem 2.12 (Convex u). If u is convex, then

sup Jo(G) = sup Jo(G)
Ge@ GeQs

where Q3 is defined as
Q, = {Ge Q:G=alpy+blgy, 0<a<h, u<.:g1}

and

st [+ (G22)) v G22) ] - o )

O<ass<b r€(0,1]

Furthermore, if (a*, b*) satisfy
a*,b") = argmax [(1—w (ﬂ)) u(a)+w (ﬁ) u(b }
(a”,b%) arg max =2, ) 1@ g 0

inf{t>0:5, & (a*,b*)}, if a* <b*

then

T[&'*,J)“}
0, if a*=b"

is an optimal stopping time.
Corollary 2.13 (Convex u). If u is convex, then T = 0 is an optimal stopping time if and only if
8
u(s) = sup |w(xju(=
e [ (3)]

Furthermore, if

u(s) < sup [w(x)u(%)]

re(0,1
then the maximum in (eq) is not achievable. |
Depending on the shape of U, u could be convex depending on whether the asset performs well
or badly, which is based on the shape of s~! (see Example 2.2). The theorem states that the optimal
strategy is of a “take-profit-or-cut-loss” form. The corollary states that if the maximum is attained
at time 0, it is optimal to sell immediately, otherwise the maximum is not achievable. It is worth
noting that Theorem 2.12 and Corollary 2.13 hold for any shape of w, and therefore probability

distortion does not affect the optimal stopping time.

Theorem 2.14 (Concave u, Reverse S-shaped w). Assume u is concave and w is reverse S-shaped, that
is, w is concave on [0,1 — g] and convex on [1 — q,1] for some q € (0,1). If (a*,A*) witha* > Oisa
solution to the optimisation problem
1 A
i n -1 7
maximize (1—w(1—gq))u(a) +fq u (a\i (u ); (w’(l = Y))) w (1 —x)dx

a,A
. 1 "1 A
subject to aq+/ av(u'), T dx=s,
q

a,A=0
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2.2 Solving the Problem 2 OPTIMAL STOPPING UNDER PROBABILITY DISTORTION

where(u'); " is defined by
(u'};l (x) =inf{y 2 0:u'(y) < x}

Then the optimal quantile function is
* * * -1 A”
G*(x) =a"lgq(x) + (a % (1."')I (m)) Ayg1y(x)

Remark 2.15. The above expression is a truncation of the function x — (u') fl (m) which is
required for G* to be increasing and satisfy the property of a quantile function. Since u is concave,

(u’)fl is a decreasing function and therefore w'(1 — x) should be increasing in x, that is, w’ should

be a decreasing function, in order for (1’ );1 (W’(}——U) to be increasing in x. However, this is not

the case as w is reverse S-shaped, and therefore the truncation is required for G* to be increasing,.

In particular, if w is reverse S-shaped and concave on [0,1 — q] and convex on [1 — g, 1] for some

q € (0,1), then w' is decreasing on [0, 1 — q] and increasing on [1 — g, 1], and therefore x > r—

is decreasing on [g,1], and increasing on [0,q]. As a result, since (1), " is a decreasing function,
x = ()" (m,(}—_r]), which is a composition of (1'); ' and x mf_—_l,], is decreasing on [0, g]
and increasing on [q, 1]. In other words, x ~ (1), (WI(}—FI)) has a “U-shape”. The proof of the
optimality of this truncated function can be found in Appendix E of [6]. Figure 1 below illustrates

this procedure, in which the black curve is a truncation of the red curve.

Figure 3: Stylised Plot Illustrating Truncation

Finally, in the case of S-shaped u, it was concluded in [6] that the optimal quantile function is
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2.2 Solving the Problem 2 OPTIMAL STOPPING UNDER PROBABILITY DISTORTION

a combination of optimal quantile functions corresponding to convex u and concave u, as for-

malised in Theorem 2.16 below:

Theorem 2.16 (S-shaped u, Reverse S-shaped w). Assume u is S-shaped: convex on [0, 8] and concave
on [6,c0), and w is reverse S-shaped: concave on (0,1 — q] and convex on [1 — g, 1] for some q € (0,1). If
aj,a;, a3, ¢y, c; and A* are the solution to the optimisation problem

maximize (1 —w(1 —cy))ulay) + (w(1 —c1) — w(l —cz))ulaz)
a1, 02,83, €1, €2, A

+ (w(1 = c2) —w(1 — q))u(as) + [?1 u (ag v (n’);' (ﬁ)) w'(1 — x)dx

/AN

1 A
N o _ n—1 A
subject to ayc; +az(ca —¢p) +as(q cz)+fq az v (u'), (w__(]_x))dx\\s,

Az0, 0<msmsms 0sasosg
Then the optimal quantile function is

# * % # % -1 A*
G (x} = 51]].[[]’£;'](x) +a2]l[t‘{,r:i (I) +a31l[c;‘q‘(x) + (a3 v (u"}f (m)) ]l{l’;,]] (x)

2.24 Determining The Optimal Stopping Time

Having determined the optimal quantile function, the optimal stopping time can be determined
through the optimal quantile function by solving a Skorokhod embedding problem, if it cannot
be deduced easily (such as the case when u is convex). The Skorokhod embedding problem is as
follows: for a given probability measure y on IR, find a stopping time T such that W, ~ p, where

W is a standard real-valued Brownian motion and (Wiar )i is a uniformly integrable martingale.

Theorem 2.17 (Skorokhod’s Embedding Theorem). Let X be a real-valued random variable with
E[X] = 0and var(X) < oo, and W a standard real-valued Brownian motion. Then there exists a
stopping time (with respect to the natural filtration of W) T such that W 2 X (Wy and X have the same
distribution) satisfying:

E[t] =E [x2], E [#] <4E [x“]

Azéma and Yor developed a stopping time solving the Skorokhod embedding problem, and it
relies on the Hardy-Littlewood maximal function for centered probability measures, as defined
below [20]:

Definition 2.18 (Hardy-Littlewood Maximal Function for Centered Probability Measures). Let u
be a centered probability measure on IR, and F be the distribution function associated with p, i.e.

F(x) = p ((—co,x]) for all x € R. Then the Hardy-Littlewood maximal function (also known as
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2.3 Variants of Problem 2 OPTIMAL STOPPING UNDER PROBABILITY DISTORTION

the barycenter function) for y is an increasing function given by:

0, x<m 0, x<m
Fplx) = H’xlT») fl.‘_m) ydu(y), m<x<M = ﬁ(x-} fm) ydF(y), m<x<M
X, x=M X, xr=M

where m == inf {x : F(x) > 0} and M := sup {x : F(x) < 1}.

We first recall the Dubins-Schwarz theorem [11], which states that every continuous local martin-
gale can be represented as a time-changed Brownian motion, indexed by the quadratic variation

of the local martingale:

Theorem 2.19 (Dubins-Schwarz). Let (M), be a continuous local martingale starting at 0 such that

[M],, = eo almost surely. If we define the stopping tine
T = inf{t > 0: [M], > s}
then Ws := Mz, is a (Fx, ) Brownian motion and My = Wy,

Therefore, by the Dubins-Schwarz theorem, the distribution function of our stopped process S; is
associated with a centered Gaussian measure with mean zero. We now state the theorem below
characterising the Azéma-Yor stopping time [20], which is the first time that the martingale hits a

moving level that is a function of the martingale’s running maximum.

Theorem 2.20 (Azéma-Yor). Let (M), be a continuous martingale satisfying Mo = 0 almost surely

and (M, M), = co almost surely. For any centered probability measure j on R,
Tay == inf{r 20:¥, (M) < sup Mg} = inf{f 20: M <Y,! (sup M_:)}
se[0,4] sE(0,t]

is a stopping time in the natural filtration of (Mi);o and Mz, ~ p. Furthermore, (Mincyy )i~ Is @

uniformly integrable martingale.

This stopping time is not a unique solution to the Skorokhod embedding problem, however
it is the most convenient one in our context. This is because, having determined the optimal
quantile function, we can easily find the corresponding optimal distribution function, its Hardy-

Littlewood maximal function and hence the associated Azéma-Yor stopping time.

2.3 Variants of Problem

As we have seen Section 2.2.3, the nature of the optimal stopping time depends on the shape of
u = U os~!, we consider variants of the problem, involving processes different from the geomet-

ric Brownian motion with different scale functions.
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2.3 Variants of Problem 2 OPTIMAL STOPPING UNDER PROBABILITY DISTORTION

2.3.1 Dividend Paying Stock

Assume as before that the price process of a stock denoted by (Xi),- follows the geometric Brow-
nian motion
t

dX
T; = udt + cdW;

We may extend the Black-Scholes model by assuming additionally that the stock pays a constant

dividend yield é. We then consider the dividend-paying stock’s price process

(2*) 0 (e‘” X*)rzo

By Itd’s formula,

dX; = e"dX; + e’ X;dt = e (uXidt + o X, dW;) + de’ Xydt = (u + 6) Xydt + o X, dW,

Then by similar computations, (§,) L (s ()?,-) ) e ()?f’) is an exponential martingale
= Z £20

under [P, where

= _ 2(p+9)

p=1-=5
Therefore, compared with a non-dividend paying stock the only difference in the scale function
is the exponent. Furthermore, s~1 is convex for i = —¢ and concave for y < —4,instead of t = 0

and p < 0 respectively for a non-dividend paying stock.

2.3.2 Constant Elasticity of Variance

We may consider the constant elasticity of variance (CEV) model, a local volatility model in which
the instantaneous volatility is a power function of the underlying spot price [17], and the SDE is
given by:

dX; = pX,dt + o X} dW,

where y € R, ¢,y = 0. This is a generalisation of the geometric Brownian motion, which is the
particular case v = 1, where the instantaneous volatility is linear in the underlying spot price. The
parameter y governs the relationship between the price and volatility. The case y < 1 corresponds
to the leverage effect where the volatility increases as price decreases, a feature commonly observed
in equity markets [17]. The case 7y > 1 corresponds to the inverse leverage effect where the volatility
increases as price increases, a feature commonly observed in commodity markets [17]. However,

the scale function is not always available explicitly:
/ 2;fy) ) ( (2:") -2 )
= - dy | = - = Td
s (x) exp( ]_TU (G,zyzn, y| =exp 2 jmy ¥
- N (D L N -2 T S
-o2 (- (7 ) (£ -47)
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which cannot be integrated explicitly in general, and therefore the optimal stopping problem

cannot be solved explicitly. Nevertheless, we can deduce the shape of s~ !:
2u
" _ 1-2y s
s(x) = — (02) x5 (x)

Since s is increasing, s is convex when g > 0 and concave when u < 0, and therefore s~! is
concave when p > 0 and convex when p < 0, which is the same shape as in the case of a geometric

Brownian motion. Therefore « has the same shape as in the case of a geometric Brownian motion

if both U and s~ ! are convex, or both U and s~ ! are concave and therefore the nature of the

stopping time would be the same, even though the parameters would differ. However, if U is
convex and s ! is concave, or U is concave and s~! is convex, u may have a different shape from
that in the case of a geometric Brownian motion (for example, it could be S-shaped with a different

inflection point). The scale function is available explicitly when 4 = 3, where the SDE is given by

ng = ’Il'ngf-{- O'\/Yrdwlr

- o ([ () )
il ()o-w)o
e e
et ((2)9) (2) (o (2) ) oo (- (2)2)

Since the scale function is increasing and unique up to affine transformation, we may take the

scale function to be, for u > 0,

o2

s(x)=7e>(p(f(&)x), x>0 > s1(x) = — (2f)log( x), x<0

and for u <0,

s(x)=exp(f(%)x), x>(}4=>s_](x)=f(;;) log(x), x>0

We can verify that s~! is convex when p > 0 and concave when p < 0: when p > 0,

() () = (2#)(5)% V<0
(s )(x) (;;)(X—Z)m Vx>0

and when p < 0,
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The scale function is also available explicitly when 7 = 0, however we must also have p > 0:

on (- () )o
o (%)) [ ow (- (&))@

where @ is the standard normal cumulative distribution function. Since the scale function is

s(x)

increasing and unique up to affine transformation, we may take the scale function to be

e ((2))

In reality, the reference level is not constant and could be the price of another stock or a bench-

2.3.3 Stochastic Reference Level

mark index. Consider a stochastic reference level denoted by (R;),-, and suppose that the price
process (Xi), and the reference level are solutions to the following one-dimensional geometric
Brownian motions:

dX; dR; e -~
Y, = kdt+odW, ol =adt+ydi, d<w, w)r = pdt

where (W;),5, and (W,) = are correlated standard one-dimensional Brownian motions under
= £

P, € R, 0,17, X0, Ro > 0and p € (—1,1). We may first consider the process

(P-')t;u = (X¢ — R-’)t}(]

which represents the difference between the price and reference level. An agent would want to
stop the process at time T such that Pr is as positive as possible. To convert (Py),. into a martin-
gale, we apply the appropriate scale functions to (Xt);~, and (Rt),~, and define the martingale
(St),=¢ (a difference of two martingales) by

- w 2
S=X{-R V20, p=1-% F=1-%

By 1t6’s formula, we can determine the dynamics of (S;),-  as follows, where (Z;),- is a standard

one-dimensional Brownian motion independent of (W),
— dxP _drP = goexPdw. — BRI, = BoxPdW. — BnRP 2
dS, = dX? —dRP = BoXPdw, — ByRPdW, = poxPdw, — ByRE ( pdW, + /1 — p2dZ,

(ﬁaxf = B’:;pR{‘) dwW; — B\/1 - p2RPaz,

| Bo —Bip X? . dW;
o —gpvi=e) \Rf) \az
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Therefore, the dynamics of (5¢), are based on that of the two-dimensional process (Xf, Rf)
120

and therefore we are required to determine the optimal stopping time of (Xf , R’P ) . In the
presence of probability distortion, this would involve determining an optimal two-dil%rtl]ensional
distribution of XE, RE) and then determining T via Skorokhod embedding. However, it is dif-
ficult to optimise over multivariate distributions and furthermore at the moment there is no solu-

tion to a multi-dimensional version of the Skorokhod embedding problem.

Consider instead the following process

Xi— Rr) (Xr )
Y = — =|=-1
( :)90 ( R; =0 R t=0

which represents the relative difference between the price of the stock and the reference level,

with respect to the reference level. By It6’s formula, we can determine the dynamics of (V}),:

—a(EY o (Dyax, - (2 )aro—2( L) (L, l{ 2%
avi=a () = (&) ox- (2 ) am =2 (3) (e acem+ (225 ) o,
X

= (E) ((;; —a)dt+ (UdW; - J]dW;) — onpdt + ]]zdl‘)

= (%) ((;f—a —m,ip—i—:;z) dt + \f02—201;p+1;2d2¢)
t
Xo 1, 1, > 2
= Yi=S)exp| (p—a+zy"—z0° | t4+\/or =2onp+n*Zs) -1
Ro 2T 732 V

where (Z;);- is a standard one-dimensional Brownian motion under IP. Therefore (Y}),-, is

another one-dimensional geometric Brownian motion and its scale function is also of the form

s(x) = xP, where
2 f—a—{-(:—la)z—lazz
2(u—a—onp+17) I 1= 20P 7P

=1-— =1-
p 2 = 201p + y? (c—3)*+20y (1-p)

From the above expression for 5, we can deduce the effect of the coefficients y, &, o, 17 and p on the
convexity of s~!. Recall that s~ is convex for all 8 < 1 and concave for § > 1. Since p € (—1,1),
(e —n)*+20n (1 - p) >0, and we have

2
bl &= pu—a+ (1;—%0’;}) —icﬁoz;(}

Therefore, higher values of j, lower values of ¢, lower values of a and higher values of ¢ con-
tribute to the convexity of s~1. In other words, the higher mean of a stock or the lower its volatility
compared to the reference level (that is, the performance of the stock is good compared to the ref-
erence level) the more convex s~ 1is. The lower the correlation o, the more convex s~ 1 is, which

indicates the benefits of diversification.
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2.3 Variants of Problem 2 OPTIMAL STOPPING UNDER PROBABILITY DISTORTION

2.3.4 Foreign Asset

We could also consider optimal time to sell a foreign asset, whose price process (in the foreign
currency) we denote by (S¢),-, and we denote the foreign exchange rate by (X;),., and we

assume they are solutions to the following one-dimensional geometric Brownian motions:

d5; dX; ~ ~

S = Mdt+odWy, St = ade+pdW, d <w, w>r = pdt

where (W), and (W{) s 2T€ correlated standard one-dimensional Brownian motions under
P, e € R, 7,1,50,Xg > 0and p € (—1,1). The price process of the asset in local currency is
represented by

(Yt).-;n = (Sfxf)tzu

In this problem the agent wants to sell this foreign asset at a time that maximises his payoff,
which depends on the price of the asset in local currency. By It&'s formula, we can determine the

dynamics of (Y1)

de = S;dX; + XpdSr -+ d <S, X},
=Y ((;i +a)dt+ (Uch.- + r]dﬁ’;) + m;pdt)

=Y ((;H— o+ oyp)dt + /02 +20qp+:;2d2g)
1. 1, 2 2
= Y} = Ypexp ;H—nc—io' =3 t4+o*+20np+ 422

where (Z),-, is a standard one-dimensional Brownian motion under P. Therefore (Y}),, is
another one-dimensional geometric Brownian motion and its scale function is also of the form
s(x) = xP, where

2(p+a+oyp)
— T =
22000+ 12 <1 = pt+a+opp =0

g=
Higher values of p and a contribute to the convexity of s!, which is clear since the return of
a foreign asset in local currency is better if the return of the foreign asset in its own currency is
better and the exchange rate between the currency improves (that is, the same amount of foreign
currency can be exchanged for a higher amount of local currency). More interestingly, if p is
positive, higher values of ¢ and # contribute to the convexity of s~!, but if p is negative, higher

values of ¢ and # decrease the convexity of s~

. In the case of positive p, if the foreign asset
price increases, the exchange rate improves hence the price in local currency increases. On the
other hand, if the foreign asset price decreases, the exchange rate weakens, and this leads to a
smaller decrease in price in local currency. Therefore, higher ¢ or 17 would either lead to a larger
increase or a smaller decrease in local currency, and hence a better performance of the foreign
asset. Conversely, if p is negative, higher o or 5 leads to either a smaller increase or larger decrease

in local currency.
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2.4 Discussion 2 OPTIMAL STOPPING UNDER PROBABILITY DISTORTION

2.3.5 Mean-Reverting Processes

Asset prices may exhibit the mean-reversion property, which means that it tends to move to its
average over time [22]. The most common mean-reverting processes are the Ornstein-Uhlenbeck

(OU) process and the Cox-Ingersoll-Ross (CIR) process [22], respectively given by

dX; = a (b — X;)dt + cdW,
ch, = a(b—X;)df—{-o'\/EdW;

where a > 0 is the speed of mean-reversion, b € R is the level of mean-reversion and ¢ > 0 is the

volatility parameter. We first attempt to compute the scale function for the OU process:

en (- (2452)0) won ()2 ()= ()5~ (2)-)]

Since the scale function is unique up to affine transformation, we can take

00 ep[(5) - (22) o] e [(2) (i -07 - )] o [ () (- )]

For the CIR process, the special case b = 0 is equivalent to the CEV model in Section 2.3.2 with
v = % and p < 0. We attempt to compute the scale function for a general CIR process:
§'(x) = exp (— /x (M) dy) S J:_%l:#e(%'-})]r
Jxq oy
The expressions for s’ for both the OU and CIR processes cannot be integrated explicitly, and
therefore the optimal stopping problem cannot be solved explicitly. However, we can deduce
some properties about the optimal stopping time based on the shape of s. For both the OU and
CIR processes, s’ is decreasing on (—oo, b] and increasing on [b, o0), and therefore s is concave
on (—o9,b] and convex on [b, o). Since s is increasing, s~! is convex on (—eo, b] and concave on

[b,00), that is, s~! is reverse S-shaped.

2.4 Discussion

Having reviewed Xu and Zhou's methods in overcoming the difficulties in solving optimal stop-
ping problems involving probability distortion, and considered several variants of the problem,

we find that there are some limitations:

Firstly, in order for the optimal stopping problem to be solved explicitly, the scale function of
the underlying process needs to be known explicitly. As we saw in Section 2.3.5, this is not the
case for OU and CIR processes in general. Furthermore, a scale function is only defined for time
homogeneous processes, and therefore the techniques are not applicable for processes with time-

dependent deterministic or stochastic coefficients.
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3 BEHAVIOURAL PORTFOLIO SELECTION

Secondly, only optimal stopping problems involving one-dimensional processes can be readily
solved, and problems involving multidimensional processes can only be solved in particular case
- when we have a one-dimensional process that is a product(s) or quotient(s) of correlated geo-

metric Brownian motions under the same measure IP, as we saw in Sections 2.3.3 and 2.3.4.

Thirdly, in this problem it is assumed that we are in an infinite time horizon, and that the under-
lying process can be stopped at any time. However, in reality, in many financial contexts there is
a maturity date T and the process cannot be stopped beyond this time. However, the Azéma-Yor
stopping time is a solution to the Skorokhod embedding problem where it is not assumed that
stopping times are bounded by T. Ankirchner, Strack and Hobson [18][19] have derived nec-
essary and sufficient conditions for the existence of such stopping times but have not obtained

explicit solutions as yet.

Finally, the functions U considered are only state-dependent. If the payoff or utility function was

time-dependent as well, for example, if we have, forallt = 0,
V (t,S1) =e U (S))

where V is a discounted utility function, then the problem becomes considerably more difficult,

because probability distortion causes the time consistency structure to be lost.

3 Behavioural Portfolio Selection

This chapter reviews the main results obtained in [7] by Jin and Zhou, who solved the portfolio
selection problem for an individual with CPT preferences, in a complete market consisting of as-
sets having general It6 price processes. Solving this problem involves determining the optimal
wealth position, and then the solution is the portfolio replicating this position. The optimal termi-
nal wealth position that was derived has a simple structure differentiating between two types of
states: favourable and unfavourable, and has a straight forward interpretation, that of a gambling
policy betting on favourable states of the economy, and accepting a fixed known loss in the case

of an unfavourable state.

Zhang, Jin and Zhou then followed up on their approach to behavioural portfolio selection in [8]
by introducing an additional requirement that losses should be bounded by a known constant.
The resulting optimal terminal wealth position is similar to the one previously obtained, the only
difference being that it distinguishes between three states: good, intermediate and bad states,
where a gambling policy bets on good states, a constant moderate loss in intermediate states and

the maximal loss in the bad state.
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3.1 Formulation of Problem 3 BEHAVIOURAL PORTFOLIO SELECTION

3.1 Formulation of Problem

Assume filtered probability space (Q, F, {Ft} ¢, IP) which supports a standard {Ft}-,,-adapted
ni-dimensional Brownian motion (W;),., = ((W}, W )T).->t1 Assume that the price process

(Bt) = of the bank account evolves according to
f
dB = rBidt, By=b>0 < By =bexp ([ rsds)
Jo

where the {F;},-j-adapted real-valued one-dimensional stochastic process (1) is the short-
term interest rate satisfying J“UT |rs|ds < +oo almost surely. We also assume that there are m
assets in this economy, whose price processes are denoted by (S} )ysor i = 1,...,m and satisfy the

following stochastic differential equations for f € [0, T]:

) m . .
prdt+ Y o';“dW{j| , Sh=s5>0
j=1

dsj =S

where (;4),>0, i =1,..,m, and (c';;)r}n, i,j = 1,..,m are the appreciation and dispersion (or
volatility) rates respectively, are {Jt},-y-adapted and real-valued one-dimensional stochastic

processes satisfying

T[m m Py
/0 Zl}i;|+ Y |c';; ds < +oo

i=1 ij=1

almost surely. Define the m-dimensional excess rate of return vector process

by = ((H} - rt) Jon (' = r:))T = pt— il

where (,u;)t?(] = ((;r},...,;r}"}.r)w(] and 1y := (1,..,1)T € R™, and define the volatility matrix
process (0t) = by ot = (o{f )r_j_:1 . for t € [0, T]. The following basic assumptions are imposed

on the market parameters:
(i) There exists ¢ € R such that J-OT |rs|ds = c almost surely. This ensures that b; is bounded

almost surely for almost every t € [0, T].

(ii) rank (oy) = m for almost every t € [0, T] almost surely. This ensures that o is almost surely

invertible for almost every ¢ € [0, T].

(iii) There exists an R™-valued, uniformly bounded, {Fi},.-adapted process 6 := (0¢),, such
that oy0y = by <— 6, = (cr;)_l b; for almost every ¢ € [0, T| almost surely, where (o’;)_l
is the inverse of the matrix oy. (6;},20 can be thought of as a “multivariate Sharpe ratio

process”.

Under these assumptions, the economy is arbitrage-free and complete and therefore there ex-

ists a unique equivalent martingale measure Q (or risk-neutral measure) defined by the Radon-

aQ| e 1t 2)
ﬁL_r—exp( fﬂ(es) AW, E,/g 1652 ds
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3.1 Formulation of Problem 3 BEHAVIOURAL PORTFOLIO SELECTION

for t € [0, T]. Define the pricing kernel or state density price process (ot)refo,r) bY

. _ E_ e Q| _ _ : T _ ! 1o )
p;‘—exp( forsdb) d]P}_i—exp( /0(95) dw. fo[rﬁzwﬂds

and denote p := pr. Since p; is inversely related to (65);c (o, for all € [0, T], higher values of 6

correspond to lower values of p, which means that lower values of p represent favourable states

of the economy and vice versa. Clearly 0 < p < +co almost surely, and by Holder’s inequality,

0 < Ep (p) < (IE]P {exp (‘for’*d*‘)])f (lEm [% )é
_ (ET [exp (_ ng’st)Dz s

by assumption (i), where Ep denotes expectation under IP. The paper imposes the following

Fr

additional assumption, which, although not essential, avoids undue technicality: p admits no atom
(i.e. it is a continuous random variable), formally, P(p =a) = 0 for all 2 € R. In particular,
this assumption is satisfied when (r¢),-, and (}),, are deterministic functions of time (and so
(1) is also deterministic) with fUT |6s|* ds # 0, in which case p is a non-degenerate log-normal

random variable, where

T 1 T T
log (o) ~N(—/ﬂ [rs+§|95|2] ds,jﬂ |95|2ds), Ep (o) = exp (—L rsds)

The following notation is defined:

p:=esssupp:=sup{a € R:P(p>a) >0}

p:=essinfp:=inf{a € R: P (p <a) >0}
which define the end points of the domain of p. In the case of log-normal p, p = 0 and p = co.
We now consider an agent with a fixed initial endowment xy € R (difference between initial
wealth and a discounted reference wealth) whose total wealth at time = 0is denoted by X; € R.

Assume that the trading of shares is self-financing and takes place continuously, and that there

are no transaction costs. Denoting (5¢),-, = ((S},...,S;")T)»O and the portfolio of the agent

by (M) = ((n} rr;")T):}O where 7} denotes the total value of the agent’s wealth in the

sth

i"" asset at time {, the one-dimensional wealth process (X;),, satisfies the following stochastic

differential equation:
dXp =1 (X — - ) dt + 71, - dSp = (1 Xy — () 7)) b+ 71 - (pedt + o d W)
= (1 Xe + (pr — rilly) - 71e) dt + 7y - ord Wy
= (1 X¢ + 1y - by) dt + ¢ - opd W

Definition 3.1 (Tame Portfolios). A portfolio (71¢),,, is said to be admissible if it is R™-valued,

{Ft}i=p-adapted and satisfies the following almost surely:

T 2 T
]|0,-rr,| df < 400, /\b,-n,|dr<+m
0 0
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3.1 Formulation of Problem 3 BEHAVIOURAL PORTFOLIO SELECTION

An admissible portfolio (7t),, is said to be tame if the corresponding discounted wealth process
(%{)@U = (exp (— f{; rsds) X,) 50 (assuming By = b = 1 without loss of generality) is almost
surely bounded from below, where the bound may depend on (71;),.
Under Q, (exp (— f(; rsds) X;) 0 is a martingale, and we can verify this by determining its dy-
namics. By Girsanov’s Theorem,

. t

W= Wi+ [ ods

Jo

is a standard m-dimensional Brownian motion under Q. Then by It6’s formula,

t f ¢
d (exp (—/ﬂ r,-ds) X,) = —riexp (—/ﬂ r,-ds) Xpdt +exp (_fo rsds) dX;

'
= exp (— [0 rsds) (7ts - bedt + 716 - opd W)

=exp (— .E rsds) (m ~bydt + 7y - 0y (dW, - B,df))
= exp (_ fof rsds) (m bydt + 71 - 0 (dw, — (o)™ b,dr))

t .
= exp (— /0 rsds) - ord Wi

t t s -
= exp (_fo rsds) Xi=xp +/0 exp (—/0 r,.du) s - oed W
¢ ¢ ¢ s -
= X; = xpexp (/ rsds) +exp (/ rsds)f exp (—f r,,dn) 7Ts - O d Wi
0 0 0 0

Since we assume (rt),~, and (0t),~ are deterministic, it is clear that (exp (— f(; rsds) X')Dn isa

Q-martingale with constant expectation xy under Q.

Proposition 3.2, For any Fr-measurable random variable ¢ that is almost surely bounded from below and
satisfies Ep [pZ] = xo, there exists a tame admissible portfolio (71t),~ such that the corresponding wealth

process (X;),-, satisfies Xp = &

Proof. By the property of the Radon-Nikodym derivative,
T
Ep [p¢] = Eq [exp (— A rsds) C] =Xy

where Eq denotes expectation under Q. Let (X;),-, be the wealth process satisfying Xr = ¢,

then (exp (— flf rsds) X g) o is a Q-martingale and therefore by the martingale representation

theorem, there exists a predictable process (H;),-, (where H; € R™ for all t) such that

T T T . T e
exp (_L rsds) Xr = Eq [exp (-A rsds) XT] +L H, - dW, =x(]+]n H, - dW,

where (W")wo is a standard m-dimensional Brownian motion under Q. Then by the equation

=

(...) above, we can take (711), satisfying

f t
exp (—f rsds) meop=Hy &= m=exp (f rsds) H; -(o})_1
0 0
forallt € [0, T]. o
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3.1 Formulation of Problem 3 BEHAVIOURAL PORTFOLIO SELECTION

In a conventional portfolio selection problem, the agent wants to find the optimal tame admissible
portfolio (71;),-, maximising the expected utility of her terminal wealth X7 =: X. Assume that

her utility function u is S-shaped, i.e. concave on IR~ and convex on R and define
W=y —U_

where 1 : Rup — Rypand u_ : Ryg — Ryp are concave functions associated with gains and

losses respectively. The objective function in this maximisation problem is

Ep (1 (X)] = Ep [u4 (XT)] — Ep [u- (X7)]

= f:]l’(m_ (x*) > x)dx—/om]l’(u_ (X7) > x)dx

In behavioural portfolio selection, where we work within the CPT framework of Tversky and
Kahneman, in which probability distortion is involved, the objective function becomes a non-
linear Choquet integral, a generalisation of expected utility. Assume that probabilities associated
with random variable 14 (X*) are distorted with the function w; : [0,1] — [0,1] and those
associated with u_ (X ™) are distorted with the function w_ : [0,1] — [0,1], where X and X~

denote the (almost surely positive) positive and negative parts of X = X — X~ respectively.

Then the objective function is

oo o0
V(X) = Vy (XH) = Vo (X7) = fo w (P (g (X*) > x)) dx — [0 w_ (P (u_ (X) > x))dx
The optimisation problem is:

maximize V (X)
(7120

subject to  dX; = (1 X; + ;- by) dt + 71 - o:dW; (self-financing condition),

(7t )y=p 1s admissible and tame
However, by the proposition, we only need to solve the following optimisation problem:
maximize V (X)
X

subjectto Ep [pX] = xq,

X is an almost surely lower bounded Fr-measurable random variable

The optimal portfolio (7}),-, is then the one replicating X*, the solution to the above problem.
As mentioned in Section 1.3, dynamic programming principles are inapplicable under probability
distortion due to the loss of time conistency. However, since this is a maximisation problem that

only involves the terminal wealth, this difficulty is avoided.
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3.2 Solving the Problem

Jin and Zhou proved in [7] that a probability distortion on losses is necessary for well-posedness
of the problem, that is, the objective function cannot grow arbitrarily large, and discussions on
well-posedness can be found in [7]. We present the methods used to solve well-posed problems,
which are split into its positive and negative part problem, by observing the following:
(i) Maximising fom wy (P (g (X*) > x))dx — J“Om w- (P (u_ (X7) > x))dx is equivalent to
simultaneously maximising [~ w4 (P (14 (X*) > x)) dx and minimising

S w_ (P (u— (X~) > x))dx.

(ii) The constraint Ep [0X] = Ep [pX"] — Ep [pX ] = x¢ is equivalent to Ep [pX7] = x4 and
Ep [PX_] = x4 — xg, where x4 = 0.
(iii) X is almost surely lower bounded is equivalent to X~ being almost surely upper bounded.

This problem is similar to the optimal stopping problem in that the objective function is of the
same form, but the main difference is the presence of the pricing kernel in the constraint. How-
ever, we will solve this and see that the solution is not substantially different from that in the

optimal stopping problem.
3.2.1 Positive Part Problem

o0
maximize Vi (XV):= ] wy (P (uy (X7) > x))dx
X+ 0
Subi(;‘cf to ]E]p [pX+] =X+,
Xt =0 as,
Xt=0 as. on Al:={Xx>0}'={Xx<0}
For any random variable ¥ with quantile function Gy,

Y=0 as. < Gy(x)=0

for all x € [0,1]. Define the probability p := P (X > 0). Then, X* = 0 almost surely on AC :=
{X= O}E = {X <0} is equivalent to X' (w) = 0 for all w € {X < 0}, which is equivalent to
Gy+ [Ut (w)] =0forallw € {X < 0}, where U™ := Fx: (XT) ~ U[0, 1], where Fy+ and Gy are

the cumulative distribution function and quantile function of X respectively. Since
{X <0} ={Cx(U) <0} = {U <F(0)} ={U <1-p}

where U = Fy+ (X*) ~ U[0,1] and Fx and Gy are the cumulative distribution function and

quantile function of X respectively,

P(X<0)=1-p=PU<1-p)=£([0,1-p])
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where ¢ denotes the Lebesgue measure on [0,1]. Therefore, Gy+(x) = 0 for all x € [0,1 — p].
Similarly, X~ = 0 almost surely on A = {X > 0} is equivalent to Gx-(x) = 0 for all x € [0, p].
Then A* is related to p* via p* =P (A*) = IP (X* = 0). By writing the objective function in terms
of its quantile formluation and the fact that

Gy+(x) =0 = uy (Gy+ (x)) =up(0)=0

the positive part problem becomes

ma()}clxnluze Ep [u+ (Gy+ (U))w+ {1- U’)] / Uy (Gys (x))w+(1 —x)dx

subjectto  Ep [pXT] = x4,
Gyx+(x) 20 Vxe[01],
Gy+(x)=0 VYxe[0,1-p]
If x; = 0, the only feasible (and hence optimal) solution is (X*)" = 0 almost surely, in other
words, Gy+)-(x) = 0 for all x € [0,1]. Assuming x4 > 0, the following lemma characterises an
optimal solution (X*)”, given in terms of its quantile function and p. In particular, (X*)" must

be anti-comonotonic with p.

Lemma 3.3. An optimal solution (X*)" to the above problem with distribution function and quantile

function Fix.y+ and Gy respectively must satisfy
(x*)" = F(xl») (1-F(p) = Gx+yr (1-F(p) as.
where Fy is the distribution function of p.
Proof. Let X := G(x+y (1= Fp(p))- Since 1 — F, (p) ~ U(0,1), X" has the same distribution as
(X*)", and therefore Fg+ = Fiys) and Gg+ = G(y+ ). Furthermore,
E [pX+] —E [pG[xi v (1-F (p))] >0

since p is a strictly positive random variable. If (X*)" = X" almost surely is not true, then by the

uniqueness result in (theorem),
E [pYJr] <E [p (X*)*] =x;
3 v+ — T — +| — . T o
Define X+ = kX', where k : E[m > 1. Then E [pX } x4 (ie. X' is feasible). We also

have X* > X almost surely, and therefore Gg, (x) > Gg+(x) for all x € [0,1]. Since u is an

increasing function,

1 1
f ity (Ggs (x)) w, (1—x)dx > / u+ G—. (r)) w, (1 —x)dx
1-p 1-p

1 !
/ T G(X' (x)) w, (1 —x)dx
1-p

which contradicts the optimality of (X™)". O
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By the lemma and the fact that F,(p) is uniformly distributed on [0,1], and that p is equal in
distribution to G,(U), where U ~ U[0, 1], the left hand side of the constraint becomes

1 1
Ep [0X*] = Ep [Go(W)Gx+ (1 ~W)] = [ Gpw)Gx+ (1= y)dy = [ G,(1-0)Gys (1) dx
Therefore, the problem that we will solve is
‘ 1 ’
maximize Ep [u+ (Gx+ (U))w, (1— U’)] = / Ut (Gy+(x))w, (1 —x)dx
Gx:- 1-p

1
subjectto  Ep [G,(1 — )Gy (U)] =f Go(1 - x)Gy+ (x)dx = x4,
1-p

Gy (x) 20 Yrel[01],
Gx:,(x) =0 Vxe [D,] —p]

Since u 4 is a concave function, the objective function which we are maximising over Gy is a
concave functional of Gy+. Furthermore, the left hand side of the first constraint (an equality
constraint) is an affine functional of Gy +. Therefore the problem is a convex optimisation problem
and we may use the Lagrange multiplier method and solve the following unconstrained convex
optimisation problem for a given A = 0:
1 , 1
maximize / g (Gy+(x))w, (1 —x)dx + A (x+ - ] Gp(1—x)Gx+ (x) clx)

Gy 1-p 1-p
By monotonicity of expectation, it is sufficient to maximise the integrand, therefore we may solve
the following unconstrained convex optimisation problem for each x:

maéimize L(Gy+(x),A) = (u+ (Gy (x))w;_(l - x)) —AGp(1 —x)Gx+ (x)

X+

Since we have a convex optimisation problem, the following First Order Conditions are both

necessary and sufficient:

w = ﬂ’+ (G (X))w:_(l —x) _/\GP(] —x)=0
Gx:v
e e 4)” (S4=2)

We then determine A by substituting the above expression for Gy into the original constraint:
1 =1 [ AG (] = x]
Gy(1—x)(u ,p— dy=x
/1-;: ol )( +) (IU+(]—X)) N

-1
- - r r - - -
Since u, is concave, u, as well as (n +) are decreasing functions. Therefore, we require

(5!%) to be non-increasing in x € (0,1] (i.e. (g}%) should be non-decreasing iny € (0,1)),
=X "4

in order for Gy+ (x) to be non-decreasing in x € (0, 1] (to satisfy the property of being a quantile
function). Jin and Zhou [7] derived conditions required for (?f%) to be non-decreasing in
U:_ J

39




3.2 Solving the Problem 3 BEHAVIOURAL PORTFOLIO SELECTION

x € [0,1), and also derived conditions under which a reverse S-shaped w. satisfies this mono-

tonicity property:

Monotonicity of Gp/w'.

By directly differentiating, we may observe that the monotonicity condition is satisfied if:

d (GP(X)) _ 0 (0 (Gp(x)) = wi (x)Gp(x)

dx w:r(x) (w;_(x))2
w, (x) & (G(v) d , d
= (_w’::(x)) > (_74 Gp&) ) = = (log (w+(x))) <% (log (Gp(x)))

r(x)
D,(I)

Since G, is an increasing function (since it is the inverse of increasing function F,), —

>0

where — can be regarded as the Arrow-Pratt measure of absolute risk aversion (ARA) [7] of w ..

d
3 (Gpl(x))
Gplx) <0

for all x > 0. If w. is reverse S-shaped, that is, concave on [0,q] and convex on [g, 1] for some
q € (0,1), then the inequality is satisfied for all x € [0,q], since the ARA is non-negative for
concave function (as the second order derivative is negative). For the inequality to be satisfied
for x € [q, 1], w4 should not be “too convex” (or too steep), that is, its positive second order
derivative should not be too high (resulting in the ARA not being too negative). To summarise,

the ARA of w. should be sufﬁciently high. Alternatively, we can also consider the analysis in[7],
Gplx)

] being non-decreasing in x is equivalent to ( x) being

which begins by observing thaf
non-increasing in x > 0. Defme

wy (F(x) _ H'()
x N xFy(x)

H(x) =wy (Fp(x)), I(x):=
Then I(x) is non-increasing in x if and only if, for all x > 0

L d (H()  E@H ) - H () () +Fx)
I (I) = d_ =

XF;(X) Iz(Ff(x))z
_ xH'(WF) — H (0B() — HF() _
2 (F;,(x))
xH"(x) xF/(x) xFy'(x) _xH"(x)
= Hw  EE ‘( F'(x)) ( H'(x) ) a

xFy(x) xH"(x) i ; :
where —,-[?— and — ey can be regarded as the Arrow-Pratt measure of relative risk aversion
(RRA) [7] of F, and H = w4 o F, respectively. The RRA of a concave utility function u (corre-
sponding to a risk averse attitude) is non-negative (since the utility function is non-decreasing
and by concavity its second order derivative is negative). Therefore, higher risk aversion corre-

sponds to a more negative second order derivative and higher RRA. Denoting

T 1 T
Hp = — [0 [rs + 3 |95\2] ds, op:= /0 \95|2ds
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and denoting the density of p by f, := F;, we have

B - o ) = 5 () o (BE22))
_ (G'px} (L:}'_'”ﬂ) ¢ (log;p log x—jtp ) (_) " (1031 log x—jty )

242
U'px
I ko I ~Hp
—o (B25) (255 + )
2 42 <0
pr

where ¢ denotes the standard normal density. Therefore F, is concave and has a non-negative

RRA given by

e () [R5 0] g
Fp(x) ng(o_pr)@(log::p—pg) - ( 7 )

Therefore, the inequality becomes, forall x > 0,

_xH"(x) = logx — ptp
H'(x) = o}

Therefore, H, which is by definition the distorted distribution function of p, should have a suffi-

ciently high RRA. An alternative interpretation is that the distortion function w.. should not de-
crease the RRA of F, by more than 1. Finally, [7] derives a condition that ensures the monotonicity
of 5{- when w,. is reverse S-shaped: first define the function
+
(x) = xH"(x) xF/(x)
ST HEW T REE

and by definition of H and the inverse function theorem we have

H' (Gp(x))
F (Go(x)
H" (Gy(x)) E (Gp(x)) H' (Gp(x)) E} (Gp(x))

( ) (Gp(x}})
AR LA
(s )’ (@)

Since H = w o F, is increasing (as it is a composition of increasing functions), H'(x) = 0 for all

wi (x) = H (Gp(x)) = wly(x) =

= w'{(x) =

= w] (F(x)) = g(x)

x > 0. If we assume w. has a reverse S-shape, w'/ (x) changes from negative to positive when x
goes from 0 to 1, and therefore by the equation above g(x) changes from negative to positive when
x goes from 0 to 1, and by the earlier derivatiion we require g(x) < 1 for all x > 0. Therefore, if

w is reverse S-shaped, monotonicity of is satisfied if there exists ¢ > 0 such that
gx) <0 Vxe(0,c], 0<g(x)<1 Vxe (¢, +)
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An example of a distortion function satisfying this is constructed in Example 6.1 [7] for interested
readers. The assumption of monotonicity of _F is imposed in [7], however, this is restrictive,
especially if we assume that w; is reverse S-shaped. [15] showed that this assumption is not sat-

isfied for well known distortion functions such as the one proposed by Tversky and Kahneman.

Therefore, we consider a truncation similar to that in the optimal stopping under probability dis-
tortion problem (refer to Remark 2.15) that does not require this assumption to be satisfied. We

-1 -
first verify that x (1.';_) ("C"“ 2

:::{_ (1—x)
method described in Remark 2.15 to be applicable. First assume w. is reverse S-shaped and con-

) has a “U-shape” which is required for the truncation

cave on [0,1 — g] and convex on [1 — g,1] for some g € (0,1), then @'/ is negative on [0,1 — g]

and positive on [1 — g,1]. Then, examining the first order derivative computed at the beginning

of the monotonicity discussion, %— is non-decreasing on [0,1 — g] for any reverse S-shaped w.

(with inflection point 1 — g). ASSui*ne the monotonicity condition fails and I—f}"— is non-increasing
Gpl1-x)

on[1—gq,1]. Thenx — ?:{1——\) is non-increasing on [g, 1] and non-decreasing on [0, g]. Therefore,

W' (1-x)
the required “U-shape”.

-1 -
X (u:r) (M) is non-increasing on [0, | and non-decreasing on [g, 1], and indeed has

The quantile function after truncation is given by

G+ (x) = al(q_p g (x) + (a v (u;_)_l (M)) Lgq1(x)

w, (1 —x)

If (E;’((‘—"))) is non-decreasing in y, we set & := 0, f := 1 — p. A is then determined by the following
wyly

equation:

P 1 -1 AG,(1 -
a/]_p Gp(1 _x)dx+f,s Gp(1—x) (uc\f (u+) (ﬁ))dx=x+

The left hand side of the above equation is monotone in A, hence there is a unique A satisfying the

equation. The objective function in the positive part problem becomes

g () [wi(p) —ws(1 =) + ‘/ﬁl Uy ((x v (u;_)_] (M)) w:_(l —x)dx

w), (1 —x)
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3.2.2 Negative Part Problem
o0
minimize V. (X7) :=/ w (P (X7)>x))dx
X~ 0
subjectto  Ep [pX~] = x4 — xq,
X" =20 as,
X =0 as. on A={X2=0},
X" isupper bounded a.s.
By writing the objective function in terms of its quantile formluation and the fact that
Gx-(x)=0 = u_(Gx-(x))=u_(0)=0

the negative part problem becomes

mir&i)r{nize Ep [1.'_ (Gx- (U)) W (1-— U)] = /p] u- (Gy (x)}wr,[l —x)dx

Subject to Ep [pX_] = X4 — X0,
0< Gy (x) < +eo VYxe|0,1],

Gy (x)=0 ¥xe|0,p]

If x; — xy = 0, the only feasible (and hence optimal) solution is (X )" = 0 almost surely, in other
words, G(x-y+(x) = 0 for all x € [0,1]. Assuming x4 —xo > 0, similarly to that in the positive
part problem, the following lemma characterises an optimal solution (X~)", given in terms of its

quantile function and p. In particular, (X~ )" must be comonotonic with p.

Lemma 3.4. An optimal solution (X~)" to the above problem with distribution function and quantile

function Fyy- and Gy« respectively must satisfyy
(X7) = F3Ly (B () =Gy (Fo(p)  as.
where F, is the distribution function of p.

Proof. LetX = Gix+yr (Ex (0)). Since F, (p) ~ U(0,1), X has the same distribution as (X~)",
and therefore PX = F(x y and GY' = G(x ) Furthermore,

E [97_] =E [pG(x y (Fo (p)}] >0

since p is a strictly positive random variable. If (X~)" = X almost surely is not true, then by the

uniqueness result in (theorem),

E [pX_] >E {p(X‘}*} =X, —Xqg
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Define X~ = kX , where k := %D]— < 1. Then E [p?‘] = x, —xg (i.e. X is feasible). We
also have X~ < X almost surely, and therefore Gy (x) < Gy (x) for all x € [0,1]. Since u_ is
an increasing function,

]ll_pu_ (Gg (x))w (1—2x) dx</

1-p
/11 , u_ (x))w’_(l—r)dx

which contradicts the optimality of (X ). )

1
u_ G— (x)) w_(1—x)dx

By the lemma and the fact that F,(p) is uniformly distributed on [0,1], and that p is equal in
distribution to G,(U), where U ~ U|0, 1], the left hand side of the constraint becomes

1
Ep [pX7] = Ep [G,(W)Gx- ()] = [ Gp(x)Gx- (x)dx
Therefore, the problem that we will solve is
! 1 ]
minimize Ep [u_ (Gx- (U))w_ (1— U)] e / u_ (Gy-(x))w_{1—x)dx
Gy P

1
subject to  Ep [G,(U)Gy- (U)] = [ Gp(x)Gx (x)dx = x4 — xo,
- }P

0< Gy (x) <400 Vxe[0,1],
x-(x)=0 Vxe[op]

The negative part problem is not a convex optimisation problem, because the objective function
which we are minimising is concave in G- (x). We obtain “corner point” solutions in the follow-
ing proposition:
Proposition 3.5. Assume u_ is strictly concave at 0. Then the optimal solution, if it exists, must be in
the following form: for x € [0, 1),

Xy — X

1
er Gp(x)dr
Proof. Assume x; — xg > 0, otherwise the result holds trivially. If Gy is an optimal solution,

then Gy # 0. Fix y € (0,1) such that Gy (y) > 0. Define:

Gx-(x) =q (x4,p)Lp1y(x), q(x4,p)i=

) Go(x)Gx (x)dx 51 )= kGx-(x), x€[0,y]

= = ]r
f(]y GP(X)GX (x)dx + Gx-(v) fvl Gp(x)dx kGx-(y), x € (y,1)

Clearly G is another quantile function and

/ : Gp(x)é(x)duk( L"’cp(x)cx (x) dx + G- () fy 1 Gp(x)dx) = E G, (x)Gx- (¥)dx
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and therefore G is feasible. We claim that Gy (x) = Gy (y) for almost every x € (y,1). To prove
this, we first assume to the contrary that this is not the case, which means Gy (x) = Gy (y) for
almost every x € (y,1) since Gy is a non-decreasing quantile function. This implies that k > 1.

Define

0, x € [0,y]
Gy (x) =Gy (v)

OO, ye (y,1)
(5 [6x @)~ Gx- 0] ) 1y @)

A :=l—% € (0,1), G(x):

Then Gy can be written as a convex combination of G and G:
(1-A)G(x) + AG(x)
= % (ka (Mg, (x) + kGx- ()1,1)(%)) + A (% [Gx-(x) — Gx (y)]) 1y1)(x) = Gx-(x)
By concavity of u_,
L e (G- () W (1 — x)dx
>(1-2A) /01 u_ (G(x)) w_(1—x)dx+ A /0] u_ (é(x)) w_(1 —x)dx
- ‘/01 [[1 — N (G(x)) + Au_ (G(x))] @ _(1-x)dx
and equality holds only if
U (Gy-(x)) = (1= Mu— (G(x)) +Au_ (G(x))

holds for almost every x € (0,1). However, since Gy is an optimal solution to a minimisation
problem, equality must hold. However, the equality holding for x < y contradicts the assumption
of strict concavity at 0. Therefore, we must have Gy (x) = Gy (y) for almost every x € (y,1).
Then, since Gx- (x) = 0 for all x € [0, p|] we must have Gx- (x) = ql,,)(x) forall x € [0, 1], some
q € R.. By the feasibility of Gy,

X4 — X0

1 1
Gp(¥)Gx- (1) dx =q [ Gplx)dx = x4 —x0 = q =0 (xe,p) = L
,[p : b * f; Gp(x)dx

Then the objective function in the negative part problem becomes

1 Xy — Xg v _ Xy —Xg B
/p u_ (—f; Gp(x)dx) w_(1—x)dxy =u_ (—f; Gp(x)dx) w-(1—-p)
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3.2.3 Determining Optimal Parameters

Combining the objective functions in the positive and negative part problems, we have the fol-

lowing joint objective function

T (x4, .0, B,A) = 11 (w) [ (p) = w4 (1~ B)]

+ f,;l " (w (,,;)—1 (%)) W, (1 - x)dx — u- (ﬁ) w_ (1-p)

Define the following function

Kipap)i=a [ G,0-ve+ [6,0-x) (w ()™ (7’1‘0‘?((11_‘3)) "

Then we have the final optimisation problem:
maximize  J (x4, p,a,B,A)
Xogey P: X, )61
subjectto  K(p.a,5,A) = x4,
XA 20, 0<p<l, 1-p<p<l

Once the optimal parameters x7%, p*, a*, p*, A* are found, we have the optimal quantile functions

in the positive part and negative part problems respectively given by

iy=1 ARG, (1 — x
Gxry (x) = &g pr (%) + (“* v (“+) (ﬁ)) g ) (x)

(x) = (fcix") 1) (%)
P ol

and the corresponding optimal random variables (X*)" and (X~)" are given by
(X*)" = Gxe) (1= F (p)
* * ! A*Gy (F (P
=01 pr g (1-F (P)) + (“ v (“+) ( o (B ))) (B* lJ F (0))

w, (F (p))

* * ry1 A
=G, (1-po).6,() P+ ("‘ v (i) ( U+(Fpp(p))))l["csr( -p) ©)

(X7)" = Gx-y (F (0) = (ﬁ) 1y 1) (Fo (0))
»

et
. (fp} Gp(x)dx) L(Gp(p)e0 )(P)
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and the optimal random variable X* is
X' = (x*)' - (x°)’

* AN A *
- (“ V("+) (m))“[ﬂﬁ,-u—m) (0) + &g, (1-pe),G,(p)) (P)

: (ﬁ) LGy (1) (P)

3.3 Addition of Loss Control

We now present the problem with the addition of loss control as solved in [8], where an investor
wants to bound the losses of his terminal wealth position by a constant L. The positive part

problem remains the same and the negative part problem becomes
o0
minimize V_ (X_):= /0 w_ (P (u_(X") >x))dx
X~

subjectto [Ep [pX _] = x4 — Xp,
0<X <L as.,

X =0 as. on A={X=0}

mil(l}i)r(nize Ep [u_ (Gx- (U)w_ (1— U)] e /; u_ (Gx-(x))w_(1— x)dx

1
subject to  Ep [G,(U)Gx- (U)] = [ Gp(x)Gx (x)dx = x4 — xo,
- }?

0<Gx-(x) <L Vxelo1],
Gx (I) =0 VYxe [(},p]

The following proposition provides the form of the optimal solution, which consists of three
points, 0,4 and L. In [8], their proof involves a proof by contradiction, first assuming that there
are more than three points, and then constructing linear interpolations of quantile function and
eventually arriving at a contradiction. We provide an alternative proof which also involves proof
by contradiction, but by using a more fundamental approach, and this is adapted from the proof
in [10], which proves that there must be at most three distinct points in the optimal quantile func-
tion, but in an optimal stopping under probability distortion problem with loss control (where no

pricing kernel is involved).

Proposition 3.6. The optimal solution, if it exists, must be in the following form: for x € [0,1),

Gx-(x) = q]l(p_,”(x) + Ll[’r,l](x)
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where
x+—x(]—Lf1G (x)dx
q=qx+,p7) = 76 <L
o (2

x)dx
Proof. Let G be an optimal solution. We first prove that the optimal solution G is the quantile
function of a random variable having a three-point distribution with masses at 0, g and L. Assume
to the contrary that the image of G contains more than three distinct elements. Then we can
choose ¢ € (0,1) and g € (0, L) such that g € [G(c), G(c+)] such that there exists x; € (0,c) and
x2 € (c,1) with0 < G (x1) < gand g < G (x2) < L. Define a convex function 7, and a concave
function 7j, by

T (x) =T (xie1) =27, Tp(x) =T (xie2) :=1— (1 - x)

withe; > 1 and & > 1. Note that 7, (0) = 77,(0) = 0and 77;(1) = 7,(1) = 1 and we can define

another quantile function G via

@:ﬁl(@), 0<x<ec M:=52(M)f ccx <1
q q
— {Gx)
— |l =), 0<x<c
:‘G(I): qfl( "') )
9+ L—-)7, (1), e<x<1

By construction, G(x) < G(x) on [0,c] and G(x) > G(x) on (c,1). Since 7, (x) = x and 7, (x) = x

if and only if x € {0,1}, we have that in the first inequality, equality only holds for x such that
G(x) =0 <= x=00rG(x) =q <= x = c,and strictinequality holds for x € (0,c). Similarly
for the second inequality, equality only holds for x such that G(x) =g <= x =c+or G(x) =L,

and strict inequality holds for all other values of x. Then we can define the quantities
f Golx dx—/ G, (1)G(x)dx > 0
f Glx dx—f G,(x)G(x)dx > 0

Observe that A and A; are strictly increasing in ¢1 and €3 respectively, and

limA; = llrinﬂz =0

£11

Therefore, we can choose ¢} and €5 such that A; (¢}) = A (&5), equivalently
/ Gp(x)G (x;e7;€3)dx = / Gp(x)G (x)dx = x4 —xp

In other words, G is feasible. Now fix 0 < A* < min {-1]— ;lr} < 1. Consider another pair of

2

functions ij; and 7> given by

- x— A%, (x; e A*
I}I(I):: ]il)‘(a l) :I+(] )

— A*
_ X — AT (x;e5) A*
()= =0 =Y o

x =1, (x;€7))
(x;€3)

x =T (1:63))

(x
(
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which also satisfy 771 (0) = 772(0) = 0 and #7; (1) = 7j2(1) = 1, and 7 (respectively #) is a strictly
increasing concave (respectively convex) function on [0, 1]. Define another quantile function G by
VJ

q+(L—q)fy’z(9§_"_}—;‘1), c<x<1

By construction of 7; and 7y, it can be easily verified that G is feasible:
1 = 1 _ 1
L Go(x)G (x;€];¢3) dx = /ﬂ Go(x)G (x;€5;€3) dx =L Go(¥)G (x) dx = x4 — %

and G can be written as a convex combination of G and G:

G(x) = A'G (x;e:63) + (1 - A% G (;€%;¢2)
By concavity of u_,

fol u_ (G(x))w_(1—x)dx
= A" / u- (G(x) " (1—x)dx+ (1-A* )/01 u_ (Gh(x))w’,(l—x)dx
= /ﬂ )L*rr_ (G(x)) + (1 =A%) u_ (é(x))] w_(1—x)dx

Since G is an optimal solution to a minimisation problem, equality must hold, and we must have
G(x) = G(x) = G(x) forall x € [0,1]. In particular, by definition of G, we must have S ¢ {0,1}
for x € [0,c] and (—1 € {0,1} for x € (¢, 1), equivalently, G(x) € {0,4} for x € [ﬂ,r:] and
G(x) € {q, L} forx € (c, 1), which contradicts the assumption that the image of G contains more
than three distinct elements. Therefore the optimal quantile function must be a three-step step
function, taking values 0, L and intermediate level g € (0, L). By feasibility of G, G(x) = 0 for all
x € [0,p] and

/] Gp(x)G (x)dx = q/ﬂr Gp(x)dx + Lfl Gp(x)dx =xy —xp
P P 7

X4 — X — Lf,: Gp(x)dx
f” Gp(x)dx

= g=q(x+,p,7) =

Then the objective function becomes

IS
f; _ (x+ xl[:g Gf;l[{:):;(x)dx) rv:(l —x)dx + /ﬂ!] :.'_(L)w’_ (1-x)dx

(x+ —xp— L‘ﬁ: Gp(x)dx
=i

f'r Gp(x)dx ) [EU— (1- ,U) —w_ (1 —7)] +u_(L)w_(1-7)
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3.3.1 Determining Optimal Parameters

Combining the objective functions in the positive and negative part problems, we have the fol-

lowing joint objective function
’
J (x+1p1"x:)8:’}': ) = II‘-i— [w+(P _EU+(1_]8)]

+ [p U4 (a v (u;)_l (%)) w:r(l — x)dx

X4 — Xo — L_fl Gp(x)dx
— U ( + F? GP(;)d; ) [w-(1-p)—w_(1—7)]

—u_(Lyw_(1—7)
Then we have the final optimisation problem:

maximize  J (x4, p,a B, 7.A)
X4, P, B, 7. A

subjectto  K(p,a, B,A) = x4,

xy,a,A20, 0<p<], 1-p<p<I

Once the optimal parameters x7, p*, a*, B*, 7*, A* are found,

= Gx-) (o (0))
x. —xn—L r G d
( + F GP d: ) ]10;*,1»') (Fp (P)) I L]]':'r“,l) (FP (P))

xs =% = L [} Gy(x)dx
- ( Iy G,}(:)dx ) LG, r1.60r) () + L, (30),00 (P)

and the optimal random variable is
X' = (X)) - (x7)
r 1 Atp
=la*V —— | |1 o + 'l " .
("‘ (“+) (w+ (F, () ))) Gs-p)) () + &[G (1_ge), G, (1)) (P)

X4 —x(]—LflG (x)dx
) ( f: Gp(:)d; ) H(CP(P“)—C..:{T")) (p) - L]l[c:r{'r")—‘”) (p)s

Figure 2 on the following page provides an illustration of the distribution of the optimal random
variable X*, where q = (%), and the values X* takes depends on the values
of p. The figure shows that in good states of the economy corresponding to p € [0,G, (p*)], a
gambling policy is adopted, while in intermediate states correspondingtop € (G, (p*), G, (1)),
a constant moderate loss g is accepted, and in bad states corresponding to [Gp (7*),00), the con-

stant maximal loss L is accepted.
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Figure 4: Optimal Random Variable Under Loss Control

'
Gall=5") Go(p") G

3.4 Discussion

In [7], Jin and Zhou study an explicit example involving a two-piece CRRA utility function and
solve the problem (without loss control) explicitly, and discuss the effects of CPT preferences on
allocations of risky assets - under certain conditions investors underweigh risky assets in the port-
folio compared to the allocation prescribed by a model in the EUT framework; interested readers

can find further details in [7].

Compared with the optimal stopping problem, the approach for this problem is more flexible. The
behavioural portfolio selection problem can be solved even when coefficients are time-dependent
(deterministic or stochastic). However in the optimal stopping problem, only problems involv-
ing time-homogeneous processes, whose scale function can be computed in closed form, can be

solved explicitly.

4 Optimal Contract in Employee Stock Options

Employee stock options (ESOs) are a form of equity compensation contract issued by companies
to their employees and executives, whose contract payoff has a similar structure to a call option

on the company’s stock [21]. Unlike standard listed or exchange-traded options, employee stock
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options cannot be sold by employees [21]. These options are exercised when the company’s stock
rises above the strike price and the holder obtains the company’s stock at a discount, upon which
the holder may sell the stock in the open market for a profit or retain the stock for a period of time
[21]. This type of equity compensation plan is mutually beneficial for employers and employees:
employees are incentivized and motivated to be productive and contribute to the company’s suc-
cess (increasing the company’s stock), and may offer potential tax savings to employees upon sale
of shares in stock [21]. A company may be interested in minimising the cost of such compensa-
tion while ensuring that employees are sufficiently incentivized to increasing the company’s firm
value (instead of working for another company). This chapter aims to address this optimisation

problem, assuming that the firm is risk-neutral and that employees have CPT preferences.

The model proposed in [9] is the first paper to incorporate probability weighting (of employees
having CPT preferences) into the context of equity compensation. Spalt does not solve for the
optimal contract, but instead calibrates the model to experimental data and demonstrates that
probability weighting can explain why lower-level employees overvalue stock options relative
to the Black-Scholes (1973) benchmark, an observation that is inconsistent with the assumption
in EUT framework that employees are uniformly risk-averse. He also shows that the model ex-
plains why firms with more volatile stock returns grant more ESOs, a phenomenon that cannot
be explained with an EUT framework, since risk-averse employees would demand a higher com-

pensation from a more volatile company.

We will solve for the optimal contract assuming it has the specific structure proposed by Spalt,
with some minor modifications. Then we will consider a more general structure and solve it using
similar techniques to those in the optimal stopping and behavioural portfolio selection chapter,

and analyse the solutions obtained.

4.1 Formulation of Problem

Assume that the firm value, denoted by ( p!)r;w is a continuous stochastic process defined on
complete filtered probability space (Q), F, { F1},5,P) is given by the following firm value model
where the firm value evolves according to a geometric Brownian motion (with constant coeffi-

cients), with corresponding strong solution:

dP, 1
Tt = pdt + ocdW; Py = Pyexp ((}i - 502) 4+ O'W:)
(

where p € R, 0, Py > 0 are constants, (W;),~ is a standard one-dimensional Brownian motion

under physical measure I?, and r denotes the constant risk-less interest rate such that the price
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process (B}, of the bank account evolves according to
dBr =rBidt, By=1 <= By =e¢"

Under the risk-neutral measure Q, we take (B:),~, as the numeraire, such that the numeraire re-

based firm value process (E’;) . (e~"P,),., is amartingale under Q (having zero drift). Using

120
integration by parts (a special case of Itd’s formula), we have the following dynamics:

d(e™P) = —re "' Pdt + e dP = e ' PodW, + e TP (u — r)dt

= ge P, (dW, + (%) df) —: ge " PdW,

A — por — : . :
where (Wg)m] = (Wr + ( = ) f)@(] = (W +01), is a standard Brownian motion under Q

and @ := pr

denotes the market price of risk or Sharpe ratio. By Girsanov’s theorem, the Radon-
Nikodym derivative of the Q with respect to I’ is given by

dQ U.a
d]P—exp( 6Wr — 56 r)

and the arbitrage-free price of the contract I'l (Pr) written on the firm value Pr is

—rT@

Eq [e”TT1(Pr)] = Ep [e e

I (Pr)] = Ep [prT1(Pr)]

where Eg and [Ep denote expectations under probability measures Q and IP respectively, TT de-
notes the (non-decreasing) contract function, and the random variable p := pr == erTd 7 is called

the pricing kernel.

In the model in [9], IT has the following form:
(x) =clx—K)" +7

for some constant positive multiplier ¢ > 0 which represents the number of units of European call

options, strike price K > 0 and base salary 17. Define the random variable Y : (0 — R by
Yi=c(Pr—K)"4+4-R

where R is a non-negative constant that represents a reference level: payoffs exceeding this level
are interpreted as “gains”, while those falling below the level are “losses”. Y represents the dif-
ference between the payoff and reference level, with its sign indicating a gain or a loss, and its
magnitude indicating the size of the gain or loss. We assume that R = j, otherwise Y is almost
surely non-negative, which is unrealistic as it indicates that employees are satisfied with the pay-
off no matter how well or badly the firm performs. Let u : R — R be the utility function of
gains/losses of the employees and let us assume that « is S-shaped, i.e. concave on R>j and

convex on R -p. Then we may write

w(Y)i=uy (Y7)—u_ (Y7)
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where Y*, Y™ (= 0 almost surely) denote the positive and negative parts of Y (gains and losses)
respectively and w4 : R9p — Rz and u- : Rzp — R are concave functions representing the
utilities associated with the magnitudes of gains and losses respectively. If we further assume
that the probabilities associated with random variable 1 (Y*) are distorted with the function
wy : [0,1] = [0,1] and those associated with u_ (Y™ are distorted with the functionw_ : [0,1] —
[0,1], then the problem that we solve is:

méngn:;e Ep [p (c(Pr—K)* +7)] =c (P(]cb(dl) —Ke T (dz)) +yeT

o o0
subject to /0 wy (P(us (YT) > x) dx—‘/o wo (P(u—(Y") >x)dx =V, @D

c=0

where
log (%) + (r—i— %02) T
N T ’

The financial interpretation of this problem is as follows: the objective function the firm wishes

dl d2=d|—0'\/f

to minimise is its expected compensation costs, subjected to a participation constraint of employees.
The non-negative constant V represents the minimum value function, by employees with CPT
preferences, of the deviation of the firm's compensation from their reference level. The constraint
¢ = 0 is imposed due to the fact that employees cannot sell these stock options. This is a slight

modification of the model in [9], which proposed the following minimisation problem:

mir}ir}?‘lize Ep [p(c(Pr—K)" +9)] =¢ (P(]d) (di) — Ke T [dg}) +ye”T

subject to /mw+ (P(uy (YT) > x)dx - fmw_ (P(u— (Y") >x)dx>u(V-R),
Jo 0

c=0

where K is exogenous and fixed at Py, in the other words, only at-the-money call options are con-
sidered. According to [9], if K is endogenized (that is, we optimise over K), it may lead to optimal
strike prices higher than at-the-money ones due to probability distortion by employees, and K
was fixed in [9] to illustrate the effects of probability weighting. In the right hand side of the
participation constraint, V represents the outside opportunity of the employee, and can be inter-
preted as the certainty equivalent of an ESO contract offered at another firm [9]. Furthermore, [9]

assumes that the reference level R has the functional form
R=ct+y

where ¢ = 0 is some constant that represents the payoff expectation or aspiration level held by
an employee for one call option. For simplicity, we assume that R does not explicitly depend on ¢

and 1, and can perhaps be estimated from experimental studies instead, since R is to some extent
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subjective.

We now solve problem (4.1): we first notice that we may express the constraint in distribution

formulation, using the lemma below:

Lemma 4.1. Let Fy+ and Fy- denote the cumulative distribution functions of Y+ and Y~ respectively.

Then

0, x<0
K‘.\'EE i 1
Fy+(x) = log T —(p—3eH)T
D py ., x=20
and )
0, x<0
K- Bl=X | 2
log| ——p— | = p—ye)T
F-(x)=<1-® pryi , 0€<x<R-y
1, xzR—7y

Proof. By (equation), log(Pr) ~ N (log (Po) + ( M- %02) T, G"ZT) and so the cumulative distri-

bution function of Py is given by

P(Pr<x)—® (IOg(x) = (log(Pu)+ (u— %02) T)) =¢ (103(%) _ (#_ %02) T)

VT ov'T
Then,
Fy{(x)=]P(Y+\<‘x)=]P((C(PT—K)++:}—R)+gx)
3 0, x <0
- P((PT—K)*'gLf—‘i), x>0
and

x+R—py) 0, x+R-np<0

P ((er-K)* <
e ]P((PT—K)QL{?_'{), x+R—n30

0, x<y—R
= Iog(Kﬁf—i%ﬁ)—(y—%ag)T
@ v , x2n-R

Since § < R (thatis, 7 — R < 0) as assumed previously, the inequalities x < 0Oand x < 5 — R

imply x < 0. Similarly, the inequalities x = 0 and x = 5 — R imply x = 0, and therefore we have
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the required expression for Fy+ . Next,

and

P(-Y<x)=P(Yz2-x)=1-P(Y < —x)

=1—]P((PT—K)+<m)

c
1; xz2R—py
1 KiR—Fu . 1.2
= og| ~—5— | ~(n—3e")T
1-<¢ i , 0€x<R-y

Therefore by the Lemma, the left-hand side of the constraint may be written as:
/l wy (Puy (Y1) > x) dx —f w- (P(u- (Y7) > x) dx
0 0
=l ' 00 '
= / w4 (1 = Fy+(x)) uy (x)dx —/ w- (1= F-(x))u_(x)dx
0 0

—-—M“_R}t) - (;! - ]502) T

oo log( I ,
= wye |1—D u, (x)dx
j;—R ! O'ﬁ +( )
KR 1
=t log (—I-,a&—) - (}i - 3172) T )
— w_ | O u_(x)dx
A ’ ovT *)

Since the left-hand side of the constraint is now expressed in terms of ¢,K and 1, we can use
numerical optimisation to find the optimal parameters ¢*, K* and #* and hence the optimal Eu-
ropean call option style contract IT* (Pr) = ¢* (Pr — K*)" 4+ *. However, this may not be the
optimal function, due to its restriction to a particular structure, similar to that of a European call
option. We shall aim to minimise the price of the contract over all possible functions I, solving a

more general optimisation problem.

Define the random variable X : () — R by
X:=II(Pr)—R (4.2)

which, similarly to the random variable Y defined earlier, represents the difference between the

payoff and reference level, with its sign indicating a gain or a loss, and its magnitude indicating
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the size of the gain or loss. The problem can be written as:

minli_r[nize J(IT) := Ep [pI1(Pr)]
=51 ==
subject to / wy (Pluy (X1) > x) dx—f w_ (P(u— (X7) >x)dx =V
Jo 0
where X and X~ are the positive and negative parts of X. We will consider instead minimis-
ing the following objective function involving X, which can be written in terms of the objective

function involving ITas follows:
el s
Er [0X] = Ep [oT1(Pr)] - REp [p] = J(IT) — REp [e(-"-2#)T+VTZ] = 5(11) — Re™'T
where Z ~ N(0,1) and using the fact that p is log-normally distributed with

logp ~ N ( (—r - %92) T, BQT)
Therefore our problem becomes:

minimize  fo (X) = Ep [0X]

00
subject to f wy (Pluy (XT) > x) dx—] w- (P(u- (X7) >x)dx =V
0 0

It is worth noting that the space of contract functions IT is much larger than the space of random
variables X. This is because X is a function of only the terminal firm value Pr subtract a constant
R, while the space of contract functions IT includes path-dependent ones, that is, IT ((PT) fejﬂ,Tj)
that is a function of the whole history of the firm value in [0, T]. However, it will turn out that
minimising over X is equivalent to minimising over contract functions I'l, and this will be justified

subsequently. The objective function may be written as:

fo(X) =Ep[pX] =Ep [pX'] —Ep [pX | = fo (X") - fo (X )

Let us assume as before that u is S-shaped, i.e. concave on R and convex on IR 3. Then we may
write

u(X)=uy (XT) —u_ (X7)

where 14 and u_ are concave functions as defined earlier. If we further assume as before that
the probabilities associated with random variable u (X*) are distorted with the function w.
and those associated with u_ (X ™) are distorted with the function w_, then we may split the

constraint into:
fm wy (P(uy (XT) > x)clx—fm w_ (P(u— (X7) >x)dx =V
0 0

oo

= ‘/Umer (P(us (XT) >x)dx 2 V +5; fu w_ (P(u—(X") >x)dx=s
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for some s = 0. Then similarly to behavioural portfolio selection, we may split the problem into

positive part and negative part problems as follows:
Positive Part Problem
mir;r}r‘lize fo (XT) = Ep [pX™*]

subject to / wy (Plus (X1) > x)dx =V +s,
0

Xt>0 as,

Xt=0 as. on Ab={X>0}°={X<0}
Now, we may argue that the first constraint in the problem above should be binding:
Proposition 4.2. The solution (X*)" to the positive part problem satisfies
o0 PR
fo wy (]P(u+ ((X ) ) > x)dx= V+s
Proof. Assume to the contrary that (X¥) is a solution satisfying
(7]
/ wy (P(iy (XT) >x)dx > V +s
0

Then there exists ¢ > 0 such that Xt —¢ = 0 almost surely, Xt —¢ = 0 almost surely on
{X — & < 0} and hence on AP (since {X <0} C {X <¢}), and since 1 and w, are increasing
functions,

/Dwuq_ (Puy (X1) > x)dx > -/me+ (P(uy (Xt —€) >x)dx =V +s
In other words, X+ := X+ —¢is feasible. However,
Ep [p)?*] =Ep [pX*] —ee T < Ep [pX*]
which contradicts the optimality of (X*). (W]

Negative Part Problem

maximize fo (X7) :=Ep [pX "]
X-
subject to [Dog w_ (P(u— (X7) > x)dx =5,

X =20 as,

X =0 as. on A:={X2>=0}

The two problems are solved assuming that s = 0 and A € Fy are given, and therefore the

optimal values (denoted by vy (s, A) and v_ (s, A) respectively) and corresponding solutions for
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*

each problem (denoted by (X*)" (s, A) and (X ™)
determine the “optimal” s and A (denoted by s* and A*), given by

(s, A)) are given in terms of s and A. We then

(s*,A%) = argminv(s, A) := argmin [v4 (5, A) —v_ (5, A)]
(s,4) (s,4)

Finally, we have
X* = (X*) (%, A") = (X7)" (57, A7)
In the next section, we will solve for X* explicitly. In particular, we will show that p can be

expressed as a function it of Pr and that X* can be written as a function of p, i.e.

X" = f(p) = (foh)(Pr)

for some function f to be determined, and we may then deduce that the optimal contract function
is of the form

T (Pr) i= R+ (f o) (Pr)

This justifies the equivalence of minimising over functions I and minimising over random vari-
ables X, and it is not necessary to consider path-dependent contracts, only European style con-

tracts.

4.2 Solving the Problem

We first determine the function h such that p = h (Pr):

dQ
_ o—ITH
P=e qp

I

1]

>

o

|

o
=
[

-

I
e
>
o
/'T"-\
¥
=
B 1

(# - %02) T+0’WT)) exp (((“ — = %‘72)0; J(u—r) —rcrz) T)

_ (ﬁ)_(l_f) oxp ((;F —due? —rp+ Iro? — Ly +ru - 12 —roz) T)

o2

- (5) en ()= () e (-0

Therefore, p = I (Pr) where the function h : R-g —+ R~ is defined by

. 0 e 1
h(x) == Cx°, b= e Ci= Pﬂ( )exp (E (82 - - r) T)

with inverse ™! : R~y — R given by
1
-1 R
= (c)
where ¢ and C are constants.

59




4.2 Solving the Problem 4 OPTIMAL CONTRACT IN EMPLOYEE STOCK OPTIONS

Remark 4.3. We assume that p > r == 6 >0 == § < 0. This is a reasonable assumption in
this context because if y < r, it is more worthwhile for an employee to to put his money in a bank
account than invest in the firm’s stocks, and it is unlikely that the employee would work for the
firm. Alternatively, if the firm value process were the price process of a stock instead, it is more
worthwhile to short sell the stock if y < r, however in this context employees cannot short sell
a firm’s stock or the ESO. Under this assumption, i(x) and h~'(x) are decreasing in x, i.e. pisa
decreasing function of Pr and vice versa, and this relationship is crucial in deriving the optimal

contract function.

By (4.2),
X=TI(Pr)-R = (l‘[oh‘l) (p) — R

and therefore the random variables X+ and X~ are functions of p:
+ —
Xt = ((noh—l) (p)—R) . X = ((noh-‘) (p) —R)

Therefore, by (theorem in appendix), the optimal random variables (denoted by (X*)" and (X )"

respectively) are of the form

(X+)* =F(;(]i]‘ (1-Folp)) = Gix+) (1-F(p)) (4.3)

(X7)" = F3. e (Fol@)) = Gx- (Fo (0) @4

where F, : (0,00) — [0,1] is the cumulative distribution function of p and is given by

logx+ (r+16%)T
F,,(x)=¢'( ‘Eﬁz ) )

for all x € (0, o), where ® is the cumulative distribution function of a standard normal distribu-
tion. G, == JFP_l :[0,1] — (0,00) is the inverse distribution function (or quantile function) of p and
is given by

Gp(u) = exp (Gﬁtb_l(u) - (r + %92) T)
for all u € [0,1]. Fiy+)» and G+ are respectively the cumulative distribution function and
quantile functions of (X*)”, and analogously for (X~)". Now, using the fact that F,(p) is uni-
formly distributed on [0,1], and that p is equal in distribution to G,(U), where U ~ U[0, 1], the

optimal values of the objective functions in the positive and negative part problems are given by
1
minEp [pX¥] = minEp [G,(U)Gx+ (1-U)] = min/ Gp(y)Gy+ (1 —y)dy
X1 : Gyt ) ’ Gyt JO

1
= min A Gp(1—x)Gy+ (x)dx

Gy

60




4.2 Solving the Problem 4 OPTIMAL CONTRACT IN EMPLOYEE STOCK OPTIONS

1
max Ep [pX~] = maxEp [G,(U)Gx- (U)] = max[ Gp(x)Gy- (x)dx
X - Gy Pe o
The constraints can be rewritten in quantile formulation as follows:
1 1
/ s (Gys (1)) W,y (1 - x)dx = V +s5, f u_ (Gx-(x))w_(1-x)dx =s
Jo 0
Next, for any random variable Y with quantile function Gy,
Y=20 as. < Gy(x) =0

for all x € [0,1]. Define the probability p == P (X > 0). Then, X* = 0 almost surely on Al :=
{X 2 O}E = {X < 0} is equivalent to X" (w) = 0 for all w € {X < 0}, which is equivalent to
Gy+ (Ut (w)] = 0forallw € {X < 0}, where UT := Fy+ (X*) ~ U[0,1], and Fx+ and Gy+ are
the cumulative distribution function and quantile function of X* respectively. Since

{X <0} = {Gx(U) <0} = {U < Fx(0)} = {U < 1-p}
where U := Fyx(X) ~ U[0, 1] and Fx and Gy are the cumulative distribution function and quantile
function of X respectively,

P(X<0)=1-p=PU<1-p)=£(0,1-p])

where ¢ denotes the Lebesgue measure on [0, 1]. Therefore, Gy+ (x) = 0 forall x € [0,1 — p]. Sim-
ilarly, X~ = 0 almost surely on A = {X = 0} is equivalent to Gx- (x) = 0 for all x € [0, p|. Then
A is related to p* via p* =P (A*) =P (X* = 0). The positive part problem becomes:

migi:}ize Ep [Go(1 - U)Gyx+ (U)] = /]1_}’ Gp(1—x)Gyx+ (x)dx

! 1 r’
subjectto Ep [m, (Gy+ (U))w, (1— U)] = jl s (Gy+ (x))w, (1 —x)dx =V +s5,
—p
Gy+(x) 20 Vxe[0,1],
Gx:-[x) =0 ¥xe [U,] —p]
and the negative part problem becomes:

maximize Ep [G,(1— U)Gy- (U)] = /1 Go(¥)Gy- (x) dx
GX - }?

r 1 1
subjectto [Ep [u_ (Gx- (U))w_ (1- U)] = / - (Gx-(x))w_(1—-x)dx =s,
P
Gx-(x) =0 VYxe[0,1],
Gx-(x)=0 V¥xel0p]
4.2.1 Positive Part Problem

In the positive part problem, we observe that the objective function that we want to minimise

is affine (and hence convex) in Gy+. Since u4 is concave (i.e. —u is convex), we may use the
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Lagrange multiplier method and solve the following unconstrained convex optimisation problem
foragiven A = O
1 1 :
minimize j Gp(1—x)Gy+ (x)dx+A (V+ 5 — / g (Gy+ (x))wy (1 - x)dx)
G X+ 1=p 1=p
By monotonicity of expectation, it is sufficient to minimise the integrand, therefore we may solve
the following unconstrained convex optimisation problem for each x:
minimize £ (Gy: (1)) i= Gp(1 = 1)Gxs (1) = A (1.‘+ (Gy+ (x)) Wy (1 — x])
X+
Since we have a convex optimisation problem, the following First Order Conditions are both

necessary and sufficient:

@ = Gp(1—x) — Aty (Gx+ (x))wy(1-x) =0
Gx:v
N =1

We then determine A by substituting the above expression for Gy into the original constraint:

[ll_p Uy ((u;) - (%)) w (1-x)dx=V +s

- - r r —1 - - -
Since u. is concave, u, as well as n+) are decreasing functions. Therefore, we require

(%%) to be non-increasing in x € (0,1] (i.e. (5{%) should be non-decreasing in y), in
A 4+ U

order for Gy (x) to be non-decreasing in x € (0,1] (to satisfy the property of being a quantile
function). Similarly to the optimal stopping under probability distortion and behavioural portfo-

lio selection problems, we introduce a truncation when this condition is not satisfied:

Gx+(x) = aly_pp(x) + (av (“;)4 (M)) L1 (x)
+

If (?}%) is non-decreasing in y, we set & := 0, p := 1 — p. A is then determined by the following
v, (1

equation:

Gp(1—x)

@) s (p) — w04 (1= )+ [ s (“V ()" (i

)) w:r(l —x)dx =V +s

The left hand side of the above equation is monotone in A, hence there is a unique A satisfying the

equation.

Lemmad.4. For —co <a < b< oo,

fcp(x)dx =T [d: (drl (b) —0VT) - @ (®71(a) - Bﬁ)]
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Proof.

b b o1
f Gy(x)dx =e'(’+§92JT] VT ]["}dx=e"("+§ﬂzJT/ ( )e"ﬁyrp(y}dy
a a P l(ﬂ)

_ ey _L [0 y(e-aviy)

d
V2 Jda) Y
1(b) 2
_ e (rHi)Taeer 1 [ i evTy
¢ ¢ VZ?T-[D (a) N Y
=T [cb (cb—‘(b) —eﬁ) —® (cb—l(a) = eﬁ)]

O
Remark 4.5. In particular, fora,b € R,
f:’ Gp(x)dx =T [1-@ (@7 (a) - 6vT)], f_bw Gp(x)dx = e~ [@ (@71 (b) - 0vT)]

The integral can also be written as the following expectation:

b Gp(b)
fn Gp(x)dx = Lp(n] yfp(y}dy = Ep [pﬂ{cp{ﬁ)gpgc_‘,{b)}]

where f, = F;, is the probability density function of p. In particular,

[ nwar = [o1gqmy] [ Gy = Er [11cq, ]

Therefore by the Lemma, the objective function of the positive part problem becomes:

B 1 -1 Go(1—x)
&fl—p G‘[,(Jc}dx+[B (av (1.’+) (m)) Gp(x)dx

= ae~'T [d) (cb—l(,s) ~oVT) - (cb—1(1 =)= sﬁ)]

- = 1 T Gp(1—x)

T (1= 1By — =i

+ (ae [1 ) (q> (B) 9\/1_")] fo, ((u+) ()‘w;(l = x))) Gp(x)dx)
Remark 4.6. The actual constraint in the positive part problem is

1 ' 1 !
.[1 Uy (Gyr(x))wy (1 —x)dx = V+s < V+5—/l g (Gy+(x))w, (1 -x)dx <0
—p

where the latter inequality is in standard form (that is, f[Gy+(x)] < 0 where f is convex and
therefore the original positive part problem is a convex optimisation problem (and therefore
strong duality holds). Clearly A = 0 is not admissible (otherwise we obtain G,(1 — x) = 0, which
is a contradiction) and therefore by complementary slackness conditions (for further explanations

see [5] equality should hold, and this corroborates with Proposition 4.2.

4.2.2 Negative Part Problem

The negative part problem is not a convex optimisation problem, because the left hand side of the

equality constraint is not affine in Gy- (x). Having assumed that the affine functional in Gy (x)
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that we were minimising was convex, we will also assume that the affine functional in Gy (x)
in this negative part problem is convex. We obtain “corner point” solutions in the following

proposition:
Proposition 4.7. The optimal solution, if it exists, must be in the following form: for x € [0,1),
-1 s —1 B
Gx-(x) =q(s, ) Lpay(x), 4 (s,p) = (u-) T 1-nds) -)"\ ==

f; w (1-x w- (1-p)

Proof. Assume s > 0, otherwise the result holds trivially. If Gy- is an optimal solution, then
Gy # 0. Fix y € (0,1) such that Gy (y) > 0. Define:
Jo Go(x)Gx- (x)dx 1 = kGx-(x), x €[0,y]

= =21, G(x):=
J§ Gp(x)Gx- (x)dx + Gx- () [, Gp(x)dx & kGx-(y), x € (y,1)

Clearly G is another quantile function and
1 — U 1 1
L Gp(2)G (x)dx = k (L Gy (x)Gx- (x)dx + Gx- (v) [ Gp(x)dx) - £ G,p(¥)Gy- (x)dx
- B y -

and therefore G is also optimal. We claim that Gy (x) = Gy (y) for almost every x € (y,1). To
prove this, we first assume to the contrary that this is not the case, which means Gy~ (x) = Gy (y)
for almost every x € (y,1) since Gy- is a non-decreasing quantile function. This implies that
k > 1. Define

c01), G)=1" €0yl

Gy (x)—Gy-(¥)

2T xe (1)
1
= (3 (6x- (0 = Gx- () 1
Then Gy can be written as a convex combination of G and G:
(1= A)G(x) + AG(x)
1 1
=7 (ka (21,4 (x) + kGx (y)]lw,”[x)) +A (X [Gx-(x) — Gx (y)]) 1y 1) (x) = Gx-(x)
and
fl Go(x)Gx- (x)dx = /1 Go(x) ((1 —A)G(x) +/\é(x)) dx
0 0
1 _ 1 -
={1= A)L Gp(x)C (x) dx + )Lj(] Gp(x)C (x) dx
Therefore, since G is optimal, G must be optimal as well. By concavity of u_,

u_ (Gx-(x)) = (1—A)u_ (G(x)) + Au_ (C(t))
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and the inequality is strict for some values of x and therefore
1 r
f - (Gy-(x))w_(1—-x)dx
0
1 — ~ 1]
> ‘[0 [(1 = Au— (G(x)) + Au_ (G(x))] w_(1—x)dx
=(1-2A) [1 T (C(Y)}w{ (1 —x)dx +A/1 T (é(x)) w (1-x)dx=(1-A)s+As=s
Jo - 0 B

where the penultimate equality follows from the feasibility of G and G, but this contradicts the fea-
sibility of G- (assumed to be an optimal solution). Therefore, we must have Gx- (x) = Gy (y)
for almost every x € (y,1). Then, since Gy (x) = 0 for all x € [0, p] we must have Gy (x) =

qlp,1)(x) for all x € [0,1], some q € R~. By the feasibility of Gx-,

1 ) L
[ H— (Gy-(x))w_(1—x)dx = u_(q)f w_(1—-x)dx=s
Jp P

_ =)V —E )=y ——
= a=qlsp)=(w) (fpl w_ (1- x)dx) () (Eu_ (1- P))

By the Lemma, the objective function in the negative part problem becomes

i65.p) [ Golaax = g(s, e (1-@ (7)) - 0VT))

4.2.3 Determining Optimal Parameters and Optimal Contract

Combining the objective functions in the positive and negative part problems, we have the fol-

lowing objective function:

T (s,pa,pA) = ae™ [@ (071(p) ~ 0VT) & (&7 (1 - p) - 0VT)|

(e poeerm-em]v [ () () o)
—q(s,p)e”T (1= @ (@71(p) - 0VT) )

Define the following function:
K(p,, B,A) =t (&) 104 (p) — 0 (1 — B)]
1 r oy 1 G, (] = I) ]
+ [ﬁ Uy (a\/ (u+) (m)) wy (1 —x)dx
Then we have the final optimisation problem:

minimize 7 (s,p, «, B, A
minimize (s,p.a. B, A)

subjectto  K(p,a,B,A) =V +s,

q(s,p) <R,

S,.IX,}.,;D, Oépél: ]_Pgﬁgl
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Once the optimal parameters s*, p*,a*, %, A" are found, we have the optimal quantile functions

in the positive part and negative part problems respectively given by

Gx+y (%) = & (_pe g () + (oc" v (n;)ﬂ (%)) Lo 1) (x)
+

#

s

Gix-y(x) = (u_)™ (m) Lipe 1y (x)

and the corresponding optimal random variables (X*)" and (X

)* are given by
(X*)" = Gxy (1= F (p))

\-1( Gy(F
= "L pep (1= Fp (p) + (N*V (u) 1 (#’%)) Lige) (1= F (p))

,\ -1
&']].[Gp(]_ls'}_cp(p"])(p) 4= (a \'% (u+) (m)) ]]-[U.GP(]—ﬁ‘)) (p)
= 07041 (G, (p)) 1 (Gp(1-p))] (PT)

v ()
+ (ﬂ \Y% (£I+) (m)) ]1(,! 1(Gp(1-57)).0) (Pr)

S*

(X7)" = Gx-y (Fo(p)) = ()™ (m) Ly 1y (Fo (0))

=(u_)"? (w_(lsi_pg)) E(G;rtv‘)-w) ()

5*

=(u_)"? (m) Lon-1(c,(p))) (Pr)

where we have used the fact that =1 (x) is decreasing in x and, since § < 0,

0 =t (g)' = i) = tm (2)" =0

Therefore, the optimal contract is given by
IT" (Pr) = R+ (X*)" = (X7’
=R+ ™1 1(G, () a1 (c,0-p))] (Pr)
v (o) h (Pr)
+ ((X v (M_,.) (WM)) ]l(h ‘(Gp[l—ﬁ')),m) (PT)
= s

- (G =) Yoy

- (R - ()™ (#—p))) Loi1(Gypy)) (Pr)
FRE 1 (G a1 (Gr1-p)] (Pr)

. roy -1 h (p'[‘)
+ ((R+a )V (R + (H+) (m))) ]l'(f;- ](C:r{l'—'ﬁ"])_oo) (PT)
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4.3 Addition of Loss Control

Similarly to behavioural portfolio selection, a firm may want to bound its compensation costs
by a constant L < R. The positive part problem is unchanged, and the negative part problem

becomes

maximize /Gp( )Gy (x)dx
Gy -

1 ’
subject to [ u_ (Gy-(x))w_(1 —x)dx =s,
P }P

0< Gy (x) <L Vxe[01],
GX (x) =0 Vxe [0,p]

The proof below for the solution to this loss control problem has the same idea as the proof for

behavioural portfolio selection, but the contradiction is slightly different.

Proposition 4.8. The optimal solution, if it exists, must be in the following form: for x € [0,1),

Gx-(x) =g (5,0, 7) L) (¥) + L1 1y (x)

where

q(s.p7) = (u_)"" (S_”—(L)f; wi(l_ﬂdr) =(u_)"" ( s—u—(L)w-(1-7) ) <L

Tw' (1 —x)dx w-(1-p)—w-(1-7)

Proof. Let G be an optimal solution. We first prove that the optimal solution G is the quantile
function of a random variable having a three-point distribution with masses at 0, g and L. Assume
to the contrary that the image of G contains more than three distinct elements. Then we can
choose ¢ € (0,1) and g € (0, L) such that g € [G(c), G(c+)] such that there exists x; € (0,c) and
x2 € (c,1) with0 < G (x1) < gand g < G (x2) < L. Define a convex function 7; and a concave
function 7j, by

Tx) =Ty (en) = 1, p(x) =T (x562) =1 — (1 - )

with ey > 1 and & > 1. Note that 7, (0) = 77,(0) = 0 and 7, (1) = 77,(1) = 1 and we can define
another quantile function G via

“’xﬁ(%), e gL M:%(M), c<x<1

qm(@), 0<x<c

(L-9)7, (451), e<x<1

By construction, G(x) < G(x) on [0,c¢] and G(x) = G(x) on (c,1). Since u_ is an increasing

= G(x) =

function, we also have u_ (G(x)) < u—(G(x)) on [0,¢] and u— (G(x)) = u— (G(x)) on (c,1).
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Since 7,(x) = x and 7j,(x) = x if and only if x € {0,1}, we have that in the first inequality,
equality only holds for x such that G(x) =0 <= x =0o0rG(x) =g <= x = ¢, and strict
inequality holds for x € (0, c). Similarly for the second inequality, equality only holds for x such
that G(x) = ¢ <= x = c+ or G(x) = L, and strict inequality holds for all other values of x.

Then we can define the quantities
A (g) = Ac - (G(x)) wi(l —x)dx — /ﬂc - (G(x)) W (1-x)dx >0
Ar (&2) = /l u_ (G(x)) w(_(l —x)dx — /l u_ (G(x)) w’_(l —x)dx >0

C

Observe that A and A; are strictly increasing in ¢; and ¢, respectively, and

limA; = ]1mA2 =0
£11 e241

Therefore, we can choose €] and €} such that Ay (¢]) = Az (£3), equivalently

jl u_ (G (x;e};¢€5)) w._ (1—x)dx= f(: u- (G (x))wt_ (1—x)dx=s

U]

In other words, G is feasible. Now fix 0 < A* < mm{ ¥, Tlr} < 1. Consider another pair of

functions 1j; and 7> given by

ﬁﬂx):%_er( )(x 7, (x;€1))
ﬁz(x):=%w_x+( A )(x T, (x;€3))

which also satisfy ij;(0) = #2(0) = 0 and 7, (1) = ij2(1) = 1, and #; (respectively ij2) is a strictly

increasing concave (respectively convex) function on [0, 1]. Define another quantile function G by

s (GG
Sy o L () 0<x<

g+ (L— q):;g(—fv_J—q), c<x<1

By construction of #; and 7, it can be easily verified that G is feasible:

‘f u_ (@ (x;c?,‘sﬁ)) wL(l —x)dx = ‘E u_ (G (x;e1:63)) w:_(l —x)dx
= Ll u—(G(x)) w’_(l —x)dx =s
and G can be written as a convex combination of G and G:
G(x) = A*G (x;€%;85) + (1 - A*) G (x;¢%;¢2)

and therefore we have

1 1 _ -
A Gp(x)G(x)dx=f Gp(x) )L*G(X;ET;EE)-F(1—A*)G(X;E’;;£;))dx

—)L*/ Gp(x)G (x;ep;85) dx+ (1 — A" )/ Go(x)G (x;€;€3) dx
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We musthave G(x) = G(x) = G(x) forall x € [0,1], otherwise G is not feasible, which contradicts
the assumption of G being an optimal solution: if G(x) # G(x) or G(x) # G(x) forsome x € [0,1],
by concavity of u_ and feasibility of G and G we have

E u_ (G(x))w_(1 - x)dx = A1 - ()L"ﬁ(x) +(1-A%)G (x)) w_(1—x)dx

= A" 111 u- (G(x)) w_ (1-x)dx+(1- ,’L"‘}Ll . (é (x}) w:_(l —x)dx =A"s4+(1-A%)s=s

In particular, by definition of G, we must have % € {0,1} for x € [0,c] and %1 € {0,1} for
x € (¢, 1), equivalently, G(x) € {0,4} for x € [0,c] and G(x) € {g, L} for x € (c, 1), which contra-
dicts the assumption that the image of G contains more than three distinct elements. Therefore the
optimal quantile function must be a three-step step function, taking values 0, L and intermediate

level g € (0, L). By feasibility of G, G(x) = 0 forall x € [0, p] and

/] u- (G (x}}w’_ (1-x)dx= ”_(q}f”r w._ (1-x)dx+ u_(L)/l w‘_(l —x)dx=s
P P ¥

L fs— rf_(L)fl w_(1 - x)dx

_ N s—u—_(L)w-(1—19)
= (et

The objective function in the negative part problem becomes

q(s,pv) ]: Gp(x)dx + L ﬁl Gp(x)dx

=q(s,pm)e T [@(971(7) —0VT) = & (@71 (p) = 0VT) ] + Le™T (1= @ (¥ (1) - 0VT))

4.3.1 Determining Optimal Parameters and Optimal Contract

Combining the objective functions in the positive and negative part problems, we have the fol-

lowing objective function:

T G pa,pyA) =ae'T [CD (e7'(p)-ovT) - (&7 (1-p) - eﬁ)]

+ (vze‘rT [1 - (cb“(,g) —Bﬁ)] V,[gl ((1;’+)_1 (%)) Gp[x)dx)
~9Gp) e [@ (07 (1) - 0VT) - @ (@7 (p) — 0VT)]
~LeT(1-o (cb—l (v) - 6VT))
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Then we have the final optimisation problem:

minimize  J (s,p,o, By, A)
SJ p; .IX, ﬁ! ’}" A’

subjectto  K(p,a,B,A) =V +5,
q(sp,v) <L,

SJ&I'A;OJ ngg-.l; 1*P§ﬁ$1, p{'}’él
Once the optimal parameters s*, p*, a*, B*, 7%, A* are found,

(X7)" = Gx-y (E (0))
B N s* —u_(Lyw_ (1—7%)
- (S e T
(s — (Lo (1= 77)
= ()7 (wi (1 j p*) E)w_ (1 jfy*)) L1 (Golr)) 1 (Golr))) (Pr)

T Loi-1(G,09)) (P)

)) Lipe ooy (Fo (0)) + Lo qy (Fo (0))

Therefore, the optimal contract is given by
" (PT) = (R - L) 1[0_;;' ](C:r(’f‘))) (pT)

- s*—u_(Lyw- (1 —9%)
+ (R = (=) ] (w_ (1—p*)—w_(1 —'y*))) ]l(-" H(Go(r)) 1 (Go(r*))) (Pr)

+ R+ D16, () a1 (Go1-p) ) (PT)

. by -1 I (Pr)
+ ((R'f‘ﬂ )V (R + (Il+) (WM))) ‘]I.(“. ](G.,.(l—ﬁ°,])ﬂ°°) (PT)

and this is depicted in Figure 3 below.

Figure 5: Optimal Contract Under Loss Control
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.";I
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] 1
] 1
] 1
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] 1
I 1
] 1
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] I ]
] ] 1
] ] 1
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] ] ]
] ] 1
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4.4 Optimality of Call Option

Having determined the form of the optimal contract in ESOs, we would like to determine con-
ditions in the CPT framework under which the non-constant portion of the contract is linear,
resembling the payoff of a call option. In other words, we derive conditions such that the call
option is optimal. In cases where the call option is not optimal, we will use the static replication
method by Carr and Madan [12] to show that the payoff could be replicated by a portfolio of call

options.

Suppose we have, for 0 < k¥ < 1, the following utility function of employees evaluated on gains:

-1 X _1
up(x) =x" = (t.':r) (x)= (—)“_T
K
where « is the risk-aversion parameter (lower values of x correspond to higher risk aversion)
and we want to find w such that the non-constant portion of the contract function is given by a
power function which includes the linear case, and the convexity or concavity of the function can

be easily inferred. Precisely, we want to find w. such that

-1 h(Pr) — CPy - = AP}
(H*') ()\*w:.(ﬁo UI(PT)))) - |:K)‘*wf+ (FﬂT(CRﬁ)] -

for some constants A,b > 0, which ensure that the function is strictly increasing. Since FP is
strictly increasing (it can be checked that its first order derivative is strictly positive for all values

in R~p), its inverse G, is unique, and hence the final equality is only possible if we define w. by
w;(x) =d (Gp(x})'" =dexp (me/Td)"(x} —m (r + %92) T)

for some d € Roy and m € R\ {1} to be determined. We exclude m = 1 as this would reduce
the contract function to a constant. This definition of @ such that it depends on G, the quantile
function of p is intuitive, as the distortion of probabilities by employees is linked with the perfor-
mance of the firm. d # 0 ensures that the function is defined (not dividing by zero) and d > 0

ensures that w', (x) > 0 forall x € [0,1] and therefore w. is strictly increasing.

Tversky and Kahneman (1992) [3] stipulates that w{+ (0) = w; (1) = +o0, which indicates the
observation that the most significant distortions are on very small and very large probabilities.

For m > 0, our definition of w satisfies w; (1) = 400, but w:r (0) =0 < 400, since
Go(0) = exp (eﬁqﬂw) - (H— %ez) T) =0

However, for m < 0, we have the opposite: ', (1) = 0 and !, (0) = +co. Nevertheless, this issue

will be subsequently resolved.
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Next, we can show that w is either convex or concave, depending on the sign of m, by computing

its second order derivative:

W}, (x) = dm (Gy(x))" ™" % (Go(x)) = dm (Go(x))" " (Gy(x)) (eﬁ% (o (x)))
B de\/T(GP(x))m
 p(@1(x)

Therefore, since d > 0, w’, (x) < 0 forall x € [0,1] when m < 0 and w’, (x) = O forall x € [0,1]
when m = 0. In other words, w.. is concave for m < 0 and convex for m = 0. However, Tversky
and Kahneman (1992) [3] also proposed that w . should have a reverse S-shape. Nonetheless, this

issue will be subsequently resolved.

With our definition of w., the non-constant portion of the contract function is given by

1
-1 1 B(1—m)

P e
cPr = (axa*ct=m) " T = AP

[m; (F, (CPD))

where .
_ kI TR _(1—m) S(m—1)
A‘_(dmc) , b= AT

In order for b > 0, we require m < 1, since § < 0 and 1 — « > 0. Furthermore,

Gp[x} - GP_(X) — 1=m
w’_'_(x) - (GP(X])'" = (Gp(x))

which is an increasing function of x, since Gp is an increasing function and m < 1, and therefore

no truncation is required for this choice of w... The optimal contract function (under loss control)

would then given by:

T (PT) — (R — L)]l[[],ji l(Cp('}“))) (PT)

s* —u_(L)yw—_(1—*)
( T—p)—w-(1- 7*))) L1 (6,0 (6p09))) (PT)

(s

oyl }I(P)
’ ((’” () (W))) Y e (1)
= (R - L}]]-[[]Ij, L(Gp(,],x))) (PT}

. s* —u_(Lyw— (1 —*)
’ (R - (w_ (1-p*) —w-_(1- ‘}”‘))) o1 ()i (Gptr)) (Pr)

+ (R+aP}) L1 (Go(p) o) (Pr)

+ R~ (u
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We can find w. through integration:

X X
wi(x) =d [0 (Goy))" dy +¢c = de—"’(rJr%ﬂz)Tfo movTe ]“‘de+ ¢

L I .
=de—m(r+§82)1"-/¢ (.\)e"’eﬁch(z)dz-{—c

—00

1
_ de—m(r+§82)1"e]5m382?' 1 ](b =) e—%[z—mﬂﬁ)zdz +e

V27 J—co
= dem'ET-m(r+36*)Tg (‘P_l(x) = mﬂﬁ) +c

where ¢ € IR is a constant that ensures w,.(0) = 0 and w4 (1) = 1. We have:
w4 (0) = deim P T—m(r+36%)T g (q)—l (0) — meﬁ) te= dedm* e T—m(r+36°) Ty, (o) +c=c
which implies ¢ = 0. Then,

wy (1) = dedm? P T-m(r+36%)T g (d)_l {iy= mﬂﬁ) — de1m*T-m(r+36%)T g (+00)

= deémzﬂzT—m[r+2‘92)T =1

implies that we must have
d=e" 322 T+m(r+302)T

We now resolve the issue of w. not having a reverse S-shape. Since the non-constant portion

of the contract function corresponds to higher values of Pr (and hence smaller probabilities), we

only require
wi(x) = de2ET-m(r+16°)Tg (Cb_l (x) — mﬂﬁ) = do (<b_1(x) - mﬂﬁ) (4.5)

for x € [0,¢] for some & € (0,1), where d := dedm* P T-m(r+30%)T 1 particular, we no longer

2¢2 T+m(r+%82)1"

1
require w4 (1) = 1, and hence do not require d = e 2™ . To be precise, equation

(4.5) should hold for probabilities less than or equal to

;1 *
J (c,;(: ))) _ (;f—%aﬁ)r
oVT

og
¢=P(Pr>h7(Gy(p))) =1-®

In particular, we only require w.. to be differentiable on [0, {]. In order for w.. to have a reverse
S-shape, it should be concave on [0, ¢]. Therefore, we now only consider the case m < 0 (corre-
sponding to concave w, and excluding the case where there is no probability distortion), which
also guarantees m < 1 (required for the contract function to be increasing), and construct a con-
vex function on [&,1] to obtain our reverse S-shaped function. To be precise, we take ¢ as our

inflection point and construct a convex function @.. on [, 1] such that
@y (8) = wy (8) = dD [dr‘ (@) - meﬁ) , Ba(1) =1 (4.6)
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Empirical studies have shown that the inflection point is approximately 0.4 [10]. Therefore, we

may set the inflection point as & := max {0.4, ¢}. Next, define for x € [¢, 1],
@i (x) = 1= v+v [ (07 (1) +)]

where v, { € R are chosen such that @, is increasing, convex and satisfies equation (4.6). Indeed,

W4 (1) = 1for any v, € R. The first order derivative is

‘W] = vexp [% ((cb—l (x))z, (cb"l (x) + @)2)]

W, (x)=v

¢ (@71 (x))

—vexp (~107 (1) 58

In order for @ to be increasing, we require z?;; = 0, which is satisfied if v = 0. However, we
exclude v = 0 as this reduces to z’t}:r[x) = 1forall x € [g,1], the case of no probability distortion
for probabilities in [,1]. Since ®~! is an increasing function, @, is increasing (@ is convex) if
¢ < 0. Then,
Gp(x) P (Bﬁd)_'(x)— (r—{-%ﬂz) T)

@, (x) Vexp (—gd:—l (x) — %gz)

_1 -1 1,2 1,

= S exp ([eﬁ+g)¢ () +58° - (r+§9 T

which is non-decreasing in x only if OVT + C = 0, that is, if —0\T < { < 0. Therefore, truncation

is not required if —0v/T < { < 0, and is required otherwise. Finally, we determine the values
v > 0,{ < 0 (which may not be unique) such that
1—v+v [cb (CD”l (&) + z)] —do (drl (&) — meﬁ)
— [ =" B (ch (cb—‘ (&) — me\/f) 1= 1)] (3
In other words, we choose v > 0 such that the right-hand side of the above equation is negative,

and this choice of v determines the value of {. Alternatively, we may choose {, which determines

whether truncation is necessary and the choice of { determines the value of v:
dd (<D‘1 @) - maﬁ) =1
P (@1 (g +§) -1

We have therefore constructed the following reverse S-shaped probability distortion function:

V=

o (qu(x) - me\/i_") , x€ [0,
1—v+v[® (@1 (x)+)], xe[E1]

wi(x) =

Furthermore, since m < 0, we have w/, (0) = co and since < 0,
7’5;(1) = vexp (—g‘b—l (1) — %Cz) = o0
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and therefore the two issues previously identified have now been resolved. Our construction of
this reverse S-shaped probability distortion function is similar to the smooth-pasting of two one-
parameter weighting functions, implemented in [15]. We have two free parameters, m and v (or {,
whichever is chosen first), and we shall discuss the implications of the choice of these parameters.
Firstly, the choice of m determines the shape of the optimal contract function. We can determine

the value of m such that the non-constant portion of the contract function is linear in Pr:

S(m—1 1- 2(1-
b=7(m )=l<=>m=1+ K=1—g( 5)
1—x é g—r

where ¢ < 0and x € (0,1) are given parameters that can be estimated from data or experimental
studies, and 4 is determined by the performance of the firm while « is determined by the degree

of risk aversion of the employees. However, we require m < 0, and therefore we require

2(1 — _
1_M<{}=>!”_.2._r<1_x
H=r (o4

If the above holds, the non-constant payoff in the contract function is equal to R plus A units of
a European call option with strike /! (Gp (p*)). We can also consider values of m such that the
function is convex or concave in Pr, determined by examining the second order derivative of the

power function:

d’ b b-2
an [APT] — Ab(b—1)PE
which is negative when b < 1 (concave) and positive when b = 1 (convex). The function is convex
when
L) PRI Lol ST k)
1-x & H—r

Since m < 0, we must have

1_Mgm<0=}- 5
u—r o

which corresponds to the same inequalities involving é and « for the linear function, however
several values of m (greater than or equal to 1 + ]—;—") are allowed compared to only one value of
m (equal to 1+ 15%) for the linear function. Since we expect employees to be fairly risk averse
(corresponding to lower values of k), we expect that the inequality above usually holds. The

function is concave when

5(m—1 1- 0% (1 -
p=dm=D) o mg141oF - TQ=%)
1-x é H=r
Since m < (), there are two possible cases:
2
1= =
m<1 M<f.1=>'”2r<:‘l—:c
p—r o
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or

o2 (1—x) N

p—r o2

m<0<1- >1—x

Since our contract function is a power function, it is twice continuously differentiable, and ac-
cording to Carr-Madan static replication (which has been used to price variance swaps in [13]),
the payoff can be replicated by unique portfolio consisting of initial positions in unit discount
bonds, shares in stock and out-of-the-money European call and put options of different strikes K,

formalised in the theorem below [12].

Theorem 4.9 (Carr-Madan Static Replication). Let f € C? be a fwice continuously differentiable func-

tion, and let (S; )fE{O-Tl be the price process of a stock. Then

(51 = [ (50) = £ (S0) ol + £/ o) S+ [ /(K) (K =51)* ak+ [ 1700 (57~ K)* ek

In other words, the terminal payoff f (St) can be replicated by a position in [f (So) — f' (So) So] unit
discount bonds, f' (So) shares of stock, and f"(K)dK out-of-the-money European call and put options of
all strikes K.

Proof. By the fundamental theorem of calculus, for any fixed F, letting S := St,
s F
£ =F(F)+ oy [ fw)du—1gscry [ £/ (w)dn
s 1 F F
£ O +yeon [ [0+ [ 1] du-1iar [ [0 [ £ E)a0] au
Applying Fubini’s theorem and the fact that f'(F) does not depend on u, we obtain
5 pS F pov
f8) = fE)+F (S =P+ hsopy [ [ f/@dudo + 15y [ [ f(0)dudo
s F
= f(B) +F(E)S~F)+ Loy [ f/(0)(S —0)do+1iscpy [ f'(0)(0 - )do
=SB+ =B+ [ @6 -0 o+ [ fo)e-9)
— B -F B+ B+ [ -9 o+ [ ) -0)d
Setting F := Sy, we obtain the required equation. )

When the contract function is concave, its second derivative is negative and the payoff must
be replicated by taking short positions in the call and put options. However, in our context,
employees only take long positions in the employee stock options, and hence we will now only
consider convex contract functions, in which the payoff is replicated by taking long positions in

the call and put options. We also have that since our contract function is increasing, the first
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derivative is positive which corresponds to a long position in shares of firm value. We have
AP} = (AP} - AbPyT'Ro] + (AbPY™Y) Py
n fop" Ab(b —1)K*"2 (K — Pp)* dK + [: Ab(b— 1)K*~2 (P; — K)* dK
=(1-b)APL + (Abpg—l) Pr
+ Ab(b - 1) up" KP=2 (K — Pr)* dK + ﬁq K2 (Pp — K)* clK)
b
If Py < h™1 (G, (p*)), then

(K—Pr)t =K, Pre0,R)
(Pr-K)* =0, Pre [Po,h‘l (Gp (P*))]

Therefore,

(R+APR) (41 (G, ) ) (PP)

By o0
= R+ (1-b) AP + (AbPS 1) Pr + Ab(b — 1) (L ' K1dK + [,
- Sh

K'~2 (Pr —K)TdK
I(GH[VJ)

=R+ (1-b)AP} + (AbPé’”‘) Py + Ab(b—1) ((%‘1’1) + [i(a i K2 (Pp —K)+dK)
Jh o p‘

=R+ (Abﬂﬂ’"‘)?r—i-Ab(b—])ﬁ Kb=2(Pp — K)T dK

oo
i=1(Gy(p*))
and therefore the payoff is only replicated with shares in the firm value and European call op-
tions. However, in reality the set of strikes corresponding to the European options in the portfolio
is discrete, and therefore numerical integration is required to approximate the above payoff. In
[13], continuous replication and several methods of discrete replication (Derman’s method, trape-
zoidal method, Simpson’s quadrature and the Leung and Lorig Optimal Quadratic Hedge) are
considered. Of these methods, the trapezoidal method (also used in [14]) is most easily adapted

to this context: we adopt the following partition of strike prices:

log K; = log (h“ (Gp (p*))) + iy

foralli = 0,1,...,n where 5§ > 0 is chosen to be sufficiently small in order to minimise the numer-
ical integration error. Then the trapezoidal rule gives the following approximation:
b1 = b2 +
R+ (AbPU ) Pr+Ab(b-1) | - K2 (Pr —K)tdK

~ R (AR) P Abb= 1) 3 (5) [0 (Pr = )+ (o) (Br = Kica)*

where AK; := K; — K;_;. If we further assume that the strikes are equidistributed (as assumed in

[13]), that is, AK; = h > 0 for all i (a reasonable assumption if # > 0 is small enough), then the

77




4.4 Optimality of Call Option 4 OPTIMAL CONTRACT IN EMPLOYEE STOCK OPTIONS

approximation becomes
~ R+ (AbPY) Py
Ab(b—1)h - - -
+(%) ((KU)‘ (Pr — Kp) +Zz K)'72 (Pr —K)F + (K 2(PT—K,,)+)
n
= R+ (AbPL™") Pr+ ) wi (Pr—Ki)*
i=0

where (w;);_y; _, are the replication weights of the European call options with strikes (K;);_g;
given by

1Ab(b -V (K)'™2, i=0n
w; =
Ab(b—1)h(K)*2, i=1,.n-1

If Py = h=' (G, (p*)), then
(K=Pr)* =K, Pre[oh (G (v")]
and

(R + AP%’—) ]1(“ 1[(3_,.{;?“)),00) (PT)

=R+ (1-b)AR} + (AbRY1) Py
h "(G‘,(p )
Ab(b—1 KP4k
Al ) ([{] * / 1(G(r*))

=R+ (1-D)A (pf;- (' (G (p*)))b) + (AbRy) Py

K2 (K — Pr)* dK + fm K2 (Pr - K)* dK)
Py

_ Po h=2 _ + e bh—2 _ +
+ Ab(b—1) (A ey K K= dK+/PDK (Pr — K)* dK

and the payoff is replicated by a short position in bonds and long positions in shares in firm value,
European call and put options, and numerical integration can be carried out by the trapezoidal

method similarly to the previous case.

Finally, due to the flexibility in choice of m for the convex function, m and v may be chosen to cal-
ibrate the function w we constructed to the well-known reverse S-shaped probability distortion
function proposed by Tversky and Kahneman (1992):

TK ( ) — xé.:

wl ]
(w0 + (1 — x)0=) %=

for 0.28 < 6+ < 1. Estimates of the probability weighting parameters 5+ have been rather consis-

tent across experimental and empirical studies. In particular, the studies concluded that 6 ~ 0.7.
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4.5 Summary

To summarise, a similar solution structure is obtained in the optimal ESO contract problem to that
in the behavioural portfolio selection, but with an additional step to write the solution in terms
of Pr, to recover the optimal contract, and this additional step relies on p being written explicitly
as a function of Pr. We state theorems stating the optimal contract with and without loss control,

and a proposition regarding the optimality of a call option contract:

Theorem 4.10 (Optimal Contract without Loss Control). The optimal contract without loss control is
given by

S*

11 (r) = (R= )" (55 ) ) Yow- vy (PP

+ (R+'x*)]1(h ](C;'[P'J)"" I(Gﬂ[]_ﬁ‘})l (pT)

. 1 h(Pr)
-+ ((R-Hx )\a" (R + (!£+) (WM))) ]I-(;, J(G‘_(l—ﬁ‘J),w} (PT)

Theorem 4.11 (Optimal Contract with Loss Control). The optimal contract with loss control is given

by
Ir* (Pr) = (R— L)l[(],h 1(Gp(v))) (Pr)

_ s —u_(Lyw_ (1—97)
N (R - ()™ (w_ (1=p*)—w-(1 —’Y*))) RGICTVRICAE) S

TR+ 41, )1 (G0-8)) (P

. ry -1 I (Pr)
+ ((R—}—a v (R+ (u+) (WM))) 1(“ 1(Gp(1-p*)) ) (Pr)

Proposition 4.12 (Optimality of a Call Option Contract). Suppose u satisfies 1. (x) = x* and w

satisfies

dd (cb—l(x) —movT), x€ (0,

w+(x) =

1—v+v[® (P71 (x)+)], xe[&1]

where d = de 3" ET-m(+30)T 1y dic g constant, and v,  satisfy
1—v+v [q: ('@ +§)] =9 (071 (g) —movVT), —eVT<{<0
and
m=1+1_x=]— ”(1-x)
é p—r

Then a call option ESO contract is optimal, and without loss control is given by

*

s

1 () = (R @)™ (= =57) ) Yoy
+ (R + APT) :[I-(;; ](Gp(l'ﬂﬁ"))lw) (PT)
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1
where A == (drc/\"‘C 5) T When there is loss control, the optimal call option ESO contract is given by
I (pT) = (R - L)]]-[[]Ij, "(Gp(f}"‘))) U)T)

- s —u_(L)yw- (1 —*)
* (R ~ ()™ (w— (1-p)-—w_(1- '}f"))) L1 (6,0 (6p00))) (P

+ R+ APT) A (416, (1-p+)).00) (PT)

Remark 4.13. Proposition 4.12 states that the parameters m, v and { must satisfy those conditions
in order for the call option contract to be optimal. However, these choices of parameters may not
calibrate as well to Tversky and Kahneman'’s probability distortion function wX. Parameters that
TK
+

calibrate better to w" may give rise to an optimal contract involving a portfolio of call and/or

put options, using Carr-Madan replication.

5 Conclusion and Further Research

Two stochastic optimisation problems under probability distortion, namely optimal stopping and
behavioural portfolio selection, were reviewed, and a solution for a new such problem was devel-
oped: determining the optimal contract for employee stock options. In optimal stopping under
probability distortion, several variants of the underlying process were also considered. The be-
havioural portfolio selection problem is more closely related to the employee stock option prob-
lem, as both involve a pricing kernel. Even though the former is a maximisation problem while
the latter is a minimisation problem, their solution structure is similar, with the latter requiring
an additional step to express the solution in terms of the terminal firm value. Further research in
the optimal stopping problem may include developing new methods to address the limitations
of the current method as discussed in Section 2.4. For the employee stock option problem, nu-
merical studies could be carried out to verify the optimality of the general optimal contract and
compare it with the contract in Spalt’s model, and to investigate the calibration of the constructed

probability distortion function in Section 4.4 to that of Tversky and Kahneman'’s.

Even though we have considered a more general contract to the one considered by Spalt in [9], it
is still a rather simplified model, as it assumes that the ESO can only be exercised at the maturity
date T. In reality, as discussed in [16] ESOs are American style options, meaning employees have
the right to exercise the option at any time before a maturity date, and ESOs could be terminated
early due to employment shock. In [16], Leung and Wan investigate the valuation of ESOs taking
into consideration job termination risk, and show through applications of variational inequalities
that the increase of such a risk leads to exercise of the ESO being voluntarily accelerated, which

in turn leads to reduced costs to the firm. However, Leung and Wan do not incorporate proba-
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bility distortion into their analysis, and this remains an open problem and an avenue for further

research.
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