IMPERIAL

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

Change Point Detection

Author: Hugo Ng (CID: 01848839)

A thesis submitted for the degree of

MSc in Mathematics and Finance, 2023-202/4



Declaration

The work contained in this thesis is my own work unless otherwise stated.



Acknowledgements

First of all, T would like to thank my supervisor, Dr. Cris Salvi, for his invaluable
guidance and support throughout this project. I'm also deeply grateful to Aitor Muguruza,
Zan Zuric, and James Mc Greevy from Kaiju Capital Management for their insights and
the opportunity to apply my research in a practical setting.

Finally, I want to extend my gratitude to my family and friends for their unwavering
support and encouragement.



Abstract

In this paper, we develop change point detection methods for financial time series, with
a focus on non-parametric approaches that provide additional flexibility compared to tra-
ditional methods. We empirically evaluate the performance of the proposed algorithms
and demonstrate their effectiveness on both synthetic and real-world data. Our work
builds upon non-parametric two-sample tests, particularly the maximum mean discrep-
ancy (MMD) statistic, which has shown robust performance in detecting distributional
shifts. We extend this concept to develop an e-real time, rolling window approach for de-
tecting market regimes when the number of change points is unknown. Finally, we explore
the potential of using detected change points as labels for predictive modelling, aiming to
forecast future regime shifts. We further discuss the implications of such methods in risk
management and portfolio optimisation.
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Chapter 1

Introduction

The detection of regime changes in financial markets is a critical task for risk manage-
ment, portfolio optimization, and trading strategy development. Ang and Timmermann
[2] provided a comprehensive overview of regime changes in financial markets, discussing
their implications for asset pricing, portfolio choice, and risk management. They empha-
sized how regime shifts in fundamental processes (e.g., consumption or dividend growth)
significantly affect equilibrium asset prices and risk-return trade-offs. Kritzman, Page,
and Turkington [26] presented practical implementations of markov-switching models for
dynamic investment strategies. They demonstrated how using dynamically adjust port-
folio allocation outperformed static allocations, especially in avoiding large losses during
turbulent periods. These studies highlight the importance of developing regime detection
methods to develop reactive trading strategies. Traditionally, this problem has been ad-
dressed using Hidden Markov Models (HMMs), which rely on assumptions about latent
state variables and parametric distributions [19]. However, model-dependent approaches
may not capture the full complexity of financial time series, especially during periods of
market turbulence or structural shifts.

Recent advancements in the market regime clustering problem utilise unsupervised
learning techniques and have shown promise in addressing these limitations. Notably, k-
means clustering with p-Wasserstein distance [24] has demonstrated superior performance
compared to moment-based k-means and HMMSs, when applied to real data with known
periods of instabilities and on synthetic data. The idea has been extended to multivariate
market regimes [30], taking into account the cross-correlation between assets when forming
clusters. These developments sparked our interest in developing a more flexible, non-
parametric approach to market regime detection, where the number of change points is
unknown.

While existing libraries like Ruptures [36] provide tools for offline change point detec-
tion using optimization approaches to balance a cost function that quantifies differences be-
tween segments with a penalty function penalising the complexity of the model[37, 32], our
work focuses on developing a non-parametric method based on two-sample tests [25] [14].
This approach offers several advantages, including model-free analysis and statistical ro-
bustness of the identified regimes.

Non-parametric change point detection methods can be broadly categorized into likelihood-
based [40], that relies on maximising the distribution-free log likelihood, rank-based[28§],
and kernel-based approaches [20} 2], [7]. In this work, we focus on exploring kernel-based
techniques, particularly maximum mean discrepancy (MMD) two-sample tests [17], due
to their demonstrated power and growing popularity in detecting distributional changes
without imposing restrictive assumptions on the underlying data-generating process.

In this paper, we contextualize the market regime detection problem within the broader
framework of change point detection — the identification of abrupt shifts in the probability



distribution of a stochastic process or time series. We first provide background informa-
tion and establish the theoretical framework for our approach. Then, we consider offline
detection scenarios, where the entire dataset is available for analysis, before proceeding to
online detection, which processes data sequentially in real-time. Additionally, we explore
the potential of using detected change points as labels for predictive modeling, aiming to
forecast future regime shifts.

1.1 Background

The foundation of our analysis in this report is built upon two-sample tests, as they play
a crucial role in our framework of change point detection. A change point differentiates
two segments of data exhibiting distinct statistical properties. Two-sample tests offer a
rigorous statistical framework for identifying regime shifts or other significant changes in
financial time series. By comparing the distributions of two subsegments, it enables us to
quantify the likelihood of shifts in market dynamics. Hence, we introduce the following
definition of two-sample test.

Definition 1.1.1. (Two-sample test, [34], Section 2). Let (X, d) be a metric space, and
p, q be two Borel probability measures defined on X. Given random variables x s P

and y i g and X = (X;)I", Y = (Y;)I%, the corresponding realisations, a two-sample
test §(X,Y) : A" x X™ — {0, 1} is used to distinguish between

Hy:p=gq against Hj:p#q

The test function ¢ can be further described by an indicator function which returns 1 when
the test statistic exceeds a predetermined threshold and 0 otherwise. The test is said to
be level o when the type I error Pp,(6(X,Y) = 1) < a. The inequality can be inverted to
obtain the rejection threshold. The power of the test is defined to be Py, (6(X,Y) = 1)
i.e. the probability that the null hypothesis is correctly rejected. A test is consistent if
the power increases to 1 in the limit of both sample size.

Other common two sample tests include the Kolmogorov-Smirnov test and Cramer-von
Mises test which both draw test statistics based on the distance between two empirical
cumulative density functions of the samples. While they are non-parametric, they gener-
ally suffer from the curse of dimensionality and the adaptation to multivariate version is
often challenging, see [27]. More recently, Gretton et al. [I7] proposed a kernel two-sample
test based on MMD test statistics over a unit ball in the reproducing kernel Hilbert space
(RKHS). And it has been shown that the kernel two-sample test consistently outperforms
a range of parametric and non-parametric tests in a multidimensional setting. We first
provide the definition of a reproducing kernel Hilbert space and a reproducing kernel.

Definition 1.1.2. (Reproducing kernel Hilbert space, [38]). Let (X, d) be a separable
measurable metric space. A Hilbert space (H, (-, -)3) is a reproducing kernel Hilbert space
if Vo € X, the point evaluation operator 0, which maps f € H to f(x) € R is bounded
i.e. dM, such that
02(f)] < M| flle  VfeEN

By Riesz representation theorem, for all x € X' there exists an element ¢(z) € X’ such

that
0:(f) = f(z) = (0(x), fln VfeN.
Definition 1.1.3. (Reproducing kernel, [38]) A reproducing kernel k(z,y) : X x X - R
of H is defined by
k(z,y) == (¢(z), o(y))n-



The reproducing kernel defined in Definition is clearly symmetric and positive
definite. More importantly, the converse statement is also true.

Theorem 1.1.4. (Moore-Aronszajn theorem, [3]). If k(z,y) : X x X — R is a symmetric
positive definite kernel, then there exists a unique Hilbert space on X such that k is a
reproducing kernel.

This allows any kernel k satisfying the above properties to define its unique corre-
sponding RKHS.

1.1.1 Maximum Mean Discrepancy

Lemma 1.1.5. ([10]). With notations same as in Definition p = q if and only if
E,[f(z)] = Eq[f(y)] for all f € C where C is the space of bounded continuous functions.

Motivated by Lemma the following statistic was proposed to quantify the dis-
parity between measures p and q.

Definition 1.1.6. (Maximum mean discrepancy, [17], Definition 2). Let F be a class of
functions f : X — R. The maximum mean discrepancy is defined as

MMD[F,p,q] := ?elg(Ep[f(x)] —Eq[f(»)])

Notice that the MMD statistic is the supremum taken over the function class F. Al-
though there are various options for the choice of function class, the RKHS H is frequently
used due to its rich function space, uniquely identifying whether p = q with finite sam-
ples. Additionally, the use of kernel allows for efficient computation of inner products in
high-dimensional spaces without explicitly mapping the data to those spaces, known as
the “kernel trick”. The range of reproducing kernels also enables the RKHS to be tailored
to different types of data and distributions, providing flexibility for solving a wide range
of problems.

Definition 1.1.7. (Mean embedding of measure p, [12], Section 2.2). The mean embed-
ding g, of measure p is a unique element in RKHS #H such that E,f = (f, up) for all
feH.

Lemma 1.1.8. ([17], Lemma 4). If the reproducing kernel k(-,-) of RKHS H is measurable
and Ep[\/k(z,z)] < oo, the mean embedding of p exists. Furthermore,

MMDQ[H7P7 Q] = Hﬂp - Nq”%{-

Proof in [Appendiz 2}

Proposition 1.1.9. Let 2’ and vy’ be independent copies of x and y respectively and n, m
the corresponding sample sizes, the squared population MMD can be expressed as

MMD?[H,p, q] = Ey [k (z,2")] = 2B y[k(z,y)] + Eyy [k (v,9)] .

Hence the unbiased empirical estimate is given by,

MMD2[#, X, Y] = n_l)ZZk Xi X))+ o _UZZk(Yi,Yj)
=1 j#i =LA (1.1.1)

2
- — g k(X Y;)
nm « -
i=1 j=1



Proof.

MMD2[H,p, ql = ||Np - Uq”i
= <Mpa Mp>7.[ + <,uq, Mq>H -2 <Hpa Mq)y
= Ex,:c’ <(;5(CC), ¢ (.T/) >’H + Ey,y’ <¢(y)a d) (y/)>H - 2Ex,y<¢(x)v ¢(y)>7{,

The first equality follows from Lemma Since (¢(x), p(x))y = k(z,2’), the result
follows. Lastly, the empirical estimate is obtained by replacing the expectations with
unbiased sample averages estimators. O

Since we would like the MMD to be zero when the measures p and q are identical, it is
important for the MMD to be a metric. It has been shown that MMD is indeed a metric
if the associated kernel is universal on a compact space X. Otherwise, in the case where
X is not compact, MMD remains a metric if the kernel is characteristic, see

Definition 1.1.10. (Characteristic kernel, [I3], Section 2.2). Let P be the family of all
probability measure on (X, d), kernel k is called characteristic if the mapping

./\/lk:'P—>'H

i.e. p is mapped to pyp, is injective. Hence, E,[f(z)] = E,[f(y)] Vf € H implies p = q.
Analogous to the characteristic function, this defines a kernel with mean embeddings that
uniquely determine probability measures on X.

The two commonly used characteristic kernels are the Gaussian kernel

1
i = exp(— 5 e — oI}

and the Laplacian kernel
1
kL = exp(=—llz —y|).
o

And we will compare their performances in later sections.



Chapter 2

Offline Detection

2.1 Kernel two sample test

This section reviews the work of Gretton et al. and provides related experimental results.
The first hypothesis test based on unbiased statistics follows from Theorem The U
statistics deviation bound [23], is applied in the context of MMD statistics and yields the
following.

Theorem 2.1.1. (Bound for unbiased MMD statistics, [17], Theorem 10). Assume
k(zi, ;) is bounded above by K,

—¢2
P(MMD2[F, X, Y] - MMD2[F, p,q] > ) < exp ( ! K”;”)

where mg 1= |m/2] and m is the sample size of X, Y.

Under the null hypothesis, p = ¢, i.e. MMD?[F,p, q] = 0, the acceptance region of test
with level « is given by

MMD?[F, X,Y] < g\/log a-l.
vm

However, it is pointed out in [I7] that this bound is conservative by design as it does not
take into account the actual distribution p, ¢ and has a finite sample size. Also, it has been
shown empirically when distribution p, q are Gaussian with different mean or variance,
this bound yields much worse performance compared to the t-test, Kolmogorov-Smirnov
test and other variants of the MMD test.

In practice, the asymptotic distribution of the unbiased test statistics is often consid-
ered. As the unbiased estimate of MMD converges asymptotically to a weighted infinite
series of x? distributions under the null hypothesis, approximations of the 1 — a quantile
falls into one of two approaches. The first method employs bootstrapping or permutation
techniques. By resampling or shuffling the original samples z; and y;, we generate new
sets of samples that are statistically drawn from the same distribution. The MMD esti-
mates computed from these bootstrapped samples converge consistently to the true null
distribution. The second method involves fitting known distributions to the moments of
the null distribution. By matching the moments of the empirical null distribution to a
family of distributions, such as the Pearson curve, we can obtain the theoretical quantiles
for hypothesis testing.

2.1.1 Comparison of power

Here we present a comprehensive comparison of various two-sample tests through exper-
imental results. We evaluate the power of these tests using a Monte Carlo approach,



defined as the proportion of correct rejections under the alternative hypothesis over 100
repetitions. Our experiments cover a range of alternative scenarios, including changes in
the first four moments, to assess the sensitivity of each tests in detecting different types of
distributional shifts. For the MMD tests, unless otherwise stated, we estimated the 1 — «
quantile using 1000 iterations of permutation resampling. Also, throughout this analysis,
we maintained a significance level of a = 0.05.

e Mean Shift

When samples were drawn from two normal distributions with different means, the
Student’s t test (t) [39] demonstrated superior power across all sample sizes. This
aligns with our expectation, given that the t test is a parametric test specifically de-
signed to identify changes in mean for normally distributed data. However, when ap-
plied to comparing gamma distributions with identical variances but different means,
the performance deteriorated significantly. Results are provided in As
shown in all tested methods produced similar performance and exhibited
consistency. When the sample size increased, the statistical power approached 1.
This consistency allows us to draw confident conclusions and reliably distinguish
true distributional changes when sufficient data is given. To ensure that the tests
are valid and well-defined, we estimated the Type I error rates following similar
procedure to the power tests, with the key difference being that both sample sets
were drawn from N(1, 1), representing the case of no distribution change. As all
methods maintained error rates close to the 5% level, we confirmed that they are all
well defined level « tests. Detailed numerical results for Type I errors are provided

in [Appendix B
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Figure 2.1: Power (%) against sample size at level a = 5%

e Variance Change

For detecting changes in variance between two normal distributions with equal
means, the performances of the tests varied significantly. The Epps-Singleton (ES)
test [16) [I1] demonstrated the highest power across almost all sample sizes, closely
followed by the Gauss and Laplacian tests. The Baumgartner-Weiss-Schindler (BWS)
test [31] also showed strong performance, especially as sample size increased. The
Kolmogorov-Smirnov (KS) [27] and Cramer-von Mises (CvM) tests [I] had moderate
power that improved with larger sample sizes. Notably, the Student’s t-test, Mann-
Whitney (MW) [29], and Brunner-Munzel (BM) tests [5] showed very low power

10



regardless of sample size. The unsatisfactory performance of t-test is expected as it
is primarily designed to detect changes in location rather than scale. All other tests
exhibited increasing power with larger sample sizes, demonstrating consistency. The
ES, Gauss, and Laplacian tests achieved near-perfect power (close to 100%) with
relatively small sample sizes (around 50-75), indicating their efficiency in detecting
variance changes in normal distributions.

N(1, 1) vs N(1, 2)
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Figure 2.2: Power (%) against sample size at level a = 5%

e Kurtosis Change

When comparing standard normal against standardised Student’s t-distribution with
2 degrees of freedom, we observed a wide range of performances in While
the Epps-Singleton test demonstrated near perfect accuracy under the alternative
hypothesis, followed closely by Gauss and Laplacian MMD test, the Student’s t-test,
Mann Whitney (MW) and Brunner-Munzel(BM) again performed worst across all
sample sizes. The Cramer-von Mises (CvM) and Kolmogorov-Smirnov (KS) tests
displayed moderate power that improved gradually with increasing sample size. As
it is common to observe deviations from normality to heavier tailed distributions in
actual log return, the effectiveness in detecting kurtosis or higher moment differences
is crucial in making sound statistical inferences on financial time series change points.

e Skewness Change

To test for changes in skewness, we used the skew normal distribution, parameterized
by location &, scale w, and shape a. We carefully selected £ and w to ensure that the
resulting distribution had a mean of 0 and variance of 1. With a shape parameter
a = 4, the distribution exhibited a skewness of 0.78 and an excess kurtosis of 0.63.
Our results, as illustrated in revealed that the Epps-Singleton test and the
MMD tests with Gaussian and Laplacian kernels significantly outperformed other
methods in detecting skewness changes. However, changes in skewness were shown
to be the most challenging to detect among all scenarios tested. Even the best-
performing tests required nearly 500 samples to yield high confidence in determining
a change. It is also worth noting that for the 1000 sample size scenario, we used
100 permutations to bootstrap the null distribution in order to maintain reasonable
computation time.

e Bullish to Bearish Shift

11



N(0, 1) vs stand. t(2)
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Figure 2.3: Power (%) against sample size at level a = 5%
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Figure 2.4: Power (%) against sample size at level a = 5%

To ensure robustness when applying two-sample tests in financial time series, we
wish to investigate the accuracy of the above tests under realistic distributions.
Theodoussiou et al. [35] proposed a family of distributions called Skewed Generalised
t (SGT) that captures a range of commonly used distributions in statistics including
normal, Student’s t, Cauchy and uniform distribution. It was originally proposed to
fit stock returns. In this experiment, we used parameters similar to the fit of S&P
500 and Topix in Table 6 of [35] to represent the bull and bear market conditions
respectively as they coincided with usual observation that bull markets have positive
mean with smaller variance while bear markets have negative mean with larger
variance. Exact values were chosen as follows.

Bpun = (0.7,0.02,1.5,9)

and
Obear = (1.2, —0.02, 1.4, 5).

Results in revealed similar disparities in test performance compared to
the ones in moment changes we presented. The power of tests displayed almost
linear increase as the sample size growed, with the exception of the Student’s t,

12



Mann Whitney (MW) and Brunner-Munzel(BM) tests. They had a rejection rate
less than 10% under the alternative hypothesis. The Epps-Singleton (ES) and MMD

tests again outperformed the other tests with power exceeding 90% at sample size
of 200.

SGT(Bull) vs SGT(Bear)
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Figure 2.5: Power (%) against sample size at level a = 5%

The series of power comparison tests conducted across various distributional scenarios
demonstrated several key findings. We consistently observed that the power of all tests
increased with sample size, highlighting the importance of adequate data for reliable de-
tection of distributional changes. We also verified that the MMD two-sample tests, along
with other established tests, are well-defined, meaning that the empirical type I error rate
matched the expected 5% under the null hypothesis. Notably, the Epps-Singleton test and
MMD tests with Gaussian and Laplacian kernels consistently outperformed other meth-
ods across all scenarios. The superior performance was especially evident when comparing
distributions that differed in shape rather than location or scale, such as the cases of
heavy-tailed or skewed distributions. These experimental results provide crucial insights
into the relationship between sample size and statistical confidence, offering a framework
to determine the appropriate window size when applied to real-world data with unknown
underlying distributions.

2.1.2 Effect of sample size ratio

In addition to the above study, we extend our investigation to the impact of sample
size ratio on the power of two sample tests. This is particularly relevant for practical
applications, especially in financial data. In real-world settings, we often have access to
a larger amount of historical data compared to future data when attempting to identify
regime shifts. Having an imbalanced sample ratio might be beneficial as increasing the
future window length can lead to longer detection delays, compromising the usefulness of
the identified change points.

To examine this effect, we performed a series of tests with varying sample size ratios
between the two groups being compared. In nq refers to the number of samples
in the first data set while the number of samples in the second dataset no is given by n4
divided by the corresponding ratio.

Several key observations can be drawn from the results in[Figure 2.6] Firstly, increasing
the sample size ratio for fixed ny generally led to reduced test power across all base sample
sizes ni. As the total number of samples decreased, it is reasonable to observe reduction

13



N(1,1) vs N(1, 2)
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Figure 2.6: Type I error and power (%) against ratio between sample sizes of two sets of
independent observations at level a = 5%

in performance. Also, we noticed that the impact of increasing sample ratio was minimal
when n; is large, even a tenfold decrease in the smaller sample set yielded almost identical
performance. In contrast, when n; was relatively small, a decrease by fourfold already
resulted in significant decline in power.

These findings highlighted the fact that the power of two sample test is both a function
of the sample ratio and total sample size. Yet, if we apply this finding from a different
perspective, one can conclude that when the number of samples in the smaller set, usually
being the future window, is small, increasing the number of samples in the past and larger
window will increase the power of the test. Thus, it provides a valuable insight to practical
application.

It is worth noting that the above figure illustrates the effect for changes in variance.
We observed similar patterns for mean changes as well, and the corresponding plot can be

found in

2.1.3 Optimal bandwidth

In this section, we will comment on the effect of the choice of kernel bandwidth to the
power and accuracy of the two sample test. In general, the performance of kernel-based
methods, including the MMD test, is heavily dependent on the choice of bandwidth o.
A commonly used approach for bandwidth selection is the median heuristic, which is the
median of the pairwise distances in the pooled sample. As described in [15], the rationale
behind this approach is to set the parameter o in the same order as the entries of the
Gram matrix K. At the two extremes o — 0, oo, the MMD statistic becomes 0, losing all
relevant information. Hence, a simple approach is to choose ¢ as the middle range of all
pairwise distances.

While the median heuristic offers a simple and efficient solution, it is important to
note that it is not theoretically optimal for maximising the test power. We will illustrate
this idea with the following experiment.

In , we provide the power of MMD two-sample tests using Gaussian kernel
with different multiples of the median heuristic. Median 0.25 refers to a quarter of the
median heuristic, while Median 3 means three times the median, etc. We observed that
for the standard t-distribution, the larger the bandwidth, the higher the power of the test.
On the contrary, in the case of skewed normal distribution, smaller bandwidths yielded
better results in general. This highlights the dependency on distribution of the choice of
bandwidth to the power of kernel-based two sample tests.

Given the lack of theoretical foundation to the optimal kernel choice, [34] suggested
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Figure 2.7: Effect of distribution on optimal bandwidth choice at level o = 5%

using multiple kernels to form an aggregated test. This approach enhances the robustness
of the test power by utilising a range of bandwidths, and proved to be optimal in the
minimax sense. Another strategy, proposed in [I§], involves splitting a portion of sample
as training data for determining bandwidth that maximises the test power. However,
this method reduces the number of samples available for the actual test, which can be
problematic in scenarios where minimising sample size is crucial.

As demonstrated, the challenge of choosing an optimal bandwidth is complicated and
therefore left as an area for future research. For the purpose of this report, the median
heuristic is sufficient to serve as a good baseline for our analysis given its simplicity and
widespread use in the literature.

2.1.4 Effect of interpolation

Given the observed relationship between sample size and test power, we investigate whether
artificially increasing the sample size through interpolation can improve the power of our
two-sample tests. This section explores this proposition, focusing on two interpolation
methods: linear interpolation and Brownian bridge interpolation.

Let (X;)7, be our data sampled, where t; represents the time. We consider two
interpolation methods:

e Linear Interpolation: For any t € [t;,t;11], we define

t—t;

X=X, +
! "t —t

(Xiv1 — Xi)

e Brownian Bridge Interpolation: For any ¢ € [t;,¢;11], we define

t—t; tia1 —t)(t— 1
Xy =Xi+ ——(Xip1 — X;) + (tisr = ) Z)Z
tit1 — 1 tit1 — 1

where Z ~ N(0,0?) and o2 is estimated from the original data.

The Brownian bridge interpolation adds a stochastic component to the linear interpo-
lation, potentially better reflects the underlying continuous-time process, especially if we
assume the data follows a geometric Brownian motion since the log price follows a drifted
Brownian motion.

To evaluate the effect of interpolation on test power, we conducted experiments where
we generated geometric Brownian paths (X;)!", with regime changing at the mid point,
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Figure 2.9: Brownian bridge interpolation of log price at mid points

then applied each of the interpolation methods to the log price of (X;)7_ ;. Here we provide
the plots of a realised interpolation with the two methods.

As we can see in [Figure 2.9] interpolation using Brownian bridge added random fluc-
tuations on top of the linear trend. Therefore, the volatility structure of the Brownian
bridge interpolated result resembled actual data more closely. In fact, we empirically esti-
mated the volatility parameter of the interpolated results and saw that interpolation using
Brownian bridge recovered almost 70% of the true volatility while linear interpolation only
retained 45% of the actual value.

The experimental setup consisted of the following steps: First, we simulated a geomet-
ric Brownian motion time series with a change in volatility parameter from 0.2 to 0.25
at the middle of the time series. FEach level of interpolation refers to a level of dyadic
interpolation; for example, level 1 interpolates the midpoints of the interval, level 2 inter-
polates the mid points of the level 1 interpolation, resulting in three synthetic samples in
each interval, and so on. We then performed MMD two-sample tests on the log returns of
the original and interpolated data, separating the data at the middle (the known change
point). This process was repeated multiple times to estimate the power of the test under
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the alternative hypothesis when the volatility changes and the Type I error rate when
volatility is constant.

Our results indicated that linear interpolation has a significant impact on the perfor-
mance of two-sample tests. Under the alternative hypothesis, we observed an increase in
the power for all tests when applied to linearly interpolated data, particularly for smaller
original sample sizes. However, this improvement turned out to be an illusion as it was
accompanied by a significant inflation of Type I error rates in

At a significance level of 0.05, we observed Type I error rates of more than ~ 30%
when linearly interpolation was applied. These rates are substantially higher than the
expected 5%, indicating that the tests are becoming unreliable.

The inflation of Type I error rates can be attributed to the artificial reduction in vari-
ance introduced by linear interpolation. This reduction in variance narrows the sampling
distribution of our test statistics under the null hypothesis. As a result, when we apply
our usual critical values, we are more likely to reject the null hypothesis even when it
is true. The reduced variance makes small, random differences between samples appear
more significant than they actually are, leading to an increase in false positives.

This effect is particularly pronounced in tests sensitive to the overall distribution of
the data, such as the Kolmogorov-Smirnov or MMD tests, as the interpolation alters the
empirical distribution function in a way that can exaggerate small differences between
samples.

Linear interpolation
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Figure 2.10: Type I error and power (%) for linear interpolation

On the other hand, the results in for Brownian bridge interpolation were far
superior. Under the alternative hypothesis, we observed a substantial increase in power
across all interpolation levels, particularly for smaller original sample sizes. Unlike the
case for linear interpolation, the Type I errors were all approximately 5% and aligned
with our expectations. The improved performance of Brownian bridge can be attributed
to its ability to better preserve the variance structure of the original data by adding a
stochastic component.

Notice however, without prior knowledge of the volatility parameter, the value of o
needs to be estimated from the original data, leading to additional bias. Assuming that the
underlying process follows a geometric Brownian motion, an estimation of the volatility o
can be obtained by the sample variance of the log return. To illustrate the practical issue
of estimation error on the efficacy of the Brownian bridge interpolation scheme we have
provided the following plot in

The experiment setup was similar to the investigation of Type I error and power
under different interpolation schemes. As we are interested in the effect of estimation
error, we fixed the sample size of the original generated path and altered the variance
parameter of the Brownian bridge. The absolute estimation error is the absolute difference
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Figure 2.11: Type I error and power (%) for Brownian bridge interpolation
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Figure 2.12: Type I error against estimation error of ¢ under Brownian Bridge interpola-
tion

between the variance parameter used and the true volatility of 0.2. For all fixed sample
sizes, the first level of interpolation was applied i.e. mid points of the original data
were interpolated. And the x-axis was plotted on a log;, scale to better visualise the
relationship across different orders of magnitude. More importantly, we discovered that
the Type I error rate increased as the absolute estimation error increased across all fixed
original sample sizes. As expected, this phenomenon can be attributed to the fact that
inaccuracies in volatility estimation altered the sample distribution to the extent that the
two samples being compared were perceived as different. In addition, the rate of increase
in Type I error was dependent on the size of the original sample. In particular, smaller
original sample sizes exhibited a slower inflation of Type I error rates. This observation
suggests that the two-sample test we employed was more forgiving of higher variability or
inconsistency in smaller datasets. The lower confidence in rejecting the null hypothesis for
smaller samples is reasonable, given the fewer observations available. One might interpret
this finding as evidence supporting the efficacy of Brownian bridge as an interpolation
scheme, particularly since interpolation is typically more relevant for smaller sample sizes.
However, in reality, the standard error of the sample variance estimator is proportional
to \/% with IV being the number of observations. This implies that estimation errors are
innately larger when working with small sample sets.

Also, the use of Brownian bridge relies on the assumption of normal distributed log
returns. In practice, this assumption must be validated before adopting the Brownian
bridge approach to ensure theoretical robustness. These findings highlight a crucial point:
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while interpolation can increase the apparent sample size, it does not add genuine new
information to the dataset. The interpolated points introduce biases that can lead to
unreliable conclusions. One should be mindful when considering interpolation as a means
to augment sample sizes, and should be aware of the potential inflated Type I error.

2.1.5 Kernel Fisher Discriminant ratio

In the follow section, we investigate another kernel-based two-sample test closely related
to the MMD test. In order to define the test statistics, we need to first define a covariance
operator.

Definition 2.1.2. (Covariance operator). The covariance operator ¥, of measure p is the
unique linear operator onto H such that

Covy(f(x), 9(z)) = ([, Epg)  VfgeH
Definition 2.1.3. (Maximum Kernel Fisher discriminant ratio, [12], Section 3.1). Let H

be the RKHS defined in Deﬁnitionm and two sets of random variables (x1,...,Zy,) -~
Dy, Y1y YUny) i q. The maximum kernel Fisher discriminant ratio is defined as
n1ng _
KFDR[H, p, q] := ———|(Zw + 1) "2 (1p — 1) |5,
n1 + ng
where v is a positive constant and Xy := nl’f:nz Zp+ n:i-znz ¥4 is the pooled covariance

operator.

There are two aspects about kernel Fisher discriminant ratio that are interesting in
contrast to MMD. Firstly, the standardised KDFR asymptotically converges to a standard
normal distribution under the null hypothesis when the sequence ~, decreases in a rate
slower than n~/2. This result suggests an alternative hypothesis testing procedure. As we
have seen in [I7], the asymptotic null distribution of MMD converges to an infinite series
of chi squared distribution, thus we can only obtain the p-value by bootstrapping which
increases computation cost. Therefore, convergence to a simple analytical distribution
would be an immense improvement. We highlight that this convergence result is not
completely distribution independent. The decaying rate of - is a function of the sample
size n, choice of kernel and distributions p,q. However, we have shown empirically in
by choosing v small enough 1075, the approximation to standard normal is

close.

Empirical distribution of standardised test statistics
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Figure 2.13: Normality of standardised KFDR vs standardised MMD

The second point of interest from [22] is the proposal of a KFDR based two-sample
test applicable to unknown change point location. The procedure works as follows. Given
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a sequence of samples X among which there exists a point k* where the generating dis-
tribution changes, the test statistic is defined as
7 KFDR(X[: k], X[k 1]) — dy

= max
k dg

where dp = Tr { (ZA?W + 71) ' ZA]W}, dy =Tr { (ZAlW —l—fﬂ) ’ (iw)2

The null hypothesis is rejected if T exceeds a certain threshold. This procedure relies
on the fact the standardised KFDR peaks at the true change point, hence raising an
interesting question as to whether this property holds when there are multiple change
points in the time series. A similar idea was explored in [33] which introduces the non-
parametric binary segmentation which recursively bisects the time series at indices with
maximum Kolmogorov-Smirnov statistics.

To answer the question, we conducted the following test. We randomly split a length
500 time series into four unequal segments. Then, we sampled from a normal distribution
with variance alternating between 0.3 and 0.6 for each segment. Here we plot the values of
KFDR standardised by its mean and variance empirically estimated with 25 permutations.
We also introduce a new hyper-parameter win size for the test which governs the scope
of the KFDR estimator. This is for two reasons, the first being that the computation
of KFDR for X[: k] and X[k :] can be very costly when the time series is long as it
has a complexity of O(n3). Therefore, limiting the size of the test to win size ensures
consistency in computational performance. Also, we noticed that the choice of the win
size parameter impacts the prominence of the peaks. When the window size is too small,
the KFDR may be too sensitive to local fluctuations in the data, leading to multiple
spurious peaks that do not correspond to true change points. On the other hand, when
the window size is too large, the KFDR may be overly smoothed, causing the peaks at
the true change points to become less pronounced.
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Figure 2.14: Rolling KFDR with varying window sizes

Notably, in the KFDR statistic is shown to exhibit peaks at the location
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of change points, confirming the test’s ability to identify structural shifts in time series,
even in the presence of multiple transitions. The plots also demonstrate the effect of the
parameter win size. As hypothesized, a small window size exhibits noisier values while
a large window size is less able to capture changes. Hence, the optimal range of win size
values should be chosen with care to strike a balance between sensitivity and robustness
when applied to change point detection problems.

The intriguing results observed with the standardised KFDR prompt the question
whether other non-parametric tests exhibit similar behaviours. We carried out the same
procedure using MMD statistics instead of KFDR, on the same synthetic time series. And
the plot of varying window size is provided in below.

Similar to the KFDR-based analysis, change points in the time series correspond to a
peak in the MMD, suggesting that both non-parametric tests can potentially be used to
identify candidates of change points. The overall effect of window size is similar to the
observation in KFDR as well, with spurious and lower peaks for smaller window sizes and
dampened peaks at some change points for larger window sizes.

Lastly, we compared the power of the MMD test with the KFDR test under various dis-
tribution shift scenarios, with a particular focus on the skewed generalized t-distributions.
illustrates the power of both tests under different sample sizes of the skewed
generalized t-distribution.

As evident in both tests approached a power of 1 as the number of samples
increased. While the MMD test performed slightly better for this particular choice of
parameter values, KFDR showed a slight edge in performance in the standard normal
against student t-test. It is crucial to emphasize that the power of the test is subject to
kernel and hyper-parameter choices. Hence, we concluded that the two tests demonstrated
comparable power. We provide additional results of the comparison in along
with a plot of Type I error to showcase the validity of both tests.

SGT(Bull) vs SGT(Bear)
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Figure 2.15: Power (%) against sample size at level a = 5%

2.2 Algorithm

In the previous sections, we investigated the performance of two-sample tests and found
that kernel-based methods and the Epps-Singleton test stood out among the others for
most cases. In the problem of change point detection, the number and location of change
points are unknown. Therefore, a two-sample test alone is not enough. Here we propose
three change point detection algorithms based on two sample tests.
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The first algorithm we propose is based on a sequence of two sample tests in a sliding
window basis. By iterating through each position ¢ in the time series and performing a two-
sample test Test on window centred at i, we add the position 7 to the list of candidate
change points if the p-value is less than the significance level. Since the distributional
difference at points near the true change point is large, points to the left and right of the
true change points are often classified as candidates. To obtain the estimated location of
the true change points, we first split the candidate points into contiguous subsegments.
And return the medians of the subsegments as detected change points. It is worth noting
that the choice of window size win size is an important consideration. A smaller window
size allows for detection of more localized changes but is more susceptible to Type II
error, while a larger window size provides more accurate results but may miss closely

Algorithm 1: Sliding Window

Input
Output: Change points
candidate «+ [-];
for i = 2 to length(data) do
left <— data[i — winsize : i];
right < datali : ¢ + winsize];
pvalue < Test (left, Tight);
if pvalue < siglevel then

‘ Append i to candidate;
end

end
subsegments < Split(candidate) to continguous sbusegments;
return Median(subsegments);

: Time series, window size (winsize), significance level (siglevel)
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spaced change points. The complexity of the algorithm is O(N) where N is the length of
the time series. Therefore, in the case of the MMD two sample test, the total complexity
would be O(N - W?2. P) where W is the window size and P is the number of permutations.

Algorithm 2: Binary Segmentation

Input : Time series, minimum segment size (min size), significance level (sig
level)
Output: Change points
Function BinSeg(data):
m < mid point;
N <« Length(data);
leftseg <— data[:m];
rightseg <+ data[m:];
if N < min size then
p value < Test (leftseg, rightseg);
if p value < sig level then
‘ return [ml;
else
‘ return [|;
end
else
left change points <— BinSeg(leftseg);
right change points < BinSeg(rightseg);
left end < last element of left change points;
right end < first element of right change points;
p value < Test (data/left end: m/, data/m:right end]);
if p value < sig level then
‘ return [m] + left change points + right change points;
else
‘ return left change points + right change points;
end

end

The binary segmentation algorithm recursively bisects the time series into increasingly
smaller segments and tests for change points in a bottom up fashion. When the segment
length is below a specified minimum size, the algorithm performs a two-sample test and
returns the mid point as a change point if the p-value is below the significance level. For
progressively larger segments, an additional test is performed on subsegments to the left
and right up to the closest change point being identified. The mid point of this larger
segment is again included if the test is significant. The recursive depth of the algorithm
is controlled by the parameter min size. While a smaller min size increases the chance
of a change point lying on the edge of the segment, the lower power hinders the ability to
detect differences in distribution. Note that this algorithm has complexity (’)(%) where
m is the minimum segment size.

Lastly, we generalised the analysis in standardised kernel-based statistics to obtain an
algorithm for multiple change point detection. Similar to the sliding window approach, the
standardised kernel-based statistic is calculated at each position i of the time series. In
order to identify significant peaks that serve as candidates of change points, a smoothing
spline is applied to reduce noise in the signal. Then using a peak-finding algorithm to
identify local maxima in the smoothed data, local maxima are returned as potential change
points. This procedure introduces a smoothing parameter that governs the smoothness of
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Algorithm 3: Standardised Maximum Partitioning

Input : Time series, window size (winsize)
Output: Change points
N <« Length(data);
standardised stat < [-];
for i = 2 to Length(data) do
left < data[i — winsize : i;
right <— datali : i + winsize];
stat <— TestStatistic(left, right);
mean, std dev < Bootstrap (left, right);
Append % to standardised stat;
end
smoothed data < SmoothingSpline (standardised stat);
peaks < PeakFinder (smoothed data);
return peaks;

the standardised statistics. However, we want to stress the purpose of smoothing is not
to remove insignificant peaks but rather a solution to finding peaks for discontinuous data
where all points are essentially local maxima. To ensure robustness in statistical sense, we
apply the two-sample test procedure on segments defined by the potential change points.
This verification process has the advantage of better defined segments compared to the
Binary Segmentation and Sliding Window algorithm where segments of arbitrary length
are tested with mid points assumed to be the locations of change points.

As we have mentioned in previous sections, the computation cost grows with the length
of time series and the window size. To parallelise the MMD and KFDR calculation, we
generalised the implementation into taking a matrix of arbitrary dimension as input. This
allows the calculation of p permutation of window size n samples for b points in the
time series where b is the batch size to be formulated as a 4D matrix with dimension
(p x b x n xn). We then use the Cupy library to parallelise the operation on a GPU. We
observed a 4-fold improvement in computation speed. It is interesting to note that the
batch size should be carefully chosen so that the GPU’s memory is not exceeded as then
memory would be borrowed from the CPU, resulting in slower transfer of data. We provide

a plot of computation speed up against batch sizes to illustrate the idea in

2.3 Synthetic Data

To systematically evaluate the performance of the algorithm on real data is near impossi-
ble. It is very difficult to infer from a sequence of log returns the underlying probability
distribution each segment originates from. Nor is it possible to tell the exact locations of
change points should a change in distribution occurs. As a result, we tested our algorithms
on synthetic market data generated from either a geometric Brownian motion or Merton
jump diffusion process.

For a given interval [0,7] with 7" € N, we generated time series with timestep At,

resulting in a total number of N = % sample points. Let © C R? be the parameter
space and (01,...,60,,) € ©™ be a set of parameters, each specifying the path generation

model. For the purpose of this analysis, m = 2, with parameter set labelled (0,11, Opear)
corresponding to the parameters of bull and bear market regime. We then drew K random
samples from the index set [0,..., N]| as the locations of change points, with K being
the pre-specified number of change points. To prevent consecutive change points, we
introduced the parameter min size to enforce a minimum interval size between any two
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consecutive change points. Starting from the first element in the set of parameters, we
simulated a path associated with the parameter. When a change point occurs, we cycled
to the next item in the set of parameters, and simulated the corresponding path until the
next change point was encountered.

To assess the performance of various change point detection algorithms, we employed
three key metrics: Hausdorff distance, Rand index, and Fj score.

e Hausdorff Distance The Hausdorff distance measures the maximum distance be-

tween the detected change points and the true change points. It quantifies how far
the estimated change points are from the actual ones in the worst case. Thus it
provides a measure of the worst-case error in change point location, assessing the
maximum deviation of the algorithm. A smaller Hausdorff distance indicates better
performance.
dp = max{sup inf d(a,b),sup inf d(a,b)}
acAbEB beB €A

Rand index The Rand index evaluates the similarity between the segmentation
produced by the estimated change points and the true segmentation. It considers
all pairs of time points and checks if they are correctly classified as being in the
same segment or different segments. As a result, it measures the overall structural
similarity by considering the entire segmentation instead of individual change points.
The Rand index ranges from 0 to 1, with 1 indicating perfect agreement. This is
beneficial for assessing overall structural similarity.

TP +TN

I=
R TP+ FP+TN+ FN

where TP, TN, FP, and FN are true positives, true negatives, false positives, and
false negatives, respectively.

Fy Score The Iy score is the harmonic mean of precision and recall.

Fl—2. precision - recall

precision + recall

It ranges from 0 to 1, with 1 indicating perfect precision and recall. The Fj score
penalises false positives as well as false negatives. Thus it is a robust measure of the
algorithm’s accuracy.

2.3.1 Geometric Brownian motion

In the following subsection, we discuss the test results of the algorithms on identifying
change points under the geometric Brownian motion model. The parameter set 6 that
determines the process is given by (i, o) where p is the drift coefficient and o the volatility
coeflicient. As a result, the log return of the synthetic price data is given by

2
Alog Sy ~ N((p — %)At, o2AL).

We simulated a path generated by the set of parameter values provided below,

and

Opun = (0.04,0.2),

Opear = (—0.04,0.3).

We provide below of the mean and standard deviation performance metric
estimates over 50 simulated paths.
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Figure 2.17: Synthetic path under geometric Brownian motion

4000

Method Hausdorff Randindex Fy score

SMP MMD 332.96 £ 456.69 0.94 £ 0.07 0.84 + 0.18
SMP KFDR  258.56 4 450.61 0.96 & 0.08 0.94 £ 0.10
Binseg MMD  538.96 + 485.70 0.91 + 0.06 0.74 £+ 0.16
Binseg ES 609.28 £+ 472.16 0.89 & 0.09 0.69 + 0.14
Win MMD 1048.92 £+ 556.98 0.90 + 0.07 0.71 £ 0.11
Win ES 1302.62 £ 459.28 0.88 & 0.09 0.61 £ 0.11

Table 2.1: Performance metrics for change point detection algorithms under Geometric
Brownian Motion

The results indicate that the SMP KFDR method outperformed other algorithms
across all metrics. It achieved the lowest average Hausdorff distance of 258. This means
that the furthest distance between an estimated change point and its corresponding true
location is very small, showing that the method is robust. The close to one Randindex
indicated almost perfect overlap between the true and estimated segmentation. Finally,
the highest F} score suggests that SMP KFDR not only correctly identified change point
locations, but rarely misclassified a non change point.

The SMP MMD method showed the second-best performance across all metrics, with
a notably low Hausdorff distance of 332, high Randindex of 0.94 and F7j score of 0.84. This
shows that SMP MMD is also highly effective in detecting change points under geometric
Brownian motion.

Binary segmentation methods showed moderate performance, with Binseg MMD slightly
outperforming Binseg ES across all metrics. However, their Hausdorff distances were sig-
nificantly higher than those of the SMP methods, suggesting less precise change point
detection. The lower Fj score might be due to the higher number of estimated change
points than there actually were. Even though true change points were correctly identified
as suggested by the close to 0.9 Randindex, the increased false positive dragged down the
Fy score. The lower Randindex compared to SMP is expected though. The binary segmen-
tation inherits two limitations as we have briefly discussed in the previous section. First, to
achieve higher accuracy of the estimated change point location, we chose a relatively small
min size of 100. This compromised the power of the test. Also, the performance of the
binary segmentation is subject to the location of the true change points. When a change
point lies in the middle of the min size wide window, the test rarely has enough evidence
to reject the null hypothesis. These shortcomings suggest that binary segmentation might
not be the right algorithm to use when investigating real-world data.

26



The window-based methods demonstrated the worst performance, particularly in terms
of Hausdorff distance. By comparing the set of estimated change points and true change
points, we observed that window based methods were much noisier than the previous two
algorithms, meaning that the number of false positive is high. In a lot of instances, change
points were misidentified near the start and the end of the time series. This might be
due to the imbalanced number of samples when two sample tests were carried out at the
beginning and the end of the time series. As evidenced in [4] and previous sections, we
showed that the small number of total samples together with large differences between the
two sample sets reduce the power of the two-sample test. With only a few points at the
two ends of the time series to test on, misclassified points inflated drastically the Hausdorff
distance. Other than this, the performance was similar to the binary segmentation. And
again, Win MMD slightly outperformed Win ES.

2.3.2 Merton jump diffusion process

In the previous case, the log return of the price series is Gaussian distributed. In order
to capture discontinuity behaviours in the market, we investigate the performance under
a Merton jump diffusion process. The solution to the stochastic differential equation is
given by

2 Nt
S = Soexp ((u - St + oW+ ZY>
=1
where W; is Brownian motion, /V; a Poisson process with intensity A and (Y;)?_, a sequence
of i.i.d. normal random variables with mean m and variance v.
The sets of parameters corresponding to the bull and bear market we used are given
by following,
Opun = (0.05,0.2,5,0.02,0.0125),

and

Obear = (—0.05,0.4,10, —0.04,0.1).
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Figure 2.18: Synthetic path under Merton jump diffusion

Again, 50 synthetic paths were drawn to estimate the mean and standard deviation of
the performance metrics. And the results are presented in

In the Merton jump diffusion scenario, we observed that SMP KFDR maintained its
superior performance, achieving the best results across all metrics. It showed the lowest
Hausdorff distance of 371, highest Randindex of 0.96, and best F} score of 0.89.
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Method Hausdorff Randindex Fy score

SMP MMD 682.72 £ 734.74 0.91 &£ 0.10 0.77 + 0.18
SMP KFDR  371.34 4 648.47 0.96 &+ 0.08 0.89 £+ 0.14
Binseg MMD  636.30 + 536.32 0.90 4+ 0.08 0.74 £+ 0.15
Binseg ES 654.10 = 533.44 0.89 £ 0.08 0.67 £ 0.13
Win MMD 909.98 £+ 537.80 0.88 £ 0.09 0.73 £ 0.13
Win ES 1387.44 £ 615.55 0.88 &+ 0.12 0.64 £ 0.11

Table 2.2: Performance metrics for change point detection algorithms under Merton Jump
Diffusion Process

SMP MMD, while still performing well, showed a noticeable decrease in performance
compared to the geometric Brownian motion case, particularly in terms of Hausdorff
distance. This suggests that SMP MMD is more sensitive to the discontinuities introduced
by the jump process. Therefore, it wrongly identified jumps as changes in distribution.

The binary segmentation methods showed very similar performance to the geometric
Brownian motion case, with Binseg MMD slightly outperforming Binseg ES. Their perfor-
mance was closer to that of the SMP methods in this scenario, indicating that they may
be more robust to jumps than initially thought.

Window-based methods again showed the poorest performance, with larger Hausdorff
distances compared to the geometric Brownian motion scenario. However, the Randindex
and Fj score were similar to that of the geometric Brownian motion, demonstrating the
resilience in ability to accurately identify change points in discontinuous time series.

Overall, the introduction of jumps in the Merton model increased the difficulty of
change point detection for all methods, as evidenced by the generally higher Hausdorff
distances. However, SMP KFDR demonstrated remarkable robustness, maintaining high
performance across both scenarios. The consistent superior performance of SMP KFDR
across both scenarios indicates its versatility in handling different types of price dynamics
where there might be both continuous changes and sudden jumps. Other methods also
exhibited moderate robustness in selecting the correct change points.
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Chapter 3

Application: Prediction

Building upon the foundation of offline change point detection methods discussed in the
previous chapter, we turn our attention to the more challenging and practically relevant
task of early detection and prediction of regime changes in financial markets. While data
before and after change points are available to offline approaches, real-world applications
often require timely identification of regime shifts.

In this chapter, we first explore the idea of early detection in synthetic data that
predicts regime changes before they fully manifest with tools we developed. By studying
the efficacy and sensitivity of the tests under various known dynamics, we extend the
application using machine learning techniques to real market data, in the hope of creating
models capable of anticipating significant structural breaks and offering practical tools for
strategy risk management.

3.1 Synthetic example

In synthetic data, regimes are generated independent to one another, which inherently
precludes any predictability before a change point occurs. To introduce an element of
predictability into our synthetic examples, we incorporate a transition period during which
the regime gradually evolves towards the next state. This modification allows us to explore
the potential for early detection of regime shifts.

In our study, we labelled the 50 time points immediately preceding a complete regime
shift as ’1’, indicating the pre-change period of interest. The remaining points were labeled
as '0’. For our predictive model, we utilized the rolling MMD statistics as the primary
independent variable. We also included three lagged versions of this statistic to capture
the trend of the statistics, each separated by a step size of 100 points. This results in a
total of four independent variables for our classification task.

We employed logistic regression as our classification model to determine whether a
given data point is on the edge of a regime shift based on the evolving statistical properties
of the time series during the transition period. Our synthetic dataset comprised of 200,000
time steps with 100 change points, each separated by a minimum of 1,000 time steps.
This configuration resulted in a significant class imbalance, with a ratio of approximately
1:40 between the ’1’ labels and ’0’ labels. To address this imbalance, we implemented
a weighting scheme where data points were assigned weights inversely proportional to
their class frequency, ensuring that the model adequately learns to identify the crucial
pre-change periods despite their relative scarcity in the dataset.

The performance of our logistic regression model was evaluated under three distinct
market dynamics: Geometric Brownian motion, Merton-Jump Diffusion and Skewed Gen-
eralised t-distribution. These models represent varying levels of complexity in the bull
and bear market return. To ensure a comparative assessment of model performance, we
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employed SMOTE (Synthetic Minority Over-sampling Technique) [8].Instead of directly
computing the F} score on the testing data, SMOTE addresses the class imbalance issue
by randomly interpolating between similar minority data points to create new synthetic
samples. This prevents potential biases in the Fj score calculation, such as inflated scores
from simply classifying all points as label 0 or deflated scores due to a relatively high
number of false positives.

For the GBM model, we observed a generally increasing trend in Fj score as the
transition period lengthens. The Fj score ranges from 0.66 to 0.78, indicating moderate
predictive performance that improved with longer transition periods.

F1 Score under GBM
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Figure 3.1: F} score against length of transition period under GBM

The MJD model, which incorporates sudden jumps, showed the highest overall Fj
scores among the three dynamics. The scores range from 0.7 to 0.89, with a sharp increase
up to 400 time steps and then a slight dip at 500 time steps.
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Figure 3.2: F} score against length of transition period under MJD

Lastly, using the same parameters as in the power test for Skewed Generalised t-
distribution, the SGT model exhibited a steady increase in F} score from 0.63 to 0.73 as
the transition period lengthened. While these scores were lower than those of the other two
models, the consistent improvement with longer transition periods confirms the validity
of our approach and demonstrates the ability to detect regime changes, albeit with less
identifiable distribution difference as shown in the power test results.

These results demonstrate that the effectiveness of our logistic regression model in
predicting regime changes is influenced by both the magnitude of the underlying market
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Figure 3.3: F} score against length of transition period under SGT

dynamic changes and the length of the transition period. In general the model performs
best with Merton-Jump Diffusion dynamics and longer transition periods, suggesting its
potential utility in markets characterized by occasional sharp movements and gradual
regime transitions. To further assess the robustness of the test results, we carried out the
same experiments with a 50/50 train-test split, instead of the 70/30 split presented in the
figures above. The resulting F} scores were found to be almost identical to the original
findings, indicating that there was no issue of overfitting in the models.

In practice, predictions before the change point are more valuable than those after, as
they allow for timely adjustments to trading strategies. To investigate this issue, we ex-
plored the introduction of asymmetry in the model’s cost function. One proposed method
involves lowering the weighting of points immediately preceding the label 1’ and increasing
the weight of points shortly after. This approach emphasizes correctly classifying points
after a change point as not being a change point, while reducing the penalty for misclassi-
fying label '0’ points near but before change points. Our study revealed that maintaining
the same level of true positive accuracy requires an asymmetric trade-off: doubling the
weight after a change point required more than halving the weights of points before the
change point. This weighting scheme can be tailored to user preferences and strategy
focus. We provide the results of an example of this implementation in A
potential refinement to explore is the implementation of gradually diminishing weights
after the change point and gradually increasing weights for points further away from the
change point in the preceding period. This nuanced approach could potentially enhance
the model’s ability to provide early warnings without sacrificing overall accuracy.

3.1.1 Signature features

While the rolling MMD statistics have shown decent promise in detecting regime changes
early, we explore an alternative approach which is not distribution based. The path sig-
nature provides a rich set of features that capture deep geometric properties of a path. In
the following subsection, we briefly discuss important properties of path signatures that
are of interest and provide the experiment results of our study.

Definition 3.1.1. (Signature, [9], Definition 1). The signature of a path X € Cy([a,b], V),

the space of continuous path from the interval [a, b] to a d-dimension Banach space V with

finite p-variation, denoted by S(X) is the collection of all the iterated integrals of X, i.e.
S(X) = (1,5(X)", S(X)4, s(X)M, 5(X)"2,...)
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where the superscripts run along the set of all multi-indexes
W = (i1,...,iglk > 1,i1,...,0p € {1,...,d})

and the iterated integrals are defined as

a<tp<b a<ti<ta

There are three main properties of signatures that make them particularly useful in
machine learning. The first is that the magnitude of the signature terms decays at a rate
proportional to the factorial of their level.

Proposition 3.1.2. (Factorial decay, [6], Proposition 1.2.3). Let X be a path in C1([a,b], V).
Then for any k € N,
X117

1S B |yer < ——120

k
where HXHIf’[(Lb] is the 1-variation of X.

As a result of this proposition, higher order terms become increasingly less significant.
Therefore, we can use a truncated signature to effectively represent the infinite-length
collection of signature terms. Another key property is that the signature characterizes the
corresponding path uniquely, up to tree-like equivalence.

Theorem 3.1.3. (Uniqueness, [6], Theorem 1.4.1). Let 1 < p < 2, then tree-like equiv-
alence ~ defines an equivalence relation on Co,(V), the subspace of Cp(V') with paths
starting at the zero vector 0 € V. Moreover, it coincides with the equivalence relation
defined by the equality of signatures, i.e. let X, Y € Cp,(V)

X ~Y < S(X)=S8(Y).

Lastly, to justify the use of signature features in a linear machine learning model, we
have the following result.

Theorem 3.1.4. (Universal approximation with signatures, [6], Theorem 1.4.7). Let
1 <p <2 and assume K is a compact subspace of C,,. Let C(K) be the space of continuous
functions on K with the topology of uniform convergence. If the set Ag = {<I>f‘K : f €
T((V))*} is a subset of C(K), then it is a dense subset. @y denotes the restriction of
function ®; to K, where

Oy - [X] = (f,5(X)).

To evaluate the effectiveness of signature features for change point detection, we em-
ployed the following experimental setup: we generated synthetic time series data with
known regime changes, similar to our previous MMD-based experiments. Then for each
time point t, we calculated the signature of the path using a sliding window approach with
a window size of 200 and a maximum signature truncation level of 6. To better capture the
quadratic variation of the path, we augmented the one-dimensional path with a lead-lag
transformation, see [9] Section 2.1.2. Additionally, as the magnitude of signature terms
decay at a rate of k! (where k is the level), we applied rescaling to facilitate model fitting.
Both of these operations were carried out using esig Python library. To improve results,
we also included lagged versions of the signature terms, similarly to the MMD experiment
setup. Finally, all features were standardised before fitting a logistic regression, ensuring
consistent scale across variables.

Under the GBM model, the highest overall F} scores were achieved. Starting at 0.89
for level 2, it reached 0.94 at level 6. The improvement was more gradual compared to
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Figure 3.4: F} score against truncation level under GBM
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Figure 3.5: F} score against truncation level under MJD

other models, suggesting that lower-order signature terms contain enough information to
identify a change point in GBM process. This aligns with our expectation since the two
alternating regimes in the GBM model differs mainly in volatility.

Interestingly, for the MJD model, we observed a consistent increase in F} score as
the truncation level increases. The F) score rose from 0.63 at level 2 to 0.85 at level
6, indicating that higher order signature terms contributed significantly to characterising
abrupt changes and jumps in the time series.

Lastly, for the SGT model, we saw a more pronounced improvement in Fj score as the
truncation level increased. The score started at 0.79 for level 2 and reached 0.92 at level 6.
The most substantial jump occurs between level 3 and 4, implying that the fourth order
signature terms were particularly useful in detecting change points in the SGT process.

Across all models, we observed that increasing the signature truncation level consis-
tently improved the F} score. This improvement was particularly evident when lead-lag
transformation was applied to the data, demonstrating that signature features are effective
in characterising stochastic paths for predictive learning. However, we are interested in
whether this predictive power can be generalised to a broader mixture of processes. While
overfitting is unlikely given our experiments with various train-test splits, it is possible
that this signature approach captures the characteristics of the path during the transition
period rather than identifying a switch in regime. Hence, despite these promising results,
further investigation is required to apply signature-based methods in real-life regime switch
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Figure 3.6: F} score against truncation level under SGT

detection.

3.2 Real Data

Building upon our insights from the synthetic experiment, we extended our investigation to
real-world market data, with an aim of assessing the efficacy of our change point detection
model in a more realistic setting. For this study, we utilised the daily price of S&P500
index spanning from January 1994 to August 2024. Similar to our synthetic example,
we employed a rolling window approach to compute the MMD statistics and signature,
together with their lagged versions as predictor variables.

We maintained the same labelling strategy, marking the 50 trading days preceding
identified change points as 1’ and the rest as ’0’. Change points in the real data were
determined using the SMP algorithm with MMD statistics outlined in the offline detection

section. The identified change points are presented in
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Figure 3.7: Estimated change points

Upon applying our logistic regression model to real-world data, we noticed massive
reduction in F} score across both feature sets compared to synthetic data.
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Feature | In-Sample I} Score | Out-of-Sample F; Score
MMD 0.37 0.32
Signature 0.77 0.49

Table 3.1: In-sample and out-of-sample F} score

The poor F1 scores observed in for our real-world data application highlight
significant challenges in change point prediction. Firstly, both in-sample and out-of-sample
results using MMD are very poor, with F; scores of 0.37 and 0.32 respectively. This
under-performance revealed two critical issues in our approach to change point prediction.
Firstly, our previous assumption about the regime transition period does not appear to
hold. Even if a transition period exists, its length would not be in the magnitude of
hundreds of days, but likely in days which is hard to capture. Consequently, simply
monitoring the rolling MMD statistics of log returns immediately before a change occurs
offers little predictive power. Additionally, our method of labelling utilizes the rolling
MMD statistics, which are also used as predictive features. This approach inherently
includes any transition period within the succeeding regime, restraining our ability to
detect pre-change signals.

As for the signature feature set, while the in-sample F1 score is 0.77, the out-of-sample
result of 0.49 indicates the model struggled to generalize beyond the training data. This
discrepancy can be explained by the difference between our synthetic experiments and
real market dynamics. In synthetic data, regime transitions were repetitive, allowing the
model to learn patterns that could easily generalize to unseen data. However, in real
market scenarios, distribution shifts are not repetitive. For example, the burst of the
dot-com bubble differs from the housing bubble burst in 2007. Consequently, the model’s
ability to fit historical events does not necessarily translate to accurate predictions of
future regime switches. This highlights the limitations of relying solely on univariate data
for change point prediction.

In light of previous results, we believe that predictions in real data involve a more
complex procedure to identify leading factors that can signal impending regime changes.
In the remaining part, we examine a few major market events and their associated lead-
ing indicators, demonstrating the potential of a multivariate approach to change point
prediction.

e Dot-com Bubble (2000)
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Figure 3.8: NASDAQ composite index from 1994 to 2010

During the late 1990s, the popularisation of the Internet together with low interest
rates fuelled a massive influx of capital into technology startups. Many of these
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companies had never turned a profit and went out of business after using up all
invested capital. Being a technology heavy index, the NASDAQ composite was
observed to have preceded the broader market decline, as evidenced by the lag in
change points detected between NASDAQ and S&P 500 in

Global Financial Crisis (2008)
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Figure 3.9: S&P 500 real estate sector from 2002 to 2012

The 2008 financial crisis was a multi-faceted disaster caused by inadequate financial
regulations and poor mortgage lending standards. Initially set off by the collapse
of the U.S. housing market, it quickly evolved into a worldwide economic recession,
leading to the loss of trillions of wealth and widespread unemployment. As most of
the companies in the S&P500 real estate sector index are real estate investment trusts
(REITS), their performances were closely tied to the US housing market, especially
in times of distress. Hence, we used it as a proxy for the average US housing price,
which has limited availability. As we can see in the regime change in the
real estate sector leads the main S&P 500 index by almost three months.

Euro Debt Crisis (2010)
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Figure 3.10: Greece 10 year government bond from 2005 to 2018

The accumulation of public debts in many European countries raised concerns over
their ability to finance the deficit. In fear of potential default, the Greece government
bond experienced a sharp increase in yield during the years of crisis. We observed the
structural break of the Greece 10 year bond yield preceded the reaction to the Euro
debt crisis in the U.S. market as suggested by the gap in change point detection.
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e Chinese Market Crash (2016)
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Figure 3.11: SSE composite index from 2012 to 2022

After experiencing a year of rapid growth, the Chinese stock market experienced
a significant downturn in 2015, losing more than 30% of its value. The mismatch
between excessive speculation and slowing economic growth created a bubble in the
Chinese stock market. This was reflected in the steep decline in the Shanghai stock
exchange index followed by a period of volatile returns in the S&P 500 index.

It is crucial to acknowledge that our analysis may suffer from storytelling bias. In
retrospect, it is relatively easy to identify indicators that seemed to predict past market
events. The clear patterns we observed in hindsight may not have been as evident to
market participants in real-time, underscoring the complexity of predicting structural
breaks in financial markets. As each crisis was preceded by different types of indicators, it
is challenging to identify a universal set of leading factors, and a one-size-fits-all approach
to change point prediction is likely to be ineffective. However, these findings also point to
a promising direction for enhancing our predictive framework. By monitoring a diverse set
of economic and financial indicators, we can develop a more comprehensive early warning
system for structural breaks, allowing for timely risk management action.
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Conclusion

In this study, we conducted an extensive exploration and comparison of various two-sample
tests under different scenarios. This provided valuable insights into the strengths and
limitations of different methods. In particular, we found that kernel-based approaches
such as the Maximum Mean Discrepancy (MMD) and the Kernel Fisher Discriminant
ratio (KFDR) tests are more effective in detecting distributional changes. Additionally,
we proposed three novel change point detection algorithms based on two-sample tests.
Notably, the partitioning method based on rolling statistics is readily adaptable to an
online setting and achieves e-real time detection. Lastly, we applied our algorithms to
real-world data and verified their effectiveness in identifying known periods of market
instability.

We suggest several promising areas for future research. One interesting possibility is
to explore the application of MMD and KFDR to multivariate change point detection, ex-
tending the current framework to detecting correlation regimes. Incorporating clustering
techniques to group similar regimes could enhance our understanding of market dynam-
ics. Currently, our methods identify changes but do not classify the new regimes. The
framework outlined in [25], especially the modelling of prior beliefs, could serve as a good
starting point for this extension. Finally, exploring ensemble approaches that combine
multiple change point detection methods could potentially improve the robustness and
accuracy of our results.
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Appendix A

Technical Results

A.1 Maximum Mean Discrepancy

Lemma A.1.1. ([17], Lemma 4). If the reproducing kernel k(-,-) of RKHS H is measur-
able and Ep[\/k(z,x)] < oo, the mean embedding of p exists. Furthermore,

MMDQ[vav Q] = HMP - MQH%{

Proof.

MMD?[H, p, q] = [ sup (E,[f(2)] —Eq[f(y)])]

Il <1
2
= | sup (pp — g, f)
Ifll%<1
= ”:UP - ﬂq”g-t-
O

Definition A.1.2. (Universality, [I7], Section 2.2). Let (X, d) be a compact metric space.
We say H is a universal RKHS if it is dense in C'(X) with respect to the Lo, norm and its
associated kernel k(-,-) is continuous.

Theorem A.1.3. ([17], Theorem 5). Let F be a unit ball in a universal RKHS H, defined
on the compact space X. Then MMDI[F,p,q] =0 if and only if p = q.

Proof. = By Lemma p = q clearly implies MMDI[F, p, q] = 0.
<= By universality of H, for any € > 0 and f € C(X) there exists g such that

Hf - g“oo <e
Then
|Ep[ﬂ - Eq[f” < ’Ep[f] - EP[QH + ‘Ep[g] - Eq[Q” + ‘Eq[g] - Eq[f” < 2e.
Since
Ep[f] — Eq[fI] <E[lf —9gl] < [If — gl
and
Eplg] — Eqlg]l = [{g, ttp — 11q)| = 0.

The result follows from Lemma [A.1.1] O
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A.2 Kernel Fisher Discriminant Ratio

Corollary A.2.1. (Computation of KFDR, [12], Section 3.2). Given samples (X1, ...
Xn ) and (Y1, ..., Yy, ). We define matriz K;j := k(X;,Y)) foriel,...,n,j€1,...,n9
where k(-,-) is the kernel of choice. Also, define vector m where m; := _”1_1 for i =
1,...,n1 and := n;l fori=1,...,no. Lastly, define matriz

(P, 0
N.< k P@)

where Py =1, — E‘llglgT. Then, the empirical kernel Fisher discriminant ratio is given by

ning
n

KFDR[H, X,Y] = {mTKm —n'mTKN (1 + n 'NKN) ' NKm}

where n = ny + ny.

Theorem A.2.2. (Limiting distribution under null hypothesis, [12], Theorem 3). Refer
to assumptions made in [12] A1, B1, B2. Under the null hypothesis and condition that
the sequence {vy,} follows
1
Yn + dQ_I(EW7 ’Yn)dl (ZW)a ’Yn)fygln_i — 07

To(y) 2 N(0,1).
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Appendix B

Further results

B.1 Comparison of power
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Figure B.1: Type I error (%) against sample size at level « = 5%

e Mean and variance change under Gamma distributions
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Figure B.2: Power (%) against sample size at level a = 5%

e Effect of sample ratio on power under change in mean
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Figure B.3: Power (%) against ratio between sample sizes of two sets of independent
observations at level o = 5%

B.2 Kernel Fisher Discriminant Ratio
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Figure B.4: Type I error (%) against sample size at level a = 5%

e Comparison of power between MMD and KFDR two-sample tests
Results provided in Figure

B.3 Algorithm

We noticed that the batch size maximising the usage of my GPU memory is 20. Any
size larger than 20 resulted in significant deterioration of speed performance. The upper
and lower bounds are standard deviations estimated with 10 runs. Results provided in

B.4 Asymmetric weighting scheme

We considered a window size of 400 data points on either side of the change points and
applied a weighting scheme, where samples before the change points were reweighed by
0.1, and samples after the change points were reweighed by 1.5. Table below presents
the true negative rates restricted to the preceding and succeeding period with and without
the aforementioned weighting scheme.
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Figure B.5: Power (%) against sample size at level a = 5%

GBM MJD SGT

Accuracy preceding (unweighted) | 0.68  0.72  0.66
Accuracy preceding (weighted) | 0.63  0.68  0.63
Accuracy after (unweighted) | 0.53  0.65 0.55
Accuracy after (weighted) | 0.59  0.69  0.57

Table B.1: True negative rates under various dynamics
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