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Abstract

This dissertation presents a machine learning-driving framework offering a practical im-
plementation of pricing and hedging with real market data for incomplete markets with
transaction costs. Our framework consist in implementing a Neural Stochastic Differen-
tial Equation (Neural SDE) as market generator, for our hedging models based on neural
networks. We implement this model-free and data-driven framework with SP500 market
data to simple options like European Call options, and more complex products like Asian
options, Lookback options, and even multivariate settings like Rainbow options.

With this framework we are able to measure the statistical arbitrage of the market
data, and develop optimal strategies to take advantage of it. Also, we develop two different
types of hedging strategies, based in our risk preference. We can choose between a hedging
strategy that while is hedging a liability, it also gets influenced by the statistical arbitrage
of the market; and a hedging strategy that disregards the statistical arbitrage in the
market, and only focus in hedging the derivative. In addition, we incorporate a risk
aversion parameter to our trading strategies, to personalize even more our risk preferences.
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Introduction

The challenge of pricing and hedging derivatives in financial markets is one of fundamental
in topics Quantitative Finance. Derivatives are crucial financial instruments for hedgers to
mitigate the risk of volatile underlyings assets. Especially for entities like banks or market
makers, which may act in the sell-side offering liquidity to the market, hedging and pric-
ing derivative products are their main responsibilities. The first quantitative model that
provide a standardized and mathematically rigorous way to price and hedge derivatives
was the Black-Scholes model, first introduced in [3] in 1973. During the last 30 years this
framework was the cornerstone of the financial mathematics for both practitioners and
academia. The model is based under the assumption of frictionless markets, with perfect
information hypothesis, and continues trading strategies. In these idealized conditions,
market participants can trade without incurring in market fractions such as transaction
costs, liquidity constraints, or market impact, and the market is ”complete”, meaning
every contingent claim can be perfectly hedged. However, real-world markets deviate sig-
nificantly from these perfect market assumptions. Trading is often subject to frictions, and
to the impossibility to trade at continuous time. Hence, markets are typically incomplete,
where not all risks can be perfectly hedged. These imperfections necessitate the devel-
opment of more sophisticated models and methods for pricing and hedging in incomplete
markets.

In recent years, the rise of machine learning, particularly neural networks, has opened
new avenues for addressing these challenges. Neural networks, inspired by the human
brain’s architecture, have proven their ability to learn from large datasets and adapt
to new information, making them invaluable tools in various domains, from image and
speech recognition to natural language processing [15, 17]. One of the most significant
contributions of neural networks is in the field of finance, where they are used for tasks
such as algorithmic trading [28], financial forecasting [27, 30], detect financial bubbles [1],
and optimize trading strategies. More concretely, in 2019 Hans Buehler et al. develop the
Deep Hedging model in [4], where they achieve to develop successful hedging strategies
using neural networks in an incomplete market framework. They used the numerical
framework based in indifference pricing and convex risk measures for incomplete markets
already is studied in [33, 26, 42] and incorporated into a deep learning framework.

In these past recent years the Deep Hedging model became so successful between
practitioners and academia that became a recurrent framework. Researchers extend and
implemented the model into different problems, and frameworks. For example, in [5] they
extend the model into a risk-neutral measure; in [6, 34, 7] they extend the model into a
reinforcement learning setup; in [2] they implement it using another numerical framework
based in quantile super-hedging; in [24] they implement it for rough volatility models; and
they even implement it into a quantum computer in [35].

However, to effectively apply a deep hedging framework to real market data, we re-
quire a reliable market generator due to the inherent irregularities and noise in the data.
Moreover, deep hedging approaches necessitate a large number of simulated market paths
to evaluate and optimize hedging strategies. One promising solution to this problem is
the use of Neural Stochastic Differential Equations (Neural SDEs), which were first in-
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troduced in the context of continuous-time generative modeling of irregular time series
in [40]. Neural SDEs have demonstrated state-of-the-art performance, particularly when
trained adversarially as Wasserstein Generative Adversarial Networks (Wasserstein-GANs)
[30]. Despite their success, training Neural SDEs in an adversarial setting is notoriously
unstable, often suffering from issues such as mode collapse, and requiring sophisticated
techniques like weight clipping and gradient penalty to maintain stability. To address
these challenges, the authors in [27] propose a novel approach to training Neural SDEs
non-adversarially using signature kernels, which are rooted in rough path theory. This
method has shown significant success, offering a more stable and efficient training process.

The objective of this thesis is to develop a comprehensive machine learning-driven
framework that can take market data as input and efficiently price and hedge any deriva-
tives under real-world conditions, like transaction costs. This framework will integrate the
Neural SDE develop in [27] as the market data generator for our deep hedging models.
Our framework is model-free and fully data-driven. We aim to learn the optimal trading
strategies of the market, and optimise the hedging strategies of any complex derivative
product. Our objective is to develop two hedging strategies depending in our risk pref-
erence. One based in taking into advantage the statistical arbitrage of the market while
hedging the derivative, and other based on hedging the liability in a risk-neutral measure.
In both strategies we will incorporate a risk aversion parameter.

We have structure the thesis in 5 chapters. Chapter 1 compares the mathematical
backgrounds of traditional models like Black-Scholes with the Convex Risk Measures and
Indifference pricing framework. Chapter 2 presents the theoretical background in which
neural networks are based, and shows two types of neural networks: Feed Forward Neural
Networks and Recurrent Neural Networks. These two types will be use in the implemen-
tation of our framework. Chapter 3 shows the Neural SDE architecture and explains the
concepts behind training the model with signature kernel scores. Chapter 4 explains the
implementation of the Deep Hedging model and Neural SDE model for the SP500 data.
Finally, Chapter 5 provides the results and discussion of our framework for a European
Call Option, and other more complex products like Asian Options, Lookback Options and
Rainbow Options.
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Chapter 1

Pricing and Hedging in Imperfect
Markets

This chapter addresses the problem of pricing and hedging in incomplete markets through
the mathematical approach of using convex risk measures and indifference pricing. This
approach offer a robust framework for handling market imperfections and providing more
realistic hedging strategies for real data.

We will develop the mathematical foundation for this approach, comparing it with the
classical Black-Scholes model, where its hedging strategy are based in computing ”greeks”
i.e. the derivatives of the liability price with respect a parameter of the model; whereas
this other approach is ”greekless”.

1.1 Black-Scholes

The Black-Scholes (BS) model considers a probability space (Ω, {Ft}Tt=0,P), with P as the
real world measure and, as we mentioned before, the model doesn’t assume transaction
costs and the market is complete. The model assumes that the price of the risky asset
follows a geometric Brownian motion with constant drift µ and volatility σ. This can be
mathematically represented by the stochastic differential equation (SDE):

dSt = St(µdt+ σ dWt), S0 > 0, (1.1.1)

where (Wt)t≥0 is the Brownian motion on (Ω, {Ft}Tt=0,P), and S0 is the initial price.

The solution to this SDE gives the asset price a distribution over time like a log-normal:

St = S0 exp

((
µ− 1

2
σ2
)
t+ σWt

)
. (1.1.2)

The model also assumes a riskless bond with a fixed risk-free rate r and its deterministic
price Bt evolves as:

dBt = Btrdt, B0 = 1, (1.1.3)

which is equivalent to Bt = ert. Our portfolio or value process Vt will be defined by,

Vt(ϕ) = ϕBt Bt + ϕSt St, (1.1.4)

where the trading strategy ϕ = (ϕB, ϕS) is a pair of stochastic processes on (Ω, {Ft}Tt=0,P).
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1.1.1 Pricing a European Call Option

A European call option gives the holder the right, but not the obligation, to buy the
underlying asset at a specified strike price K on the option’s expiration date T . The
contingent claim or payoff of a European call option at maturity time is:

V (T ) = max(ST −K, 0). (1.1.5)

Since, we are working in a complete market, where every contingent claim is attainable,
we can price the derivative by replication. Our portfolio VT (ϕ) at the final time T will
match the derivative payoff V (T ). Also, we will work only with self-financing strategies,
ie Vt(ϕ) = V0(ϕ) +Gt(ϕ), where V0(ϕ) is the initial wealth, and Gt(ϕ) is the gain process
defined as,

Gt(ϕ) =

∫ t

0
ϕBu dBu +

∫ t

0
ϕSudSu, (1.1.6)

or, in differential terms,dVt(ϕ) = dGt(ϕ) ie, dVt(ϕ) = ϕBt dBt + ϕSt dSt. These strategies
doesn’t allow injection in capital during the trading time, only at the beginning V0(ϕ).
From this self-financing condition we can get its trading strategy,

ϕSt =
∂V

∂S
(t, St), ϕ

B
t = (Vt − ϕSt St)/Bt, (1.1.7)

so, the self-financing portfolio can be writing in differential terms as,

dVt = ϕBt dBt+ϕ
S
t dSt =

(
V (t, St)−

∂V

∂S
(t, St)St

)
rdt+

∂V

∂S
(t, St)St(µdt+σdWt). (1.1.8)

Following the theory of pricing by replication, we assume that the price of the derivative
at time t is V (t, St) a function of time and the stock price. We apply Ito’s Lemma to
V (t, St),

dV (t, St) =

(
∂V

∂t
(t, St) +

∂V

∂S
(t, St)µSt +

1

2

∂2V

∂S2
(t, St)σ

2S2
t

)
dt+

∂V

∂S
(t, St)σStdWt.

(1.1.9)
Then, by equating the self-financing portfolio (1.1.8) and Ito’s Lemma (1.1.9), we get the
famous Black-Scholes partial difference equation (PDE),

∂V

∂t
(t, St) +

∂V

∂S
(t, St)rSt +

1

2

∂2V

∂S2
(t, S − t)σ2S2

t = rV (t, St) (1.1.10)

with (1.1.5) as boundary condition. We notice that the constant drift µ from the real
world measure P it is gone, which means that the replicating price won’t depend on it.
Now, we could price the derivative by solving the PDE with any numerical method like
finite difference methods. But also, we can price it with an analytical solution by using
the the Feynman-Kac theorem, which allows to interpret the solution of a parabolic PDE
(1.1.10) in terms of expected values of a diffusion process,

V (t, St) = e−r(T−t)EQ[V (ST )|Ft]. (1.1.11)

The expectation is taken with respect to the so-called martingale measure Q, i.e. a prob-
ability measure Q ∼ P under which the risky stock price St

Bt
= e−rtSt with the risk-free

bond price Bt as a numeraire is a martingale, which is equivalent to S(t) having drift rate
r under Q:

St = S0 exp

((
r − 1

2
σ2
)
t+ σWQ

t

)
(1.1.12)
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This is equivalent to apply the Girsanov’s theorem to the real world measure P to get the
risk-neutral measure Q, which gives the classic BS SDE with the risk-free rate r as drift,

dSt = St(r dt+ σ dWt), S0 > 0 (1.1.13)

By the Fundamental Theorem of Asset Pricing (FTAP), we can affirm that BS market
model is free of arbitrage since, since it has an equivalent martingale measure Q. The
concept of free arbitrage is essential in asset pricing, since ensures no free-money. An
arbitrage strategy is a self-financing strategy that will make money with positive prob-
ability without assuming any risks, ie P(Vt(ϕ) > 0) > 0. Moreover, the corollary of the
FTAP states that a market model is arbitrage free and complete, if and only if, there exist
a unique martingale measure Q. Closing the circle where we started from, making this
theory really robust mathematically.

Now pricing consists in just computing the expected payoff of the option under the
measure Q (1.1.11), which gives the following analytical price:

V (t, St) = StN(d1)−Ke−r(T−t)N(d2) (1.1.14)

where:

• d1 =
ln(St/K)+(r+ 1

2
σ2)(T−t)

σ
√
T−t

• d2 = d1 − σ
√
T − t

• N(·) is the cumulative distribution function of the standard normal distribution.

1.1.2 Delta Hedging in BS

In the BS world, as we seen before, pricing amounts to replicate the expected payoff of
the derivative with an optimal self-financing strategy, ie VT = V0 +GT (ϕBS), where V0 is
the price of the derivative at time t = 0, ϕBS is the optimal Black-Scholes delta hedging
strategy defined at (1.1.7). For an European Call option it would be,

ϕSt =
∂V

∂S
(t, St) = N(d1) (1.1.15)

This is the greek Delta of the BS model.

If we could trade any infinitesimal ratio of stocks at continuous time, we could perfectly
hedge any derivative under the BS world. However, if we are under discrete time, where
we can trade only at certain time steps 0 = t0 < t1 < ... < ti−1 < ti < ... < tn = T , this
perfect hedging cannot be achieved even in a BS market. The BS model in discrete time
would be,

Sti = Sti−1exp

(
(r − 1

2
σ2)(ti − ti−1 + σ(ti − ti−1)

1/2Zi+1

)
, S0 > 0 (1.1.16)

where {Zti}ni=0 are random variables identical independent distributed (iid) as random
normal distributions N (0, 1).

We provide a numerical example to illustrate this. Where we simulate 307200 paths
of 30 time steps, with parameters r = 0, σ = 0.1, K = 100, and S0 = 100. In the figure
1.1 we plot the histogram of the PnL of the BS delta hedging strategy:

PnL = V (0, S0) +

T−1∑
i=0

ϕBS
i (ti, Sti)(Sti+1 − Sti)−max(ST −K, 0)
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Figure 1.1: The histogram of the PnL of following the Black-Scholes delta hedging strategy.

We notice that the strategy doesn’t hedge perfectly the derivative, otherwise the only
PnL would be 0, but super-hedge them with a ratio of 51.7%, ie the probability that PnL
≥ 0.

In summery, the Black-Scholes model provide us a robust benchmark for pricing and
hedging derivatives. However, its notable assumptions limited its practical use in real
markets with transaction costs, arbitrage, and more complex stock price movements.

1.2 Settings for a Discrete Incomplete Market

In this section, we define a general mathematical setting for pricing and hedging in incom-
plete markets. We follow a similar notation to [4].

We consider a discrete-time financial market with a finite time horizon T and trading
dates 0 = t0 < t1 < · · · < tn = T . The market is modelled on a finite probability space
Ω = {ω1, ω2, . . . , ωN} with a probability measure P such that P[{ωi}] > 0 for all i. The
set of all real-valued random variables over Ω is denoted by X = {X : Ω → R}.

At each trading date tk, new market information can be represented by Ik ∈ Rr,
which it could include market costs, mid-prices of liquid instruments, news, balance sheet
information, trading signals, and risk limits. The process I = (Ik)

n
k=0 generates the

filtration F = (Fk)
n
k=0, where Fk represents all information available up to time tk.

The market contains d hedging instruments whose mid-prices are given by an Rd-
valued F-adapted stochastic process S = (Sk)

n
k=0. These instruments can include both

primary assets, such as equities, and secondary assets, such as liquid options. Also, it can
be extended for hedging instruments that may not be tradable before a future point in
time due to liquidity restrictions.

Our portfolio of derivatives, which we want to hedge, are representing our liabilities.
They are represented as an FT -measurable random variable Z. This portfolio can include
a mix of liquid and over-the-counter (OTC) derivatives, with maturity T being the max-
imum maturity of all instruments, at which point all payments are known. We exclude
instruments with true optionally, such as American options.

For simplicity, we assume that all intermediate payments are accrued using a locally
risk-free overnight rate, which allows us to assume zero rates. Also, we assume all currency
spot exchanges happen at zero cost, settling in our reference currency.
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1.2.1 Trading Strategies

To hedge the liability Z at T , we trade S using an Rd-valued F-adapted stochastic process
δ = (δk)

n−1
k=0 with δk = (δ1k, δ

2
k, . . . , δ

d
k), which will be our hedging ratios. All trading is

assumed to be self-financed, with an initial injection of cash p0 into our portfolio, which
will be the price of the derivative. We denote by H the set of all admissible hedging
strategies. The agent’s wealth at time T is given by

PnLT (Z, p0, δ) = −Z + p0 + (δ · S)T − CT (δ), (1.2.1)

where

(δ · S)T =
n−1∑
k=0

δk · (Sk+1 − Sk).

it is the gain process of our hedging strategies, and the trading costs are CT (δ) =∑n
k=0 ck(δk − δk−1), where δ−1 = 0.
Our setup can include various market frictions:

• Proportional transaction costs: For cik > 0, ck(n) =
∑d

i=1 c
i
kS

i
k|ni|.

• Fixed transaction costs: For cik > 0 and ϵ > 0, ck(n) =
∑d

i=1 c
i
k1|ni|≥ϵ.

These frictions account for proportional costs, fixed costs, and can be extended for
more complex structures, such as price impact modelling.

1.3 Convex Risk Measures and Indifference Pricing

In incomplete markets, the classical approach we showed in the previous section of pricing
derivatives using the theory of pricing by replication is no longer applicable. In real
markets, not every contingent claim can be perfectly hedged, and markets have frictions
such as transaction costs, liquidity constraints, and other limitations play a significant role.
To address this, we use the concept of convex risk measures and indifference pricing, which
provides an adaptable framework that doesn’t depend on modelling market dynamics.

Here we presented this framework similar to how they did it in [4], since it is easy
to extend to the deep hedging implementation. Although, a similar numerical framework
was already studied in earlier papers like [33, 26, 42].

1.3.1 Convex Risk Measure

Convex risk measures allow us to quantify the risk of holding a particular portfolio by
assigning a value that represents the minimal amount of capital that needs to be added
to make the portfolio acceptable. Unlike traditional approaches, convex risk measures
are quite versatile. They can take into account market frictions and statistical arbitrage,
making them ideal for pricing incomplete markets.

Definition 1.3.1. A convex risk measure ρ : X → R is a function that satisfies the
following properties for any asset positions X,X1, X2 ∈ X :

• Monotonicity: If X1 ≥ X2, then ρ(X1) ≤ ρ(X2). This implies that a more favor-
able position requires less capital injection.

• Convexity: ρ(αX1 + (1 − α)X2) ≤ αρ(X1) + (1 − α)ρ(X2) for α ∈ [0, 1]. This
reflects the principle that diversification reduces risk.

• Cash-Invariance: ρ(X + c) = ρ(X) − c for any c ∈ R. Adding cash to a position
reduces the required capital by the same amount.

We call ρ normalized if ρ(0) = 0.
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1.3.2 Indifference Pricing

Given a convex risk measure ρ, we define the minimal pricing problem for a contingent
claim X as:

π(X) := inf
δ∈H

ρ(X + (δ · S)T − CT (δ)) (1.3.1)

The following proposition found in [4, Proposition 3.2] justifies the use of convex mea-
sures since the minimal pricing problem will be a convex risk measure too, and later on
this would be important for the neural network implementation.

Proposition 1.3.2. The functional π is monotone decreasing and cash-invariant. If CT (·)
and H are convex, then π is a convex risk measure.

In this context, ρ(−Z) represents the minimal amount of capital required to make the
liability −Z acceptable under the risk measure ρ. Similarly, π(−Z) is the minimal price
the agent needs to charge to ensure that hedging the liability −Z becomes acceptable.
These concepts provide the foundation for indifference pricing, where the price of a claim
is determined by the amount of capital required to remain indifferent between holding the
claim or not.

Definition 1.3.3 (Indifference pricing). The price p(Z) of a contingent claim Z is the
amount of cash p0 that makes the agent indifferent between selling the claim or not, i.e.,
solving:

π(−Z + p0) = π(0)

By cash-invariance, this leads to the indifference price being defined as:

p(Z) := π(−Z)− π(0) (1.3.2)

Arbitrage opportunities in this setting arise when there exists a trading strategy δ ∈ H
such that the portfolio has a non-negative payoff with a positive probability of strictly
positive returns, i.e. 0 ≤ X + (δṠ)T − CT (δ) =: (∗) while P[(∗) > 0] > 0. In case such
opportunity exists, we obviously have ρ(X) < 0. Depending on the cost function and our
constraints on H, we may be able to invest an unlimited amount into this strategy. In this
case, we get π(0) = −∞. If this applies to X = 0, we call such a market irrelevant, since
it would mean that for any X, π(X) = −∞. This concept doesn’t only apply to classical
arbitrage but also to statistical arbitrage. If in average there is any trading strategy in
the market that assures to make profit, and you can exploit it indefinitely you will have
an irrelevant market.

For example for a market where 0 > π(0) > −∞, it means that following the strategy
that minimizes ρ(0), you will make money on average i.e. statistical average, but you can
not scale it indefinitely. Notice that this is the power of indifference pricing, where you
can account for this, so you don’t need a martingale measure Q modelling the stock price
to price a derivative.

1.3.3 Exponential Utility Indifference Pricing

One specific case of indifference pricing is based on the exponential utility, this framework
was already studied [23, 14], and consist as follows. For an exponential utility function
U(x) = − exp(−λx), x ∈ R, with risk aversion parameter λ > 0, the indifference price
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p(Z) of the contingent claim Z satisfies:

sup
δ∈H

E [U ((δ · S)T − CT (δ))] = sup
δ∈H

E [U (p(Z)− Z + (δ · S)T − CT (δ))]

sup
δ∈H

E [exp (−λ ((δ · S)T − CT (δ)))] = sup
δ∈H

E [exp (−λ (p(Z)− Z + (δ · S)T − CT (δ))])

exp(λp(Z)) =
supδ∈H E [exp (−λ (−Z + (δ · S)T − CT (δ)))]

supδ∈H E [exp (−λ ((δ · S)T − CT (δ)))]

p(Z) =
1

λ
log

(
supδ∈H E [exp (−λ (−Z + (δ · S)T − CT (δ)))]

supδ∈H E [exp (−λ ((δ · S)T − CT (δ)))]

)
(1.3.3)

This results leads to the definition to the entropic risk measure as follows:

ρ(X) =
1

λ
logE [exp(−λX)] (1.3.4)

Since, this measure gives the same indifference pricing :

p(Z) = π(−Z)− π(0)

=
1

λ
log

(
sup
δ∈H

E [U (−Z + (δ · S)T + CT (δ))]

)
− 1

λ
log

(
sup
δ∈H

E [U ((δ · S)T + CT (δ))]

)
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Chapter 2

Neural Networks (NN)

Neural networks consist of interconnected layers of artificial neurons, where each neuron
processes input data through a series of weights and activation functions to produce an
output. These models are designed to recognize patterns in data, enabling them to perform
complex tasks that were once thought to be the exclusive domain of human intelligence.

This chapter will delve into the mathematical foundation of neural networks, starting
with the basics of Feed Forward Neural Networks (FNN), which are the most straight-
forward type of neural network. We will explore their general architecture, the role of
activation functions, and the concept of universal approximation, which underpins their
ability to model complex functions. Additionally, we will discuss the importance of loss
functions to adapt them into a variety of different problems, and the various optimization
techniques used to improve the performance of training neural networks.

In the latter part of the chapter, we will focus on Recurrent Neural Networks (RNNs),
which are particularly suited for sequence prediction tasks. A special type of RNN, the
Long-Short Term Memory (LSTM) network, will be introduced due to its effectiveness in
capturing long-term dependencies in time series data.

2.1 Feed Forward Neural Networks (FNN)

This section is inspired from the Deep Learning notes [18].

2.1.1 General Architecture

Definition 2.1.1. Let I,O, r ∈ N. A function f : RI → RO is a feedforward neural
network(FNN) with r − 1 ∈ {0, 1, . . .} hidden layers, where there are di ∈ N units in
the i-th hidden layer for any i = 1, . . . , r − 1, and activation functions σi : Rdi → Rdi ,
i = 1, . . . , r, where dr := O, if

f = σr ◦ Lr ◦ · · · ◦ σ1 ◦ L1, (2.1.1)

where Li : Rdi−1 → Rdi , for any i = 1, . . . , r, is an affine function given by

Li(x) := Wix+ bi, x ∈ Rdi−1 ,

parameterized by the weight matrix W i = [W i
j,k]j=1,...,di,k=1,...,di−1

∈ Rdi×di−1 and the bias

vector bi = (bi1, . . . , b
i
di
) ∈ Rdi , with d0 := I. We shall denote the class of such functions

f by
Nr(I, d1, . . . , dr−1, O;σ1, . . . , σr). (2.1.2)

If σi(x) = (g(x1), . . . , g(xdi)), x = (x1, . . . , xdi) ∈ Rdi , for some g : R → R, we write g in
place of σi in (2.2) and (2.3).
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The architecture of the FNN is completely characterized by:

• the hyparameters: r, d1, . . . , dr,

• the actual parameter weights W 1, . . . ,W r and biases b1, . . . , br,

• The activation functions: σ1, . . . , σr.

Figure 2.1: Graphical representation of a neural network with r = 3, I = d0 = 4, d1 =
6, d2 = 4 and O = d3 = 3. Source from Deep Learning lecture notes [18]

2.1.2 Activation functions

Activation functions are key in the architecture of a neural network. They allow the FNN
to be non-linear, without them the concatenation of multiple layers would be another linear
function, making them useless. This non-linearity allows the neural network to fit data
from a variety of different problems. Normally, activation functions can be characterized
in two categories: one-dimension and multidimensional activation functions. We build
the table 2.1 with some examples of the most commonly used one dimension activation
functions, and the table

The Identity is normally used only in the output layer, if we expect an unbounded
optput. The ReLU is one of the most popular activation functions for the hidden layers
nowadays, and its derivative are mathematically very simple, making them numerically
efficient (although it is not defined at 0, we can usually substitute it with value 1 without
any significant issues). There is its continues differentiable counterpart Softplus, but it
works as well as ReLU and it is a more complicated derivative. There are also popular
some of the ReLU variants like PReLU or SiLU, that allow to take into consideration
negative values, which can be useful in some contexts. There are saturating activation
functions like Sigmoid, Hyperbolic tangent, or Gaussian. These are suited when you are
looking for a bound solution, like in a classification problem.

Regarding the most common multi-dimensional activation functions, we have the Soft-
max, which is used to build a multiclass classifier, and the Maxout, which is similar to a
multi-dimensional ReLU.
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Table 2.1: Common one-dimensional activation functions and their properties. Adapted
from Wikipedia[41]

.

Name Plot Function g(x) Derivative of g′(x) Range Smoothness

Identity x 1 (−∞,∞) C∞

Sigmoid
1

1 + e−x
g(x)(1− g(x)) (0, 1) C∞

Hyperbolic
Tangent (tanh)

ex − e−x

ex + e−x
1− g(x)2 (−1, 1) C∞

Rectified
LinearUnit
(ReLU)

{
0 if x ≤ 0

x if x > 0

{
0 if x < 0

1 if x > 0
[0,∞) C0

Softplus ln(1 + ex) 1
1+e−x (0,∞) C∞

Parametric
Rectified
Linear Unit
(PReLU)

{
αx if x < 0

x if x ≥ 0

{
α if x < 0

1 if x ≥ 0
(−∞,∞) C0

Sigmoid Linear
Unit (SiLU)

x

1 + e−x
1+e−x+xe−x

(1+e−x)2
[−0.278 . . . ,∞) C∞

Gaussian e−x2 −2xe−x2
(0, 1] C∞

Table 2.2: Multi-dimensional activation functions and their properties. Adapted from
Wikipedia[41]

Activation Definition Derivative Range Smoothness

Softmax gi(x) =
exi∑d

j=1 e
xj
, i = 1, . . . , d ∂gi(x)

∂xj
=

{
gi(x)(1− gi(x)), i = j

−gi(x)gj(x), i ̸= j
(0, 1)d C∞

Maxout g(x) = max{x1, . . . , xd} ∂g(x)
∂xi

=

{
1, xi > maxj ̸=i xj

0, xi < maxj ̸=i xj

R C
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2.1.3 Universal Approximation

The Universal Approximation Theorem is a fundamental concept in the theory of neural
networks. It provides the mathematical justification for why machine learning, particularly
deep learning, is so effective. The theorem states that a feedforward neural network with a
single hidden layer containing a finite number of neurons can approximate any continuous
function on a compact subset of Rn, given appropriate activation functions. This result is
profound as it assures that neural networks have the capacity to model complex functions,
which is why they are so powerful in multiple applications, including finance.

The following theorem is a slight reformulation of [32, Theorem 1 and Proposition 1].

Theorem 2.1.2 (Universal approximation property). Let g : R → R be a measurable
function such that:

1. g is not a polynomial function,

2. g is bounded on any finite interval,

3. the closure of the set of all discontinuity points of g in R has zero Lebesgue measure.

Moreover, let K ⊂ RI be compact and ϵ > 0. Then:

(i) For any u ∈ C(K,R), there exist d ∈ N and f ∈ N2(I, d, 1; g, Id) such that

∥u− f∥sup,K < ϵ.

(ii) Let p ≥ 1. For any v ∈ Lp(K,R), there exist d′ ∈ N and h ∈ N2(I, d
′, 1; g, Id) such

that

∥v − h∥Lp(K) < ϵ.

Remark 2.1.3. It is important to note that theorem 2.1.2 holds only for networks with a
single hidden layer. However, in practice this theorem can be extend it to deeper networks
[43, 20].

Remark 2.1.4. Another important observation is that the theorem 2.1.2 does not inform
on how the neural network f and h should look like, it only guarantees their existence.
However, this result does not ensure the convergence of solutions, as challenges such as
numerical noise, local minima, or poorly conditioned problems may impede convergence.
Consequently, this theorem merely serves as a theoretical reassurance that approximating
functions using neural networks is indeed possible.

2.2 Training and Optimizers

2.2.1 Loss Function

Training is one of the most challenging and important parts when you are building your
neural network model. Once our architecture is selected, now we have to find the optimal
weights and biases with the training process. The loss function is key in this process,
since evaluates the output of the neural network to match our expected needs from the
model. The choice of an appropriate loss function is crucial because it directly influences
the optimization process and the ability of the network to learn from data. Basically, the
training of neural networks models is done by optimizing the loss function ℓ : RO×RO → R.

Given a neural network f : RI → RO, Nr(I, d1, . . . , dr−1, O;σ1, . . . , σr), and input x ∈
RI and reference value y ∈ RO, we compute the realised loss as ℓ(f(x),y). Mathematically,
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if x and y are a realisation of a joint random vector (X,Y), we could theoretically try to
find an optimal f by minimising the risk

E[ℓ(f(X),Y)]

However, in practice we don’t really know the distribution of (X,Y), so we need to work
with the empirical minibatch risk

LB(θ) :=
1

#B

∑
i∈B

ℓ(f θ(xi),yi) (2.2.1)

This definition allows for the average over any subset of samples or minibatch, B ⊂
{1, . . . , N}. Also, we are noticeable the weights and biases in this definition θ :=
(W 1, . . . ,W r;b1, . . . ,br), since from the training perspective the loss function is a function
of θ.

Depending whether your problem involves in that the neural network replicates the
label or reference value y, or not, we have two different problems: supervised or unsuper-
vised learning. In supervised training our objective is that ŷ = f(x) matches its label y.
Some of the most used loss functions in supervised learning are:

• Absolute loss: ℓ(ŷ, y) = |ŷ − y|. It targets the median. Reducing the loss function
would mean to reduce the difference between both medians of y and ŷ

• Squared loss: ℓ(ŷ, y) = (ŷ − y)2. It targets the mean. Reducing the loss function
would mean to reduce the difference between both means of y and ŷ

• Binary cross-entropy: ℓ(ŷ, y) = −y log ŷ−(1−y) log(1− ŷ), ŷ ∈ (0, 1), y ∈ {0, 1}.
It is useful for classification problems with binary choices. Minimising categorical
cross-entropy amounts to minimising the corresponding Kullback–Leibler divergence,
which is an information theoretic measure of the discrepancy between the empirical
distribution of labels and the distribution predicted by the network.

For unsupervised training there are not common choices, since each problem requires
its personalised loss function. Now, the reference value y are not the expected values of
the output of the neural network, but values that would be useful to quantise loss function
that we want to optimise with respect the fθ(x).

2.2.2 Stochastic Gradient Descent

After formulating the loss function, the next crucial step involves devising a method to
obtain a optimizer. A naive approach would be to work out the gradient of a generic
differentiable objective function F : Rd → R, and solve ∇F(x) = 0. However, in practice
this approach would be infeasible because of the big number of parameters to fit. The
usual approach is using the the gradient flow,

dx(t)

dt
= −∇F (x(t)), t > 0 (2.2.2)

with initial condition x(0) ∈ Rd. Under certain assumptions on F, it can be shown that
x(t) tends to the minimiser as t→ ∞ [37]. In the context of optimizing our neural network,
we will discrete the differential equation (2.2.2) for a step size or learning rate η > 0:

x(t+ η)− x(t)

η
≈ −∇F (x(t))

x(t+ η) ≈ x(t)− η∇F (x(t))
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This Euler approximation motivates the gradient descent, which is an iterative algorithm
that step by step looks for a minimiser with gradient updates

xnew := xold − η∇F (xold)

given some initial condition x0. However, for our purpose this method infeasible. Com-
puting the gradient of L(f θ) can be computationally costly with a large training dataset
N, also it can lead to an overfitted network fθ. To circumvent this limitation, we can
split the data into random minibatches, and compute the gradient of the loss function of
that minibatch to update the wieghts and biases of the network. This optimizer firstly
introduced in [25] in 1993, it is called Stochastic Gradient Descent (SGD), and it is the
core optimizer in neural networks. Other optimizers more popular nowadays are extension
and improvements of this one.

In SGD, as mention before we split the data into k minibatches with fix size m≪ N ,
such that N = km, for k ∈ N. We then sample uniformly minibatches B1, . . . , Bk ⊂
{1, . . . , N}, such that #Bi = m for any i = 1, . . . , k, without replacement, that is,
B1, . . . , Bk are disjoint with

⋃k
i=1Bi = {1, . . . , N}. Starting form initial condition θ0,

the parameter vector θ is updated like

θi := θi−1 − η∇θLBi(θi−1), i = 1, . . . , k (2.2.3)

where LBi(θ) is minibatch empirical risk corresponding to Bi. If we consider that the
training data consist of iid samples, we can interpret the minibatch gradient ∇θLBi(θi−1)
as a noisy but unbiased estimate of the full gradient. One pass through the entire training
data set by (2.2.3) constitutes a training epoch. This procedure is then repeated over
multiple epochs, with new minibatches, while initialising θ0 with the last value of the
previous epoch. For clarity, we summarise the entire SGD algorithm in pseudocode in
Algorithm 1.

Algorithm 1 Stochastic Gradient Descent

1: Input: # epochs: ne
2: Input: # batches: m
3: Input: batch size: k
4: Input: Initial Parameters: θ0
5: Input: learning rate: η
6: Output: trained network parameters θne

m

7: ▷ Loop through all the epochs
8: for i in {1, 2, . . . , ne} do
9: randomly select m samples with k data sets without replacement

10: if i == 1 then
11: θi0 = θ0 ▷ initialize the starting weight matrix
12: else
13: θi0 = θi−1

m ▷ take the last training result as initial condition
14: end if ▷ Loop through all minibatches
15: for j in {1, 2, . . . ,m} do
16: θij+1 = θij − ϵ∇θLBj (θ

i
j) ▷ gradient update for each minibatch j

17: end for
18: end for
19: return θne

m
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2.2.3 Adam Optimizer

Adam (Adaptive Moment Estimation) is one of the most popular optimization algorithms.
It was firstly introduced in [31], it is an enhance version of the SGD that adapts the learning
parameter individually for different models. At each time step approximates the first and
second moment of the gradient by computing the exponential-weighted moving average
(EWMA) of previous gradients. The first moment estimate represent the direction of
update and the second moment estimate is the adjustment to the learning rate at each
time step. For clarity, we summarise the Adam algorithm in pseudocode at Algorithm 2.
We write it with a looping process based in some converge criteria, instead of a certain
number of epochs. Also, note that the direct estimation through the EWMA always
generates bias towards zero at the initial time step of training, so the algorithm corrects
this bias.

Adam combines the benefits of two other popular algorithm like AdaGrad [16] and
RMSProp [13]. AdaGrad is known for its effectiveness in dealing with sparse data (when
most of the gradient values are zero), while RMSProp is known for its ability to adapt
learning rates based on recent gradient information, making it ideal for noisy and non-
stationary objective functions. Adam inherits the strengths of both methods, making it
robust and versatile.

Algorithm 2 Adam algorithm, where all operations on vectors are element-wise compu-
tations, and default input α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8

1: Input: step size: α
2: Input: exponential decay rates for moment estimates: β1, β2 ∈ [0, 1)
3: Input: loss function with respect to parameters θ: ℓt(θ)
4: Input: Initial parameter vector: θ0
5: Input: initial 1st moment vector: m0 = 0
6: Input: initial 2nd moment vector: v0 = 0
7: Output: updated model parameter vector: θt
8: t = 0 ▷ loop from the beginning of the time stamp
9: while θt not converge do

10: t = t+ 1
11: mt = β1mt−1 + (1− β1)∇θℓt(θt−1) ▷ update biased first moment estimate
12: vt = β2vt−1 + (1− β2) (∇θℓt(θt−1))

2 ▷ update biased second moment estimate
13: m̂t =

mt

1−βt
1

▷ bias-corrected first order estimate

14: v̂t =
vt

1−βt
2

▷ bias-corrected second order estimate

15: θt = θt−1 − αm̂t√
v̂t+ϵ

16: end while
17: return θt

2.2.4 Back-Propagation

Now we will discuss the details of computing the gradient of the loss function. The
backpropagation algorithm is an effective gradient calculation method based on the chain
rule. The computation starts at the output layer and is propagated back layer by layer to
compute the gradient of the loss function with respect to each parameter.

To show backpropagation theoretically, we first introduce the adjoint and chain rule.
Assume that we are training a FNN f θ ∈ Nr(I, d1, . . . , dr−1, O;σ1, . . . , σr) by SGD, where
σi is the component-wise application of a one-dimensional activation function gi : R → R,
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for i = 1, . . . , r. Denote the derivative of gi as g
′
i. For x ∈ RI ,

zi = (z1i , . . . , z
di
i ) := Wiai−1 + bi, i = 1, . . . , r,

ai = (a1i , . . . , a
di
i ) := gi(zi), i = 1, . . . , r,

a0 := x,

so then f θ(x) = ar and ℓ(fθ(x), y) = ℓ(ar, y). The adjoint δi = (δ1i , . . . , δ
di
i ) ∈ Rdi is

defined as

δij :=
∂ℓ

∂zij
, j = 1, . . . , di,

for any i = 1, . . . , r.

Definition 2.2.1 (Chain rule). For differentiable G : Rd → R and F = (F1, . . . , Fd) :
Rd′ → Rd, defineH(x) = G(y) with y = (y1, . . . , yd) = F(x), that is, H = G◦F : Rd′ → R.
Then

∂H

∂xi
(x) =

d∑
j=1

∂G

∂yj
(y)

∂Fj

∂xi
(x).

Proposition 2.2.2 (Backpropagation). Using the chain rule and the adjoint, we can
derive a backward recursive procedure for the components of ∇θℓ(f θ(x), y):

δr = g′r(zr)⊙∇ŷℓ(ar, y),

δi = g′i(zi)⊙ (W⊤
i+1δi+1), i = 1, . . . , r − 1,

∂ℓ

∂bji
= δji , i = 1, . . . , r, j = 1, . . . , di,

∂ℓ

∂W jk
i

= δji a
k
i−1, i = 1, . . . , r, j = 1, . . . , di, k = 1, . . . , di−1,

where ⊙ stands for the component-wise Hadamard product of vectors.

2.3 Recurrent Neural Network (RNN)

2.3.1 Standard Recurrent Neural Network

If we want to work with time series data, we can add an extra temporal dimension to
the input data, but FNN doesn’t capture the information of previous data. For example
for financial time series, it has been show that volatility is mostly path-dependant up to
a 90% [21]. This motivate us to use recurrent neural network (RNN), which constantly
take advantage of the output at each time step of the input data. For example, if we have
a vector of sequential data x ∈ Rn×T as input into the RNN, it will process xi ∈ x one
at a time and learn from the output generated by previous data, x1, . . . ,xi−1. In other
words, it can capture the correlation between the current and previous data input, which
is beneficial for processing the time series data. Mathematically we can defined as follows:

Definition 2.3.1 (Recurrent Neural Networks). Let n,m, k, T ∈ N, define the hidden
state at each time step t = 1, . . . , T as h(t) : Rm → Rm, weight matrices for hidden-
to-hidden connection as W ∈ Rm×m, for input-to-hidden connection as U ∈ Rm×n and
hidden-to-output connection as V ∈ Rk×m, and bias vector b ∈ Rm and c ∈ Rk. Denote
component-wise activation functions as σh, σo : Rm → Rm, we can represent the hidden
state and output at each time stamp t as:

h(t) = σh
(
Wh(t−1) +Ux(t) + b

)
, (2.3.1)

o(t) = σo
(
Vh(t) + c

)
. (2.3.2)
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Now, we observe that the RNN is a more complex architecture compared to the FNN.
We have a extra hidden state ht, that takes into account the previous hidden state ht−1

and the input at that time xt. We can interpret the RNN in two ways, folded and unfolded,
as shown on the left-hand and right-hand sides of the figure 2.2.

Figure 2.2: Representing graphically the RNN structure folded and unfolded. Source from
[19]

For folded RNN (left-hand side of the figure 2.2), it represents the overall structure of
the neural network with states that represent the whole time-series vector as one input
sample. So, we would understand the RNN similar to a FNN with a dense layer h, a
activation function σ, and finally computing the loss function L. By unfolding the RNN,
we show how actually works the RNN by representing the sample data as one time step
vector inputs into the neural network. In the right-hand side of the figure 2.2 shows how
hidden states depends in their previous hidden state until reaching the first time step. In
summery, the folded perspective shows how is the model overall, where we can even add
more recurrent layer to the model if it is required by complexity of the problem. On the
other hand, the unfolded perspective shows you how the recurrent layer actually works.

However, we can face the Vanishing Gradient Problem in the training process for
long senquences of data. This problem arise when the gradients shrink exponentially as
they are propagated backward through time. This typically happens when the network’s
activation functions (such as the sigmoid or tanh functions) squash their inputs to small
values in the range of (0, 1) for sigmoid or (−1, 1) for tanh. During backpropagation,
these small derivatives are multiplied together across many time steps. If the network has
many layers or steps, the product of these small numbers can become extremely small,
effectively leading the gradient to ”vanish”. When the gradient vanishes, it becomes too
small to contribute meaningfully to the weight updates, particularly for layers or time steps
far back in the network. As a result, the network fails to learn long-range dependencies
because the earlier layers receive very little signal to adjust their weights.

2.3.2 Long Short-Term Memory (LSTM)

One of the most popular RNN is the Long Short-Term Memory (LSTM) algorithm, firstly
develop by [22]. It solves the vanishing gradient problem by altering the connection weight
matrices between hidden states at each time stamp, avoiding a situation that the same
weight matrix repeatedly multiplied by itself. The crucial step is to let the network forget
some of the older states. In other words, LSTM can learn when and where to remove
irrelevant information from the past.

The overall structure of LSTM is similar to the regular RNN regarding the unfolded
structure. The different between the standard RNN is the computation within the hidden
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or cell state. The special setting in LSTM is the memory cell state Ct which is the stable
information flow carrying the relevant historical and current data at all time stamps and
will not fade away as t goes further. The LSTM cell structure is illustrated in figure 2.3.
It is updated at every time step by three control gates: the forget gate, the input gate and
output gate.

Figure 2.3: The graphical representation of a LSTM cell structure. Source from [12].

The forget gate Ft takes the previous hidden states Ht−1 and current data xt as
inputs, determines the relevance of the information and forgets the previous irrelevant
information in Ct−1 by applying a sigmoid activation function indicating the level of
importance.

The input gate it is going to decide the update of the current cell states, determining
how much current information should be obtained based on the new candidate memory
cell state C̃t also by applying a sigmoid activation function, determining the level of
importance. The final output from this gate will add to Ct−1.

At this stage, we have our new cell state Ct−1 updated to Ct by forgetting irrelevant
information from the past and adding new information based on current data. A similar
procedure is then followed by the output gate Ot, which also determines the level of
importance by applying a sigmoid activation function to xt and Ht−1. Combining the
indicator with the current cell state Ct, we have our output Ht.

We can defined mathematically this procedure as follows:

Definition 2.3.2 (LSTM forward propagation). LetWf ,Wi,Wc,Wo ∈ Rm×m,Uf ,Ui,Uc,Uo ∈
Rm×n,bf ,bi,bc,bo ∈ Rm, m,n, T ∈ N+, and xt ∈ Rn,Ht ∈ Rm×1, where t = 1, . . . , T ,
and a component-wise sigmoid function (σ) and hyperbolic tangent (tanh).

Define Ft, It,Ct,Ot : Rm×1 → Rm×1 such that:

Ft = σ(WfHt−1 +Ufxt + bf ), (2.3.3)

It = σ(WiHt−1 +Uixt + bi), (2.3.4)

C̃t = tanh(WcHt−1 +Ucxt + bc), (2.3.5)

Ot = σ(WoHt−1 +Uoxt + bo), (2.3.6)

where Ft is the forget gate, It is the input gate, C̃t is the candidate memory and
Ot is the output gate.

Ct = FtCt−1 + ItC̃t, (2.3.7)

and the final output at time t is

Ht = Ot tanh(Ct). (2.3.8)
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Chapter 3

Market Generator: Neural SDE

This chapter will explore the model of Neural SDE that the authors in [27] developed.

3.1 Neural SDE

We will introduce first the neural SDE generator with the same notation as the authors
in the original paper did [27]. We take (Ω,F ,P) as the underlying probability space. Let
T > 0 and dx ∈ N. Denote by X the space of continuous paths of bounded variation
from [0, T ] to Rdx with one monotone coordinate i.e. the time dimension. For any random
variable X with values on X , we denote by PX := P ◦X−1 its law.

Let W : [0, T ] → Rdw be a dw-dimensional Brownian motion and a ∼ N (0, Ida) be
sampled from da-dimensional standard normal. The values dw, da ∈ N are hyperparameters
describing the size of the noise, and initial noise respectively. A Neural SDE is a model
with the following architecture

Y0 = ξθ(a), dYt = µθ(t, Yt)dt+ σθ(t, Yt) ◦ dWt, Xθ
t = AθYt + bθ (3.1.1)

for t ∈ [0, T ], with Y : [0, T ] → Rdy the strong solution, if it exists, to the Stratonovich
SDE, where

ξθ : Rda → Rdy , µθ : [0, T ]× Rdy → Rdy , σθ : [0, T ]× Rdy → Rdy×dw

are regular neural networks, and Aθ ∈ Rdx×dy , bθ ∈ Rdx . The dimension dy ∈ N is
a hyperparameter describing the size of the hidden state. If µθ, σθ are Lipschitz and
Ea[ξθ(a)] <∞ then the solution Y exists and is unique.

Given a target X -valued random variable Xtrue with law PXtrue
, the goal is to train

a Neural SDE so that the generated law PXθ
is as close as possible to PXtrue

, for some
appropriate notion of closeness that we will discuss in the following section.

3.2 Non-Adversary training with Signature Kernels

In this section we will explain briefly the mathematical concepts behind the training
process, for more detail on the mathematical theory we encourage the reader to read [9].

3.2.1 Signature Transformation

In order to understand a signature kernel and how it can be used to train a neural SDE,
we need first to introduce the signature transformation. Signature transformations are a
core concept in rough path theory. They arise naturally as the solution of a controlled
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differential equation (CDE), ie dyt = f(yt)dXt, with the classical method of Picard iter-
ation [9, Section 1.1.1]. The CDE’s challenge consists in modelling the response over an
interval of time generated by the interaction of a driving signal with a nonlinear control
system. Usually, signature transformations are introduced in a general context of Banach
spaces [9], but here we will introduce them in our context of the probability space (Ω,F ,P)
previously defined.

Definition 3.2.1 (Signature Transformation). The signature map S : X → T is defined
for any path x ∈ X as the infinite collection S(x) = (1, S1(x), S2(x), . . . ) of iterated
Riemann-Stieltjes integrals

Sk(x) :=

∫
0<t1<···<tk<T

dxt1 ⊗ dxt2 ⊗ · · · ⊗ dxtk , k ∈ N,

where ⊗ is the standard tensor product of vector spaces and T := R⊕Rdx ⊕ (Rdx)⊗2⊕ . . ..

The keys on why the signature transformations are so useful in a context of modelling
paths are their analytical properties. Firstly, they exhibit invariance under reparameteri-
zations; this essentially allows the signature transformation to act as a filter that removes
an infinite dimensional group of symmetries given by time reparameterization. Secondly,
the uniqueness of signature transformation for a certain class of paths, ensuring a one-to-
one identifiability of a path with its signature transformation. These analytical properties
tackles an important obstacle that most machine learning models have to face, the poten-
tial symmetry present in the data.

Here we will present a classical example of symmetry under reparametrization used in
[36]. Consider the reparametrization φ : [0, 1] → [0, 1] given by φ(t) = t2 and the path
γ : [0, 1] → R2 defined by γt = (γxt , γ

y
t ) where γxt = cos(10t) and γyt = sin(3t). As it is

clearly depicted in Figure 3.1, both channels (γx, γy) of γ are individually affected by the
reparametrization φ, but the shape of the curve γ is left unchanged. Building an invariance
into a model is usually very hard. However, the signature transformation wouldn’t have
this problem.

Figure 3.1: On the left are the individual channels (γx, γy) of a 2D path γ. In the middle
are the channels reparametrized under φ : t 7→ t2. On the right are the path γ and its
reparametrized version γ ◦φ. The two curves overlap, meaning that the reparametrization
φ represents irrelevant information if one is interested in understanding the shape of γ.
Figure taken from [36].

3.2.2 Signature Kernels

One of the main drawbacks of incorporating the signature transformation for our model
is their expensive computational cost, and using approximations of it i.e. the truncated
signature transformation. However, there is a way of tackle this using a kernel trick.
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Kernel methods are well-established tools in machine learning which are fundamental to
support vector machine models for classification, nonlinear regression and outlier detection
involving small or moderate-sized data sets, [39, 8, 38]. The essence of these methods is to
achieve better separation between labelled data by embedding a low-dimensional feature
space X into a higher dimensional one H, which is commonly assumed to be a Hilbert
space, by means of a feature map ψ : X → H. The associated kernel is a function
K : X × X → R with the property that ⟨ψ(x), ψ(y)⟩H = K(x, y) for all x and y in
X. In many situations, the kernel can be efficiently evaluated with no reference to the
feature map, a property commonly referred to as kernel trick. This property allows one
to benefit from the advantages of working in a higher dimensional feature space without
the associated drawbacks. With this notion we will introduce the signature kernel.

Definition 3.2.2 (Signature Kernel). The signature kernel ksig : X × X → R is a sym-
metric positive semidefinite function defined for any pair of paths x, y ∈ X as

ksig(x, y) := ⟨S(x), S(y)⟩T ,

where ⟨·, ·⟩T is a canonical Hilbert-Schmidt inner product on T 1.

In [36] the authors provide a novel kernel trick to the signature kernel’s problem. They
proved that solving a signature kernel is the same as solving a Goursat partial differential
equation (PDE). The signature kernel satisfies the following:

ksig(x, y) = f(T, T ) where f(s, t) = 1 +

∫ s

0

∫ t

0
f(u, v)⟨dxu, dyv⟩1, (3.2.1)

which can be transformed into the following hyperbolic PDE:

∂2f(s, t)

∂s∂t
= ⟨ẋs, ẏt⟩1f(s, t)

where ẋs =
dxp

dp

∣∣∣
p=s

and ẏt =
dxq

dq

∣∣∣
q=t

are the derivatives of x and y at time s and t,

respectively.
This trick reduces the problem of computing the signature for both paths, and then

their inner product, into solving a linear hyperbolic PDE. For our results we will use the
same finite difference numerical method to solve it as they did in [36].

3.2.3 Signature Kernel Scores

We will denote by H the unique reproducing kernel Hilbert space (RKHS) of ksig. From
now on we endow X with a topology with respect to which the signature is continuous;
see [10] for various choices of such topologies. Denote by P(X ) the set of Borel probability
measures on X . The following proposition connects the signature kernel to any probability
measure.

Proposition 3.2.3. [27, Proposition 3.1] The signature kernel is characteristic for every
compact set K ⊂ X , i.e., the map P 7→

∫
ksig(x, ·)P(dx) from P(K) to H is injective.

Remark 3.2.4. In particular, Proposition 3.1 implies that the signature kernel is cc-
universal, i.e., for every compact subset K ⊂ X , the linear span of the set of path func-
tionals {ksig(x, ·) : x ∈ K} is dense in C(K) in the topology of uniform convergence.

1More exactly, any inner product ⟨·, ·⟩1 on Rdx yields a canonical Hilbert-Schmidt inner product ⟨·, ·⟩k
on (Rdx)⊗k for any k ∈ N, which in turn yields, by linearity, a family of inner products ⟨·, ·⟩T on T . By a
slight abuse of notation, we use the same symbol to denote the Hilbert space obtained by completing T
with respect to ⟨·, ·⟩T .
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Definition 3.2.5 (Signature Kernel Score). We define the signature kernel score ϕsig :
P(X )×X → R for any P ∈ P(X ) and y ∈ X as

ϕsig(P, y) := Ex,x′∼P[ksig(x, x
′)]− 2Ex∼P[ksig(x, y)]. (3.2.2)

A highly desirable property to require from a score is its strict properness, consisting
in assigning the lowest expected score when the proposed prediction is realised by the
true probability distribution. The following proposition justifies that the signature score
is strict properness.

Proposition 3.2.6. [27, Proposition 3.2] For any compact K ⊂ X , ϕsig is a strictly proper
kernel score relative to P(K), i.e.,Ey∼Q[ϕsig(Q, y)] ≤ Ey∼Q[ϕsig(P, y)]for all P,Q ∈ P(K),
with equality if and only if P = Q.

This score quantifies how ”close” are the paths y to the probability measure P. This
sense of distance is often called the signature kernel maximum mean discrepancy (MMD),
and it is the RKHS distance between two probability measures P,Q ∈ P(K) defined as

Dksig(P,Q)2 = Ey∼Q[ϕsig(P, y)] + Ey,y′∼Q[ksig(y, y
′)].

The authors also proposed a consistent and unbiased estimator of ϕsig given m sample
paths {xi}mi=1 ∼ P as follows:

ϕ̂sig(P, y) =
1

m(m− 1)

∑
j ̸=i

ksig(x
i, xj)− 2

m

∑
i

ksig(x
i, y). (3.2.3)

With all this theoretical background the authors in [27] proposed the following setting
for training a Neural SDE. Given a target X -valued random variable Xtrue with law PXtrue .
Recall the notation PXθ for the law generated by the Neural SDE equation 3.1.1. The
training objective is given by

min
θ

L(θ) where L(θ) = Ey∼PXtrue [ϕsig (PXθ , y)] .

Combining equations 3.1.1, 3.2.1, 3.2.2, and 3.2.3, the generator-discriminator pair
can be evaluated by solving a system of linear PDEs depending on sample paths from the
Neural SDE; in summary:

Generator: Xθ ∼ SDESolve(θ) Discriminator: L(θ) ≈ PDESolve
(
Xθ, Xtrue

)
.
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Chapter 4

Implementation of our Deep
Hedging framework

In the previous chapters we introduced the theoretical background in which our framework
is rooted on. This chapter presents the implementation of the models that we use for the
chapter 5 of numerical results.

4.1 Implementation of the Deep Hedging model

The indifference pricing framework presented in chapter 1 is a robust and versatile theory
for pricing and hedging, however lacks in providing a numerical optimizer for the opti-
mization problem π(X) defined in the equation 1.3.1. A great solution to this problem is
the use of neural networks to find the optimal hedging strategies to minimise ρ(X). We
have shown in chapter 2 with the Universal Approximation Theorem 2.1.2 that the neural
networks are versatile functions that can in theory approximate anything. Furthermore,
the loss function needs to be a convex function to ensure convergence, thus the convex
risk measure ρ(X) works perfectly as the loss function of the neural network model. The
authors in [4] realise this, and develop the first Deep Hedging model.

4.1.1 Estimating the Indifference Price

Now we our hedging ratios, defined at the subsection 1.2.1, will be the output of our neural
networks δθ ∈ H. Our portfolio’s wealth will depend on our neural networks.

PnLT (Z, p0, δ
θ) = −Z + p0 + (δθ · S)T − CT (δ

θ),

For our numerical experiments we use the following proportional transaction costs:

CT (δ
θ) =

d∑
i=1

k

(
δθ0,iS0,i +

T∑
t=2

[
δθt−1,i − δθt−2,i

]
St−1,i + δθT,iST,i

)
with k as the proportional cost rate.

As mentioned before now, the loss function of our neural networks will be the entropic
risk measure 1.3.4. For the general framework, we will trained two neural networks. The
first one f will be trained using the entropic risk measure of the liability Z that we want
to hedge ρθ(−Z), and the second one f0 with the entropic risk measure of the market
ρθ(0). Our loss function ℓ will be defined as:

ℓ(δθ, S;Z, λ, k) = exp
(
−λ
(
−Z + (δθ · S)T − CT (δ

θ)
))

, (4.1.1)
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so the logarithmic of our empirical minibatch risk LB(θ) defined in 2.2.1 will match
λρθ(−Z). Therefore, the entropic risk measure will be computed by:

ρθ(−Z) = 1

λ
log (LB(θ)) =

1

λ
log

[
1

#B

∑
i∈B

ℓ(δθi ,Si;Z, λ, k)

]
(4.1.2)

where B is the minibatch defined next to the equation 2.2.1. We note that, as we said
before, the delta ratios δθi are the outputs of the neural networks, and the path prices of the
underlyings Si are the reference values that they will use to evaluate their outcome. This is
indeed an unsupervised learning problem, although this problem can be also reformulated
to be a reinforcement learning setup, see [6] for more details.

We also note that as our neural networks are trained and optimized the ρθ(−Z) will be
minimised until convergence to πθ(−Z). Therefore, our estimate of the indifference price
of the liability Z is:

p̂(Z) = πθ(−Z)− πθ(0) =
1

λ
log


(

1
#B

∑
i∈B ℓ(f

θ(Xi),Si;Z, λ, k)
)

(
1

#B

∑
i∈B ℓ(f0

θ(Xi),Si; 0, λ, k)
)
 (4.1.3)

where X will be our input to the neural network that it may vary depending the liability
or the neural network.

4.1.2 Estimating the Hedging Ratios under a Risk-Neutral Measure

A naive approach to estimate the hedging ratios given some stock price paths would be
just to use the deltas form the f neural network i.e. δθZ = f(X). However, this would only
properly work in a driftless market, i.e. π(0) = 0. In a general market generator it is not
guarantee that the hedging strategy δθZ would completely hedge the risk of the derivative.
It may focus on taking advantage of the statistical arbitrage of the market, instead of
focusing in hedging the risks of the liability. If we want to find the optimal hedging
strategy to hedge the liability risks, we need to take out the statistical arbitrage from the
market by changing the measure to a risk neutral measure. The following theorem adapted
from [5, Theorem 2.2] provides the theoretical background for this change of measure.

Theorem 4.1.1 (Robustly removing the Drift under Transaction Costs and Trading Con-
straints). Assume that the market is constrained and that transaction costs ct are super-
additive. Suppose that δ∗ ∈ H is a (not necessarily unique) policy that minimizes

EP

[
e−λG(δ)

]
,

satisfying EP
[
e−λG(δ∗)

]
> 0, where G(δ) = (δ · S)T − CT (δ) is the gain process.

Then, the market under the measure Q∗ given by

dQ∗

dP
=

e−λG(δ∗)

EP
[
e−λG(δ∗)

]
is free from statistical arbitrage for any transaction cost c′t ≥ ct and any tighter constraints
H′

t ⊆ Ht.

Further more if we consider a setting with zero transaction costs c = 0, then this
measure Q∗ it is actually the minimal entropy martingale measure (MEMM) in the sense
that it minimizes the relative entropy
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H(Q | P) = EQ

[
log

dQ
dP

]
over all equivalent martingale measures Q. More detail of pricing under the MEMM can
be found here [33].

In our deep hedging implementation, we have actually already find the optimal δ∗. We
note that minimising EP

[
e−λG(δ)

]
is what are we are doing with the f0 neural network,

which is optimizing the entropic risk measure of the market. Thus, f0(X) = δθ0 = δ∗.
Therefore, in our setting this change of measure Q∗ would mean to reweight each path
from our market generator so they follow the probability:

q∗ =
e−G(δθ0)∑
e−G(δθ0)

However, the following corollary found in [5, Corollary 4.1] allows us another simpler
approach in our Deep Hedging problem.

Corollary 4.1.2 (Optimal policy for Risk Neutral Deep Hedging). Assume transaction
costs are zero. Under the statistical measure P suppose that δθZ is a solution to the Deep
Hedging problem for Z, and that δθ0 is an optimal statistical arbitrage policy.

Then the policy δQ∗ = δθZ − δθ0 is a solution to the Deep Hedging problem under the
minimal entropy martingale measure Q∗.

Remark 4.1.3. This corollary 4.1.2 is key in the implementation of our hedging models.
The strategy develop by the neural network f ,δθZ , we will call it the strategy Delta Z,
which it will combine the influence of the statistical arbitrage of the market with the need
of hedging the liability. In the other hand, Delta Q, δQ∗ is the difference between the
strategies developed by f and f0 i.e . δθZ − δθ0, and they will be under the risk neutral
measure, disregarding the possible statistical arbitrage in the model, and only focusing in
hedging the liability. We also note that from now on we will name the optimal statistical
arbitrage strategy build by f0 as Delta 0.

4.1.3 Architecture and training optimization

For our numerical experiments we will use two neural networks. A FNN, defined and de-
scribed in 2.1, and a RNN, more specific a LSTM layer, previously explained and described
in 2.3.2. The FNN will be constituted by the following structure:

fFNN ∈ N4(2, 100, 100, 100, 1;ReLU,ReLU,ReLU, sigmoid),

The network takes in a 2-dimensional input at each time stamp, i.e., input X =

(Xi,j)N×T where Xi,j =
(

j
T , S

(i)
j

)
, i = 1, . . . , N and j = 0, . . . , T − 1. This input is

designed for pricing European Call Options, for other path dependent options, we could
use some extra label in the input. Our FNN structure has 3 hidden layers, for which each
of them has 100 units, and equipped with ReLU as the activation function. The output
layer has a 1 dimension output, as mention before, representing the hedge ratio for an
underlying asset. If we would like to extend it to d multi-asset hedging, the dimensional
output would be obviously d. The output is bounded by the sigmoid so the hedging ratios
are in between (0,1), since financial institution hedging ratios for call options should be in
that range.

In the other hand, the RNN is constituted by one dimension input layer, one LSTM
layer of 20 units i,e, 20 hidden dimensions; followed by a sigmoid activation function and
one output dimension layer. The input of the RNN X can be only the stock path or also
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with the time label like in FNN. Both are valid option, unlike the FNN architecture, which
requires the temporal label too.

For the training process we split the data in minibatches of size 256, and we use the
Adam optimizer described in 2.2.3 with learning rate 10−3. We train the data 40 epochs
for the FNN and 55 epochs for the RNN to ensure convergence throughout all the different
risk aversion levels λ and different cost levels k.

4.2 Implementation of the Neural SDE

If we want to use this Deep Hedging model in a practical setup, we need a market generator
that can replicate not only the real market data return distribution but also the path’s
distribution. A perfect choice for this matter is the Neural SDE model develop in [27],
and already presented and explain in detail in chapter 3.

For our numerical experiments we use the SP5001 hourly data from 01/04/2007 to
24/03/2021. We split the data in paths of 30 time steps with stripe length of one time
step. Each path is standardized, i.e. X̂t =

Xt−µT
σT

, where µT is the mean value of the whole
path and σT the standard deviation. Then, we apply a filter to get rid off the noise data,
we eliminate the 0.985 percentile of the most total variation paths and absolute return at
time step 5 to eliminate the paths with a big variation at the beginning. Also, we subtract
the initial value of the path, so each path start at 0; and normalised the time label to be
in between [0, 2], when feed it into the discriminator. These transformations are made to
improve training the model. We organised the paths in random batches of 128 paths from
the whole data set that we will feed into the training process.

For the architecture described in 3.1.1, we used an initial noise size da = 5, a noise
size of dw = 8, a hidden state size of dy = 16. The neural networks µθ and σθ have a
depth of 3 hidden layers of 32 size with LipSwish2 as activation function and tanh as final
activation function, thus their architecture are

µθ ∈ NN (16, 32, 32, 32, 16;LipSwish,LipSwish,LipSwish, tanh)

and
σθ ∈ NN (16, 32, 32, 32, 128;LipSwish,LipSwish,LipSwish, tanh).

For the SDE solver we used the Euler–Maruyama method for an Ito SDE integration
with dt = 1 over [0, 29].

Regarding the discriminator described in 3.2.3, we used a radial basis function kernel
or RBF kernel, i.e. K(x,x′) = exp

(
−γ∥x− x′∥2

)
, with γ = 1 and ∥ · ∥2 as the squared

Euclidean distance. For the PDE solver we used a dyadic order of 1, which is related to
the mesh size of PDE solver used in the loss function, for more detail [36, Section 3.1].

For the training process, we use the Adam optimizer with learning rate of 10−4, and we
run the process for 4000 steps, where at each step we evaluate one batch, and optimise the
model. Regarding the backpropagation we did the same approach as the authors in the
original paper ” optimise-then-discretise”, more detail about the approach in [29, section
5.2.3].

4.2.1 Evaluation Metrics

We will use three metrics to quantify how close are the path distributions of the generated
paths Xθ ∼ PXθ to the real paths Xtrue ∼ PXtrue .

1The S&P 500 is a stock market index that measures the performance of 500 of the largest publicly
traded companies in the United States, representing a broad cross-section of the U.S. economy.

2The LipSwish is a similar activation function to SiLU, LipSwish(x) = xσ(x)/1.1 where σ is the sigmoid
function.
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1. The Kolmogorov-Smirnov (KS) test: The KS test is a non-parametric test that
compares the cumulative distribution functions (CDFs) of two samples, to discuss
whether both samples come from the same distribution. The null hypothesis H0 is
that the two samples are from the same distribution. The KS score is

Dt = sup
x

∣∣∣F̂t,Xtrue(x)− F̂t,Xθ(x)
∣∣∣

where F̂t,X are the empirical cumulative distributions function of the paths distri-
butions of real and generated data up to time t. The rejection of the null hypothesis
H0 happens at α level of significance if

Dt >

√
− log

(α
2

)
· 1

N

where N is the total number of paths in the test, for our setup it will be one batch
N = 128. We repeated this test 5000 times at the 5% significance level and reported
the average KS score along with the average Type I error for different time marginals
t.

2. Autocorrelation: To measure temporal dependencies or correlation from the real
data and the generated one, we will compare both autocorrelation functions

ACFℓ =
1

Nσ2

N∑
t=ℓ

(Xt − µ)(Xt−ℓ − µ),

where µ is the average of the path Xt over [0,N] and σ
2 its corresponding variance.

We will provide the results in a table for different lags, and a plot with the 95%
confidence interval.

3. Cross-correlation: We provide average cross-correlation scores (rt, r
2
t,ℓ) between

the returns associated to Xt ∼ PXθ and the squared, lagged returns r2t,ℓ. We present
the scores in matrix form. Finally, we provide the mean sqaured error (MSE) between
the matrix obtained from PXtrue and the one obtained from the generator.
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Chapter 5

Numerical Results and Discussion

In this chapter we present our numerical results of our framework in different setups.
First we show how the deep hedging model replicates the Black-Sholes model with ease
for different risk aversions and cost levels and both neural networks FNN and LSTM. Then
we show the results of the neural SDE model for the SP500 hourly, and its implementation
to the Deep Hedging model with a European Call Option as liability. We test the Deep
Hedging model not only with the generated data but also with the real data. We compare
both hedging strategies the Delta Z, δθZ , and Delta Q, δQ∗ . Also, we study the statistical
arbitrage of the data with πθ(0) and how it is affected with different risk aversions and
transaction costs levels.

After we have study our models in a elementary setup like the European Call Option,
we will explore other exotic options like Arithmetic Asian Call Options, LookBack Options
and Rainbow Options. We will compare both FNN and LSTM especially for the path-
depended options to check if LSTM leverages from its sequential depended setup. We will
study the hedging surfaces of the different options with real market data.

To compare the different deep hedging models and strategies we will provide tables
with the following metrics. First the indifference price, we will consider that a lower price
is better than a higher one since the NN didn’t rely just in making profitable the PnL
by increasing the derivative’s price but in properly hedging it. Secondly, we consider the
super-hedging ratio of the PnL i.e. P(PnL ≥ 0). Obviously, the greater super-hedging
ratio the better PnL distribution, but we will consider too the left tail of the distribution
with the α = 95% Value at Risk (VaR),i.e. the 1 − α quantile of the PnL distribution,
and α = 95% Conditional Value at Risk (CVaR) or Expected Shortfall (ES), which is the
expected VaR from different confidence levels in range of (α, 1). These last two metrics
offer us a way to measure the risk in the hedging strategies.

5.1 Black-Scholes Benchmark

We check first how the deep hedging model behaves under different parameters in a well
known model as the Black Scholes with analytical formula for pricing and hedging, already
explained in section 1.1. We use as market generator the BS discrete formula 1.1.16, with
S0 = 1, r = 0, σ = 0.5. We simulate for T = 31 time steps, and N = 105 number of paths
and we will consider a European Call Option as liability Z with strike S0 = K.

Since it is a driftless market we don’t need to take into account the π(0) in the indif-
ference pricing formula 1.3.2, so we don’t necessarily train the f0. If we would train it,
the πθ(0) ≈ 0 as it gets optimized and the hedging ratios δθ0 would tend to 0 too. So, it
is pointless to consider them in this scenario. Therefore, we will train only f for different
risk aversions λ ∈ {0.1, 1, 5, 10} and transaction costs k ∈ {0%, 0.05%, 0.5%, 5%}. The
indifference price in this setup is p̂(Z) = πθ(−Z).
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Parameters Indifference Price Super-Hedging Ratio VaR CVaR

λ k FNN LSTM FNN LSTM FNN LSTM FNN LSTM

0.1 0.00% 0.1980 0.1982 0.4860 0.5298 -0.1817 -0.2128 -0.2172 -0.3324
0.05% 0.1991 0.1987 0.6258 0.5149 -0.1728 -0.1510 -0.2077 -0.2384
0.50% 0.2045 0.2044 0.6677 0.7542 -0.4083 -0.4801 -0.7142 -0.7645
5.00% 0.2066 0.2066 0.7336 0.7336 -0.8086 -0.8086 -1.3185 -1.3185

1.0 0.00% 0.1980 0.1984 0.5413 0.5721 -0.0623 -0.0791 -0.0881 -0.1111
0.05% 0.1995 0.1994 0.4984 0.5520 -0.0594 -0.0738 -0.0793 -0.1033
0.50% 0.2100 0.2079 0.5445 0.5408 -0.0950 -0.1113 -0.1295 -0.1595
5.00% 0.2706 0.2666 0.6589 0.7479 -0.3004 -0.3822 -0.5613 -0.6059

5.0 0.00% 0.2000 0.2010 0.5332 0.5047 -0.0486 -0.0546 -0.0680 -0.0760
0.05% 0.2014 0.2485 0.5282 0.6581 -0.0480 -0.1801 -0.0694 -0.2361
0.50% 0.2135 0.2122 0.5514 0.5412 -0.0564 -0.0614 -0.0772 -0.0889
5.00% 0.3105 0.2966 0.6261 0.5877 -0.1211 -0.1114 -0.1761 -0.1595

10.0 0.00% 0.2025 0.2024 0.5601 0.5714 -0.0447 -0.0458 -0.0647 -0.0664
0.05% 0.2039 0.2041 0.5504 0.5644 -0.0438 -0.0459 -0.0633 -0.0660
0.50% 0.2163 0.2156 0.5707 0.5840 -0.0463 -0.0501 -0.0663 -0.0737
5.00% 0.3237 0.3081 0.6417 0.6158 -0.0773 -0.0750 -0.1076 -0.1081

Black-Scholes 0.1974 0.5066 -0.0509 -0.0723

Table 5.1: Table with Indifference Prices, Super-Hedging Ratios, VaR, and CVaR for
different risk aversion levels and transaction costs using FNN and LSTM for the BS model.

In the table 5.1 we observe the different results for the different parameters and neural
networks. We note that the prices are quite similar to the analytical BS, and they increase
as we increase the risk aversion and the cost level. The super-hedging ratio values are
almost always better than the BS model solution with more than 50% as usual. We see
that, in average, these values increase as we increase our risk aversion values and cost
levels. Regarding the VaR and CVaR, we observe as we expected that the values would
increase significantly as we increase the risk aversion. This is due to the entropic risk
measure, as we increase the risk aversion the measure becomes way less favourable to big
losses.

Comparing both neural networks FNN and LSTM in average we don’t notice a better
model, since for some parameters one neural network worked better than the other one.
For example, we see that LSTM worked a little better in λ = 1 and λ = 10 with lower
prices and higher super-hedging ratios. Also, we notice that in average the FNN has
thinner left tails in the PnL distribution than LSTM. However, training neural networks
it is not an exact science, therefore we cannot conclude that one type of NN is better than
the other one in this set up.

In the figures 5.1 and 5.2 we represent the hedging ratios over the asset price at the
time step 20 for the different NN. We observe how the neural networks learn unsupervised
to match the BS solution by minimising the πθ(−Z), especially for low cost levels. We see
how both NN mimic better the BS solution as we increase the risk aversion, especially for
high transaction cost.
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Figure 5.1: The hedging ratios over asset price at the 20th step time for different risk
aversions and cost levels for the BS model using FNN.

Figure 5.2: The hedging ratios over asset price at the 20th step time for different risk
aversions and cost levels for the BS model using the LSTM.

In figures 5.3, 5.4 we represent the hedging ratios over time for one particular path for
both NN. Both NN matches the BS solution as the λ is increased. However, we see how
they converge to the BS solution with different smoothness. We notice that the LSTM
hedging ratios over time are less spiky than FNN and BS. This is due to the nature of the
LSTM, since its outputs don’t depends only in the current price of the stock price like the
BS model or FNN, but on the whole trajectory. But at the end converges to the optimal
solution too.
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Figure 5.3: The hedging ratios over time for different risk aversions and cost levels for the
BS model for FNN.

Figure 5.4: The hedging ratios over time for different risk aversions and cost levels for the
BS model for LSTM.

In figures 5.5 and 5.6 we provide the PnLs of the different risk aversion with no trans-
action cost comparing them to the benchmark solution of BS. We observe that except for
λ = 0.1, the neural network’s PnLs distributions improve their right tail compared to the
BS solution, and in addition the left tail for λ = 5 and λ = 10 as we can check in the table
5.1. Therefore, we improved the BS distribution with both NN for high λ.
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Figure 5.5: The PnLs for the BS model for different risk aversion with no transaction costs
for FNN.

Figure 5.6: The PnLs for the BS model for different risk aversion with no transaction costs
for LSTM.

In summery in this section, we have shown the power of the Deep Hedging framework in
a well known benchmark. We successfully reproduce the BS pricing and hedging framework
with a BS market generator, and extend it to different proportional transaction costs and
risk aversions. Also, we note how the table 5.1, and the figures 5.1, 5.3, 5.5, are different
faces of the same coin, with those we display enough information to characterised a hedging
strategy.

5.2 European Call Option of the SP500

After successfully validating the Deep Hedging framework in the BS model, we proceed
to test it in a practical setup with real market data like the SP500 index.
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5.2.1 The Neural SDE: Generating SP500 data

We implement the Neural SDE as explained in section 4.2. In the figure 5.7 we show a
qualitative plot of 80 paths generated from the Neural SDE next to 80 SP500 data paths.
As mentioned before, all the paths are standarized and initialized to 0. In figure 5.8 we
compare the marginal distribution of 105 generated paths with the real market paths for
different time steps t = 5, 15, 29. This is the qualitative plot of the table 5.2, which shows
the KS average scores and the Type I error for 5% significant level. We note that the
marginal distribution of paths at the beginning it is substantially worst that the one at
the end. This is due to the market data being quite noisy at the beginning, so it is hard
to the Neural SDE to replicated it properly. Although, 8.6% of Type I error at time t = 3
is still a good result, the Neural SDE adapts better to the marginals distribution as time
advances with 5.3% at time t = 15, and at time t = 27 achieves a great result with 3.4%
of Type I error.

Also, it is worth mentioning that this marginal distribution at final time resembles a
couple of the ”stylised facts” of the financial markets [11]. Since, it has a more peaky
distribution towards 0, and with fatter tails than a Gaussian distribution.

Figure 5.7: Qualitative plot of the paths generated with the paths of real market data.

Figure 5.8: The figure compares the marginal distribution of the paths for real and generate
data for different times.
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t = 3 t = 9 t = 15 t = 21 t = 27

KS % Reject KS % Reject KS % Reject KS % Reject KS % Reject

0.1251 8.6% 0.1116 5.7% 0.1093 5.3% 0.1080 5.2% 0.1051 3.4%

Table 5.2: The table shows the different KS average scores and average Type I error for
different times along the paths marginal distributions.

In figure 5.9 and table 5.3 we show the autocorrelation scores with a 95% of confidence
interval for different lags for the generated and real data. In the table we show up to the
5th lag, and at the figure up to the 14th lag. We get quite similar average autocorrelation
scores and confidence intervals all across the different lags. This means that on average
the generated data replicates the same autocorrelation behaviour as the real data.

l = 1 l = 2 l = 3 l = 4 l = 5

Generated Data 0.7631± 0.2671 0.5751± 0.3956 0.4227± 0.4537 0.2980± 0.4677 0.1949± 0.4557
Real Data 0.7573± 0.2852 0.5720± 0.4115 0.4228± 0.4720 0.3015± 0.4810 0.2012± 0.4664

Table 5.3: The table shows the autocorrelation scores with 95% confidence intervals at
different lags.

Finally, in figure 5.10 we present the cross-correlation matrices between the returns
process rt and the lagged squared returns process r2t−ℓ for lags ℓ = {0, 1, 2, 3, 4, 5}. The
MSE between both matrices is 0.031003. This is another successful data correlated metric.

Figure 5.9: Qualitative plot of the autocorrelation scores with 95% interval at different
lags.
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Figure 5.10: The cross-correlation matrices of the generated and real data.

In summery, we successfully achieve a market generator that can replicate up to a high
degree of confidence the path’s distribution and the correlations metrics of the real market
data.

5.2.2 Deep Hedging Model

First, we adapt the data from the Neural SDE implementation. We use as training data
for our deep hedging models N = 105 paths of generated data initialised to S0 = 1
and scaled to a factor of 0.08, so the values of the paths are in between [0.3506, 1.7017].
For the validation data of the model we use N = 105 of the SP500 data paths, also
initialised to S0 = 1 and scaled with the same factor of 0.08, so their values are in between
[0.3637, 1.6772].

In the previous section 5.1 we have seen that the models with λ = 0.1 didn’t performed
that well, so from now on we are using the following set of risk aversion λ ∈ {1, 5, 10, 15}
and the same transaction costs k ∈ {0%, 0.05%, 0.5%, 5%}. Since now we are not working
in a driftless market, we will train the both nueral networks f and f0. We will use the
indifference pricing formula 4.1.3. First we will use an European Call option with strike
K = S0 as liability before going into more exotic options in the next section. We will
be comparing both strategies, Delta Z, where the model takes into account the statistical
arbitrage of the market, and Delta Q, where the model disregard the possible statistical
arbitrage of market and only focus on hedging the liability. Also, we will study how f0
optimise the optimal statistical arbitrage strategy Delta 0 in the market.

We will compare our results with how we would traditionally address this problem,
using a Monte Carlo estimator for the option price, and the Black-Sholes model for devel-
oping the hedging strategies.
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Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k Gen Data Delta Z Delta Q Delta Z Delta Q Delta Z Delta Q

1.0 0.00% 0.0290 0.7197 0.6025 -0.0820 -0.0594 -0.1343 -0.0814
0.05% 0.0290 0.7002 0.6118 -0.0790 -0.0661 -0.1304 -0.1007
0.50% 0.0309 0.6802 0.6802 -0.0931 -0.0931 -0.1540 -0.1540
5.00% 0.0309 0.6802 0.6802 -0.0931 -0.0931 -0.1540 -0.1540

5.0 0.00% 0.0292 0.6570 0.6039 -0.0513 -0.0380 -0.0697 -0.0548
0.05% 0.0298 0.6350 0.6152 -0.0442 -0.0404 -0.0617 -0.0570
0.50% 0.0345 0.6764 0.6764 -0.0555 -0.0555 -0.0900 -0.0900
5.00% 0.0373 0.7201 0.7201 -0.0868 -0.0868 -0.1476 -0.1476

10.0 0.00% 0.0302 0.6349 0.6236 -0.0375 -0.0359 -0.0524 -0.0501
0.05% 0.0311 0.6368 0.6258 -0.0385 -0.0374 -0.0533 -0.0535
0.50% 0.0371 0.6674 0.6674 -0.0487 -0.0487 -0.0692 -0.0692
5.00% 0.0527 0.7992 0.7992 -0.0713 -0.0713 -0.1322 -0.1322

15.0 0.00% 0.0315 0.6538 0.6440 -0.0349 -0.0343 -0.0501 -0.0503
0.05% 0.0326 0.6671 0.6544 -0.0382 -0.0351 -0.0540 -0.0501
0.50% 0.0391 0.6797 0.6797 -0.0435 -0.0435 -0.0613 -0.0613
5.00% 0.0752 0.8236 0.8236 -0.0451 -0.0451 -0.0899 -0.0899

Black-Scholes 0.0297(MC) 0.6333 -0.0353 -0.0590

Table 5.4: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between Delta Z and Delta Q strategies for generated data.

First, we show how the NNs perform in the data that they were train on at table
5.4. At first glance we observe how the indifference price is quite similar to the MC price
throughout the different risk aversion and low cost levels. Comparing both strategies we
clearly see that the Delta Z has better super-hedging ratios than the Delta Q or BS. Also
we notice that the three strategies have a significant super-hedging ratio which is always
above than 60% and even 70%. On the other hand, the Delta Q strategy has better VaR
and CVaR than Delta Z. Also, we observe that the strategies are virtually the same as the
cost level increases, and as the risk aversion increase, they also become similar.

These result are actually what we would expect. The delta Z takes advantage of
the statistical arbitrage while trying to hedge the liability, thus the super-hedging ratio is
bigger. However, as we increase the transaction cost in the market the statistical arbitrage
in the market disappears, and Delta Z and Q became the same strategy. In addition,
when we increase the risk aversion the NNs are less susceptible to the arbitrage due to its
possible bigger losses, so both strategies became more similar. We will see these concepts
throughout the different figures of the section.

In the figures 5.11, 5.12 and 5.13 we show the hedging ratios over the asset price
at time step t = 20, for the different risk aversion, cost levels and strategies. We see
how the statistical arbitrage influences the Delta Z strategy specially for λ = 1, and
how increasing the risk aversion the hedging ratios tend to match the BS solution. In
contrast, for Delta Q the hedging ratios resemble the BS solution across all the different
risk aversions. Regarding the strategy Delta 0, we see how the hedging ratios decreases
significantly as we increase the risk aversion.

It is worth noticing that when we state that the hedging ratios resemble a BS solution,
this doesn’t mean to match exactly the same BS solution, but with a similar form, since
we are not in a BS market, so the hedging solution shouldn’t fully match BS one.

45



Figure 5.11: The hedging ratios over asset price at time step t = 20 following the Delta Z
strategy for different risk aversion and cost levels.

Figure 5.12: The hedging ratios over asset price at time step t = 20 following the Delta Q
strategy for different risk aversion and cost levels.

Figure 5.13: The hedging ratios over asset price at time step t = 20 following the Delta 0
strategy for different risk aversion and cost levels.

46



In the figure 5.14 we show how the Delta 0 strategy works for different risk aversions.
For λ = 1 we see that the optimal statistical arbitrage at the beginning is to buy regardless
to the asset price with ratio 1, and as the time advances the strategy sells its position
depending the price of the asset. The NN f0 learns that in average the stock price will
finish around 1, so towards the end of the time path it sells when asset price is high and
buys when it is low. For λ = 10, f0 learns this strategy but is more cautious to bigger
loss, so it is more conservative with substantially lower hedging ratios.

Figure 5.14: We compare the hedging ratio over price plot along different times for the
strategy delta 0 between different risk aversions λ = 1 and λ = 10 and for different cost
levels.

In figures 5.15, and 5.16 we show the hedging ratios over price for different time steps
comparing both strategies Delta Z and Q for two different risk aversions. For λ = 1 the
hedging strategy Delta Z gets influence by the statistical arbitrage, and the need to hedge
the liability. Therefore, it will combine both strategies, starting buying with ratio 1 like
Delta 0. As the time advances the hedging ratio will go toward 1 for high prices of the
asset due to hedging, and for low price the hedging strategy will follow a similar policy
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to the Delta 0. In the Delta Q we get rid of the statistical influence over Delta Z getting
a more alike solution to the BS model. For λ = 10 Delta Z is barely influence of the
statistical arbitrage, thus it resemble the BS solution except for low prices. And Delta Q
it is even more similar to the BS model.

Also, it is worth mentioning that we get some small negative values in the Delta Q.
This is a consequence of f and f0 not being equally optimise or fully optimise. As we
commented before training neural networks is not an exact science.

Figure 5.15: We compare the hedging ratio over price plot along different times between
both strategies Z and Q for λ = 1 and for different cost levels.
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Figure 5.16: We compare the hedging ratio over price plot along different times between
both strategies Z and Q for λ = 10 and for different cost levels.

In the figures 5.17, 5.18 and 5.19 we represent the hedging ratios over time for one
real data path over different risk aversion, cost levels and strategies. As mention before,
the Delta 0 strategy will start with a high ratio and will progressively sell its position.
Therefore, the Delta Z will start also high and progressively will adapt better to the
hedging strategy as we increase the risk aversion. The opposite happens for Delta Q
where it starts at a low ratio, and progressively will adapt better to the hedging strategy
as we increase the risk aversion. Comparing both Deltas Z and Q, we see that Q adapts
quicker from the beginning to the hedging strategy.
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Figure 5.17: The hedging ratios over time for the Delta Z strategy for different risk
aversions and cost levels.

Figure 5.18: The hedging ratios over time for the Delta Q strategy for different risk
aversions and cost levels.

Figure 5.19: The hedging ratios over time for the Delta 0 strategy for different risk aver-
sions and cost levels.
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In the figures 5.20, 5.21 and 5.22 we compare the PnLs of the Delta Z and Q between
each other and the BS strategy with the generated data. These reflects the results of table
5.4. The Delta Z and Q have better right tail than the BS strategy, and even better left
tail for high risk averse levels, as we can check at the table. Also, as we expected both Q
and Z tend to be really similar for high risk aversion levels, although Z still more positive
than Q.

Figure 5.20: The PnLs of the strategy Z and BS for different risk aversions and no trans-
action costs for generated data.

Figure 5.21: The PnLs of the strategy Q and BS for different risk aversions and no
transaction costs for generated data.
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Figure 5.22: The PnLs of the strategy Q and Z for different risk aversions and no trans-
action costs for generated data.

After showing the results for the generated data, we proceed with the real market data
results in the table 5.5. The results with real data for the hedging strategies are quite
similar or even better than the results with generated data. Although, we note that the
indifference prices of the different risk aversions are slightly more disappeared around the
MC price than the generated data. But, this is something we would expect as the NNs
weren’t fully optimised for this data. This still confirms again how accurate the market
generator simulating real market data.

Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k Real Data Delta Z Delta Q Delta Z Delta Q Delta Z Delta Q

1.0 0.00% 0.0284 0.7178 0.6071 -0.0850 -0.0618 -0.1387 -0.0906
0.05% 0.0283 0.6975 0.6298 -0.0844 -0.0709 -0.1375 -0.1144
0.50% 0.0306 0.6792 0.6792 -0.0896 -0.0896 -0.1511 -0.1511
5.00% 0.0306 0.6792 0.6792 -0.0896 -0.0896 -0.1511 -0.1511

5.0 0.00% 0.0286 0.6754 0.6044 -0.0597 -0.0406 -0.0855 -0.0619
0.05% 0.0298 0.6415 0.6155 -0.0460 -0.0383 -0.0688 -0.0603
0.50% 0.0345 0.6691 0.6691 -0.0518 -0.0518 -0.0887 -0.0887
5.00% 0.0368 0.7144 0.7144 -0.0834 -0.0834 -0.1449 -0.1449

10.0 0.00% 0.0306 0.6593 0.6341 -0.0423 -0.0348 -0.0653 -0.0567
0.05% 0.0311 0.6442 0.6333 -0.0390 -0.0360 -0.0588 -0.0583
0.50% 0.0372 0.6660 0.6660 -0.0462 -0.0462 -0.0714 -0.0714
5.00% 0.0515 0.7911 0.7911 -0.0687 -0.0687 -0.1303 -0.1303

15.0 0.00% 0.0325 0.6859 0.6691 -0.0370 -0.0326 -0.0591 -0.0546
0.05% 0.0330 0.6813 0.6661 -0.0381 -0.0341 -0.0581 -0.0537
0.50% 0.0394 0.6868 0.6868 -0.0417 -0.0417 -0.0645 -0.0645
5.00% 0.0742 0.8181 0.8181 -0.0432 -0.0432 -0.0889 -0.0889

Black-Scholes 0.0294(MC) 0.6380 -0.0353 -0.0590

Table 5.5: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between Delta Z and Delta Q strategies, for real market data.

In figures 5.23, 5.24, and 5.25, we plot the PnLs for the different strategies and risk
aversions for the real market data. We get analogous results to the ones with generated
data.

52



Figure 5.23: The PnLs of the strategy Z and BS for different risk aversions and no trans-
action costs for real market data.

Figure 5.24: The PnLs of the strategy Q and BS for different risk aversions and no
transaction costs for real market data

Figure 5.25: The PnLs of the strategy Z and BS for different risk aversions and no trans-
action costs for real market data
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In the table 5.6 and figure 5.26, we compare the optimal statistical arbitrage strategy
of the generated market in the real data market. The measure of statistical arbitrage
πθ(0) it is reduced as we increase the risk aversion, and totally erase when we increase
significantly the level costs. Although πθ(0) is optimise for the generated market, it can
sense some statistical arbitrage in the real data for λ = 1. The super-hedging ratios are
above 50% for transaction costs lower than 0.1%. The strategy Delta 0 performs a little
better in the generated data, as we would expect, the results still quite similar to the real
data. Again another metric that corroborates that the generated data is quite close to the
real one with similar statistical arbitrage.

Parameters πθ(0) Super-Hedging Ratio VaR

λ k Gen Data Real Data Gen Data Real Data Gen Data Real Data

1.0 0.00% -2.26e-03 -7.64e-04 0.5645 0.5479 -5.89e-02 -7.77e-02
0.05% -1.23e-03 3.55e-04 0.5551 0.5358 -7.90e-02 -9.30e-02
0.50% 4.04e-11 3.85e-11 0.4357 0.4224 -2.32e-10 -3.32e-10
5.00% 5.82e-11 6.84e-11 0.0000 0.0007 -1.03e-10 -1.42e-10

5.0 0.00% -7.92e-04 6.16e-04 0.5453 0.5346 -2.40e-02 -3.97e-02
0.05% -2.55e-04 9.95e-05 0.5450 0.5303 -1.39e-02 -1.83e-02
0.50% 4.27e-11 3.86e-11 0.4726 0.4502 -2.69e-10 -3.68e-10
5.00% 5.21e-11 5.89e-11 0.0000 0.0005 -7.44e-11 -1.06e-10

10.0 0.00% -3.94e-04 4.40e-04 0.5406 0.5353 -1.22e-02 -2.14e-02
0.05% -1.24e-04 1.45e-04 0.5475 0.5326 -9.89e-03 -1.27e-02
0.50% 4.38e-11 3.02e-11 0.4915 0.4636 -2.57e-10 -3.56e-10
5.00% 8.50e-11 9.69e-11 0.0000 0.0005 -1.33e-10 -1.86e-10

15.0 0.00% -2.68e-04 3.24e-04 0.5530 0.5349 -9.67e-03 -1.53e-02
0.05% -8.89e-05 5.20e-05 0.5504 0.5346 -5.93e-03 -7.41e-03
0.50% 5.59e-11 6.03e-11 0.4030 0.3947 -6.50e-10 -6.47e-10
5.00% 9.97e-11 1.06e-10 0.0000 0.0016 -1.74e-10 -2.04e-10

Table 5.6: Comparison of ρθ(0), Super-Hedging Ratios, and VaR between Generated Data
and Real Data.

Figure 5.26: The PnLs of the Delta 0 strategy for different risk aversion and no transaction
costs for generated and real data.
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In summery, in this section we proved that the Neural SDE market generator can be
implemented into the deep hedging problem effectively. We studied the market’s statistical
arbitrage and the strategies to fully take advantage of it; to combine it with hedging a
liability; and to disregard it and just focus on hedging the derivative. Also, we note that
all the results exposed here are for the FNN. We have compute the results for LSTM too,
but there were quite similar to the FNN so we attached them in the appendix A.1.

5.3 Exotic Options

After checking that our framework worked in a simple European Call Option, we will
implement it in more exotic products that depend on the full trajectory of the price path,
or in multiple assets. We will compare both FNN and LSTM to see if the RNN leverages
from its sequential depended setup. In this section we will be more focus on learning the
hedging surfaces of the exotic derivatives than their influence by the statistical arbitrage,
hence we will be plotting the figures with λ = 10 to illustrate the proper hedging strategies
of the derivatives. Also, when plotting the hedging ratios over time we will be using the
Delta Q strategy as we can see more clearly the hedging strategy from the beginning.

5.3.1 Asian Option

First, we test our framework with the same Neural SDE market generator for a Arithmetic
Asian call option with fixed strike K = S0. Its payoff at maturity time T=30 is:

ZT = max(A(0, T )−K, 0)

where A(0, T ) = 1
T

∑T
i=0 Si is the arithmetic average of the asset price from t = 0 to t = T .

This derivative doesn’t even have an analytical price formula in BS. The usual alternatives
are numerical methods like lattice methods or finite difference methods. Here we simply
use a Monte Carlo estimator as price reference.

In this setup the input of the NNs f and f0 will have an extra label A(0, t) the running
arithmetic average of the path, hence the NN will have all the information needed up to
time t to price and hedge the derivative.

The deep hedging model allows us to study with ease the hedging surface of path
dependant derivatives. In the figure 5.27 we present the hedging surface predicted by
the neural network f after being trained with the generated data. At the beginning, the
hedging surface resembles a European call option. As time advances it evolves as the NN
learns how to adapt the hedging ratios depending the spot prices, the running average and
the time left. It is worth mention that there are some regions on the surface that the NN
extrapolates since there weren’t enough market data on those region, like for example the
region of high running average with low spot prices.

In figure 5.28 we represent the hedging surface next to its 2D representation imple-
mented to the real market data. We note how to important is the 3D representation to
be able to understand the hedging strategy as a whole picture.
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Figure 5.27: The predicted hedging surface for a Asian Option by f for λ = 10 and no
transaction costs.
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Figure 5.28: The hedging surface next to its 2D representation of the hedging ratios with
respect the asset price for the real market data for a Asian Option.
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In the figures 5.29 and 5.30 we plot the hedging ratios over time for a path in the
real market dataset using FNN and LSTM respectively. We note that the hedging ratios
over time decreases for this type of derivative, not only this particular path. We can also
observe it in the hedging surfaces in figure 5.27. In fact, we notice that the hedging ratios
are smaller compare to other options. This is due to the smaller payoff of this option
compared to other options.

Figure 5.29: The hedging ratios over time for the strategy Delta Q for path 3 in the real
market dataset for Asian Call using FNN.

Figure 5.30: The hedging ratios over time for the strategy Delta Q for path 3 in the real
market dataset for Asian Call using LSTM.

In the tables 5.7 and 5.8 we compare our results for real market data between the FNN
and LSTM for Delta Z strategy and Delta Q respectively. We got super-hedging ratios
above the 60% for both strategies and NNs, and even 70% for some Delta Z. As expected,
we got higher super-hedging ratios for Delta Z, but grater VaR and CVaR for Delta Q.
We didn’t get any significant different between FNN and LSTM, moreover we get really
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similar results for high cost levels. We plot this results in the figures 5.31, and 5.32 where
we visually compare the PnLs of the Delta Z and Q strategies for different risk aversion
for FNN and LSTM respectively. We also computed the results for the generated data but
we got quite similar results to the validation data, thus we present them in the appendix
A.2.

Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k FNN LSTM FNN LSTM FNN LSTM FNN LSTM

1.0 0.00% 0.0162 0.0162 0.6882 0.7096 -0.0820 -0.0719 -0.1342 -0.1193
0.05% 0.0162 0.0161 0.6854 0.7034 -0.0810 -0.0711 -0.1312 -0.1167
0.50% 0.0172 0.0172 0.6849 0.6849 -0.0544 -0.0544 -0.0886 -0.0886
5.00% 0.0172 0.0172 0.6849 0.6849 -0.0544 -0.0544 -0.0886 -0.0886

5.0 0.00% 0.0157 0.0158 0.7110 0.7047 -0.0494 -0.0476 -0.0755 -0.0730
0.05% 0.0170 0.0169 0.7206 0.7198 -0.0420 -0.0394 -0.0663 -0.0623
0.50% 0.0190 0.0190 0.7078 0.7078 -0.0504 -0.0504 -0.0833 -0.0833
5.00% 0.0191 0.0191 0.7032 0.7032 -0.0526 -0.0526 -0.0867 -0.0867

10.0 0.00% 0.0172 0.0166 0.7020 0.6896 -0.0364 -0.0358 -0.0557 -0.0548
0.05% 0.0175 0.0174 0.6955 0.6645 -0.0348 -0.0286 -0.0515 -0.0439
0.50% 0.0207 0.0207 0.7197 0.7113 -0.0376 -0.0374 -0.0646 -0.0632
5.00% 0.0223 0.0223 0.7322 0.7322 -0.0494 -0.0494 -0.0836 -0.0836

15.0 0.00% 0.0180 0.0179 0.6801 0.7022 -0.0272 -0.0272 -0.0436 -0.0436
0.05% 0.0180 0.0179 0.6736 0.6793 -0.0262 -0.0261 -0.0382 -0.0393
0.50% 0.0219 0.0218 0.7076 0.7076 -0.0309 -0.0311 -0.0527 -0.0523
5.00% 0.0272 0.0272 0.7738 0.7738 -0.0444 -0.0444 -0.0786 -0.0786

Monte Carlo 0.0162

Table 5.7: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between FNN and LSTM following the strategy Delta Z, for Real data for the Asian
Option.

Figure 5.31: The PnLs for the Delta Z and Q strategies for the Asian option using real
data for FNN.

59



Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k FNN LSTM FNN LSTM FNN LSTM FNN LSTM

1.0 0.00% 0.0162 0.0162 0.6345 0.6506 -0.0472 -0.0538 -0.0756 -0.0865
0.05% 0.0162 0.0161 0.6022 0.6648 -0.0483 -0.0504 -0.0762 -0.0812
0.50% 0.0172 0.0172 0.6849 0.6849 -0.0544 -0.0544 -0.0886 -0.0886
5.00% 0.0172 0.0172 0.6849 0.6849 -0.0544 -0.0544 -0.0886 -0.0886

5.0 0.00% 0.0157 0.0158 0.6093 0.6135 -0.0362 -0.0343 -0.0558 -0.0530
0.05% 0.0170 0.0169 0.6429 0.6333 -0.0290 -0.0275 -0.0421 -0.0401
0.50% 0.0190 0.0190 0.7078 0.7078 -0.0504 -0.0504 -0.0833 -0.0833
5.00% 0.0191 0.0191 0.7032 0.7032 -0.0526 -0.0526 -0.0867 -0.0867

10.0 0.00% 0.0172 0.0166 0.6425 0.6286 -0.0232 -0.0256 -0.0375 -0.0409
0.05% 0.0175 0.0174 0.6467 0.6342 -0.0273 -0.0255 -0.0396 -0.0366
0.50% 0.0207 0.0207 0.7197 0.7113 -0.0376 -0.0374 -0.0646 -0.0632
5.00% 0.0223 0.0223 0.7322 0.7322 -0.0494 -0.0494 -0.0836 -0.0836

15.0 0.00% 0.0180 0.0179 0.6580 0.6541 -0.0229 -0.0220 -0.0385 -0.0359
0.05% 0.0180 0.0179 0.6491 0.6498 -0.0232 -0.0230 -0.0352 -0.0345
0.50% 0.0219 0.0218 0.7067 0.7076 -0.0309 -0.0311 -0.0527 -0.0523
5.00% 0.0272 0.0272 0.7738 0.7738 -0.0444 -0.0444 -0.0786 -0.0786

Monte Carlo 0.0162

Table 5.8: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between FNN and LSTM following the strategy Delta Q, for Real data for the Asian
Option.

Figure 5.32: The PnLs for the Delta Z and Q strategies for the Asian option using real
data for LSTM.

5.3.2 Lookback Option

Now, we test our framework for a Lookback Call Option with floating strike. Its payoff at
maturity T = 30 is:

ZT = max(ST − Smin,T , 0)

where Smin,T = min
0≤τ≤T

Sτ is the running minimum of the price path. In this setup the

input of the NN f and f0 will have an extra label Smin,t the running minimum value of
the path.
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Figure 5.33: The predicted hedging surface for a Lookback Option by f for λ = 10 and
no transaction costs. 61



Figure 5.34: The hedging surface next to its 2D representation of the hedging ratios with
respect the asset price for the real market data for a LookBack Option.

In the figure 5.33 we illustrate the predicted hedging surface by the FNN. The surface
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resembles to the European call, however its slope it is diagonal in the plane, which makes
sense as the NN learned to hedge the liability by the difference between the spot price and
the running minimum. In figure 5.34, we show the hedging ratio surface applied to the
real data next to its 2D representation.

We note that the hedging ratio doesn’t go to 0 although the value is low. This is not
because of statistical arbitrage since we are using λ = 10, this is a consequence of the
payoff not being 0 most of the times, hence the NN learns to correctly hedge the liability
even in low prices. Also, We note that hedging the ratios start low since the NN doesn’t
know if the asset price will increase or not, once the price increases the hedging ratio will
increase too. However, if the prices decreases approaching the minimum the ratios will
decrease too. We show an example of this concept in the figures 5.35 and 5.36 where we
plot the hedging ratios over time for one particular for FNN and LSTM, respectively.

Figure 5.35: Hedging ratios over time for Lookback option using FNN.

Figure 5.36: Hedging ratios over time for Lookback option using FNN.

We present the results for this option for the validation data in the tables 5.9 and
5.10 for the Delta Z and Q strategies respectively. In both tables we compare the FNN
and LSTM, and as for the Asian option, we didn’t find any sensible difference between
both NN. Regarding the two strategies we got the same results as with previous options.
And again we got a great super-hedging ratio over 60% across all the different strategies,
neural networks, risk aversion levels and cost levels. The PnLs of the strategies for the
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different NN are plotted in the figures 5.37 and 5.38. And again we show the results of
the generated data at the appendix A.3, as there were quite similar to the real ones.

Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k FNN LSTM FNN LSTM FNN LSTM FNN LSTM

1.0 0.00% 0.0476 0.0480 0.6537 0.6657 -0.1042 -0.1108 -0.1629 -0.1758
0.05% 0.0479 0.0479 0.6484 0.6509 -0.1022 -0.1025 -0.1564 -0.1596
0.50% 0.0501 0.0501 0.6521 0.6521 -0.0996 -0.0996 -0.1652 -0.1652
5.00% 0.0501 0.0501 0.6521 0.6521 -0.0996 -0.0996 -0.1652 -0.1652

5.0 0.00% 0.0505 0.0512 0.6534 0.6567 -0.0713 -0.0715 -0.1129 -0.1161
0.05% 0.0510 0.0513 0.6402 0.6468 -0.0629 -0.0628 -0.0994 -0.1017
0.50% 0.0556 0.0554 0.6729 0.6587 -0.0726 -0.0715 -0.1196 -0.1107
5.00% 0.0580 0.0580 0.7037 0.7037 -0.0917 -0.0917 -0.1573 -0.1573

10.0 0.00% 0.0548 0.0557 0.6918 0.7025 -0.0574 -0.0568 -0.0938 -0.0969
0.05% 0.0552 0.0563 0.6831 0.6986 -0.0546 -0.0558 -0.0896 -0.0937
0.50% 0.0614 0.0606 0.6919 0.6977 -0.0628 -0.0643 -0.1006 -0.1011
5.00% 0.0787 0.0787 0.8078 0.8078 -0.0710 -0.0710 -0.1366 -0.1366

15.0 0.00% 0.0603 0.0623 0.7477 0.7581 -0.0485 -0.0492 -0.0851 -0.0870
0.05% 0.0612 0.0629 0.7405 0.7580 -0.0486 -0.0500 -0.0837 -0.0863
0.50% 0.0687 0.0677 0.7552 0.7482 -0.0556 -0.0542 -0.0933 -0.0907
5.00% 0.1076 0.1069 0.8445 0.8426 -0.0478 -0.0500 -0.0971 -0.0997

Monte Carlo 0.0495

Table 5.9: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between FNN and LSTM following the strategy Delta Z for a Lookback option .

Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k FNN LSTM FNN LSTM FNN LSTM FNN LSTM

1.0 0.00% 0.0476 0.0480 0.6345 0.6450 -0.0782 -0.0736 -0.1289 -0.1169
0.05% 0.0479 0.0479 0.6246 0.6275 -0.0728 -0.0712 -0.1188 -0.1179
0.50% 0.0501 0.0501 0.6521 0.6521 -0.0996 -0.0996 -0.1652 -0.1652
5.00% 0.0501 0.0501 0.6521 0.6521 -0.0996 -0.0996 -0.1652 -0.1652

5.0 0.00% 0.0505 0.0512 0.6502 0.6585 -0.0580 -0.0603 -0.0957 -0.1021
0.05% 0.0510 0.0513 0.6426 0.6501 -0.0624 -0.0618 -0.0999 -0.1022
0.50% 0.0556 0.0554 0.6729 0.6587 -0.0726 -0.0715 -0.1196 -0.1107
5.00% 0.0580 0.0580 0.7037 0.7037 -0.0917 -0.0917 -0.1573 -0.1573

10.0 0.00% 0.0548 0.0557 0.6858 0.7037 -0.0547 -0.0549 -0.0911 -0.0947
0.05% 0.0552 0.0563 0.6834 0.7009 -0.0552 -0.0569 -0.0910 -0.0977
0.50% 0.0614 0.0606 0.6919 0.6977 -0.0628 -0.0643 -0.1006 -0.1011
5.00% 0.0787 0.0787 0.8078 0.8078 -0.0710 -0.0710 -0.1366 -0.1366

15.0 0.00% 0.0603 0.0623 0.7442 0.7563 -0.0473 -0.0507 -0.0840 -0.0891
0.05% 0.0612 0.0630 0.7380 0.7569 -0.0494 -0.0511 -0.0851 -0.0891
0.50% 0.0687 0.0677 0.7552 0.7482 -0.0556 -0.0542 -0.0933 -0.0907
5.00% 0.1076 0.1069 0.8445 0.8426 -0.0478 -0.0500 -0.0971 -0.0997

Monte Carlo 0.0495

Table 5.10: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between FNN and LSTM strategies following Delta Q, for a Lookback option.
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Figure 5.37: The PnLs for the Delta Z and Q strategies for the Lookback option using
real data for FNN

Figure 5.38: The PnLs for the Delta Z and Q strategies for the Lookback option using
real data for LSTM

In summery, in these two subsection we have shown how the deep hedging model
properly builds the hedging strategies for path-dependent derivatives like Asian Options
or Lookback options. Also, we note that there wasn’t significant different between using
FNN or LSTM. This is due to the fact that we complemented our inputs with labels that
could describe the payoff derivative at all time, thus there was no need to use the LSTM
path-dependent architecture. Although, practically it was useful to have another solution
to compare to ensure that neural networks were fully optimise.

5.3.3 Rainbow Option

In this last subsection, we will implement our framework to a multivariate problem like a
Rainbow Option, where the payoff depends on more than one asset. More concretely we
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will price and hedge a basket option, a type of Rainbow option which payoff is based on
the overall performance of all assets in the basket. Its payoff at maturity time T for two
assets S1 and S2 is

ZT = max(
1

2
(S1,T + S2,T )−K, 0).

As underlyings we chose the hourly SP500 data, as previously, and the hourly NASDAQ1

data from 01/04/2007 to 24/03/2021.

The Neural SDE results

We followed the same implementation explained in section 4.2, but now with an extra
dimension representing the other price path. In figure 5.39 we show a qualitative plot of
the generated and real paths for both indices.

Figure 5.39: Qualitative plots of the paths generated with the paths of real market data
for both indices.

Figure 5.40: The figure compares the marginal distribution of the paths for real and
generate data for different times for SP500 data.

1The NASDAQ is a stock market index that tracks the performance of 100 of the largest non-financial
companies listed on the NASDAQ stock exchange, with a strong focus on technology and innovative
industries.
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Figure 5.41: The figure compares the marginal distribution of the paths for real and
generate data for different times for NASDAQ data.

t = 3 t = 9 t = 15 t = 21 t = 27
KS % Reject KS % Reject KS % Reject KS % Reject KS % Reject

SP500 0.1421 25.3% 0.1363 23.3% 0.1279 15.7% 0.1228 11.9% 0.1241 12.4%

NASDAQ 0.1224 11.8% 0.1144 6.1% 0.1126 5.7% 0.1123 6.3% 0.1135 7.2%

Table 5.11: Comparison of SP500 and NASDAQ across different time steps with average
KS score and Type I errors.

In the table 5.11 we provide the average KS scores and Type I error for both indices.
For this Neural SDE implementation we didn’t get as good results as the previous one. We
got better results for the NASDAQ data, than the SP500 data. This can be qualitatively
understood with the marginal distribution plots in the figures 5.40, and 5.41.

The autocorrelation scores in table 5.12 and figure 5.42 show similar scores and confi-
dence intervals between generated data and real data, but not as precise as the previous
implementation.

Figure 5.42: Plot with autocorrelation scores with confidence intervals at different lags for
SP500 and NASDAQ.
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l = 1 l = 2 l = 3 l = 4 l = 5

SP500
Gen Data 0.7641± 0.2491 0.5734± 0.3789 0.4178± 0.4426 0.2904± 0.4629 0.1844± 0.4556
Real Data 0.7574± 0.2870 0.5713± 0.4150 0.4216± 0.4728 0.3005± 0.4834 0.1997± 0.4699

NASDAQ
Gen Data 0.7666± 0.2442 0.5777± 0.3740 0.4228± 0.4422 0.2962± 0.4641 0.1909± 0.4582
Real Data 0.7512± 0.3035 0.5627± 0.4343 0.4142± 0.4813 0.2947± 0.4891 0.1966± 0.4716

Table 5.12: Autocorrelation scores with confidence intervals at different lags for SP500
and NASDAQ.

The cross-correlation scores of both indices are shown in the figures 5.43 and 5.44. For
the SP500 data we got a MSE=0.055886, and for the NASDAQ data we got MSE=0.036143.

Figure 5.43: The cross-correlation matrices of the generated and real data for SP500.

Figure 5.44: The cross-correlation matrices of the generated and real data for NASDAQ.

Although the results of the implementation of the Neural SDE aren’t as accurate as
the first implementation, they are still reasonable results.

The Deep Hedging results

For the Deep Hedging implementation, we initialised the paths to S0 = 1, and scaled
them with a factor of 0.08 as with the previous implementation. We chose the strike of
the basket option as K = S0.

In this setup the input of the NNs f and f0 will have an extra label for the other asset
price, and the output will be two dimensional representing hedging ratios of both assets.
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Figure 5.45: The hedging surfaces pair for both assets for λ = 10 and no transaction costs
for the Rainbow Option. At the left we represent the pairs that follows the strategy Delta
Z , at the right the pairs that follow the strategy Delta Q.

Now we have hedging surface pairs for the hedging ratios. In the figure 5.45 we compare
how the pairs evolve over time for the strategies Delta Z and Q. The hedging surfaces don’t
quite resemble the Call Option structure, since the hedging ratios of one asset are not only
influence by the price of its asset but also by the price of the other price. The NN learns
some sense of correlation between both assets, as it tries to optimize ρθ(−Z). Comparing
both strategies we note a small difference at the NASDAQ hedging surface in the middle
of the slope, where the statistical arbitrage was. Nothing changes at the SP500 hedging
surface. Therefore, the neural networks only notice statistical arbitrage on the NASDAQ
index. We can clearly see this in the figure 5.48, where we plot the hedging ratios over
time for both assets for a path following the Delta 0 strategy.

In figures 5.46, and 5.47 we show the hedging ratios over time for the strategies Delta Z
and Q respectively. Comparing both figures we observe that as we get rid of the statistical
arbitrage the hedging ratios tend to be in a similar range.
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Figure 5.46: The hedging ratios for both assets over time following the Delta Z strategy
for different risk aversion and without transaction costs.

Figure 5.47: The hedging ratios for both assets over time following the Delta Q strategy
for different risk aversion and without transaction costs.

Figure 5.48: The hedging ratios for both assets over time following the Delta 0 strategy
for different risk aversion and without transaction costs.
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Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k Gen Data Delta Z Delta Q Delta Z Delta Q Delta Z Delta Q

1.0 0.00% 0.0165 0.5565 0.6660 -0.0965 -0.0554 -0.1364 -0.0824
0.05% 0.0165 0.5489 0.6660 -0.0975 -0.0554 -0.1374 -0.0824
0.50% 0.0172 0.6733 0.6733 -0.0547 -0.0547 -0.0816 -0.0816
5.00% 0.0172 0.6733 0.6733 -0.0547 -0.0547 -0.0816 -0.0816

5.0 0.00% 0.0162 0.5757 0.5562 -0.0457 -0.0267 -0.0610 -0.0350
0.05% 0.0169 0.5674 0.6133 -0.0405 -0.0333 -0.0534 -0.0462
0.50% 0.0188 0.6881 0.6881 -0.0531 -0.0531 -0.0800 -0.0800
5.00% 0.0188 0.6881 0.6881 -0.0531 -0.0531 -0.0800 -0.0800

10.0 0.00% 0.0167 0.5724 0.5756 -0.0247 -0.0202 -0.0337 -0.0269
0.05% 0.0175 0.5654 0.5778 -0.0256 -0.0225 -0.0339 -0.0306
0.50% 0.0208 0.7151 0.7151 -0.0466 -0.0466 -0.0720 -0.0720
5.00% 0.0212 0.7097 0.7097 -0.0507 -0.0507 -0.0776 -0.0776

15.0 0.00% 0.0170 0.5858 0.5730 -0.0202 -0.0165 -0.0278 -0.0226
0.05% 0.0179 0.5703 0.5771 -0.0211 -0.0188 -0.0279 -0.0251
0.50% 0.0224 0.6943 0.6943 -0.0331 -0.0331 -0.0514 -0.0514
5.00% 0.0242 0.7359 0.7359 -0.0477 -0.0477 -0.0746 -0.0746

Monte Carlo 0.0168

Table 5.13: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between Delta Z and Delta Q strategies, for generated data for the Rainbow Option.

Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k Real Data Delta Z Delta Q Delta Z Delta Q Delta Z Delta Q

1.0 0.00% 0.0174 0.5325 0.6617 -0.1194 -0.0595 -0.1694 -0.0907
0.05% 0.0174 0.5256 0.6617 -0.1204 -0.0595 -0.1703 -0.0907
0.50% 0.0186 0.6723 0.6723 -0.0583 -0.0583 -0.0895 -0.0895
5.00% 0.0186 0.6723 0.6723 -0.0583 -0.0583 -0.0895 -0.0895

5.0 0.00% 0.0199 0.5649 0.5761 -0.0640 -0.0313 -0.0901 -0.0470
0.05% 0.0199 0.5581 0.6163 -0.0513 -0.0376 -0.0737 -0.0554
0.50% 0.0206 0.6898 0.6898 -0.0563 -0.0563 -0.0876 -0.0876
5.00% 0.0206 0.6898 0.6898 -0.0563 -0.0563 -0.0876 -0.0876

10.0 0.00% 0.0199 0.5807 0.6114 -0.0353 -0.0263 -0.0514 -0.0411
0.05% 0.0208 0.5780 0.6102 -0.0346 -0.0283 -0.0498 -0.0421
0.50% 0.0233 0.7127 0.7127 -0.0469 -0.0469 -0.0750 -0.0750
5.00% 0.0237 0.7164 0.7164 -0.0533 -0.0533 -0.0845 -0.0845

15.0 0.00% 0.0201 0.5989 0.6352 -0.0293 -0.0228 -0.0432 -0.0368
0.05% 0.0214 0.5947 0.6200 -0.0288 -0.0248 -0.0425 -0.0372
0.50% 0.0252 0.6959 0.6959 -0.0349 -0.0349 -0.0555 -0.0555
5.00% 0.0279 0.7497 0.7497 -0.0491 -0.0491 -0.0803 -0.0803

Monte Carlo 0.0182

Table 5.14: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between Delta Z and Delta Q strategies, for real data for the Rainbow Option.

In the tables 5.13 and 5.14 we provide the results for the generated and real data
respectively. Firstly, we notice that for the results with the generated data we get a similar
indifference price to the Monte Carlo price for low cost levels. The real data results are
a little less accurate with the indifference price, but within the range of what we would
expect. In addition, as we would expect, Delta Q has greater VaR and CVaR than Delta Z.
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The first surprising result we get is that the strategy Delta Q have a greater super-hedging
ratio around more than 60%, compared to Delta Z with ratios around 55% for both real and
generated results. One plausible explanation is that the neural networks didn’t properly
learn the statistical arbitrage in the market, since the complexity of the model increased
and they got stuck performing suboptimally only taking the statistical arbitrage of one of
the assets out of the two assets. In figure 5.48 we showed how neural networks don’t take
into advantage the possible statistical arbitrage of the SP500 data. And in figure 5.45 we
see how subtle was the difference between both hedging surfaces following Z and Q. Other
plausible explanation could be due to the Neural SDE implementation of the SP500 data
wasn’t as a accurate as the first one, and couldn’t properly reflect the statistical arbitrage
of the data. Training f0 for only the generated SP500 data we got πθ(0) = 3.95e − 11
which is close to 0 but it is not negative, but its Delta 0 strategy super-hedging ratio is
still over 50% with 54.37%.

Regardless of why the strategy Z performs suboptimally, the strategy Delta Q properly
hedge the risk of the liability, as we can observe in the figures 5.49 and 5.50. This shows
how robust is the Delta Q approach that can capture the proper hedging strategy regardless
of the possible statistical arbitrage captured by the model.

Figure 5.49: The PnLs for the Delta Z and Delta Q strategies for the generated data.

Figure 5.50: The PnLs for the Delta Z and Delta Q strategies for the real data.

In summery, in this subsection we have implemented a Rainbow option into our frame-
work, and although the statistical arbitrage of the market wasn’t fully capture by the
model, we still successfully developed its hedging strategy.
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Conclusion

This thesis has successfully developed and implemented a machine learning-driven frame-
work for pricing and hedging derivatives in incomplete markets with real market data. We
developed a model-free, and fully data-driven deep hedging framework that incorporates
a Neural SDE trained on signature kernels as market generator.

We developed optimal trading strategies taking advantage of the statistical arbitrage
of the SP500 data by training a deep hedging model with the generated data from the
Neural SDE, showing how useful this market generator can be. Also, we have developed
hedging strategies for the SP500 data for simple derivatives like European Call options, and
more complex path-dependant derivatives like Arithmetic Asian Call options or Lookback
options. We showed the hedging surfaces of these exotic derivatives with the SP500 data.
Furthermore, we implemented the framework in a multivariate setting to price and hedge
a Rainbow option based in the market data of the indices SP500, and NASDAQ, showing
its hedging surfaces pairs too.

For all this setups we have develop two different hedging strategies based in different
risk measures. We have develop the strategy Delta Z that takes into account the statistical
arbitrage of the market while it hedges the liability, and the Delta Q strategy based in
the risk-neutral measure that disregards the statistical arbitrage of the market, and only
focus in hedging the liability. In addition, we implemented different risk aversion and cost
levels for all these strategies. Our results showed how if the generated data properly reflect
the statistical arbitrage of the model, the Delta Z strategy will have better super-hedging
values than the Delta Q. In the other hand, Delta Q had better VaR and CVaR values,
than Delta Z. Also, we have seen how robust is the strategy Delta Q, that regardless of
the statistical arbitrage captured by the framework, it will give the risk-neutral strategy.

Our results for the European Call Option with SP500 data, are actually quite similar
to the traditional approaches with BS hedging and Monte Carlo pricing, however over
framework incorporates frictions of the market like transaction costs, and allows to adjust
the risk aversion of the agent.

For the implementation of the deep hedging model we used two types of neural networks
FNN and LSTM. Our results along the different setups didn’t find any real difference
between both performances.

Some further continuation of our work could be implementing the framework into other
exotics derivatives like Autocallables options or Barrier options, where we could note the
LSTM leveraging from its sequential depended setup. Another, possible further implemen-
tation for the framework could to apply it to more volatile markets like cryptocurrencies,
to test the framework in more hostile markets.
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Appendix A

More results

A.1 LSTM for European Call in SP500

Figure A.1: he hedging ratios over asset price at time step t = 20 following the Delta Z
strategy for different risk aversion and cost levels for LSTM.

Figure A.2: he hedging ratios over asset price at time step t = 20 following the Delta Q
strategy for different risk aversion and cost levels for LSTM.

74



Figure A.3: he hedging ratios over asset price at time step t = 20 following the Delta 0
strategy for different risk aversion and cost levels for LSTM.

Figure A.4: The hedging ratios over time for the Delta Z strategy for different risk aversions
and cost levels for LSTM.

Figure A.5: The hedging ratios over time for the Delta Q strategy for different risk aver-
sions and cost levels for LSTM.
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Figure A.6: The hedging ratios over time for the Delta 0 strategy for different risk aversions
and cost levels for LSTM.

Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k Gen Data Delta Z Delta Q Delta Z Delta Q Delta Z Delta Q

1.0 0.00% 0.0290 0.7097 0.6228 -0.0779 -0.0650 -0.1293 -0.1122
0.05% 0.0291 0.7051 0.6021 -0.0773 -0.0622 -0.1285 -0.1059
0.50% 0.0309 0.6802 0.6802 -0.0931 -0.0931 -0.1540 -0.1540
5.00% 0.0309 0.6802 0.6802 -0.0931 -0.0931 -0.1540 -0.1540

5.0 0.00% 0.0292 0.6423 0.5965 -0.0474 -0.0395 -0.0661 -0.0643
0.05% 0.0298 0.6376 0.6150 -0.0448 -0.0409 -0.0632 -0.0628
0.50% 0.0345 0.6785 0.6785 -0.0554 -0.0554 -0.0907 -0.0907
5.00% 0.0373 0.7201 0.7201 -0.0868 -0.0868 -0.1476 -0.1476

10.0 0.00% 0.0302 0.6488 0.6231 -0.0403 -0.0343 -0.0567 -0.0573
0.05% 0.0312 0.6516 0.6380 -0.0410 -0.0379 -0.0567 -0.0560
0.50% 0.0369 0.6689 0.6689 -0.0466 -0.0466 -0.0677 -0.0677
5.00% 0.0527 0.7992 0.7992 -0.0713 -0.0713 -0.1322 -0.1322

15.0 0.00% 0.0316 0.6509 0.6430 -0.0347 -0.0345 -0.0502 -0.0505
0.05% 0.0325 0.6599 0.6505 -0.0376 -0.0354 -0.0521 -0.0522
0.50% 0.0388 0.6770 0.6770 -0.0415 -0.0415 -0.0600 -0.0600
5.00% 0.0752 0.8302 0.8302 -0.0458 -0.0458 -0.0912 -0.0912

Black-Scholes 0.0297(MC) 0.6333 -0.0353 -0.0590

Table A.1: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between Delta Z and Delta Q strategies, for generated data for LSTM.
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Figure A.7: The PnLs of the strategy Z and BS for different risk aversions and no trans-
action costs for generated data for LSTM.

Figure A.8: The PnLs of the strategy Q and BS for different risk aversions and no trans-
action costs for generated data for LSTM.

Figure A.9: The PnLs of the strategy Z and Q for different risk aversions and no transaction
costs for generated data for LSTM.
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Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k Gen Data Delta Z Delta Q Delta Z Delta Q Delta Z Delta Q

1.0 0.00% 0.0285 0.7073 0.6289 -0.0822 -0.0676 -0.1357 -0.1280
0.05% 0.0283 0.7025 0.6096 -0.0826 -0.0644 -0.1355 -0.1253
0.50% 0.0306 0.6792 0.6792 -0.0896 -0.0896 -0.1511 -0.1511
5.00% 0.0306 0.6792 0.6792 -0.0896 -0.0896 -0.1511 -0.1512

5.0 0.00% 0.0287 0.6608 0.6075 -0.0557 -0.0426 -0.0833 -0.0826
0.05% 0.0298 0.6422 0.6129 -0.0470 -0.0382 -0.0711 -0.0710
0.50% 0.0345 0.6715 0.6715 -0.0518 -0.0518 -0.0892 -0.0892
5.00% 0.0368 0.7144 0.7144 -0.0834 -0.0834 -0.1449 -0.1450

10.0 0.00% 0.0308 0.6800 0.6369 -0.0465 -0.0332 -0.0708 -0.0739
0.05% 0.0313 0.6599 0.6392 -0.0409 -0.0367 -0.0611 -0.0604
0.50% 0.0368 0.6660 0.6660 -0.0430 -0.0430 -0.0687 -0.0687
5.00% 0.0515 0.7911 0.7911 -0.0687 -0.0687 -0.1303 -0.1303

15.0 0.00% 0.0331 0.6892 0.6760 -0.0369 -0.0325 -0.0600 -0.0612
0.05% 0.0330 0.6730 0.6614 -0.0363 -0.0336 -0.0560 -0.0566
0.50% 0.0388 0.6808 0.6808 -0.0391 -0.0391 -0.0617 -0.0617
5.00% 0.0741 0.8239 0.8239 -0.0434 -0.0434 -0.0899 -0.0899

Black-Scholes 0.0294 0.6380 -0.0353 -0.0590

Table A.2: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between Delta Z and Delta Q strategies, for real data for LSTM.

Figure A.10: The PnLs of the strategy Z and BS for different risk aversions and no
transaction costs for real data for LSTM.
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Figure A.11: The PnLs of the strategy Q and BS for different risk aversions and no
transaction costs for real data for LSTM.

Figure A.12: The PnLs of the strategy Z and Q for different risk aversions and no trans-
action costs for real data for LSTM.
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A.2 Generated data results for Asian Option

Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k FNN LSTM FNN LSTM FNN LSTM FNN LSTM

1.0 0.00% 0.0144 0.0145 0.6949 0.7109 -0.0716 -0.0584 -0.1171 -0.0949
0.05% 0.0144 0.0145 0.6907 0.7058 -0.0708 -0.0578 -0.1142 -0.0923
0.50% 0.0152 0.0152 0.6605 0.6605 -0.0452 -0.0452 -0.0701 -0.0701
5.00% 0.0152 0.0152 0.6605 0.6605 -0.0452 -0.0452 -0.0701 -0.0701

5.0 0.00% 0.0140 0.0140 0.6997 0.6776 -0.0345 -0.0316 -0.0515 -0.0479
0.05% 0.0144 0.0144 0.7175 0.7136 -0.0336 -0.0311 -0.0517 -0.0474
0.50% 0.0163 0.0163 0.6806 0.6806 -0.0419 -0.0419 -0.0656 -0.0656
5.00% 0.0163 0.0163 0.6756 0.6756 -0.0441 -0.0441 -0.0690 -0.0690

10.0 0.00% 0.0141 0.0141 0.6580 0.6365 -0.0236 -0.0218 -0.0330 -0.0311
0.05% 0.0148 0.0147 0.6949 0.6399 -0.0287 -0.0216 -0.0417 -0.0317
0.50% 0.0174 0.0174 0.6786 0.6678 -0.0306 -0.0300 -0.0488 -0.0474
5.00% 0.0181 0.0181 0.6976 0.6976 -0.0424 -0.0424 -0.0672 -0.0672

15.0 0.00% 0.0144 0.0143 0.6066 0.6267 -0.0171 -0.0186 -0.0238 -0.0262
0.05% 0.0148 0.0148 0.6376 0.6447 -0.0196 -0.0193 -0.0265 -0.0271
0.50% 0.0181 0.0181 0.6541 0.6516 -0.0248 -0.0245 -0.0383 -0.0378
5.00% 0.0202 0.0202 0.7234 0.7234 -0.0402 -0.0402 -0.0651 -0.0651

Monte Carlo 0.0144

Table A.3: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between FNN and LSTM, following the strategy Delta Z, for the Asian Option for the
Generated Data.

Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k FNN LSTM FNN LSTM FNN LSTM FNN LSTM

1.0 0.00% 0.0144 0.0145 0.5919 0.6149 -0.0355 -0.0454 -0.0514 -0.0679
0.05% 0.0144 0.0145 0.5677 0.6304 -0.0383 -0.0395 -0.0540 -0.0588
0.50% 0.0152 0.0152 0.6605 0.6605 -0.0452 -0.0452 -0.0701 -0.0701
5.00% 0.0152 0.0152 0.6605 0.6605 -0.0452 -0.0452 -0.0701 -0.0701

5.0 0.00% 0.0140 0.0140 0.5767 0.5881 -0.0245 -0.0246 -0.0340 -0.0343
0.05% 0.0144 0.0144 0.6249 0.6130 -0.0224 -0.0212 -0.0318 -0.0291
0.50% 0.0163 0.0163 0.6806 0.6806 -0.0419 -0.0419 -0.0656 -0.0656
5.00% 0.0163 0.0163 0.6756 0.6756 -0.0441 -0.0441 -0.0690 -0.0690

10.0 0.00% 0.0141 0.0141 0.5907 0.5989 -0.0164 -0.0200 -0.0236 -0.0281
0.05% 0.0148 0.0147 0.6159 0.6029 -0.0211 -0.0192 -0.0280 -0.0256
0.50% 0.0174 0.0174 0.6786 0.6678 -0.0306 -0.0300 -0.0488 -0.0474
5.00% 0.0181 0.0181 0.6976 0.6976 -0.0424 -0.0424 -0.0672 -0.0672

15.0 0.00% 0.0144 0.0143 0.6000 0.5912 -0.0175 -0.0162 -0.0252 -0.0233
0.05% 0.0148 0.0148 0.5974 0.5985 -0.0163 -0.0159 -0.0222 -0.0223
0.50% 0.0181 0.0181 0.6541 0.6516 -0.0248 -0.0245 -0.0383 -0.0378
5.00% 0.0202 0.0202 0.7234 0.7234 -0.0402 -0.0402 -0.0651 -0.0651

Monte Carlo 0.0144

Table A.4: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR be-
tween FNN and LSTM following the strategy Delta Q, for the Asian Option for Generated
Data.
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Figure A.13: The PnLs for the Delta Z and Q strategies for the Asian option using
generated data for FNN.

Figure A.14: The PnLs for the Delta Z and Q strategies for the Asian option using
generated data for LSTM.
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A.3 Generated data results for Lookback Option

Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k FNN LSTM FNN LSTM FNN LSTM FNN LSTM

1.0 0.00% 0.0510 0.0513 0.6767 0.6947 -0.1075 -0.1072 -0.1672 -0.1701
0.05% 0.0511 0.0512 0.6668 0.6743 -0.1034 -0.1072 -0.1609 -0.1701
0.50% 0.0528 0.0528 0.6522 0.6522 -0.1072 -0.1072 -0.1701 -0.1701
5.00% 0.0528 0.0528 0.6522 0.6522 -0.1072 -0.1072 -0.1701 -0.1701

5.0 0.00% 0.0539 0.0536 0.6616 0.6490 -0.0711 -0.0692 -0.1073 -0.1006
0.05% 0.0542 0.0542 0.6510 0.6541 -0.0687 -0.0699 -0.1009 -0.1013
0.50% 0.0585 0.0583 0.6827 0.6670 -0.0812 -0.0788 -0.1254 -0.1147
5.00% 0.0612 0.0612 0.7060 0.7060 -0.0988 -0.0988 -0.1617 -0.1617

10.0 0.00% 0.0574 0.0573 0.6735 0.6756 -0.0596 -0.0599 -0.0876 -0.0886
0.05% 0.0582 0.0582 0.6711 0.6705 -0.0594 -0.0611 -0.0878 -0.0875
0.50% 0.0642 0.0638 0.6851 0.6921 -0.0697 -0.0711 -0.0983 -0.1007
5.00% 0.0816 0.0816 0.8025 0.8025 -0.0784 -0.0784 -0.1413 -0.1413

15.0 0.00% 0.0621 0.0616 0.7167 0.7034 -0.0544 -0.0550 -0.0832 -0.0806
0.05% 0.0626 0.0628 0.7022 0.7060 -0.0541 -0.0571 -0.0809 -0.0823
0.50% 0.0699 0.0696 0.7207 0.7185 -0.0636 -0.0616 -0.0898 -0.0885
5.00% 0.1101 0.1091 0.8267 0.8227 -0.0568 -0.0589 -0.1032 -0.1052

Monte Carlo 0.0516

Table A.5: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between FNN and LSTM strategies following Delta Z, for generated data.

Parameters Indif Price Super-Hedging Ratio VaR CVaR

λ k FNN LSTM FNN LSTM FNN LSTM FNN LSTM

1.0 0.00% 0.0510 0.0513 0.6236 0.6558 -0.0818 -0.0827 -0.1183 -0.1325
0.05% 0.0511 0.0512 0.6172 0.6200 -0.0775 -0.0765 -0.1134 -0.1133
0.50% 0.0528 0.0528 0.6522 0.6522 -0.1072 -0.1072 -0.1701 -0.1701
5.00% 0.0528 0.0528 0.6522 0.6522 -0.1072 -0.1072 -0.1701 -0.1701

5.0 0.00% 0.0539 0.0536 0.6391 0.6376 -0.0629 -0.0644 -0.0922 -0.0915
0.05% 0.0542 0.0542 0.6351 0.6417 -0.0672 -0.0679 -0.0926 -0.0957
0.50% 0.0585 0.0583 0.6827 0.6670 -0.0812 -0.0788 -0.1254 -0.1147
5.00% 0.0612 0.0612 0.7060 0.7060 -0.0988 -0.0988 -0.1617 -0.1617

10.0 0.00% 0.0574 0.0573 0.6603 0.6648 -0.0587 -0.0586 -0.0846 -0.0856
0.05% 0.0582 0.0582 0.6627 0.6666 -0.0590 -0.0618 -0.0852 -0.0869
0.50% 0.0642 0.0638 0.6851 0.6921 -0.0697 -0.0711 -0.0983 -0.1007
5.00% 0.0816 0.0816 0.8025 0.8025 -0.0784 -0.0784 -0.1413 -0.1413

15.0 0.00% 0.0621 0.0616 0.7098 0.6963 -0.0536 -0.0560 -0.0811 -0.0800
0.05% 0.0626 0.0628 0.6976 0.7026 -0.0545 -0.0579 -0.0799 -0.0820
0.50% 0.0699 0.0696 0.7207 0.7185 -0.0636 -0.0616 -0.0898 -0.0885
5.00% 0.1101 0.1091 0.8267 0.8227 -0.0568 -0.0589 -0.1032 -0.1052

Monte Carlo 0.0516

Table A.6: Comparison of Indifference Prices, Super-Hedging Ratios, VaR, and CVaR
between FNN and LSTM strategies following Delta Q, for generated data.
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Figure A.16: The PnLs for the Delta Z and Q strategies for the Asian option using
generated data for LSTM.

Figure A.15: The PnLs for the Delta Z and Q strategies for the Asian option using
generated data for FNN.
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