
Imperial College London

Department of Mathematics

From Cross-Sectional to Network

Momentum: Enhancing Systematic

Trend-Following Strategies

Author: Linze Li (CID: 01869053)

A thesis submitted for the degree of

MSc in Mathematics and Finance, 2023-2024



Declaration

The work contained in this thesis is my own work unless otherwise stated.

2



Acknowledgements

I would like to thank the systematic strategies desk at Ocean Leonid for the opportunity to
undertake this project. I am particularly grateful to Dr William Ferreira, Leonardo Mar-
roni, Irene Perdomo and Lorenzo Reati for their guidance in developing my understanding
of systematic trading.

I extend my gratitude to Dr Yonatan Shadmi and Dr Anthony Coache for their con-
tinuous support and valuable feedback during our weekly meetings, which have been in-
strumental in writing this thesis.

I remain forever grateful to my late grandmother, whose enduring influence continues
to inspire me every day.



Abstract

In financial markets, it is often observed that some assets lead in price trends while others
follow with a time delay, creating what is known as cross-sectional momentum spillover or
the ‘lead-lag’ relationship between paired markets. In this thesis, we introduce a method
for transforming cross-sectional momentum into network momentum by quantifying the
interconnectedness of market leadership and individual momentum. We develop a sys-
tematic trend-following strategy based on this network momentum. Our framework in-
corporates two state-of-the-art lead-lag detection methods and a graph learning model to
generate a new trading signal for momentum strategies. We validate our framework using
daily price data from 28 real-world futures spanning four asset classes from 2005 to 2024,
alongside 100 sets of synthetic price data. Our results demonstrate that the network mo-
mentum strategy significantly improves the Sharpe ratio by 29% on average compared to
the individual momentum strategy. It also effectively reduces losses in short positions by
35% and increases the skewness of monthly returns by 29%. This thesis pioneers research
into transforming cross-sectional lead-lag relationships into network momentum spillover.
The proposed framework demonstrates broad generalisability and consistent effectiveness
across various market combinations and is independent of historical market trends.



Contents

1 Signature Based Lévy Area 10

1.1 Path and Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Application in Lead-Lag Detection . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Computation of Lead-Lag Matrix Using Lévy Area . . . . . . . . . . . . . . 13

2 Dynamic Time Warping 16

2.1 Classical Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Derivative Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Shape Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Comparative Analysis of DTW Techniques . . . . . . . . . . . . . . . . . . 21

2.5 Computation of Lead-Lag Matrix Using Dynamic Time Warping Models . . 22

3 Graph Learning 25

3.1 Graph Learning Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 From Data to Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Computation of Network Momentum Matrix Using Graph Learning Model 30

4 Experiments 31

4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Set Up for Time Series Momentum Features . . . . . . . . . . . . . . . . . . 31

4.3 Set Up for Network Momentum Features . . . . . . . . . . . . . . . . . . . . 34

4.4 Portfolio Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5.1 Portfolio Performance Analysis . . . . . . . . . . . . . . . . . . . . . 37

4.5.2 Long/Short Performance Analysis . . . . . . . . . . . . . . . . . . . 40

4.5.3 Diversification Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.4 Skewness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A Technical Proof 47

A.1 Derivation of the Formula for Lévy Area Between Discrete Processes . . . . 47

A.2 Derivation of the Matrix Form of the Dirichlet Energy . . . . . . . . . . . . 48

B Supplementary Data 49

B.1 Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.2 Supplementary Skewness Plots Across Time Horizons . . . . . . . . . . . . 50

C Motivation and Methodology for Using Bootstrapping in Backtesting 52

C.1 Limitations of Historical Backtesting . . . . . . . . . . . . . . . . . . . . . . 52

C.2 Stationary Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C.2.1 Classical Bootstrap and Motivation for Block Bootstrap . . . . . . . 53

C.2.2 Methods of Stationary Bootstrap . . . . . . . . . . . . . . . . . . . . 54

2



Bibliography 60

3



List of Figures

1.1 Example of the change in Lévy area enclosed between two discrete processes
at different endpoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Illustration of a discrete path with missing values (left) and the same path
in a higher dimension after interpolation to fill the gaps (right). . . . . . . . 14

2.1 Stages of Dynamic Time Warping Alignment. . . . . . . . . . . . . . . . . . 19
2.2 Illustration of the Singularity Problem in classical Dynamic Time Warping. 20
2.3 Different dynamic time warping alignments between actual and simulated

pairs for the HKG Hang Seng Index Futures: September to October 2018. . 21
2.4 Quantitative Comparison of Singularity Severity and Mean Absolute Error

Across Dynamic Time Warping Models for Simulated Paired Series with
Various Levels of Disorder. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Illustration of changing α while keeping αβ constant only affects the scale
of the graph learning model: (α, β) = (1,1) for (a) and (10,0.1) for (b). . . . 28

3.2 Illustration of larger values of α and β leading to a denser graph. . . . . . . 29
3.3 Variations in the number of edges for different α and β settings. . . . . . . 29

4.1 Comparison of time series momentum (oscillators) at different speeds for
S&P 500 E-mini Futures from July 2022 to June 2024. The fast oscillator
(k = 1) captures short-term volatility, while the slow oscillator (k = 6)
highlights the long-term trend. . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Distribution of net Sharpe Ratios for the Benchmark Model (MACD) and
Network Momentum Models on bootstrapped datasets, with net Sharpe
achieved on real price data indicated by red crosses . . . . . . . . . . . . . . 39

4.3 A diversification analysis on the PnL pairwise correlation between models
on the bootstrapped datasets (left) and real price dataset (right). . . . . . . 42

4.4 A diversification analysis on the pairwise sign agreement between models
on the bootstrapped datasets (left) and real price dataset(right) . . . . . . . 43

4.5 Skewness in the returns of the network momentum model over various pe-
riods, compared to those of the time series momentum model, using differ-
ent lead-lag detection models: (a) NMM-DTW-E, (b) NMM-DDTW-E, (c)
NMM-SDTW-E, and (d) NMM-LEVY. . . . . . . . . . . . . . . . . . . . . 45

B.1 Supplementary plots of skewness in the returns of the network momentum
model over various periods, compared to those of the time series momentum
model, using different lead-lag detection models. . . . . . . . . . . . . . . . 51

C.1 The sensitivity of historical backtesting results to the price trajectory . . . 53
C.2 Desired Multivariate Bootstrap Outcomes Preserving Inter-Market Auto-

correlation and Covariance: EURO STOXX 50 Index Futures (Market 1)
and CME E-mini S&P 500 Index Futures (Market 2), June 2002 to June
2024. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4



List of Tables

1.1 Algorithm for using Lévy area for lead-lag metric computation . . . . . . . 15

2.1 Algorithm for finding the optimal warping path by dynamic programming 18
2.2 Algorithm for using DTW and DDTW to identify lead-lag relationship . . . 23
2.3 Algorithm for using shapeDTW and shapeDDTW to identify lead-lag rela-

tionship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Algorithm for Computing the Network Momentum Matrix Using Graph
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Performance Metrics for Various Signals . . . . . . . . . . . . . . . . . . . . 38
4.2 P-Values for Sharpe Ratio Comparisons Against Benchmark . . . . . . . . . 40
4.3 Performance Metrics for Various Signals in Short Direction Only . . . . . . 41
4.4 Performance Metrics for Various Signals in Long Direction Only . . . . . . 41
4.5 Average PnL Gains Over Benchmark on Opposing Signal Days . . . . . . . 43

B.1 Futures Contracts from Bloomberg . . . . . . . . . . . . . . . . . . . . . . . 49

C.1 Algorithm for Stationary Bootstrap . . . . . . . . . . . . . . . . . . . . . . . 55

5



Introduction

Trend-following strategies have existed as an investment style for a very long time. They
are widely adopted by commodity trading advisors, over-the-counter markets, macro hedge
funds, and both sell-side and buy-side practitioners. These strategies share a common
premise: market returns exhibit auto-correlation, with winners likely to continue perform-
ing well and losers continuing to underperform. Consequently, practitioners typically take
long positions in markets with recent positive performance and short positions in those
generating negative returns. Therefore, these are also known as momentum strategies. In
this manuscript, we propose a trend-following strategy that trades markets based not only
on their recent performance but also on the performance of other interconnected markets.
This strategy uses state-of-the-art lead-lag detection and graph learning models to identify
and exploit these inter-market influences.

The time series momentum strategy is arguably the most fundamental trend-following
strategy, where portfolios are constructed based on the momentum of individual markets,
meaning positions are established solely according to recent market performance. The per-
sistence of market returns has been extensively studied from macroeconomic perspectives.
For instance, industrial growth rates have a significant impact on momentum profits [41];
investor behaviours, such as delayed information reception and asynchronous response
timings, support the slow information diffusion hypothesis [27, 28]. Behavioural biases
like conservatism may also encourage premature selling or prolonged holding of assets
[5]. Such persistence in market returns continues until significant deviations from price
fundamentals eventually trigger a market reversal [66]. The profitability of time series
momentum strategies is demonstrated across various markets, showing that purchasing
stocks that perform well in recent months and selling those that show poor returns results
in higher profits [30, 58, 16]. This profitability has been rigorously validated through sta-
tistical experiments to confirm it is not due to random chance [31, 29]. A popular method
for measuring time series momentum is the crossover of moving averages of recent prices
[39, 7, 45]. The underlying premise is that if the short-term average price crosses above the
long-term average price from below, it indicates an expected increase in price, suggesting
a potential upward trend and, conversely, a downward trend if it crosses below.

The momentum strategy extends beyond individual markets. [22] observes that high
equity returns in one year can predict high corporate bond returns the following year
despite bonds lacking inherent momentum. This ‘cross-sectional momentum spillover’ is
primarily due to the bond market’s delayed reaction to equity performance, known as the
‘lead-lag effect’. Previous literature has identified multiple drivers for the lead-lag effect,
including factors such as company size [43], institutional ownership levels [3], analyst
coverage [11], and industry affiliation [48, 23]. Numerous studies have explored systematic
approaches to capturing the lead-lag effect. For instance, [12] utilised the difference in the
cross-correlation function based on Pearson correlation, while [69] employed the signed
normalised area under the curve of the cross-correlation function as an indicator. Further,
[8] experimented with alternatives to Pearson correlation, such as Kendall rank correlation
[35], distance correlation [62], and mutual information from discretised time series values
[21]. We refer interested readers to [10, 67, 44] for additional methods for detecting lead-lag

6



effects.

After computing lead-lag metrics pairwisely, many studies suggest employing ranking
algorithms to identify assets most likely to lead or follow [13, 8, 1]. Positions for the fol-
lowers are established based on the average of the leaders’ performance. For example, if
leaders exhibit a negative average return, followers are shorted in anticipation of a similar
downward trend. To rank markets based on their leadership influence cross-sectionally, the
literature employs methods such as RowSum Rank [13, 72, 8], PageRank [69, 6], and ma-
chine learning approaches like the Learning-to-rank algorithm [63, 52]. Another strategy
involves clustering lead-lag metrics using algorithms such as clustering by industry sectors
[28, 10], k-means [72], and spectral and Hermitian clustering [8, 13]. This data-driven
methodology, prevalent in existing studies [6, 69], suggests establishing positions within
lagging clusters based on the average performance of markets in the leading cluster. This
approach is used to capitalise on trend-following opportunities or to construct opposite
positions to counteract mean-reverting behaviours [13].

To the best of our knowledge, quantitative research that measures the influence of
leading markets on the performance of lagging markets is currently limited, especially
when portfolios span multiple industries. It is pointed out in [56] that, although previous
studies have identified momentum spillover across various sectors—such as equities and
bonds [22, 26], equities and foreign currencies [17], currency news and bonds in emerging
markets [71], and between crude oil indexes and equities [20]—the absence of firm-like
economic and fundamental linkages in commodities markets complicates the identification
of connections, such as those between orange juice and natural gas.

Moreover, while existing studies predominantly focus on statistically examining the
momentum spillover effect and use it as a market selection mechanism for trading fol-
lowers in exchanges, they fail to quantify and aggregate this momentum spillover into a
new trading signal for portfolio construction. To bridge this gap, the existing literature
suggests leveraging network theory. For instance, [70] uses edge centrality to quantify the
importance of supplier-customer relationships, and [56] explores the ‘network momentum’
spillover across industries, aggregating momentum from commodities, equities, bonds, and
currencies to create a novel trading signal. Specifically, the latter research employs ideas
from graph learning, treating each market as a node within a graph. This approach uses
time series momentum features, including moving average crossover signals and expo-
nentially weighted returns, as signal processes for each node. They then solve a convex
optimisation problem to approximate the weighted graph adjacency matrix. The edges of
this graph elucidate the complex relationships across markets, with the magnitude of each
edge reflecting the strength of similarity in momentum features between market pairs. Fol-
lowing this model, the time series momentum of other markets is weighted and used in a
linear regression to predict the next day’s returns. Subsequently, a portfolio is constructed
by assigning binary positions—either 1 or −1—based on the sign of the predicted future
returns, reflecting long or short positions in alignment with existing literature [72, 63, 52].
However, such binary betting on positions based on momentum direction may not be
optimal because this approach could lead to a discontinuous model, losing both convex-
ity and positive skewness in returns [45]. Similarly, [56] notes that their strategy may
not adequately address risk characteristics, potentially increasing exposure to significant
downside movements.

Our objective is to transform cross-sectional momentum spillover—essentially the pair-
wise lead-lag effect—into the concept of ‘network momentum’ spillover and construct a
systematic trend-following trading strategy that preserves the positive skewness of returns.
We achieve this in three steps. First, we employ two non-parametric methods to iden-
tify non-linear and non-synchronous lead-lag relationships between market pairs. Second,
using graph learning models, we quantify the interconnected lead-lag strengths and ag-

7



gregate the time series momentum of each market, incorporating weighted contributions
from connected markets into a novel trading signal. Third, we construct a portfolio by
converting this trading signal into a position signal, ensuring a positively skewed return
can consistently be achieved.

In the first step, we employ two state-of-the-art models to identify the lead-lag rela-
tionship and quantify the leadership between pairs of assets. The first model, based on
the Lévy area of pairwise market returns as proposed by [13], effectively identifies both
linear and nonlinear relationships at a fixed lag, such as the one-day lag effect. The
second model utilises the dynamic time warping algorithm on pairwise market returns,
in line with established literature [72, 65]. This model relaxes the fixed lag assumption
and adeptly handles non-synchronised time series of varying lengths. Building upon these
foundations, we explore various advanced dynamic time warping algorithms to capture the
co-movement between two markets’ returns. We then calculate pairwise lead-lag scores
for all combinations of market pairs and use them to construct a skew-symmetric matrix
known as the lead-lag matrix.

In the second step, we apply the graph learning model proposed by [34], which has also
been utilised by [56] for analysing time series momentum features and approximating the
graph adjacency matrix through convex optimisation. We propose to apply this model
to our lead-lag matrix, treating each market as a node where the leadingness to other
markets represents a signal process. This approach effectively analyses the relationships
between lead-lag effects, turning the cross-sectional momentum into network momentum
and highlighting the strength of the relationship via the non-negative edge values in the
adjacency matrix.

Once the network adjacency matrix is established, we apply it to the time series mo-
mentum features to aggregate the momentum from all connected markets, thereby creating
a spillover effect where the momentum of each market is influenced by its interconnected
markets. The aggregated momentum signal then serves as input to a response function
[45], which determines the position needed to follow the observed trend. We assess the ef-
fectiveness of our approach by comparing the profitability of our approach on bootstrapped
datasets against a strategy that relies solely on time series momentum.

In contrast to the extant literature in [13, 56], where the profits and losses (PnL) for
day t+ 1 are calculated by multiplying the market return between days t and t+ 1 with
the position signal from day t — a position generated using close price up to and including
day t, our approach addresses a key limitation. This conventional approach assumes that
trades can be executed immediately upon receiving the closing price information on the
same day, which is usually not feasible in real-life trading scenarios. We take a more
conservative approach by introducing an additional lag in our model: a signal generated
using price information up to day t establishes a trade to be completed by the end of
day t + 1, which then accrues PnL based on the price change from day t + 1 to day
t + 2. Transaction costs, calculated independently of the price, are estimated as half of
the bid-ask spread at the closing price and are accrued when entering the position on day
t+ 1.

We backtest the proposed network momentum strategy on 28 futures contracts across
four industry sectors—energy, agriculture, metals, and equities—covering an out-of-sample
period from 2005 to 2024. This strategy outperforms the traditional time series momentum
strategy, demonstrating a 29% increase in the Sharpe ratio, a 19% reduction in transaction
costs, and a 29% improvement in positive skewness of returns on bootstrapped datasets.
Notably, our strategy also reduces losses in short positions by 35% compared to the tradi-
tional approach on average on 100 sets of bootstrapped price data. These results highlight
the strong generalisability of our model across various markets and its consistent superi-
ority over the classical time series momentum strategy.

8



The contributions of this paper are threefold. First, it expands on existing literature
by employing a range of dynamic time warping algorithms for lead-lag detection, moving
beyond the classical approach typically used in prior studies. Secondly, our study pio-
neers the treatment of the lead-lag matrix as a graph signal, transforming cross-sectional
momentum into network momentum. Thirdly, to the best of our knowledge, this is the
first study to demonstrate the effectiveness of lead-lag detection and network momentum
spillover in systematic trend-following strategies within a realistic trading environment
through rigorous backtesting and empirical testing on multiple bootstrapped datasets.

The remainder of the paper is organised as follows. Chapters 1 and 2 present the
mathematical frameworks used to identify the lead-lag relationship. Chapter 3 details the
graph learning model employed to capture network momentum. Chapter 4 explains the
strategy setup and subsequent performance analysis. We conclude the paper with the
final thoughts and future directions and provide proofs, auxiliary data, motivation and
methodology for bootstrapping in Appendices A, B and C.

9



Chapter 1

Signature Based Lévy Area

In this chapter, we introduce the first of our two models to identify pairwise non-linear
lead-lag relationships with a fixed temporal gap ℓ, where ℓ is a positive integer representing
the number of time units. For a return series of market n at each time t = 1, 2, . . . , T ,
denoted as Rt,n, we investigate whether there exists a leading market m such that its
return at time t− ℓ, denoted as Rt−ℓ,m, has predictive power over Rt,n. We demonstrate
that the Lévy area between the series Rt,m and Rt,n can provide insights into the leading
behaviour of market m relative to market n. From this analysis, we construct a lead-lag
matrix to serve as an input for our graph learning model.

Preliminary knowledge regarding the signature method is outlined in Section 1.1, with
its application to detecting lead-lag relationships discussed in Section 1.2. We summarise
our algorithm for constructing the lead-lag matrix in Section 1.3.

1.1 Path and Signature

In this section, we mostly follow the manuscript in [15], introducing some fundamental
definitions and knowledge of a path and signature.

Definition 1.1.1 (Path). A path X ∈ Rd is defined as a continuous mapping from an
interval [a, b] to Rd, that is

X : [a, b]→ Rd.

Following the convention in [15], we use Xt = X(t) to denote the dependence on the
parameter t ∈ [a, b].

Definition 1.1.2 (Coordinate path). For a path X : [a, b] → Rd, the coordinate path is
defined as

(X1
t , . . . , X

d
t ),

where each Xi is a real-valued path from [a, b] to R.

For any single index i ∈ {1, . . . , d}, we define

S(X)ia,t :=

∫
a<s<t

dXi
s = Xi

t −Xi
0, (1.1.1)

which is the increment of the i−th coordinate of the path at time t ∈ [a, b]. For any pair
i, j ∈ {1, . . . , d}, the double-iterated integral is defined as

S(X)i,ja,t :=

∫
a<s<t

S(X)ia,sdX
j
s =

∫
a<r<s<t

dXi
rdX

j
s , (1.1.2)

10



where S(X)ia,s is the coordinate increment in (1.1.1). Notice that for i = j ∈ [1, . . . , d],

S(X)i,ia,b =
(S(X)ia,b)

2

2
=

(Xi
b −Xi

a)
2

2
.

We can further extend this definition to a k−fold iterated integral of path X as

S(X)i1,...,ika,t :=

∫
a<s<t

S(X)
i1,...,ik−1
a,s dXik

s =

∫
a<tk<t

· · ·
∫
a<t1<t2

dXi1
t1
· · · dXik

tk
.

Following the convention in [15], we assume, unless stated otherwise, that paths are
piecewise differentiable and smooth to ensure that the iterated integrals of the path existed
as Riemann-Stieltjes integrals and the path has derivatives of all orders.

Definition 1.1.3 (Signature). [15, Definition 1, page 5] The signature of a path X :
[a, b]→ Rd, denoted by S(X)a,b, is the collection (infinite series) of all the iterated integrals
of X. Formally, S(X)a,b is the sequence of real numbers

S(X)a,b := (1, S(X)1a,b, · · · , S(X)da,b, S(X)1,1a,b, S(X)1,2a,b, · · · ),

where the ‘zeroth’ term, by convention, is equal to 1, and the superscripts run along the
set of all multi-indexes

W = {(i1, . . . , ik)|k ≥ 1, i1, . . . , ik ∈ {1, . . . , d}}.

The k−th level of the signature is the finite collection of all terms S(X)i1,...,ika,b where
the multi-index is of length k [15]. For example, the first level is

{S(X)1a,b, . . . , S(X)da,b},

and the second level is

{S(X)1,1a,b, . . . , S(X)1,da,b , S(X)2,1a,b, . . . , S(X)d,da,b}.

We hereby discuss the geometric intuition of the first two levels. The first level is
always an increment of the path X because of its Formula (1.1.1). For the geometric
interpretation of the second level with terms S(X)i,ja,b for i ̸= j, one could consider the
Lévy area.

Definition 1.1.4 (Lévy Area). [15, Page 10] Given a two-dimensional path {X1
t , X

2
t },

the Lévy area measures the signed area enclosed by the path and the chord connecting
the endpoints over the interval [a, b]. Mathematically, it is defined as

ALévy :=
1

2

(∫
a<r<s<t

dX1
r dX

2
s −

∫
a<r<s<t

dX2
r dX

1
s

)
=

1

2
(S(X)1,2a,b − S(X)2,1a,b),

where S(X)i,ja,b denotes the iterated integral (1.1.2) of the components Xi and Xj .

1.2 Application in Lead-Lag Detection

There has been extensive research on using the knowledge of signature to identify the
lead-lag relationship between two series. As mentioned in [25], given a path in R2 defined
by Xt = {X1

t , X
2
t } for t ∈ [a, b], if an increase (resp. decrease) in the component X1 is

followed by an increase (resp. decrease) in the component X2, then the Lévy area ALévy

in Definition 1.1.4, is positive. Conversely, if the movements of X1 and X2 are in opposite

11



directions, then ALévy is negative. For discrete processes X1
t and X2

t , the Lévy area can
be expressed as:

ALévy =
1

2

( ∑
a<s<b

(−Xi
sX

j
s−1 +Xj

sX
i
s−1) +Xi

a(X
j
a −Xj

b ) +Xj
a(X

i
b −Xi

a)

)
. (1.2.1)

We provide the derivation of this formula in Appendix A.1.

An example is shown in Figure 1.1, where the notation ALévy
[s,t] represents the Lévy

area between the processes X1 and X2 from the initial point s to the endpoint t along
the direction of X1. Initially, as X1 increases from 0 to 1.46, X2 follows this increase,
resulting in a positive Lévy area, with ALévy

[0,1.46] = 1.17. The increase continues until X1

reaches 2.48, at which point X2 reaches its maximum value, corresponding to a Lévy area
of ALévy

[0,2.48] = 1.69. Beyond this point, X2 moves against X1, causing the Lévy area to

decrease, leading to a negative Lévy area of ALévy
[0,4.89] = −0.99. Moreover, considering only

the Lévy area enclosed from the maximum to the minimum of X2 where they only exhibit
movement in the opposite direction, the area is ALévy

[2.48,5.62] = −3.2, which is significantly
larger in magnitude.

Figure 1.1: Example of the change in Lévy area enclosed between two discrete processes
at different endpoints.

However, as pointed out in [8], this lead-lag metric cannot distinguish difference be-
tween:

1. i→ j with negative association, that is Xj moves against Xi,

2. i← j with positive association, that is Xj leads Xi with same moving direction.

It is natural to apply this detection method to financial series. [13] shows that the
Lévy area between the normalised returns of some markets at n and m, Rt,n and Rt,m,

12



can indicate the lead-lag relationships for models of the form

Rt,n = βℓf(Rt−ℓ,m) + ϵt, (1.2.2)

where f is any continuous function where ℓ is a positive integer with the same units as
those of t. We present their result in the following theorem.

Theorem 1.2.1. [13, Theorem 1, page 9] Assume {Xi
τ}tτ=s and {Xj

τ}tτ=s are two in-
dependent random processes with zero mean, unit variance, and symmetric distribution,
and both satisfy (1.2.2) over a time interval [s,t]. Then, the sign of the Lévy area ALévy

i,j

between Xi
τ and Xj

τ is the same as the sign of ℓ if and only if ℓ = ±1. In addition, if
ℓ = ±1 and the third derivative of the function f exists, there is a constant K such that
for all pairs (i,j), we have

E[ALévy
i,j −Kβℓ] =

M

6
βℓE[

∑
s<a<t

f
′′′
(ξja−1)(X

j
a−1)

4]

for some constant M and |ξja−1| < |X
j
a−1|.

Proof. See [13, Appendix C].

As [13] points out, this theorem suggests that the Lévy area only has predictability to
the sign of ℓ when ℓ = ±1, but by no means would it constrain us only to consider one
day lag since one could always calculate the multi-step returns of a market to relax this
constraint. [13] also mentions that the magnitude of the score quantifies the strength of
the lead-lag relationship, which aligns with the result in Figure 1.1. However, the efficiency
of its quantifying the strength depends on the behaviour of the function f , only when the
third derivative of f is small over the unit disc, ALévy

i,j is an accurate estimation of the
lead-lag strength.

1.3 Computation of Lead-Lag Matrix Using Lévy Area

In this section, we outline our method for constructing the lead-lag metric matrix. Han-
dling missing values in the price series is crucial since market returns are not always
synchronised. For instance, on certain days, data from some markets may be missing,
likely due to market closures. Consider the following series:

Y = [1, 3, ⋆, 5, 7, ⋆, ⋆, 9, 1, 4],

illustrated in Figure 1.2(a), where ⋆ indicates missing values. We use the rectilinear
interpolation to transform the discrete series into a continuous path by adding auxiliary
points marked in empty blue circles, which follows the convention in [15].

To address this, we define an indicator series R, where 1 represents a missing value
and 0 an observed value:

t = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

R = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0].

According to [15], we embed the indicator vector R into the path Y by lifting the path
into a higher dimension. Every time we have a missing point, we jump from the ‘observed’
to the ‘missing’ dimension and fill in the missing place with the same value as seen before.
This is known as the ‘feedforward’ method since it extends the last observed value until a
new observation is available. Then the filled observation is

Ỹ = [1, 3, 3, 5, 7, 7, 7, 9, 1, 4].

13



We present the 3-dimensional path in Figure 1.2(b), where red lines and dots indicate
extensions into a new dimension from the last observed data points. It is important to
note that this feedforward approach should be applied directly to the price series. We can
only accurately calculate the returns from the filled price series after addressing the gaps
in the price data. This process effectively equates to inserting zeros into the return series
for each market on days when data is missing.

(a) (b)

Figure 1.2: Illustration of a discrete path with missing values (left) and the same path in
a higher dimension after interpolation to fill the gaps (right).

Based on the assumption in Theorem 1.2.1, we must standardise the returns of each
market to zero mean and unit variance. This approach aligns with the convention in [8],
where it is noted that the absolute value of this specific metric increases with the volatility
of the underlying price series. The final step involves calculating the pairwise Lévy area
between the markets using Formula (1.2.1). In [13], the authors assume that the return
of assets at the start of the time series is 0, thereby reducing their formula to:

A =
1

2

∑
a<s<b

(−Xi
sX

j
s−1 +Xj

sX
i
s−1).

It is important to note that our formula (1.2.1) does not change the results in Theorem
1.2.1. Moreover, in practice, when we truncate part of the historical data as training data
to fit the model, we typically have the return of the market at the first point in our dataset.
We summarise this algorithm in Table 1.1.

14



Table 1.1 Algorithm for using Lévy area for lead-lag metric computation

Require: Feature matrix Xt ∈ RT×M representing market returns observed at time t,
where T denotes the number of lookback days, and M represents the number of mar-
kets.

Ensure: Lead-lag metric matrix Vt ∈ RM×M

1: Fill in the missing values of each market by zeros.
2: Standardise each column to have zero mean and unit variance.
3: Initialise an empty matrix Vt with shape (M , M).
4: for i← 1 to M do
5: for j ← i+ 1 to M do
6: Take out paired returns series of market i and j, Xi and Xj .
7: Let a = t− T and b = t be the start and end indices of the time series.
8: Calculate the Lévy area enclosed by the two series and the chord connecting the

endpoints according to (1.2.1):

Ai,j =
1
2

(∑b
s=a+1(−Xi

sX
j
s−1 +Xj

sXi
s−1) +Xi

a(X
j
a −Xj

b ) +Xj
a(Xi

b −Xi
a)
)

9: Set Vt[i][j] = Ai,j

10: Set Vt[j][i] = −Ai,j

11: end for
12: end for
13: return Vt

15



Chapter 2

Dynamic Time Warping

In this chapter, we introduce our second model, which employs dynamic time warping
to identify lead-lag relationships. Compared to the signature-based Lévy area model
proposed in Chapter 1, this model differs in two major respects: firstly, it does not assume
a prefixed lag ℓ between two market return series; instead, the alignment between the
two series is dynamically determined by the algorithm. Secondly, this model can handle
non-synchronised paired series, thus making the analysis of markets with different lengths
of return series feasible. We contend that the variation in matched indices from the two
paired series effectively identifies the leader and the follower within these pairs.

Four variations of the dynamic time warping algorithm are introduced in Sections 2.1,
2.2, and 2.3. A qualitative and quantitative assessment of their performance in align-
ing series is presented in Section 2.4. The methodology for utilising these algorithms to
construct the lead-lag matrix is detailed in Section 2.5.

2.1 Classical Dynamic Time Warping

In this section, we describe the core idea of classical dynamic time warping (DTW). The
setup and explanation in this manuscript mainly follow the one in [50, page 70]. Given
two univariate time series P and Q with lengths LP ∈ N and LQ ∈ N respectively, that
is P = (p1, p2, · · · , pLP )

T and Q = (q1, q2, · · · , qLQ)
T , the objective of DTW is to find the

optimal mapping between them.
To compare the two sequences, one needs a local cost measure.

Definition 2.1.1 (Local cost measure). [14, Definition 1, page 2366] Given a non-empty
feature space F , the local cost measure is a function

clocal : F × F → R≥0,

that satisfies:

1. clocal(p, q) ≥ 0 for every p, q in F .

2. clocal(p, q) = 0 if and only if p = q.

3. clocal(p, q) = clocal(q, p) for every p, q in F .

4. clocal(p, q) ≤ clocal(p, r) + clocal(r, q) for every p, q and r in F .

It is a positive measure of dissimilarity between two points. Typically, c(p, q) is small
if p and q are similar; otherwise, c(p, q) is large. If we calculate the local cost between all
pairwise elements of P and Q, we obtain the local cost matrix

Clocal ∈ RLP×LQ with Clocal(i, j) := c(pi, qj).

16



Common choices of such measures include Manhattan distance or Euclidean distance [61],
that is given two vectors X ∈ Rn and Y ∈ Rn:

Manhattan distance: c(X,Y ) =

n∑
i=1

|Xi − Yj |

Euclidean distance: c(X,Y ) =

√√√√ n∑
i=1

(Xi − Yj)2

These two measures are equivalent when both X and Y lie on the real line R, which is
the case in our study, as we aim to calculate the pairwise distances between each pair of
points from the one-dimensional series P and Q. Without loss of generality, we choose the
Euclidean distance as our local cost measure.

Based upon the local cost matrix, the DTW algorithm searches for the best alignment
between P and Q based on a warping path, denoted as W{P,Q}. Intuitively, a warping
path,

W{P,Q} = {w1, · · · , wn, · · · , wL} max(LP ,LQ) ≤ L ≤ LP + LQ − 1, (2.1.1)

is a sequence where each element wk = (i, j)k indicating that, at the kth step in the
warping path, pi should be aligned with qj . There are three main constraints to the
warping path [50, Definition 4.1, page 70]:

• Boundary conditions: w1 = (1, 1) and wL = (LP ,LQ). This ensures that the first
and last elements in P and Q are matched respectively. This boundary condition
can, however, be partly relaxed. We refer interested readers to [61] for details.

• Monotonicity condition: Given wl = (il, jl) for l ∈ [1, · · · , L], i1 ≤ i2 ≤ · · · ≤ iL and
j1 ≤ j2 ≤ · · · ≤ jL. This condition enforces the mapping in chronological order.

• Step size condition: wl+1 − wl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1, . . . , L − 1]. This is
sometimes called the continuity constraint. It allows only adjacent cell transitions
within the warping path.

Following [45], the step size constraint not only implies the monotonicity constraint
but also, in combination with the boundary constraint, make sure that no element in P
and Q can be omitted and there is no duplication in the mapping alignment.

The cost of a warping path W{P,Q} is defined as

cW(P,Q) :=
L∑
l=1

clocal(pil , qjl).

Among the various warping paths, the optimal pathW∗, which is also the best alignment,
follows a path of minimal expense through the cost matrix Clocal. The DTW distance
DTW(P,Q), between P and Q is then defined as

DTW(P,Q) := cW∗

= min{cW(P,Q)|W is a warping path satisfying necessary constraints}.

The optimal warping path can be computed by a dynamic programming algorithm.
We start with defining the prefix sequence of P and Q as P(1 : n) := (p1, p2, · · · , pn) for
n ∈ [1, · · · ,LP ], and Q(1 : m) := (q1, q2, · · · , qm) for m ∈ [1, · · · ,LQ]. We then set the
accumulated cost matrix with values

D(n,m) := DTW(P(1 : n),Q(1 : m)).

17



Table 2.1 Algorithm for finding the optimal warping path by dynamic programming

Require: Time series {Xi}mi=1 and {Yj}nj=1 with length m and n respectively.
Ensure: Dynamic time warping cost matrix D with shape (m,n).
1: Initialise an empty matrix D with shape (m,n).
2: for i← 1 to m do
3: D[i][1] =

∑i
k=1 clocal(Xk, Y1)

4: end for
5: for j ← 1 to n do
6: D[1][j] =

∑j
k=1 clocal(X1, Yk)

7: end for
8: for i← 2 to m do
9: for j ← 2 to n do

10: D[i][j] = min{D[i− 1][j − 1], D[i− 1][j], D[i][j − 1]}+ clocal(Xi, Yj)
11: end for
12: end for
13: return D[m][n]

The algorithm of dynamic programming recursion is summarised in Table 2.1. This search
has time complexity O(LPLQ) [50, Theorem 4.3, page 72].

To fix ideas, suppose we aim to find the optimal mapping between the time series P
and Q shown in Figure 2.1(a). We illustrate their local cost matrix in Figure 2.1(b) where,
without loss of generality, we consider the Euclidean distance. Figure 2.1(c) shows the
cost matrix and the optimal warping path, while Figure 2.1(d) gives the corresponding
alignment of the two series.

The warping path plot in Figure 2.1(c) also sheds some light on the leading and lag-
ging relationship between the two sequences. The black dashed line starting at (1, 1)
corresponds to the i = j for i, j ∈ min{LP ,LQ}. This is an alignment where elements of
the time series are mapped to each other at equivalent indices. If the optimal warping
path, shown in red, falls below the black dashed line—specifically within the bottom-left
region bounded by the grey dashed line—it signifies that the sequence on the vertical axis
leads the sequence on the horizontal axis, and vice versa. The same lead-lag relationship is
also observable in Figure 2.1(d): for elements to the left of the grey dashed line, sequence
Q demonstrates an increasing or decreasing trend before sequence P follows; conversely,
on the right side, sequence Q responds to the trend of sequence P.

2.2 Derivative Dynamic Time Warping

As previously mentioned, classical Dynamic Time Warping (DTW) aligns points from
two time sequences based on a local cost measure, typically chosen as Manhattan or
Euclidean distance. This alignment relies solely on their coordinate values. However, it
faces difficulties when two time sequences have similar local shapes but differ in their
values. An example is presented in Figure 2.2. Two identical sequences shown in Figure
2.2(a) produce a perfect one-to-one alignment, as illustrated in Figure 2.2(b). However, if
we slightly alter their coordinate values, as shown in Figure 2.2(c), by sharpening the peak
and deepening the trough, the DTW alignment in Figure 2.2(d) demonstrates a scenario
where a single point on one time series is mapped to several points on the other time
series. Examples of these are marked in red boxes. This undesirable behaviour is referred
to as ‘singularities’. According to [36, page 2], this occurs because the algorithm may
attempt to account for variability in the Y-axis by warping the X-axis. Although one
could, and in fact should, as stated by [57], always perform Z-normalisation to convert

18



(a) (b)

(c) (d)

Figure 2.1: Stages of Dynamic Time Warping Alignment.

the time sequences to a common and comparable scale with a mean of 0 and a standard
deviation of 1, this approach does not resolve the alignment issue. Consider the scenario
where a point pi from sequence P has an identical value to qj from sequence Q, yet the
neighbourhood of pi is in a rising trend while the neighbourhood of qj is in a falling trend.
DTW may map these points onto one another to achieve minimal overall cost. Intuitively,
however, such mappings should be avoided, especially when the lead-lag relationship is
important.

To address this problem, [36] modifies DTW, denoted as DDTW. Instead of finding
the optimal warping based on the raw values of the sequences, we consider the estimated
local derivative of the sequence. The derivative of points on sequence P is estimated by
the following equations

DP [pn] =
(pn − pn−1) + ((pn+1 − pn−1)/2)

2
, with n ∈ [2, · · · ,LP − 1],

DP [p1] = DP [p2], and

DP [pLP ] = DP [pLP−1].

(2.2.1)

This is effectively the mean value between the slope of the line from the left neighbour
to the point and the slope of the line from the left neighbour to the right neighbour.
[36] suggests that after replacing the original sequence with the estimated derivative, the
following procedure is the same as the classical dynamic time warping algorithm. DDTW
also outperforms DTW in the simulated alignment tests in [36].

The procedure to compute the DDTW algorithm has a time complexity of O(LPLQ),
with some added constant factors because of the addition derivative estimation step.

2.3 Shape Dynamic Time Warping

While DDTW considers the slope of the time series, it only considers the slope within a
local neighbourhood, failing to consider the global features. An improvement was proposed

19



(a) (b)

(c) (d)

Figure 2.2: Illustration of the Singularity Problem in classical Dynamic Time Warping.

in [73] by dealing with multidimensional time series to account for both global features
and local shapes, known as shape dynamic time warping (shapeDTW). The intuitive
idea is to convert a one-dimensional time series P = (p1, p2, · · · , pLP ) of length LP into
a multidimensional series D = (d1, · · · , dLP ) ∈ RLP×l , where each subsequence di of
length l embeds the information of the point pi. The dependent multidimensional DTW
algorithm proposed in [60] is then applied to the two multidimensional series to calculate
the distance cost and determine the optimal warping path.

We now introduce the execution of shapeDTW in detail. Given a univariate time series
of length LP , e.g., P = (p1, p2, . . . , pLP ), the first step is to extract the subsequence di of
length l from each temporal point pi. The subsequence di is called the descriptor and is
centred on pi. As suggested by [73], the window l is usually much smaller than LP , and
typically, lmod2 = 1 so that pi is centred. The resulting descriptor looks like this:

di =
(
pi− l−1

2
, . . . , pi, . . . , pi+ l−1

2

)
.

To obtain subsequences of equal length for each point, both ends of P need to be padded
by
⌊
l
2

⌋
with duplicates of p1 and pLP , respectively.

The shape descriptor di is expected to encode local structural information around the
temporal point pi [73]. Here, we examine two types of descriptors mentioned in [73]. The
first approach is to let the subsequence act as the local shape descriptor. Unlike DDTW,
each subsequence contains information from the series over a window of l points, thereby
capturing structural information over a longer time window. Another approach is to ap-
ply the DDTW (2.2.1) to each subsequence, thereby achieving a y-shift. We refer to this
method as shapeDTW derivative (shapeDDTW). Once both multidimensional series are
converted, [64] suggests calculating the distance matrix by applying a chosen distance mea-
sure to each pair of subsequences, followed by using dynamic programming in Table 2.1, to
search for the optimal warping path. Since the descriptors contain near-synchronised in-
formation, this method aggregates the information distributed across different dimensions
and examines the differences over time.

20



Here are some further remarks on shapeDTW. If one sets l = 1, the problem reduces
to DTW or DDTW depending on the chosen descriptors. [61] mentions that by combining
the steps of extracting the descriptors and running the DTW alignment, shapeDTW and
shapeDDTW have a time complexity of O(LP × LQ × l) for time series P and Q.

2.4 Comparative Analysis of DTW Techniques

In this section, we analyse the alignments of the four algorithms introduced above quali-
tatively and quantitatively. To compare the alignment results with known ground truth,
we simulate aligned pairs based on the simulation method proposed in [73]. The intuition
behind this simulation is as follows: given a time series T of length L, we first perturb it
using a random noise vector of equal length S. Then, we randomly select α per cent of the
points from T and duplicate each of them by a fixed amount τ . The resulting sequence
T ′ has a length of L + ⌊αL⌋ τ , with each value slightly perturbed by noise. Under these
settings, we can control the level of similarity between the original and perturbed time
series and also have the ground truth warping path to compare against.

Figure 2.3 includes the warping path found by different DTW algorithms. The correct
warping path for the pair in Figure 2.3(a) is shown in Figure 2.3(b). Compared to the
DTW alignment in Figure 2.3(c), DDTW alignment in Figure 2.3(d) eases the singularity
problems as discussed above, whereas it still mismatches some pairs compared to the
ground truth. The alignments found by shapeDTW and shapeDDTW in Figure 2.3(e)
and 2.3(f) achieve much closer alignment with the ground truth.

(a) alignment pair (b) real alignment (c) DTW

(d) DDTW (e) shapeDTW (f) shapeDDTW

Figure 2.3: Different dynamic time warping alignments between actual and simulated pairs
for the HKG Hang Seng Index Futures: September to October 2018.

To quantitatively assess the alignment, we consider two fundamental metrics. The first
is proposed in [36] to evaluate the extent of warping. Given two time series with lengths LP
and LQ, the number of warping paths K is bounded by max(LP ,LQ) ≤ K < LP +LQ−1.
We define the Singularity Severity Score W as

W =
K −max(LP ,LQ)

max(LP ,LQ)
.

W ranges from 0 to 1, with higher values indicating a greater number of singularities in
the warping process. We also define another metric, the Mean Absolute Deviation (MAE),
as proposed in [37]. This metric assesses the alignment between two warping paths—the
ground truth and the DTW model results—represented as a series of index pairs (i, j).

21



This indicates that the i-th index from the first series should map to the j-th index from
the second series. In cases where multiple points are mapped to a single index j, only the
last mapping of any index to index j is retained. Mathematically, it is expressed as

MAE =
1

N

N∑
k=1

δk,

where δk = |jtrue,k − jdtw,k|, and N is the number of retained warping pairs. This is a
measure of the precision of the models’ alignment.

By applying the simulation algorithm to 180 different series to create 180 aligned pairs,
we test the singularity severity score and MAE for four models. We gradually increase
the stretch level α and adjust the noise magnitude ∥S∥2 correspondingly. A higher stretch
level indicates a greater number of misordered pairs. The scores are presented in Figure
2.4(a). It can be observed that the two multidimensional DTW methods, shapeDTW
and its variation, shapeDDTW, effectively reduce the problem of singularity better than
the DDTW and DTW at all disorder levels. Based on the MAE plot in Figure 2.4(b),
shapeDTW and shapeDDTW also consistently outperform DDTW and DTW over vari-
ous disorder levels. Especially when there is minimal stretch and noise, shapeDTW and
shapeDDTW achieve a halving of the MAE compared to DTW, approaching values close
to zero, which indicates almost perfect matching. This suggests that the multidimensional
dynamic time warping algorithm is more effective at matching two series based on their
degree of similarity.

(a) (b)

Figure 2.4: Quantitative Comparison of Singularity Severity and Mean Absolute Error
Across Dynamic Time Warping Models for Simulated Paired Series with Various Levels
of Disorder.

2.5 Computation of Lead-Lag Matrix Using Dynamic Time
Warping Models

In this section, we outline our method for calculating the lead-lag metric matrix. Consider
the return series of market m from time t = 1 to t = T , Xm = (X1,m, . . . , Xt,m, . . . , XT,m),
if it contains a zero at some time t, it implies that market m was not traded at that time;
such points are removed from the series, leveraging the dynamic time warping algorithm’s
capability to handle non-synchronised series. Each market return series is normalised
to zero mean and unit variance, as discussed in [61], following the conventions in DTW
research.

22



To identify the leader and follower and the relative lag between series Xm and Xn,
we first compute the difference in each aligned index pair (i, j) in their warping path
W{Xm, Xn} defined in (2.1.1), denoted as:

∆W{Xm, Xn} = {∆w1, . . . ,∆wk},

where ∆wk = ∆(i, j)k = j − i. The relative lags between Xm and Xn, γ{Xm, Xn}, are
typically estimated by mode or median according to [72], which can be expressed as:

γ{Xm, Xn} =

{
Mode(∆W{Xm, Xn}) if using Mode

Median(∆W{Xm, Xn}) if using Median

If being selected by mode and γ{Xm, Xn} > 0, it indicates that most of the time ∆wk > 0,
implying that a later index j from Xn is aligned to an earlier index i in Xm, thus Xm

leads Xn.
We now present the algorithms for one-dimensional dynamic time warping (DTW

and DDTW) as described in Table 2.2 and for multi-dimensional dynamic time warping
(shapeDTW and shapeDDTW) in Table 2.3. The optimal warping path is computed using
the Python library DTAIDistance [47].

Table 2.2 Algorithm for using DTW and DDTW to identify lead-lag relationship

Require: Feature matrix Xt ∈ RT×M representing market returns observed at time t,
where T is the length of lookback days, and M is the number of markets.

Ensure: Lead-lag metric matrix Vt ∈ RM×M

1: Initialise an empty matrix Vt with shape (M,M).
2: for i← 1 to M do
3: for j ← i+ 1 to M do
4: Extract paired return series of market i and j, Xi and Xj , both with length T .
5: Remove the zero values from the series, resulting in X ′

i and X ′
j respectively.

6: if DDTW then
7: Calculate the local slope of each series using equation (2.2.1), and replace the

values in X ′
i and X ′

j with their derivatives.
8: end if
9: Normalise X ′

i and X ′
j to zero mean and unit variance.

10: Compute the optimal warping path ∆W{X ′
i, X

′
j} using the dynamic programming

algorithm in Table 2.1.
11: Calculate the differences ∆W{X ′

i, X
′
j}.

12: Determine the relative lag γ{X ′
i, X

′
j} by taking the mode or median of

∆W{X ′
i, X

′
j}.

13: Set Vt[i][j] = γ{X ′
i, X

′
j}

14: Set Vt[j][i] = −γ{X ′
i, X

′
j}

15: end for
16: end for
17: return Vt

23



Table 2.3 Algorithm for using shapeDTW and shapeDDTW to identify lead-lag relation-
ship

Require: Feature matrix Xt ∈ RT×M representing market returns observed at time t,
where T is the length of lookback days, and M is the number of markets.

Require: Length of the descriptor in ShapeDTW algorithm l, where l should be an odd
positive integer.

Ensure: Lead-lag metric matrix Vt ∈ RM×M

1: Initialise an empty matrix Vt with shape (M,M).
2: for i← 1 to M do
3: for j ← i+ 1 to M do
4: Extract paired return series of market i and j, Xi and Xj , both with length T .
5: Remove the zero values from the series, resulting in X ′

i and X ′
j respectively.

6: Convert X ′
i and X ′

j to multi-dimensional descriptor series Xi and Xj .
7: Pad the beginning and end of each series by repeating the first and last element

l−1
2 times.

8: At each original index i, extract the subsequence of length l centred at i.
9: Take the subsequence as a vector for describing the respective index.

10: if shapeDDTW then
11: Apply the formula of DDTW (2.2.1) to each dimension in each series respec-

tively to calculate the local shape of the descriptors and replace the original
value with the descriptors.

12: end if
13: Normalise each dimension in each series to have zero mean and unit variance.
14: Compute the optimal warping path ∆W{Xi,Xj} using a dynamic programming

algorithm in Table 2.1 by treating each dimension as one data point.
15: Calculate the differences ∆W{Xi,Xj}.
16: Determine the relative lag γ{Xi,Xj} by taking the mode or median of

∆W{Xi,Xj}.
17: Set Vt[i][j] = γ{Xi,Xj}
18: Set Vt[j][i] = −γ{Xi,Xj}
19: end for
20: end for
21: return Vt

24



Chapter 3

Graph Learning

In this chapter, we introduce the method used to convert the pairwise lead-lag relationship
into the ‘network momentum’. This network is expected to reflect the interconnected
relationship in the cross-sectional momentum between paired markets. Effectively, we
transform the lead-lag matrix, identified by the algorithms proposed in Sections 1.3 and
2.5, into an adjacency matrix with non-negative values which can be interpreted as weights
for propagating time series momentum from one market to its connected markets. We refer
to this matrix as the network momentum matrix.

We begin by defining prerequisite definitions and knowledge on graph learning in Sec-
tion 3.1, the model used for approximating the adjacency matrix in Section 3.2, and the
algorithm for applying it to the lead-lag matrix is summarised in Section 3.3.

3.1 Graph Learning Preliminaries

A graph, denoted as G(V,E), is defined as a combinatorial object on two sets: a set
of nodes V = {i}Ni=1 and a set of edges E = {(i, j)}i∼j . A node is usually a vector in
p−dimensional space for a data point with the form

x(i) =

x
(i)
1
...

x
(i)
p

 ,

and a graph with N nodes can therefore be summarised in the matrix form

XN×p =


x(1)

T

...

x(N)T

 .

It is important to study the underlying topology of the graph network, that is we want to
introduce some distance metrics to calculate the similarity or dissimilarity between nodes.
In fact, this is an important determinant of the dataset in the unsupervised learning
methods, the pairwise interaction is the insight that leads into the graph representation
of the data. Based on the distance matrix, we can determine which two nodes should be
linked and the edge between nodes i and j belongs to the set E.

The graph can be equivalently represented in an unweighted adjacency matrix AN×N ,
where

Aij =

{
1, if nodes i and j are connected

0, otherwise.

25



In the cases where each edge has an associated weight, we could construct the weighted
adjacency matrix by replacing 1 with wi,j ∈ R if nodes i and j are connected. In either
case, such an adjacency matrix is symmetric, that is A = AT .

The degree vector d of a graph is defined by

d = A1,

where A is the adjacency matrix of the graph, and 1 is a column vector of ones, with each
entry di of d representing the number of edges the corresponding node i has with other
nodes. The degree matrix D is then defined as

D = diag(d),

where diag(d) creates a diagonal matrix with the elements of d on its diagonal, and all
off-diagonal elements are zero.

The Combinatorial Graph Laplacian, in short the Laplacian matrix L, is defined as

L = D −A.

Next, we define the Dirichlet energy which is commonly used as a measure of smoothness
of a graph.

Definition 3.1.1 (Dirichlet energy). [33, page 5] Given a graph G on a matrix X ∈ RN×p

with node vectors denoted as x(i), x(j), and an adjacency matrix A ∈ RN×N , the Dirichlet
energy of X on G is defined as:

∥X∥2D,G =
1

2

∑
i,j

∥x(i) − x(j)∥22Ai,j .

The matrix X is called smooth on graph G if its Dirichlet energy is small. This
smoothness is typically achieved by only connecting nodes i and j when x(i) and x(j) are
similar, leading to sparsity in A. Fewer edges are connected, which intuitively reduces
the matrix’s Dirichlet energy. The underlying concept and further implications of this
sparsity are discussed in Section 3.2. The smoothness ultimately measures the extent to
which the matrix X varies in response to the assumptions about variability represented
by the weights A. This can also be considered a cost function, and in order to achieve a
smooth graph, two nodes should only be connected if they have similar values. This can
be further written as

∥X∥2D,G = tr(XTLX), (3.1.1)

where we present the derivation in Appendix A.2.

3.2 From Data to Structure

A well-studied topic in graph learning involves learning a graph G(V,E) with |V | = N
nodes from a noisy dataset containing N observations, each represented by a p-dimensional
vector x(i). The objective is to ensure that the observations inX exhibit smoothness on the
graph G with adjacency matrix A, as indicated by a small Dirichlet energy in Definition
3.1.1. One rationale behind this objective is that smooth signals admit low pass band-
limited properties [46, page 25], and the graph learning task can thus be conceptualised
as finding efficient information processing transforms for graph signals. For a formal
formulation and detailed interpretation of graph smoothness, we direct interested readers
to [46].

One straightforward approach to detecting pairwise similarity among nodes involves
calculating a coherence measure, such as correlation, Jaccard coefficient, or Euclidean

26



distance, and then manually setting a threshold to filter edges based on this measure. Al-
ternatively, geometric information can be used, such as connecting nodes within a certain
distance ϵ, or mathematically, within the ϵ-ball. Techniques like k-nearest neighbourhood
or the minimum spanning tree have also been explored. A significant limitation of these
methods, as highlighted in [46, page 22], is the absence of a validation framework, making
it challenging to verify whether the resulting graph accurately reflects the underlying struc-
ture. Moreover, the adjacency matrix A may vary significantly with minor adjustments
in parameters like ϵ.

To address these challenges, one strategy is to explore the entire space of potential
candidate Laplacian matrices L, defined as

L = {L ∈ RN×N : Li,j = Lj,i ≤ 0 for i ̸= j, and Li,i = −
∑
j ̸=i

Li,j}.

As suggested in [33], it is more intuitive and also equivalent to search for a valid weighted
adjacency matrix A from the space

A = {A ∈ RN×N
+ : A = AT , diag(A) = 0}.

Pursuing our goal of minimising Dirichlet energy, a practical approach is to tackle the
optimisation problem:

minimiseL∈L tr(XTLX). (3.2.1)

However, as mentioned in [34, page 922], problem (3.2.1) would naturally lead to a very
sparse graph, where each node is connected to only a few other nodes compared to the
total number of nodes in the graph. To see this, let us define a pairwise distance matrix
Z ∈ RN×N

+ , and

Zi,j = ∥x(i) − x(j)∥22.

Therefore the Dirichlet energy in Definition 3.1.1 can be equivalently expressed as

∥X∥2D,G =
1

2

∑
i,j

Zi,jAi,j =
1

2
∥A⊙ Z∥1, (3.2.2)

where ⊙ denotes the element-wise product. Formula (3.2.2) shows that the Dirichlet
energy is a weighted ℓ1 norm of the adjacency matrix A, and minimising it in problem
(3.2.1) means penalising edges connecting distant rows of X. The ideal graph learning
model should allow us to control the sparsity of the graph. It is important to note that
the problem (3.2.1) can also result in isolated nodes—nodes not connected to any others
in the graph. If one wants a fully connected graph where every node links to at least one
neighbour, such isolation should be avoided.

To fulfil the two desiderata mentioned above, an alternative approach is proposed in
[34, page 923] to learn the adjacency matrix and, consequently, the Laplacian matrix by
solving an optimisation problem.

Definition 3.2.1 (Graph learning model). [34, Page 923] Given a smooth matrix X ∈
RN×p on a graph G, and sparsity parameters α > 0 and β ≥ 0, can be found by solving
the following convex optimisation problem:

minimiseA∈A tr(XT (D −A)X)− α1T log(A1) + β∥A∥2F
such that Ai,j = Aj,i, Ai,j ≥ 0 ∀i ̸= j, diag(A) = 0.

Here, a logarithmic penalty term is used to prevent isolated nodes so that every node
has at least one connected neighbour, and the Frobenius norm is used to control sparsity,

27



unlike the ℓ1 norm, it only penalises the edge with large magnitude without dispropor-
tionately affecting smaller edges.

An interesting result in [34] says that changing α only changes the scale of the solution,
not the sparsity pattern. To formulate this finding, let us define the following proposition.

Proposition 3.2.2. [34, Proposition 2, page 923] Let F (X,α, β) denote the solution of
our model 3.2.1 for input signal X and parameters α and β. Then the following property
holds for any γ > 0:

F (X,α, β) = αF (X, 1, αβ).

Proof. See [34, Proposition 2, page 923].

This proposition says that for two distinct values, α1 > 0 and α2 > 0, if we select β1
and β2 such that the product α1β1 = α2β2, then the resulting adjacency matrices A1 and
A2 will be related by A1 = α1

α2
A2. We illustrate this relationship in Figure 3.1 using two

sets of hyperparameters: (α, β) = (1, 1) and (10, 0.1) respectively. The sidebars indicate
that the range changes from 0.12 in Figure 3.1(a) to 1.2 in Figure 3.1(b); however, the
color grids in both figures remain consistent. This demonstrates that modifying α and β
while maintaining their product constant affects only the magnitude of the edges, not the
sparsity of the graph.

(a) (b)

Figure 3.1: Illustration of changing α while keeping αβ constant only affects the scale of
the graph learning model: (α, β) = (1,1) for (a) and (10,0.1) for (b).

In general, as the parameters α and β increase, a denser graph is obtained. This
phenomenon is shown in Figure 3.2, where α and β gradually increase from 0.01 to 10,
the colour grids become denser from Figure 3.2(a) to Figure 3.2(c).

In addition, the number of edges in the graph, for varying combinations of α and β,
can be calculated by

E =
1

2

N∑
i=1

di,

where di represents the degree of the i−th node. The results, as shown in Figure 3.3,
confirm that as α and β increase from 0.1 to 100, the number of edges exceeds 400.

28



(a) (b) (c)

Figure 3.2: Illustration of larger values of α and β leading to a denser graph.

Figure 3.3: Variations in the number of edges for different α and β settings.

29



3.3 Computation of Network MomentumMatrix Using Graph
Learning Model

Given the lead-lag matrix Vt at trading time t, we replace the signal matrix X in the
graph learning model defined in 3.2.1 with Vt to obtain an adjacency matrix with non-
negative edge weights and no isolated markets. The edge values reflect the interconnected
relationship of the leadingness of the markets.

It is suggested in [56] that to mitigate the effects of scale differences in constructing
network momentum—arising from the variance in the number of connections some nodes
have, with some connected to many other assets and others to only a few—a graph nor-
malisation should be applied to the adjacency matrix At before using it to aggregate time
series momentum. This normalisation is defined as follows:

Ãt = D
−1/2
t AtD

−1/2
t (3.3.1)

The empirical analysis in [56] suggests that combining S adjacency matrices obtained
from different lead-lag matrices Vt based on historical price data with different lookback
windows can improve performance. Therefore, we define the ensemble adjacency matrix
Āt as:

Āt =
1

S

S∑
s=1

A
(s)
t (3.3.2)

and will compare the strategy performance between using and not using the ensemble
mechanism.

We now summarise the algorithm for calculating the network momentum matrix in
Table 3.1. In practice, the optimisation problem in the graph learning model 3.2.1 is
solved numerically with MOSEK and Python library CVXPY [18].

Table 3.1 Algorithm for Computing the Network Momentum Matrix Using Graph Learn-
ing

Require: Series of lead-lag matrices {Vs
t ∈ RM×M}Ss=1 observed at trading time t, where

M is the number of markets and S is the number of historical price data inputs, S ≥ 1.
Require: Hyperparameters α > 0 and β ≥ 0 for sparsity control.
Ensure: Normalised network momentum matrix Ãt ∈ RM×M .
1: Initialise an ensemble adjacency matrix Āt with zeros of shape (M,M).
2: for s = 1 to S do
3: Replace the signal matrix X in the graph learning model defined in 3.2.1 with Vs

t

to obtain the adjacency matrix As
t .

4: Update the ensemble adjacency matrix according to (3.3.2): Āt ← Āt +
1
SA

s
t .

5: end for
6: Normalise Āt using the graph normalisation formula (3.3.1) to obtain Ãt.
7: return Ãt

Note: If S = 1, this algorithm is equivalent to not using the graph ensemble method, thereby
directly applying normalisation to the single obtained adjacency matrix.

30



Chapter 4

Experiments

4.1 Data

Our raw dataset contains the daily mid-price of the bid and ask prices at the close of 28
futures contracts. The contracts primarily come from the commodity sectors—agriculture,
energy, and metals—and include some equity indices. The model training spans from
June 2002 to June 2024, with strategy performance evaluated on out-of-sample data from
January 2005 to June 2024. However, not every contract feature has data on each day. A
complete list of the markets included in our portfolio can be found in Appendix B.1.

To evaluate the robustness and generalisability of our strategy across diverse out-of-
sample price data and portfolios, we generate 100 sets of bootstrapped price data from
the original dataset. The set of synthetic data is used for additional backtesting. We refer
interested readers to Appendix C for motivations behind this resampling method, as well
as a detailed description and the setup of the bootstrapping algorithm.

4.2 Set Up for Time Series Momentum Features

In this section, we present the construction of the time series momentum features. We
begin by introducing two preliminary definitions.

Definition 4.2.1 (Exponentially Weighted Moving Average). [24, Section 6.4.3.1] Let
{xt}Tt=1 be a sequence of real-valued observations, and let N ∈ Z+ such that N < T .
The exponentially weighted moving average (EWMA) with a span of N days, {µt}Tt=1, is
defined by the recursive relation:

µt := αxt + (1− α)µt−1

where µ0 is the initial condition, typically set to x1. The smoothing factor α is defined as
α := 2

N+1 , and for clarity in different contexts, the EWMA at time t for a specific α is
denoted by µα

t .

Definition 4.2.2 (Exponentially Weighted Moving Standard Deviation). [56] Let {xt}Tt=1

be a sequence of real-valued observations, and let N ∈ Z+ such that N < T . The
exponentially weighted moving standard deviation (EWMstd) with a span of N days at
time t, denoted by σt, is defined as:

σt :=

√∑t
τ=0wτ (xτ − µτ )2∑t

τ=0wτ

,

where the smoothing factor α is defined as α := 2
N+1 , the exponentially decaying weight

at time τ , wτ , is defined as wτ := (1− α)τ , and µτ is the EWMA in Definition 4.2.1.

31



Now we introduce a classical individual momentum feature based on price information.
For each market m and time index t = 1, . . . , T , we denote the price for market m at time
t as Pt,m ∈ R, and therefore the price time series for market m is denoted as

Pm := (P1,m, P2,m, . . . , PT,m) ∈ RT .

We construct P ∈ RT×M , representing a matrix of M market prices across a time horizon
of T , where each vector is a price time series for a market.

Definition 4.2.3 (Price delta). Given a market m, denote its price time series from time
t = 1 to t = T as (P1,m, P2,m, . . . , PT,m) ∈ RT , the price delta for it at time t, ∆t,m, is
defined as the first difference in its price series,

∆t,m := Pt,m − Pt−1,m.

Then, the price delta time series for market m is denoted as

∆m := (∆1,m, . . . ,∆T,m),

and the matrix of market price deltas is defined as ∆ ∈ RT×M .

Considering that each market exhibits different levels of price volatility, we choose to
normalise the price deltas of each market to have unit volatility. This step aligns with the
extant literature [56, 7] in their construction of time series momentum features.

Definition 4.2.4 (Volatility-scaled price delta). Given a market m, denote its price delta
time series from time t = 1 to t = T as (∆1,m, . . . ,∆T,m), let the exponential weighted
moving standard deviation at time t over a span of 22 days denoted as σ22

t,m following
Definition 4.2.2. The volatility scaled price deltas for market m at time t is defined as

∆̃t,m :=
∆t,m

σ22
t,m

.

The time series of volatility-scaled price delta for market m is denoted as

∆̃m = (∆̃1,m, . . . , ∆̃T,m),

and the matrix of all market price deltas is defined as ∆̃ ∈ RT×M .

Definition 4.2.5 (Volatility-scaled price). Given a market m, denote its volatility-scaled
price delta time series from time t = 1 to t = T as (∆̃1,m, . . . , ∆̃T,m), the volatility-scaled
price for market m at time t is defined as

P̃t,m :=

t∑
i=0

∆̃i,m.

The time series of volatility-scaled price for market m is denoted as

P̃ := (P̃1,m, . . . , P̃T,m),

and the matrix of all market price deltas is defined as P̃ ∈ RT×M .

Now, we are ready to define the time series momentum features, which we also refer
to as oscillators or individual momentum features interchangeably.

32



Definition 4.2.6 (Time series momentum features). Given a volatility-scaled price time
series for market m from time t = 1 to t = T , P̃m = (P̃1,m, . . . , P̃T,m). Given a speed
parameter k ∈ Z+, we define two smoothing factors as,

αfast(k) :=
1

2k
, αslow(k) :=

1

3× 2k
.

Following Definition 4.2.1, we define one exponential weighted moving average of the
volatility-scaled price at time t with fast decay and one with slow decay by using the
αfast(k) and αslow(k) as a smoothing factor respectively as

µ
αfast(k)
t,m , µ

αslow(k)
t,m .

The time series momentum feature with speed k for market m at time t is defined as

Rk
t,m = µ

αfast(k)
t,m − µ

αslow(k)
t,m .

The underlying intuition is that the crossover of exponentially weighted moving aver-
ages can provide insight into recent market trends. If the short-term average price crosses
above the long-term average price from below, it indicates an expected increase in price,
suggesting a potential upward trend and, conversely, a downward trend if it crosses below.
Also, for smaller speed parameters k, the time series momentum feature contains informa-
tion for short-term recent trends. Conversely, time series momentum features with larger
speed parameter k contain long-term trend information. To illustrate this concept, Figure
4.1 demonstrates how the fastest oscillator with speed k = 1, captures short-term up and
down trends in a more volatile manner. In contrast, a slower oscillator with speed k = 6
ultimately exhibits the long-term downtrend.

Figure 4.1: Comparison of time series momentum (oscillators) at different speeds for S&P
500 E-mini Futures from July 2022 to June 2024. The fast oscillator (k = 1) captures
short-term volatility, while the slow oscillator (k = 6) highlights the long-term trend.

33



Throughout this paper, we choose k = {1, 2, 3, 4, 5, 6} to create 6 time series momentum
features at different speeds to identify the auto-correlation in each market. This is in line
with extant literature [7, 56, 40].

4.3 Set Up for Network Momentum Features

In this section, we introduce the setup for the network momentum features. At each
trading day t, given a lookback window of δ days, the first step of constructing network
momentum features is to use one of the lead-lag detection algorithms to construct a lead-
lag matrix Vt by using the volatility-scaled prices deltas ∆̃t ∈ Rδ×M as input features.
Each vector in ∆̃t is the volatility-scaled price delta for a market across the past δ days
from day t. The candidate algorithms include the Lévy-area algorithm in Table 1.1, one-
dimensional dynamic time warping algorithms in Table 2.2, and the multi-dimensional
dynamic time warping algorithms in Table 2.3.

The second step is to apply the graph learning algorithm in Table 3.1 by using the
lead-lag matrix Vt as an input feature to obtain the normalised adjacency matrix Ãt.

We are now ready to define the network momentum feature.

Definition 4.3.1 (Network momentum feature). Given a time series momentum feature
with speed k for market m at time t, Rk

t,m, and the normalised adjacency matrix Ãt from
fitting a lead-lag detection model and the graph learning model to the volatility-scaled
price deltas ∆̃t, the network momentum feature with speed k for market m at time t is
defined as

R̃k
t,m :=

∑
n∈Nt(m)

Ãm,nR
k
t,n,

where Nt(m) denotes the set of markets connected to market m such that Ãm,n ̸= 0 and
Rk

t,n is the time series momentum feature with the same speed for market n at time t.

Considering that the graph sparsity is significantly influenced by the two hyperparam-
eters α and β in the graph learning model 3.2.1, which consequently affect the number of
connections each market can establish, we conduct a discrete grid search over the combi-
nations of:

α = {0.001, 0.01, 0.1, 1, 10, 100}, β = {0.001, 0.01, 0.1, 1, 10, 100},

on in-sample data to determine their optimal combination for achieving the highest net
Sharpe ratio.

We choose δ = 132, so the lead-lag matrix is constructed by considering each market’s
past half year’s daily performances. In addition, to enhance the robustness of our model,
we consider employing an ensemble method that fits multiple lead-lag matrices to ∆̃t

across a range of lookback windows. Specifically, we use the following series of lookback
windows:

δ = {22, 44, 66, 88, 110, 132}.

The multiple lead-lag matrices are summarised into a series, which serves as a new input
to the graph learning algorithm detailed in Table 3.1. According to [56], employing an
ensemble method helps reduce the variance of the learned edge weights, improving the
strategy’s performance and reducing turnover.

4.4 Portfolio Construction

In contrast to existing literature [72, 63, 52] in which they construct discrete and binary
position signals of ±1 based on the sign of momentum features, we introduce an alternative

34



approach in this section. Our approach generates a continuous position signal, which has
been shown to preserve convexity and positive skewness in returns in [45].

We introduce a scaling function proposed in [45], which we refer to as the response
function.

Definition 4.4.1 (Response function). The response function r(x) : R → R, parame-
terised by a positive constant λ > 0, is defined as follows:

r(x) := cλ · x · e−λ2x2/2,

where the normalisation constant cλ is given by:

cλ = (1 + 2λ2)3/4.

We pass the obtained momentum signals through the scaling function r(x) to temper
excessively high momentum to obtain a moderated momentum signal, theoretically reduc-
ing reversal risks by reducing the signal at high trend strengths. The function peaks at
x = ±λ−1, setting the bounds for maximum positional exposure. Such scaling reduces
the volatility of the momentum features, and this is compensated by the normalisation
constant cλ; we refer interested readers to [45] for details on the property of the response
function. We fix the parameter λ =

√
2.

Definition 4.4.2 (Position signal). Given a series of momentum features with different
speeds for market m at time t, (R1

t,m, . . . , RK
t,m), the position signal for market m at time

t is defined as

Xt,m :=

(
1

M

1

K

K∑
k=1

r(Rk
t,m)

)
· (Ft,m · Et,m · σ22

t,m)−1 · Γ · σtgt√
252

,

where

• Ft,m ∈ R denotes the number of units traded in each futures contract for market m
on day t.

• Et,m ∈ R denotes the exchange rate between the currency in which market m trades
and the USD on day t.

• σ22
t,m is the exponential weighted moving standard deviation of the price delta of

market m at time t over a span of 22 days.

• Γ ∈ R denotes the total capital invested in the strategy, which is always referred to
as the asset under management.

• σtgt ∈ R denotes the annual target portfolio volatility. We fix it at 10%.

• r(·) is the response function in Definition 4.4.1.

In this construction, we take equal contributions from oscillators with different speeds
and markets in our portfolio, accounted for by the scalars 1

M and 1
K respectively. The

term (Ft,m · Et,m · σ22
t,m)−1 is the number of contracts for market m on day t required to

achieve 1 USD of risk. The last part in the above definition,
(
Γ · σtgt√

252

)
, is used to scale

our position to realise the daily USD risk amount that our portfolio is targeting.
The position signal for network momentum strategies for market m at time t, X̃t,m, is

defined similarly by replacing the momentum features in Definition 4.4.2 with the network
momentum features in Definition 4.3.1.

35



The daily gross return from market m generated by the position signal Xt,m for time
series momentum features is calculated as

rt+2,m := Xt,m ·∆t+2,m · Ft+2,m · Et+2,m.

The daily gross return for network momentum features r̃t+2,m is calculated similarly by
replacing Xt,m with X̃t,m.

We notice that returns from the position signalXt,m can only be realised on day t+2, in
contrast to approaches in [56, 13, 72] that attribute returns to day t+1. This adjustment is
necessary because the position signal for day t is generated using the adjacency matrix Ãt,
which incorporates the closing price of day t; the momentum features defined in Definitions
4.2.6 and 4.3.1 also utilise the closing price of day t for calculating the exponential weighted
moving average. Consequently, trades can only be executed at the start of day t + 1,
allowing positions to be established by the end of day t+1 and returns to be realised from
price changes occurring from day t + 1 to day t + 2. This conservative approach reflects
the strategy’s profitability more accurately in a realistic trading environment.

Given the spread between the bid-ask at closing on day t for market m as st,m, the
transaction cost for establishing the position Xt,m on day t+ 1 is calculated as

ct+1,m := |Xt+1,m −Xt,m| ·
st+1,m

2
· Ft+1,m · Et+1,m.

Here we estimate the cost for executing the trade by half of the spread st,m, and this
execution happens during day t+1. We denote the transaction cost for network momentum
features as c̃t+1,m by replacing Xt,m with X̃t,m.

In the end, we can calculate the net return for market m on time t by

r′t,m = rt,m − ct,m.

This formulation means that the net return generated by market m on day t consists of the
gross return realised from position Xt−2,m combined with the transaction cost incurred for
establishing the new position generated by Xt−1,m. The net return for network momentum
features is denoted as r̃′t,m by replacing Xt,m with X̃t,m.

We utilise a uniform methodology for portfolio construction and returns calculation
across a series of candidate network momentum models, each employing different lead-lag
detection algorithms. The models and their configurations are defined as follows:

1. MACD uses the time series momentum signal Rk
m, for k from 1 to 6, as defined

in Definition 4.2.6, to calculate the position signal in Definition 4.4.2. This model
serves as our benchmark.

2. NMM-DTW and NMM-DTW-E:

• At each training time t, NMM-DTW constructs the lead-lag matrix Vt using
the classical dynamic time warping algorithm from Table 2.2 with a δ = 132
lookback window. This matrix inputs into the graph learning model and com-
putes the normalised adjacency matrix Ãt following the algorithm in Table 3.1.
The network momentum features derived from Ãt following Definition 4.3.1 are
then used to calculate the position signal (Definition 4.4.2).

• NMM-DTW-E employs ensemble methods by fitting the DTW algorithm to
varying lookback windows δ = {22, 44, 66, 88, 110, 132}. The resulting series of
lead-lag matrices serves as the new input to the graph learning model. Subse-
quent steps follow the NMM-DTW process.

3. NMM-DDTW and NMM-DDTW-E:

36



• NMM-DDTW uses the derivative dynamic time warping algorithm from Ta-
ble 2.2. Subsequent steps follow the NMM-DTW process.

• NMM-DDTW-E employs the ensemble methods by constructing the lead-lag
matrices with DDTW algorithm with lookback δ = {22, 44, 66, 88, 110, 132}.
Subsequent steps follow the NMM-DTW-E process.

4. NMM-SDTW and NMM-SDTW-E:

• NMM-SDTW applies the shape dynamic time warping algorithm with the de-
scriptor length l = 11 from Table 2.3 to construct the lead-lag matrix with a
lookback window of δ = 132. Subsequent steps follow the NMM-DTW process.

• NMM-SDTW-E employs the ensemble methods with shape dynamic time warp-
ing with lookback windows δ = {22, 44, 66, 88, 110, 132}. Subsequent steps fol-
low the NMM-DTW-E process.

5. NMM-SDDTW and NMM-SDDTW-E :

• NMM-SDDTW applies the shape dynamic time warping derivative algorithms
with the descriptor length l = 11 from Table 2.3 to construct the lead-lag matrix
with a lookback window of δ = 132. Subsequent steps follow the NMM-DTW
process.

• NMM-SDTW-E employs the ensemble methods with lookback windows δ =
{22, 44, 66, 88, 110, 132}. Subsequent steps follow the NMM-DTW-E process.

6. NMM-LEVY and NMM-LEVY-E:

• NMM-LEVY applies the Lévy area algorithm in Table 1.1 to construct the
lead-lag matrix with lookback window δ = 132. Subsequent steps follow the
NMM-DTW process.

• NMM-LEVY-E employs the ensemble methods with Lévy area algrotim with
lookback windows δ = {22, 44, 66, 88, 110, 132}. Subsequent steps follow the
NMM-DTW-E process.

4.5 Performance Analysis

4.5.1 Portfolio Performance Analysis

In evaluating model performance, we consider the following three aspects, following the
convention established in [56]:

1. Profitability: This includes annualised expected gross return, annualised expected
net return, and hit rate – defined as the percentage of days with positive returns
during the out-of-sample periods.

2. Risk: This includes volatility, downside deviation, and maximum drawdown to
understand the risk exposure of our models. While comparing the volatility and
downside deviation across models is unnecessary due to each model’s positions be-
ing scaled to a target volatility of 10% (Definition 4.4.2), we include them in our
summary for completeness, as they remain relevant for calculating the Sharpe ratio
and Sortino ratio.

3. Overall and Other Performance: This includes transaction costs, skewness of
monthly returns, Sharpe ratio (expected return / volatility), Sortino ratio (expected
return / downside deviation), Calmar ratio (expected return / maximum drawdown),

and the ratio of average profits to average losses
(
Avg. P
Avg. L

)
.

37



We present the performance of the benchmark MACD model alongside the network
momentum models. Our primary focus is on their average performance across 100 boot-
strapped datasets. We investigate whether the network momentum models can achieve a
statistically significant higher net Sharpe ratio compared to the benchmark MACD model.
We also present the models’ performance on real-world price data from the out-of-sample
period of 2005 to 2024 to illustrate their profitability in a historical context.

Table 4.1: Performance Metrics for Various Signals

Gross Transaction Net vol. Sharpe downside MDD Sortino Calmar Skewness hit rate Avg. P
Return Return deviation Avg. L

Panel A: Average Performance on 100 Bootstrapped Price Data

MACD 0.057 0.027 0.030 0.107 0.277 0.058 0.239 0.515 0.039 0.395 0.516 1.158
NMM-DTW 0.064 0.029 0.034 0.108 0.315 0.058 0.261 0.592 0.041 0.441 0.515 1.200
NMM-DTW-E 0.063 0.023 0.039 0.109 0.353 0.058 0.259 0.669 0.046 0.457 0.516 1.226
NMM-DDTW 0.064 0.029 0.034 0.109 0.315 0.059 0.256 0.590 0.042 0.450 0.514 1.203
NMM-DDTW-E 0.063 0.023 0.039 0.110 0.357 0.058 0.250 0.684 0.048 0.486 0.514 1.243
NMM-SDTW 0.064 0.028 0.035 0.110 0.319 0.058 0.280 0.606 0.041 0.458 0.508 1.235
NMM-SDTW-E 0.062 0.022 0.039 0.109 0.355 0.058 0.255 0.677 0.047 0.473 0.512 1.250
NMM-SDDTW 0.062 0.029 0.032 0.109 0.296 0.057 0.269 0.568 0.039 0.507 0.504 1.234
NMM-SDDTW-E 0.062 0.023 0.038 0.110 0.350 0.057 0.257 0.679 0.046 0.509 0.510 1.255
NMM-LEVY 0.064 0.027 0.036 0.109 0.336 0.059 0.230 0.624 0.050 0.419 0.517 1.206
NMM-LEVY-E 0.060 0.024 0.035 0.109 0.323 0.058 0.240 0.610 0.045 0.454 0.516 1.202

Panel B: Performance on Real Price Data

MACD 0.051 0.026 0.024 0.104 0.233 0.053 0.227 0.454 0.031 0.645 0.526 1.080
NMM-DTW 0.054 0.028 0.026 0.106 0.243 0.056 0.274 0.457 0.027 0.630 0.513 1.147
NMM-DTW-E 0.062 0.023 0.039 0.106 0.364 0.056 0.203 0.694 0.055 0.683 0.509 1.285
NMM-DDTW 0.056 0.028 0.027 0.107 0.257 0.053 0.247 0.517 0.032 0.759 0.487 1.282
NMM-DDTW-E 0.055 0.022 0.032 0.107 0.298 0.055 0.244 0.577 0.038 0.719 0.513 1.198
NMM-SDTW 0.065 0.027 0.037 0.106 0.351 0.054 0.163 0.689 0.066 0.704 0.513 1.249
NMM-SDTW-E 0.055 0.022 0.033 0.107 0.307 0.055 0.222 0.600 0.043 0.691 0.513 1.205
NMM-SDDTW 0.049 0.028 0.020 0.108 0.189 0.058 0.289 0.354 0.020 0.589 0.470 1.303
NMM-SDDTW-E 0.057 0.022 0.035 0.106 0.328 0.054 0.208 0.643 0.048 0.720 0.509 1.249
NMM-LEVY 0.064 0.026 0.038 0.106 0.356 0.054 0.204 0.702 0.053 0.675 0.517 1.228
NMM-LEVY-E 0.055 0.023 0.032 0.106 0.300 0.054 0.208 0.586 0.044 0.673 0.513 1.198

a Best performance is in bold. b No comparison for volatility and downside deviation since every portfolio is scaled to the same target annualised volatility
in 4.4.2 for direct comparison of the net Sharpe.

In Panel A of Table 4.1, we report the average performance of the portfolio constructed
from various momentum models on bootstrapped price data. In Panel B, we report the
performance of these models on real price data from 2005 to 2024.

Based on the metrics in Panel A, all network momentum models (NMM) exhibit higher
expected gross returns than the benchmark MACD model, with the NMM-DDTW model
achieving the highest at 0.064, compared to MACD’s 0.057. Typically, NMM models incur
higher transaction costs than MACD, reflecting their sensitivity to market movements and
increased daily turnover. However, ensemble methods reduce transaction costs, with DTW
variations further decreasing them to 0.022, approximately 19% lower than MACD. The
NMM-LEVY model achieves an 11% reduction in costs. As a result, all NMM models
demonstrate better performance over MACD in terms of expected net returns, net Sharpe
ratios, and Sortino ratios. Notably, NMM-DDTW-E achieves a Sharpe ratio of 0.357 and
a Sortino ratio of 0.684, marking increases of 29% and 33%, respectively, over MACD.

The ability to effectively follow trends is crucial for trading strategies. NMM-SDDTW-
E stands out with the highest Avg. Profit

Avg. Loss ratio among all NMM models. It also exhibits
the highest positive skewness, suggesting that although it may frequently incur small
losses, the gains it captures are significant. Meanwhile, NMM-LEVY demonstrates the
smallest MDD and highest hit rate, suggesting it is particularly effective at identifying
trend reversals and capturing new opportunities for positive returns, although it achieves
smaller gains per trade, as indicated by its slightly lower skewness and the ratio between
average profit and average loss.

Panel B of Table 4.1 demonstrates that NMM models outperform the benchmark
MACD model on real market data during the out-of-sample period from 2005 to 2024.
NMM-DTW-E achieves the highest net Sharpe ratio at 0.364, compared to the bench-
mark’s 0.233, showing better risk-adjusted returns. NMM-DDTW exhibits the most pos-

38



itive skew in returns at 0.759, surpassing the benchmark’s 0.645. Although MACD has
the highest hit rate, indicating more days with positive PnL, it suffers from the lowest
Avg. Profit
Avg. Loss ratio, suggesting that its losses are larger than those of NMM models. However,
we reiterate that the portfolio included in Appendix B.1 is somewhat random, and the
models’ performance may not be reproducible for other portfolios. Therefore, we empha-
sise that our assessment of the models is primarily based on their performance on the
bootstrapped data.

We examine the distribution of the net Sharpe ratios for all models. Figure 4.2 presents
the distribution of Sharpe ratios on the bootstrapped price datasets along with their
interquartile ranges. The net Sharpe ratios achieved by each model on the actual price
data are marked by red crosses on the distribution plots. The box plots demonstrate
that the median net Sharpe ratios for all network momentum models are higher than
those for the MACD model, and the ensemble methods further enhance performance. The
positioning of the red crosses, which for all models except NMM-DDTW-E and NMM-
SDTW-D fall within the interquartile ranges, suggests that the bootstrapped price data
provides a valid representation of the real price data and is suitable for inference.

Figure 4.2: Distribution of net Sharpe Ratios for the Benchmark Model (MACD) and
Network Momentum Models on bootstrapped datasets, with net Sharpe achieved on real
price data indicated by red crosses

We have two primary objectives as follows:

1. To determine whether the net Sharpe ratio achieved by the network momentum
model is significantly higher than that achieved by the MACD model when both are
used to construct portfolios from the same price data set. We employ a one-sided
Wilcoxon signed-rank test [68], a matched-pair test, to assess if the difference in
net Sharpe ratios (network momentum model minus MACD model) is significantly
greater than 0.

2. To examine whether the distributions of the net Sharpe ratios from the MACD

39



model and a network momentum model are statistically different without considering
the matched-pair nature of the data. We use the one-sided Kolmogorov-Smirnov
test [9] to determine if the cumulative distribution function of the MACD model’s net
Sharpe ratios is stochastically greater than that of the network momentum model,
it indicates that the MACD model generally yields lower Sharpe ratios than the
network momentum model.

We report the p-values for the two tests in Table 4.2. For the Wilcoxon signed-rank test,
all network momentum models achieve significant p-values (p < 0.05). This demonstrates
that, when applied to the same random set of market price data, the network momentum
models significantly outperform the benchmark MACD model, which relies only on time-
series momentum in terms of net Sharpe ratio. For the Kolmogorov-Smirnov test, aside
from NMM-SDDTW, all other NMM models achieve significant p-values (p < 0.05). This
indicates that the cumulative distribution function of the net Sharpe ratios for the network
momentum models is stochastically smaller than that of the MACD model, suggesting that
the network momentum models generally achieve higher Sharpe ratios than the MACD
model. These two tests collectively underscore the enhanced performance capability of
the network momentum feature.

Our results demonstrate the robustness and reliability of the network momentum
spillover identified by the proposed algorithms. These findings suggest that under both uni-
form and varied market conditions, the NMM models consistently outperform the bench-
mark MACD model with statistically confidence.

Table 4.2: P-Values for Sharpe Ratio Comparisons Against Benchmark

NMM-DTW NMM-DTW-E NMM-DDTW NMM-DDTW-E NMM-SDTW NMM-SDTW-E NMM-SDDTW NMM-SDDTW-E NMM-LEVY NMM-LEVY-E

Wilcoxon signed-rank test 0 0 0 0 0 0 0.005 0 0 0
Kolmogorov–Smirnov test 0.018 0 0.012 0 0.005 0 0.077 0 0 0.002

4.5.2 Long/Short Performance Analysis

In this section, We focus on the model’s ability to identify and respond to upward and
downward market trends by examining performance in both long and short trading posi-
tions. The returns from these positions are analysed separately, with the metrics for short
and long positions detailed in Tables 4.3 and 4.4, respectively.

Based on the data in Panel A of Table 4.3, the benchmark model MACD averages a
loss in short positions on the bootstrapped dataset, with a net Sharpe of −0.396 and the
highest MDD across both bootstrapped and real price data. In contrast, NMM models
improve performance in short positions by reducing losses. Specifically, NMM-DDTW-
E enhances performance over MACD by reducing losses by 35% and increasing the net
Sharpe ratio by 24% on bootstrapped data. It also achieves the highest Sortino and Calmar
ratios, indicating effective downside risk and MDD control. Despite MACD’s higher hit
rate in short positions, its skewness score of 0.804 is lower than that of NMM-DDTW-E,
which scores 1.155, and other NMM models. This indicates that NMM models not only
result in smaller losses but also achieve more substantial occasional gains.

In Panel B of Table 4.3, NMM models continue to demonstrate effective loss control
in short positions on the real price data. NMM-SDTW-E and NMM-DTW-E notably im-
prove net Sharpe and reduce MDD to the greatest extent compared to the benchmark, re-
spectively, with NMM-DDTW-E again achieving the most positively skewed performance,
mirroring its success on bootstrapped datasets.

In the long direction, as detailed in Table 4.4, MACD demonstrates strong profitability
with a net Sharpe ratio of 0.559 with the highest hit rate at 0.554. Among the network
momentum models, NMM-LEVY outperforms with a net Sharpe of 0.587, a 6.1% increase
over the benchmark. It also reduces the MDD to 0.168, indicating superior loss control.

40



Table 4.3: Performance Metrics for Various Signals in Short Direction Only

Gross Transaction Net vol. Sharpe downside MDD Sortino Calmar Skewness hit rate Avg. P
Return Return deviation Avg. L

Panel A: Average Performance on 100 Bootstrapped Price Data

MACD -0.011 0.014 -0.026 0.066 -0.396 0.040 0.635 -0.638 -0.012 0.804 0.367 1.245
NMM-DTW -0.005 0.014 -0.020 0.062 -0.329 0.039 0.546 -0.513 -0.010 0.885 0.351 1.379
NMM-DTW-E -0.006 0.012 -0.018 0.058 -0.317 0.037 0.519 -0.490 -0.010 1.007 0.342 1.427
NMM-DDTW -0.006 0.014 -0.021 0.062 -0.340 0.038 0.553 -0.541 -0.011 1.042 0.349 1.385
NMM-DDTW-E -0.005 0.011 -0.017 0.059 -0.300 0.037 0.508 -0.467 -0.010 1.155 0.341 1.449
NMM-SDTW -0.007 0.014 -0.022 0.061 -0.364 0.038 0.562 -0.569 -0.011 0.996 0.348 1.358
NMM-SDTW-E -0.006 0.011 -0.017 0.058 -0.310 0.037 0.500 -0.474 -0.010 1.035 0.342 1.439
NMM-SDDTW -0.007 0.014 -0.021 0.061 -0.351 0.039 0.555 -0.544 -0.011 0.877 0.344 1.395
NMM-SDDTW-E -0.007 0.011 -0.018 0.058 -0.317 0.037 0.510 -0.487 -0.010 1.130 0.333 1.468
NMM-LEVY -0.008 0.014 -0.022 0.062 -0.363 0.039 0.573 -0.576 -0.011 0.814 0.357 1.327
NMM-LEVY-E -0.010 0.012 -0.022 0.060 -0.374 0.038 0.575 -0.586 -0.011 0.861 0.341 1.387

Panel B: Performance on Real Price Data

MACD -0.013 0.014 -0.028 0.070 -0.396 0.043 0.584 -0.645 -0.014 0.953 0.376 1.189
NMM-DTW -0.007 0.014 -0.022 0.066 -0.327 0.040 0.525 -0.536 -0.012 1.218 0.342 1.430
NMM-DTW-E -0.005 0.012 -0.016 0.064 -0.254 0.039 0.450 -0.410 -0.010 1.237 0.363 1.368
NMM-DDTW -0.009 0.015 -0.023 0.066 -0.353 0.040 0.514 -0.578 -0.013 1.295 0.368 1.252
NMM-DDTW-E -0.007 0.012 -0.019 0.063 -0.299 0.039 0.487 -0.484 -0.011 1.395 0.333 1.485
NMM-SDTW -0.006 0.014 -0.020 0.067 -0.297 0.041 0.456 -0.483 -0.013 1.243 0.350 1.393
NMM-SDTW-E -0.007 0.012 -0.018 0.062 -0.297 0.040 0.485 -0.465 -0.011 1.290 0.355 1.350
NMM-SDDTW -0.012 0.014 -0.025 0.067 -0.381 0.041 0.553 -0.615 -0.013 1.164 0.312 1.575
NMM-SDDTW-E -0.008 0.012 -0.019 0.062 -0.299 0.040 0.485 -0.469 -0.011 1.365 0.329 1.485
NMM-LEVY -0.006 0.014 -0.020 0.067 -0.296 0.041 0.476 -0.487 -0.012 1.027 0.372 1.312
NMM-LEVY-E -0.012 0.012 -0.024 0.065 -0.374 0.041 0.549 -0.595 -0.013 0.906 0.359 1.267

a Best performance is in bold. b No comparison for volatility and downside deviation since every portfolio is scaled to the same target annualised volatility
in 4.4.2 for direct comparison of the net Sharpe.

Notably, while some network momentum models exhibit slightly lower net Sharpe ratios in
long positions compared to the benchmark, all of them demonstrate more positively skewed
returns, signifying smaller average losses and occasional larger gains. NMM-SDDTW
achieves the most positively skewed returns, with a 76.6% increase over MACD’s skewness.
This highlights the robust capability of network momentum models in long positions.
Corresponding performance on the real price data in Panel B of Table 4.4 further supports
this, showing that NMM-LEVY has a higher Sharpe and Sortino ratio compared to the
benchmark, and NMM-SDDTW-E records the most skewed returns.

Table 4.4: Performance Metrics for Various Signals in Long Direction Only

Gross Transaction Net vol. Sharpe downside MDD Sortino Calmar Skewness hit rate Avg. P
Return Return deviation Avg. L

Panel A: Average Performance on 100 Bootstrapped Price Data

MACD 0.068 0.012 0.055 0.099 0.559 0.057 0.191 0.983 0.091 0.367 0.554 1.243
NMM-DTW 0.069 0.015 0.054 0.100 0.540 0.054 0.186 0.998 0.093 0.553 0.519 1.412
NMM-DTW-E 0.069 0.012 0.057 0.099 0.572 0.054 0.172 1.053 0.103 0.574 0.519 1.451
NMM-DDTW 0.070 0.015 0.055 0.101 0.542 0.055 0.192 1.001 0.090 0.565 0.522 1.401
NMM-DDTW-E 0.068 0.012 0.056 0.099 0.568 0.054 0.173 1.053 0.101 0.594 0.518 1.459
NMM-SDTW 0.071 0.014 0.057 0.101 0.563 0.055 0.188 1.047 0.098 0.557 0.525 1.405
NMM-SDTW-E 0.068 0.011 0.056 0.099 0.569 0.054 0.171 1.056 0.102 0.602 0.518 1.460
NMM-SDDTW 0.069 0.015 0.053 0.100 0.529 0.054 0.193 0.997 0.088 0.648 0.517 1.417
NMM-SDDTW-E 0.068 0.012 0.056 0.099 0.569 0.053 0.172 1.066 0.102 0.648 0.517 1.468
NMM-LEVY 0.072 0.013 0.059 0.100 0.587 0.055 0.168 1.076 0.109 0.477 0.534 1.377
NMM-LEVY-E 0.069 0.012 0.057 0.098 0.582 0.054 0.161 1.076 0.110 0.542 0.527 1.415

Panel B: Performance on Real Price Data

MACD 0.064 0.012 0.052 0.094 0.557 0.049 0.199 1.065 0.076 0.623 0.547 1.276
NMM-DTW 0.062 0.014 0.047 0.096 0.494 0.048 0.216 0.995 0.063 0.901 0.500 1.479
NMM-DTW-E 0.067 0.011 0.055 0.095 0.581 0.047 0.158 1.170 0.100 0.918 0.491 1.649
NMM-DDTW 0.065 0.014 0.051 0.098 0.519 0.050 0.214 1.011 0.069 0.831 0.496 1.531
NMM-DDTW-E 0.062 0.011 0.051 0.095 0.535 0.048 0.193 1.052 0.076 0.868 0.517 1.418
NMM-SDTW 0.070 0.013 0.057 0.095 0.600 0.046 0.153 1.236 0.108 0.916 0.513 1.538
NMM-SDTW-E 0.062 0.011 0.051 0.094 0.543 0.047 0.170 1.088 0.087 0.904 0.500 1.545
NMM-SDDTW 0.061 0.014 0.046 0.098 0.470 0.047 0.220 0.972 0.060 0.850 0.500 1.441
NMM-SDDTW-E 0.065 0.011 0.053 0.095 0.565 0.047 0.168 1.139 0.092 0.935 0.504 1.550
NMM-LEVY 0.070 0.012 0.058 0.094 0.610 0.046 0.169 1.257 0.098 0.810 0.526 1.449
NMM-LEVY-E 0.068 0.011 0.056 0.094 0.597 0.047 0.155 1.187 0.105 0.813 0.517 1.495

a Best performance is in bold. b No comparison for volatility and downside deviation since every portfolio is scaled to the same target annualised volatility
in 4.4.2 for direct comparison of the net Sharpe.

41



4.5.3 Diversification Analysis

We analyse the correlation of their returns to assess whether the NMM models and MACD
exhibit orthogonal trading signals. Figure 4.3(a) presents the average correlation on boot-
strapped datasets, while Figure 4.3(b) the correlation on real price data covering the entire
out-of-sample period from 2005 to 2024.

(a) (b)

Figure 4.3: A diversification analysis on the PnL pairwise correlation between models on
the bootstrapped datasets (left) and real price dataset (right).

By analysing the returns between the NMM models and the benchmark MACD on the
bootstrapped datasets, we notice that the average correlations range from 0.71 to 0.89 in
Figure 4.3(a). NMM-SDDTW exhibits the lowest average correlation with MACD at 0.71,
similar to NMM-DDTW’s correlation with MACD. NMM-LEVY and NMM-LEVY-E show
slightly higher correlations with MACD at 0.87 and 0.89, respectively. Comparable results
are observed in the PnL from the real price data between 2005 and 2024 in Figure 4.3(b),
where NMM-DDTW and NMM-SDDTW display the lowest correlations with MACD, at
0.72 and 0.74, respectively. Although the PnL correlations are not completely orthogonal,
these empirical findings support the existence of additional information captured in our
NMM models.

Our empirical findings indicate that different DTW algorithms capture distinct lead-
lag relationships, consequently influencing the network momentum identified. Specifically,
NMM models employing multi-dimensional DTW algorithms, such as NMM-SDTW and
NMM-SDDTW, exhibit lower correlation values, around 0.7, with models based on one-
dimensional DTW algorithms like NMM-DTW and NMM-DDTW in Figure 4.3(a). This
suggests that multi-dimensional DTW effectively captures different lead-lag relationships
with one-dimensional approaches. Furthermore, NMM-LEVY demonstrates correlations
ranging from 0.73 to 0.83 with NMM-DTW and its variations, indicating that using the
Lévy area as a lead-lag detection method yields additional results from those obtained via
dynamic time warping algorithms.

It is also noteworthy that correlations between each NMM model and its ensemble
variant range from 0.80 to 0.92. This implies that while there is some dependency, the
ensemble method still introduces different information on the lead-lag relationship. This
is achieved by utilising six different lookback lengths, leading to variations in the net-

42



work momentum model outcomes. The ensemble approach thus contributes uniquely to
understanding and leveraging network momentum in trading strategies.

Next, we introduce a second metric for our diversification analysis: the sign agreement
between two models. This metric is the percentage of days on which two models share
the same trading direction—either opting to go long or short on the market on a trading
day—across the entire portfolio. The average results on bootstrapped data is presented in
Figure 4.4(a), with performance on real price data from the entire out-of-sample period
from 2005 to 2024 in Figure 4.4(b). We also examine the average annualised expected
PnL on days when the NMM models diverge in sign from the benchmark MACD model to
assess whether differences in trading direction result in additional profits. The differences
in average profits between the models (network momentum models minus MACD) for
these days are detailed in Table 4.5.

(a) (b)

Figure 4.4: A diversification analysis on the pairwise sign agreement between models on
the bootstrapped datasets (left) and real price dataset(right)

Table 4.5: Average PnL Gains Over Benchmark on Opposing Signal Days

NMM-DTW NMM-DTW-E NMM-DDTW NMM-DDTW-E NMM-SDTW NMM-SDTW-E NMM-SDDTW NMM-SDDTW-E NMM-LEVY NMM-LEVY-E

Bootstrapped data 0.011 0.032 0.001 0.023 -0.002 0.021 -0.020 0.026 0.013 0.004
Real Price data 0.017 0.043 -0.017 0.015 0.057 -0.008 -0.063 0.039 0.051 0.031

It can be observed that NMM-DTW and NMM-DDTW, with the lowest sign agreement
with the MACD at 85%, result in average additional returns of 0.011 and 0.032, respec-
tively. Most other NMM models show a sign agreement ranging from 85% to 90% with
MACD and generally yield higher returns than MACD on days with differing signs, ex-
cept for NMM-SDTW and NMM-SDDTW, which achieve less profits than the benchmark
on these days. These empirical results suggest that the additional network momentum
captured by the NMM models is effective at following and adjusting to trends identified
by the MACD, which focuses solely on time-series momentum. This indicates that our
models are robust and effective in identifying network momentum within a portfolio.

On the real price data from 2005 to 2024, it is notable that the NMM-SDTW achieves
the highest average returns gain over the benchmark model with an annualised expected
difference at 0.057, with a sign agreement of 86%. However, NMM-DDTW, NMM-SDTW-
E, and NMM-SDDTW realise lower profits compared to MACD, with respective losses of

43



-0.017, -0.008 and -0.063, respectively, , and sign agreements of 85%, 90%, and 85%.

4.5.4 Skewness Analysis

In this final section on performance analysis, we examine the skewness of returns from
NMMmodels across different time horizons and compare them with the benchmark MACD
model.

As highlighted in [45], effective trend-following strategies often exhibit a long-option-
type payoff, attributed to positive skewness. This phenomenon can be conceptualised
as the purchase of an option: regular small losses represent the premium paid, while
correctly identifying and riding a trend may result in significant gains, analogous to an
option’s payoff.

We present the skewness across various return horizons for four NMM models in Fig-
ure 4.5 for detailed analysis. The four representative network momentum models are:
NMM-DTW-E (a), which performs the best on real price data and achieves the highest
average PnL gain over the benchmark on days with opposing signals; NMM-DDTW-E (b),
the top performer on bootstrapped data and in short positions; NMM-SDTW-E (c), which
outperforms the other multi-dimensional dynamic time warping models; and NMM-LEVY
(d), the top performer in long positions. Our empirical study finds that the skewness of
the network momentum models exhibits a similar and consistent pattern; therefore, we
only include four examples here. For completeness, we include plots for the other NMM
models in Appendix B.2.

Our analysis indicates that the NMM models exhibit stronger positive skewness in
returns across time horizons ranging from days to months compared to the benchmark
MACD, with a notable peak at the two-month return horizon. This suggests that the
NMM models are more effective at identifying and positioning for trends ahead of time
to capitalise on these opportunities. Even in the case of daily returns, where all models
typically exhibit a negative skew due to the option-like payoff characteristic of trend-
following strategies, the NMM models show less negative skewness, indicating better risk
control and the ability to identify short-term trends without enduring prolonged periods
of losses.

However, it is important to note that the NMMmodels demonstrate a more pronounced
decay in skewness over longer horizons compared to MACD. Particularly from half-year
to one-year return horizons, although the NMM models still maintain positive skewness,
it is less pronounced than that observed with MACD.

The pattern of skewness across different time horizons aligns with the findings reported
in [45], which we refer interested readers to for further details. Our empirical results
suggest that NMM models not only uphold the desired characteristics of a trend-following
strategy but also enhance them. They effectively capture network momentum spillover
and identify both short-term and medium-term trends accurately, thereby enabling the
models to anticipate market movements by considering momentum from interconnected
markets within the portfolio.

44



(a) (b)

(c) (d)

Figure 4.5: Skewness in the returns of the network momentum model over various periods,
compared to those of the time series momentum model, using different lead-lag detection
models: (a) NMM-DTW-E, (b) NMM-DDTW-E, (c) NMM-SDTW-E, and (d) NMM-
LEVY.

45



Conclusion

We propose a methodology that transforms cross-sectional momentum spillover into net-
work momentum across market industries. This process utilises two lead-lag detection
models to identify non-linear relationships at fixed lags and between non-synchronised
market returns. We then apply a graph learning model to quantify the intricate inter-
connectedness of market leadership and individual momentum, generating a novel trading
signal. This signal is utilised to construct a portfolio for a systematic trend-following
strategy, which we evaluate using 100 sets of bootstrapped price data from 28 futures
contracts across metals, agriculture, energy, and equities. We backtest our strategy in a
realistic trading environment that accounts for time delays in establishing positions.

Our framework enhances the performance of traditional trend-following strategies, con-
sistently achieving a higher and statistically significant net Sharpe ratio compared to time
series momentum strategies. Our model also robustly reduces transaction costs and en-
hances performance over time series momentum strategies in short positions, where the
latter typically incurs losses. By employing various lead-lag detection techniques, our
network momentum models generate low-correlated signals that more effectively identify
market trends by establishing positions in the correct direction. The proposed framework
also consistently yields more positively skewed returns, underscoring the efficiency and
robustness of the network momentum identified for trend-following strategies.

Most importantly, the results indicate that the superior performance of converting
cross-sectional momentum into network momentum is not confined to specific market
combinations within the portfolio, nor is it dependent on historical market trends. Instead,
the proposed network momentum model demonstrates remarkable generalisability across
various industries and markets.

We propose several future research directions. Firstly, exploring non-linear ensem-
ble methods on the lead-lag matrices computed by multiple models could be beneficial.
Considering that the divergence analysis indicates dynamic time warping and Lévy area
models capture different information, their combination in a non-linear manner may en-
hance the identification of lead-lag relationships. Secondly, investigating asymmetrical
adjacency matrices with machine learning models like graph neural networks could shed
light on potential non-symmetrical relationships between markets. Thirdly, while our cur-
rent portfolio construction combines time series momentum features with equal weights
and applies the same adjacency matrix to all of them, it may be worthwhile to explore fit-
ting different lead-lag matrices and adjacency matrices to time series momentum features
at varying speeds. Employing non-linear methods to combine these may more effectively
capture the nonlinearity in momentum spillover.

46



Appendix A

Technical Proof

A.1 Derivation of the Formula for Lévy Area Between Dis-
crete Processes

In this section, we provide the derivation of the Lévy area between two discrete processes
in Formula (1.2.1).
Consider a time interval t ∈ [a, b], and let Xi = {Xi

a, . . . , X
i
b} and Xj = {Xj

a, . . . , X
j
b} be

two discrete stochastic processes. The Lévy area, as defined in 1.1.4, is given by:

ALévy =
1

2
(S(X)i,ja,b − S(X)j,ia,b). (A.1.1)

This equation encompasses the difference in the cross-terms of the double-iterated integrals
for the two processes, expressed as:

S(X)i,ja,b − S(X)j,ia,b =

∫
a<s<b

∫
a<t<s

dXi
tdX

j
s −

∫
a<s<b

∫
a<t<s

dXj
t dX

i
s

=

∫
a<s<b

(Xi
s −Xi

a)dX
j
s −

∫
a<s<b

(Xj
s −Xj

a)dX
i
s.

This integration translates into finite summations:

S(X)i,ja,b − S(X)j,ia,b =
∑

a<s<b

(Xi
s −Xi

a)∆Xj
s −

∑
a<s<b

(Xj
s −Xj

a)∆Xi
s

=
∑

a<s<b

(Xi
s −Xi

a)(X
j
s −Xj

s−1)−
∑

a<s<b

(Xj
s −Xj

a)(X
i
s −Xi

s−1)

=
∑

a<s<b

(−Xi
sX

j
s−1 +Xj

sX
i
s−1) +

∑
a<s<b

(Xi
a(X

j
s−1 −Xj

s )

+Xj
a(X

i
s −Xi

s−1)).

These summations can be simplified to:

S(X)i,ja,b−S(X)j,ia,b =
∑

a<s<b

(−Xi
sX

j
s−1+Xj

sX
i
s−1)+Xi

a(X
j
a−Xj

b )+Xj
a(X

i
b−Xi

a). (A.1.2)

By substituting (A.1.2) into (A.1.1), we achieve the desired formula (1.2.1) for the Lévy
area between two discrete stochastic processes.

47



A.2 Derivation of the Matrix Form of the Dirichlet Energy

In this section, we show that the Dirichlet energy for matrix XN×p with adjacency matrix
AN×N has the following equivalent forms as defined in (3.1.1):

∥X∥2D,G =
1

2

∑
i,j

∥x(i) − x(j)∥22Ai,j ≡ tr(XTLX).

we can first rewrite the right-hand side as

1

2

∑
i,j

∥x(i) − x(j)∥22Ai,j

=
1

2

n∑
i=1

n∑
j=1

(x(i) − x(j))TAi,j(x
(i) − x(j))

=
1

2

n∑
i=1

n∑
j=1

(x(i)
T
Ai,jx

(i) − x(j)
T
Ai,jx

(i) − x(i)
T
Ai,jx

(j) + x(j)
T
Ai,jx

(j))

(A.2.1)

By noticing that Ai,j is symmetric, we have

n∑
i=1

n∑
j=1

x(i)
T
Ai,jx

(i) =

n∑
i=1

n∑
j=1

x(j)
T
Ai,jx

(j).

Therefore we can reduce (A.2.1) further by writing

1

2

∑
i,j

∥x(i) − x(j)∥22Ai,j =
n∑

i=1

n∑
j=1

x(i)
T
Ai,jx

(i) −
n∑

i=1

n∑
j=1

x(i)
T
Ai,jx

(j)

=

n∑
i=1

x(i)
T
x(i)

n∑
j=1

Ai,j − tr(XTAX).

(A.2.2)

Recall the definition of the degree vector d = A1 where the i−th element is essentially∑n
j=1Ai,j , let D denote the degree matrix which has diagonal being d and zero elsewhere,

we can rewrite (A.2.2) as

1

2

∑
i,j

∥x(i) − x(j)∥22Ai,j = tr(XTDX)− tr(XTAX)

= tr(XTLX),

where we use the definition of the Laplacian matrix of L = D − A. This is in the same
form as we defined in (3.1.1).

48



Appendix B

Supplementary Data

B.1 Dataset Details

In Table B.1, we summarise the Bloomberg tickers and names of all the futures contracts
we used in our portfolio.

Bloomberg Ticker Contract Name Market Class

future bo1 comdty CBOT Soybean Oil Future Ags

future sm1 comdty CBOT Soybean Meal Future Ags

future sb1 comdty NYBOT CSC Number 11 World Sugar Future Ags

future rr1 comdty Rough Rice Future Ags

future o 1 comdty Oats Future Ags

future mw1 comdty MGE Red Wheat Future Ags

future kw1 comdty KCBT Hard Red Winter Wheat Future Ags

future kc1 comdty NYBOT CSC C Coffee Future Ags

future jo1 comdty Orange Juice (RTH) Future Ags

future w 1 comdty CBOT Wheat Future Ags

future c 1 comdty CBOT Corn Future Ags

future cc1 comdty NYBOT CSC Cocoa Future Ags

future da1 comdty Class III Milk Future Ags

future ct1 comdty NYBOT CTN Number 2 Cotton Future Ags

future cl1 comdty NYMEX Light Sweet Crude Oil Future Energy

future co1 comdty ICE Brent Crude Oil Future Energy

future ng1 comdty NYMEX Henry Hub Natural Gas Future Energy

future cf1 index Euronext CAC 40 Index Future Equity

future nq1 index CME E-Mini NASDAQ 100 Index Future Equity

future vg1 index Eurex EURO STOXX 50 Future Equity

future hi1 index HKG Hang Seng Index Future Equity

future gx1 index Eurex DAX Index Future Equity

future es1 index CME E-Mini Standard & Poor’s 500 Future Equity

future pa1 comdty NYMEX Palladium Future Metals

future pl1 comdty NYMEX Platinum Future Metals

future hg1 comdty COMEX Copper Future Metals

future si1 comdty COMEX Silver Future Metals

future gc1 comdty COMEX Gold 100 Troy Ounces Future Metals

Table B.1: Futures Contracts from Bloomberg

49



B.2 Supplementary Skewness Plots Across Time Horizons

In Figure B.1, we include skewness plots for additional network momentum models not
presented in Section 4.5.4.

50



(a) (b)

(c) (d)

(e) (f)

Figure B.1: Supplementary plots of skewness in the returns of the network momentum
model over various periods, compared to those of the time series momentum model, using
different lead-lag detection models.

51



Appendix C

Motivation and Methodology for
Using Bootstrapping in
Backtesting

C.1 Limitations of Historical Backtesting

Backtesting is a pivotal method for evaluating the efficacy of investment strategies by
utilising metrics such as profit and loss (PnL), Sharpe ratio, volatility, and maximum
drawdown. The most prevalent and intuitive method, often termed ‘historical backtesting’,
involves assessing strategies against actual price movements over a specified historical
period. This approach is favoured primarily due to its straightforward implementation and
ease of interpretation. Practitioners can directly analyse the performance of strategies and
conduct more nuanced analyses, such as identifying industries where strategies performed
the best. However, historical backtesting is subject to significant limitations, as discussed
in [59, 4, 32]. We summarise these pitfalls as follows:

1. Limited Scenario Testing: Historical backtesting often tests only a single price
trajectory, giving practitioners limited information to understand the underlying
reasons for a strategy’s performance. The results are also sensitive to minor changes
in the input data. For example, Figure C.1 shows the cumulative return of the
NASDAQ 100 mini futures from September 2016 to May 2024. If the strategy did
not hold positions during the 10 days with the largest price increases, the final value
of these futures would be approximately 34% lower than the market; conversely,
avoiding position in the 10 days with the largest price drawdowns would result in
an increase of about 40%. This demonstrates how sensitive the performance of our
strategy can be to one single path. Although performance improvement can often
be achieved by tuning parameters, this can lead to ‘overfitting’, where adjustments
to enhance historical performance do not necessarily translate to future gains.

2. Past Performance and Future Predictability: The patterns and trends of
price movements observed in the past are not guaranteed to recur in the future.
Consequently, past performance may not be indicative of future returns. This is
especially problematic for trend-following strategies that may generate significant
profits from a few large price movements. If such events are statistically unlikely to
occur with similar frequency in the future, practitioners may be misled by historical
backtesting results.

One desired property of backtesting should be the availability of multiple paths to
evaluate the strategy and check its robustness [32]. This approach enables practitioners to

52



Figure C.1: The sensitivity of historical backtesting results to the price trajectory

end up with a series of performance metrics, rather than a single data point. Practitioners
can then apply inferential statistics to analyse these sequences. For example, if comparing
the performances of two different models, resampling methods and hypothesis tests can be
used to check whether the differences between them are statistically significant and if they
come from the same distribution. As discussed in [49], resampling methods are less prone
to overfitting. The historical backtesting can serve as an aid, providing a demonstration of
the strategy’s performance on real price trajectories, but it should be supplemented with
these more robust statistical approaches.

C.2 Stationary Bootstrap

C.2.1 Classical Bootstrap and Motivation for Block Bootstrap

Efron has introduced the classical bootstrapping method in [19], a robust nonparametric
approach for approximating the sampling distribution of identically and independently
distributed observations. As detailed in [51], consider a time series without autocorre-
lation, X1, · · · , XN , and statistic T (X1, · · · , XN ). The joint distribution q(X1, · · · , XN )
can be expressed through the product of a single probability distribution q0 as:

q(X1, · · · , XN ) =
n∏

i=1

q0(Xi).

Under the assumption of independence, q0 can be approximated by the empirical distri-
bution qemp, defined as:

qemp(X) =
1

n

n∑
i=1

δ(X −Xi),

where δ(x) is the Dirac delta function, and N ≫ 1. Sampling from the empirical distri-
bution is equivalent to drawing samples from the series X1, · · · , XN with replacement. In

practice, to bootstrap B sets of data, we sample N new data points X
∗(b)
1 , · · · , X∗(b)

N for

b = 1, · · · , B. This allows estimation of statistics T (X1, · · · , XN ) via T (X
∗(b)
1 , · · · , X∗(b)

N ).
Nevertheless, this method assumes no autocorrelation in the observed series and is

typically applied to univariate time series. Financial time series often exhibit significant

53



autocorrelation and volatility clustering, with marked inter-correlation among markets.
Figure C.2 shows an example of what one should aim for in the bootstrapping method. It
displays the price trajectories of two markets that move closely together, highlighting their
strong correlation. In such cases, it’s important to maintain this close relationship in the
bootstrapped data, ensuring that the simulated prices continue to reflect the same level
of dependency between these markets. These characteristics motivate the use of another
bootstrapping scheme to preserve the autocorrelation of each market and the covariance
among different market returns in multivariate series.

Figure C.2: Desired Multivariate Bootstrap Outcomes Preserving Inter-Market Autocor-
relation and Covariance: EURO STOXX 50 Index Futures (Market 1) and CME E-mini
S&P 500 Index Futures (Market 2), June 2002 to June 2024.

A popular alternative is the ‘blocked bootstrapping’ [38, 42, 53]. Intuitively, this
method involves splitting the contiguous samples from a multivariate time series into blocks
of varying lengths to incorporate the temporal dependence, then sampling these blocks
with replacement and reassembling them to construct a pseudo-time series X∗

1 , · · · , X∗
N .

C.2.2 Methods of Stationary Bootstrap

We now rigorously present the concept of one variant of blocked bootstrapping, known
as the stationary bootstrap, which was proposed in [54]. This approach preserves the
stationary property [54, Proposition 1, page 1304] and similar statistical characteristics of
the observed time series.

Given an observed series X1, · · · , XN that satisfies the following two assumptions:

1. The series is strictly stationary, meaning that parameters such as mean and variance
are time-translation invariant.

2. The series is weakly dependent, implying that the time series is asymptotically un-
correlated as time progresses.

54



To bootstrap the pseudo-time series X∗
1 , · · · , X∗

N , we begin by setting a parameter p ∈
(0, 1). Let L1, L2, · · · be a sequence of independent and identically distributed random vari-
ables following a geometric distribution, where P (Li = m) = (1−p)m−1p for m = 1, 2, · · ·.
Here, Li determines the length of the i-th block of consecutive values. Independently
of the Xi and Li, let I1, I2, · · · be a sequence of independent and identically distributed
random variables with a discrete uniform distribution over {1, · · · , N}, which determines
the index of the first bootstrapped sample from the original series in each block. For
instance, BI1,L1 contains the observations {XI1 , XI1+1, · · · , XI1+L1−1}, constituting the
first L1 observations in the pseudo-time series. The second block, with L2 observations,
is determined by XI2 , · · · , XI2+L2−1. In the case of j > N , Xj is defined as Xi where
i = j(modN). This process can be iterated to generate an arbitrary length; however, in
our case, we terminate once N observations have been bootstrapped for the pseudo-time
series. As discussed in [54], an equivalent and simpler algorithm can be summarised in
Table C.1. It has been demonstrated in [54, Theorem 1, page 1305] that as p → 0 and
Np→∞, the bootstrapped estimate of the variance σ̂2 converges to the true variance σ2

in probability.
In this algorithm, one parameter must be manually selected—the geometric distribu-

tion parameter p, which represents the average block size. The parameter p significantly
influences the estimated value of the confidence interval; thus, selecting an appropriate
p is essential to address the correlation effects among the original time series data. In
practical applications, previous research on block bootstrap methods indicates that the
average block size b should increase at a specific rate relative to the size of the time series
N . For instance, [53, Theorem 2, page 5] recommends selecting b such that bN−1/3 → 0
as N → ∞ and b → ∞. Furthermore, [55, 2] introduce an automatic block size selec-
tion method for stationary bootstrap, aiming to minimise the mean-squared error of the
estimated variance from the bootstrapped datasets.

Table C.1 Algorithm for Stationary Bootstrap

Require: Time series X with length N : X1, . . . , XN .
Ensure: Bootstrapped series X∗ with length N .
1: Calculate the optimal block length B∗ from the auto-selection algorithm in [55, 2] and

define the parameter p = 1
B∗

2: Initialise X∗ as an empty series.
3: Choose t1 uniformly at random from [1, N ] and set X∗

1 = Xt1 .
4: Set i = 2.
5: while i ≤ N do
6: Draw u from U ∼ Uniform(0,1).
7: if u < p then
8: Choose ti uniformly at random from [1, N ].
9: else

10: Set ti = (ti−1 + 1)modN .
11: end if
12: Set X∗

i = Xti .
13: Set i = i+ 1.
14: end while
15: return X∗.

55



Bibliography

[1] U. Ali and D. Hirshleifer, Shared analyst coverage: Unifying momentum spillover
effects, Journal of Financial Economics, 136 (2020), pp. 649–675.

[2] D. N. P. Andrew Patton and H. White, Correction to “automatic block-length
selection for the dependent bootstrap” by d. politis and h. white, Econometric Reviews,
28 (2009), pp. 372–375.

[3] S. G. Badrinath, J. R. Kale, and T. H. Noe, Of shepherds, sheep, and the
cross-autocorrelations in equity returns, The Review of Financial Studies, 8 (1995),
pp. 401–430.

[4] D. H. Bailey, J. Borwein, M. López de Prado, and Q. J. Zhu, Pseudo-
mathematics and financial charlatanism: The effects of backtest overfitting on out-
of-sample performance, Notices of the American Mathematical Society, 61 (2014),
pp. 458–471.

[5] N. Barberis, A. Shleifer, and R. Vishny, A model of investor sentiment, Journal
of financial economics, 49 (1998), pp. 307–343.

[6] L. Basnarkov, V. Stojkoski, Z. Utkovski, and L. Kocarev, Lead–lag re-
lationships in foreign exchange markets, Physica A: Statistical Mechanics and its
Applications, 539 (2020), p. 122986.

[7] J. Baz, N. Granger, C. Harvey, N. Roux, and S. Rattray, Dissecting in-
vestment strategies in the cross section and time series, SSRN Electronic Journal,
(2015).

[8] S. Bennett, M. Cucuringu, and G. Reinert, Lead-lag detection and network
clustering for multivariate time series with an application to the us equity market,
2022.

[9] V. W. Berger and Y. Zhou, Kolmogorov–smirnov test: Overview, Wiley statsref:
Statistics reference online, (2014).

[10] M. Billio, M. Getmansky, A. W. Lo, and L. Pelizzon, Econometric measures
of connectedness and systemic risk in the finance and insurance sectors, Journal of
financial economics, 104 (2012), pp. 535–559.

[11] M. J. Brennan, N. Jegadeesh, and B. Swaminathan, Investment analysis and
the adjustment of stock prices to common information, The Review of Financial Stud-
ies, 6 (1993), pp. 799–824.

[12] J. Y. Campbell, A. W. Lo, A. C. MacKinlay, and R. F. Whitelaw, The
econometrics of financial markets, Macroeconomic Dynamics, 2 (1998), pp. 559–562.

[13] Á. Cartea, M. Cucuringu, and Q. Jin, Detecting lead-lag relationships in stock
returns and portfolio strategies, Available at SSRN, (2023).

56



[14] S. Chen, B. Ma, and K. Zhang, On the similarity metric and the distance metric,
Theoretical Computer Science, 410 (2009), pp. 2365–2376.

[15] I. Chevyrev and A. Kormilitzin, A primer on the signature method in machine
learning, 2016.

[16] A. Chui, S. Titman, and K. J. Wei, Momentum, ownership structure, and finan-
cial crises: An analysis of asian stock markets, wp University of Texas at Austin,
(2000).

[17] P. Declerck, Trend-following and spillover effects, Available at SSRN 3473657,
(2019).

[18] S. Diamond and S. Boyd, Cvxpy: A python-embedded modeling language for convex
optimization, 2016.

[19] B. Efron, Bootstrap methods: Another look at the jackknife, The Annals of Statistics,
7 (1979), pp. 1–26.

[20] A. Fernandez-Perez, I. Indriawan, Y. Tse, and Y. Xu, Cross-asset time-
series momentum: Crude oil volatility and global stock markets, Journal of Banking
& Finance, 154 (2023), p. 106704.

[21] P. Fiedor, Information-theoretic approach to lead-lag effect on financial markets,
The European Physical Journal B, 87 (2014), pp. 1–9.

[22] W. R. Gebhardt, S. Hvidkjaer, and B. Swaminathan, Stock and bond market
interaction: Does momentum spill over?, Journal of Financial Economics, 75 (2005),
pp. 651–690.

[23] K. Grobys, J. Ruotsalainen, and J. Äijö, Risk-managed industry momentum
and momentum crashes, Quantitative Finance, 18 (2018), pp. 1715–1733.

[24] W. Guthrie, A. Filliben, and T. Tarvainen, Nist/sematech e-handbook of sta-
tistical methods, Process Modeling, (2013).

[25] L. G. Gyurkó, T. Lyons, M. Kontkowski, and J. Field, Extracting information
from the signature of a financial data stream, 2014.

[26] D. Haesen, P. Houweling, and J. van Zundert, Momentum spillover from
stocks to corporate bonds, Journal of Banking & Finance, 79 (2017), pp. 28–41.

[27] H. Hong and J. C. Stein, A unified theory of underreaction, momentum trading
and overreaction in asset markets, Journal of Finance, LIV (1999), pp. 2143–2184.

[28] K. Hou, Industry information diffusion and the lead-lag effect in stock returns, The
review of financial studies, 20 (2007), pp. 1113–1138.

[29] B. Hurst, Y. H. Ooi, and L. H. Pedersen, A century of evidence on trend-
following investing, Available at SSRN 2993026, (2017).

[30] N. Jegadeesh and S. Titman, Returns to buying winners and selling losers: Im-
plications for stock market efficiency, The Journal of finance, 48 (1993), pp. 65–91.

[31] , Profitability of momentum strategies: An evaluation of alternative explanations,
The Journal of finance, 56 (2001), pp. 699–720.

57



[32] J. Joubert, D. Sestovic, I. Barziy, W. Distaso, and M. López de Prado,
The three types of backtests. Available at SSRN, 7 2024.

[33] V. Kalofolias, From data to structures: graph learning under smoothness assump-
tions and applications in data science, PhD thesis, EPFL, Lausanne, 2016.

[34] V. Kalofolias, How to learn a graph from smooth signals, in Artificial intelligence
and statistics, PMLR, 2016, pp. 920–929.

[35] M. G. Kendall, A new measure of rank correlation, Biometrika, 30 (1938), pp. 81–
93.

[36] E. J. Keogh and M. J. Pazzani, Derivative dynamic time warping, in Proceedings
of the 2001 SIAM International Conference on Data Mining, Chicago, IL, USA, April
5–7 2001, Society for Industrial and Applied Mathematics, pp. 1–11.

[37] H. Kirchhoff and A. Lerch, Evaluation of features for audio-to-audio alignment,
Journal of New Music Research, 40 (2011), pp. 27–41.

[38] H. R. Künsch, The jackknife and the bootstrap for general stationary observations,
The Annals of Statistics, 17 (1989), pp. 1217–1241.

[39] A. Levine and L. H. Pedersen, Which trend is your friend?, Financial Analysts
Journal, 72 (2016), pp. 51–66.

[40] B. Lim, S. Zohren, and S. Roberts, Enhancing time series momentum strategies
using deep neural networks, 2020.

[41] L. X. Liu and L. Zhang, Momentum Profits, Factor Pricing, and Macroeconomic
Risk, The Review of Financial Studies, 21 (2008), pp. 2417–2448.

[42] R. Y. Liu, K. Singh, et al., Moving blocks jackknife and bootstrap capture weak
dependence, Exploring the limits of bootstrap, 225 (1992), p. 248.

[43] A. W. Lo and A. C. MacKinlay, When are contrarian profits due to stock market
overreaction?, The Review of Financial Studies, 3 (1990), pp. 175–205.

[44] G. Marti, S. Andler, F. Nielsen, and P. Donnat, Exploring and measuring
non-linear correlations: Copulas, lightspeed transportation and clustering, in NIPS
2016 Time Series Workshop, PMLR, 2017, pp. 59–69.

[45] R. J. Martin, Design and analysis of momentum trading strategies, 2023.

[46] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, Connecting the dots:
Identifying network structure via graph signal processing, IEEE Signal Processing
Magazine, 36 (2019), p. 16–43.

[47] W. Meert, K. Hendrickx, T. Van Craenendonck, P. Robberechts,
H. Blockeel, and J. Davis, Dtaidistance, Oct. 2022.

[48] T. J. Moskowitz and M. Grinblatt, Do industries explain momentum?, The
Journal of finance, 54 (1999), pp. 1249–1290.

[49] F. Musciotto, L. Marotta, S. Miccichè, and R. Mantegna, Bootstrap vali-
dation of links of a minimum spanning tree, Physica A: Statistical Mechanics and its
Applications, 512 (2018), p. 1032–1043.

58



[50] M. Müller, Dynamic time warping, Information Retrieval for Music and Motion, 2
(2007), pp. 69–84.

[51] Y. Nishikawa, J. Takahashi, and T. Takahashi, Stationary bootstrap: A refined
error estimation for equilibrium time series, 2021.

[52] D. Poh, B. Lim, S. Zohren, and S. Roberts, Building cross-sectional systematic
strategies by learning to rank, arXiv preprint arXiv:2012.07149, (2020).

[53] D. N. Politis and J. P. Romano, A circular block-resampling procedure for sta-
tionary data, Purdue University. Department of Statistics, 1991.

[54] D. N. Politis and J. P. Romano, The stationary bootstrap, Journal of the Amer-
ican Statistical Association, 89 (1994), pp. 1303–1313.

[55] D. N. Politis and H. White, Automatic block-length selection for the dependent
bootstrap, Econometric Reviews, 23 (2004), pp. 53–70.

[56] X. Pu, S. Roberts, X. Dong, and S. Zohren, Network momentum across asset
classes, 2023.

[57] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh, Addressing big data time series: Mining
trillions of time series subsequences under dynamic time warping, ACM Transactions
on Knowledge Discovery from Data (TKDD), 7 (2013), pp. 1–31.

[58] K. G. Rouwenhorst, International momentum strategies, The journal of finance,
53 (1998), pp. 267–284.

[59] E. Schumann, Backtesting. Available at SSRN, 12 2018. Forthcoming in ”Numerical
Methods and Optimization in Finance (2nd ed),” by M. Gilli, D. Maringer and E.
Schumann.

[60] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, and E. Keogh, Generalizing
dtw to the multi-dimensional case requires an adaptive approach, Data mining and
knowledge discovery, 31 (2017), pp. 1–31.

[61] J. Stübinger and D. Walter, Using multi-dimensional dynamic time warping to
identify time-varying lead-lag relationships, Sensors, 22 (2022).

[62] G. J. Székely, M. L. Rizzo, and N. K. Bakirov, Measuring and testing depen-
dence by correlation of distances, (2007).

[63] W. L. Tan, S. Roberts, and S. Zohren, Spatio-temporal momentum: Jointly
learning time-series and cross-sectional strategies, arXiv preprint arXiv:2302.10175,
(2023).

[64] G. A. Ten Holt, M. J. Reinders, and E. A. Hendriks, Multi-dimensional
dynamic time warping for gesture recognition, in Thirteenth annual conference of the
Advanced School for Computing and Imaging, vol. 300, 2007, p. 1.

[65] A. Varfis, L. Corleto, J. Auger, D. Perrotta, and M. Alvarez, Lead-lag
estimation by means of the dynamic time warping technique, Research in Official
Statistics (European Communities), (2001), p. 5.

[66] D. Vayanos and P. Woolley, An institutional theory of momentum and reversal,
The Review of Financial Studies, 26 (2013), pp. 1087–1145.

59



[67] D. Wang, J. Tu, X. Chang, and S. Li, The lead–lag relationship between the spot
and futures markets in china, Quantitative Finance, 17 (2017), pp. 1447–1456.

[68] F. Wilcoxon, Individual comparisons by ranking methods, in Breakthroughs in
statistics: Methodology and distribution, Springer, 1992, pp. 196–202.

[69] D. Wu, Y. Ke, J. X. Yu, P. S. Yu, and L. Chen, Detecting leaders from corre-
lated time series, in Database Systems for Advanced Applications: 15th International
Conference, DASFAA 2010, Tsukuba, Japan, April 1-4, 2010, Proceedings, Part I 15,
Springer, 2010, pp. 352–367.

[70] R. Yamamoto, N. Kawadai, and H. Miyahara, Momentum information prop-
agation through global supply chain networks, Journal of Portfolio Management, 47
(2021), pp. 197–211.

[71] E. A.-T. Yamani and M. Abuelfadl, Currency news and international bond mar-
kets, North American Journal of Economics and Finance, (2021).

[72] Y. Zhang, M. Cucuringu, A. Y. Shestopaloff, and S. Zohren, Dynamic time
warping for lead-lag relationships in lagged multi-factor models, 2023.

[73] J. Zhao and L. Itti, shapedtw: Shape dynamic time warping, Pattern Recognition,
74 (2018), pp. 171–184.

60


	Signature Based Lévy Area
	Path and Signature
	Application in Lead-Lag Detection
	Computation of Lead-Lag Matrix Using Lévy Area

	Dynamic Time Warping
	Classical Dynamic Time Warping
	Derivative Dynamic Time Warping
	Shape Dynamic Time Warping
	Comparative Analysis of DTW Techniques
	Computation of Lead-Lag Matrix Using Dynamic Time Warping Models

	Graph Learning
	Graph Learning Preliminaries
	From Data to Structure
	Computation of Network Momentum Matrix Using Graph Learning Model

	Experiments
	Data
	Set Up for Time Series Momentum Features
	Set Up for Network Momentum Features
	Portfolio Construction
	Performance Analysis
	Portfolio Performance Analysis
	Long/Short Performance Analysis
	Diversification Analysis
	Skewness Analysis


	Technical Proof
	Derivation of the Formula for Lévy Area Between Discrete Processes
	Derivation of the Matrix Form of the Dirichlet Energy

	Supplementary Data
	Dataset Details
	Supplementary Skewness Plots Across Time Horizons

	Motivation and Methodology for Using Bootstrapping in Backtesting
	Limitations of Historical Backtesting
	Stationary Bootstrap
	Classical Bootstrap and Motivation for Block Bootstrap
	Methods of Stationary Bootstrap


	Bibliography

