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Abstract

This dissertation introduces and implements deep hedging methods to solve the traditional
pricing and hedging problem in the financial industry. The deep hedging method uses deep learn-
ing models to proceed with the market information and output the predicted hedging strategies.
As a result, the method is efficient in processing large scales of the data set and the predictions
are data-driven, depending only on the input and the choice of network structures. This allows us
to incorporate the practical conditions such as the transaction costs and risk preference effortless
compared to the traditional analytical approaches that are either computationally inefficient or
impractical.

However, the 'black-box" behaviour of the deep learning models makes the results less trustwor-
thy. In this dissertation, we are going to demonstrate and interpret the outputs, the deep hedging
strategies, in the context of finance, reasoning the behaviours impacted by the changes in the cost
rates and risk preferences. Moreover, the paper will also demonstrate and compare the deep hedg-
ing strategies and the indifference prices trained by different deep learning models, feedforward
neural networks (FNIN), long short-term memory (LSTM) and gated recurrent unit (GRU). The
results from the experiments show reasonable behaviours on how strategies and indifference prices
ary under different cost rates and risk preferences.




Contents

1 Introduction 6
2 Deep Learning Models 8
2.1 Overview of Deep Learning . . . . . . . .. . .. ..o 8
2.2 Feedforward Neutral Network . . . . . . .. ... ... . ... ... . ... .. 8
2.2.1  Architecture . . . . .. .. 9
2.2.2  Activation Functions . . . . . .. .. L 10
223 Universal Approximation . . .. .. ... .. ... ... ... 11

2.3 Recurrent Neural Network . . . . . . .. ... oo 11
2.3.1 Standard Recwrrent Neural Network . . . .. ... ... .. ... . ..... 11
2.3.2 Long Short-Term Memory . . . . . . . .. .. .. . 13
2.3.3 Gated Recurrent Unit . . . . . . .. ... ... . 14

2.4 Gradient-Based Optimization Problems . . . .. .. ... .. ... ... .. .... 15
241 Gradient Descent . . . . . . ... 15
2.4.2 Stochastic Gradient Descent . . . . . . . . .. ... ... ... L. 17
243 Adam Algorithm . . . . .. ... L 18
244 Back-Propagation . . . .. . .. .. .. 19

2.5 SUINIMATY . . . . 0 o o e e e e e e e 19
3 Deep Hedging Method 21
3.1 OVervIew . . .. e 21
3.2 Delta Hedge under Black-Scholes Model . . . . . .. ... ... ... ... ... 21
3.21 Black-Scholes Model . . . . ... .o 21
3.22 DeltaHedge. . . . . . . . . e e e 22

3.3 Deep Hedging Setting . . . . . . . . .. L 23
3.3.1 Proportional Transaction Cost . . . . .. ... ... L. 23
332 Profitand Loss . . . . . .. oL 24
3.3.3 Convex Risk Measure Deep Hedging Strategies . . . . . . . ... ... ... 24
3.34 Indifference Pricing . . . . . . . . . . . .. 25

3.4 SUmmary ... ... e 26
4 Training Methedology 28
4.1 Data Generation . . . . . . . . .. e 29
4.2 Models Settings . . . . . . L 29
4.21 FNN Implementation . . . . . . ... . e 29
4.2.2  LSTM and GRU lmplementation . . . .. ... .. .. ... ... ...... 30
4.2.3 Loss Functions Implementation . . . . .. ... ... ... L. 30

4.3 Training Settings . . . . . . . . . . e e e 31
431 FNN Training . . . . . . ... ..o 31
4.3.2 LSTM and GRU Training . . . . . . . . . . 0 v v i ittt st 31

4.4 Training . . . . . o L0 e e e 31
4.5 Statistical Tests on Result . . . . . . .. .. .. 31
4.5.1 Kolmogorov Smirnov Test . . . . . . . .. ... ..o 31
4.5.2 One-sample Signe Test . . . . . . ... ... Lo 32
4.5.3 Two-sample Wilcoxon Signed-rank Test . . . . .. .. ... .. ... ... . 32




5 Results and Discussion
5.1 Hedge Ratio versus Spot Price . . . . . ... .. . ... o
5.1.1 General Behaviour . . . .. ... .. L L
5.1.2  Behaviour Specific to FNN . . . .. . .. .. .
5.1.3 Behaviour Specific to LSTM and GRU . . . . . .. ... ... ... ...
5.2 Hedge Ratio versus tIme . . . . . . . . . . 0 0 0 0 i e e e
5.2.1  General Behaviour . . . .. ..o
5.2.2  Behaviour Specific to LSTM and GRU . . . . . .. ... .. .. ... ....
5.2.3  Behaviour Specific to RNN . . . .. . .. ...
5.3 Histogramof Pnl. . . .. o o000 o
5.3.1  General Behaviour . . . . ..o
5.4 indifference Pricing . . . . . . . .o
5.4.1 General Behaviour . . . . ...
5.5 Statistical Test on Results . . . . .. . ... L Lo o
5.5.1 Kolmogorov Smirnov Test . . . . . . . .. ..
5.5.2 One-sample Signe Test . . . . .. .. .. L
5.5.3 Two-sample Wilcoxon Signed-rank Test . . . . .. ... .. ... .. ....

6 Conclusion

A Examples
B Other Related Results
B.1 LSTM Training Result . . . . . . . . ..
B.1.1 indifference Price . . . . . . . .. .. L
B.1.2 hedge ratio versus spot price . . . . . .. ...
B.1.3 hedge ratio versus time . . . . . .. ...
B.14 hedgeratiopnl . . . . . .. .
B.2 GRU hedge ratiopnl . . . . .. . ..o

C GRU and LSTM Training Algorithm

Bibliography

34
35
35
38
38
40
40

42
42
42
45
46
46

a8
58
59
60
61
62

63




List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

5.1

Al
A2

B.1

B.2

B.3

B.4

B.5

HMustration of FNN Structure . . . . . . . . . . . . . . . oot
Unfolding RNN [1, p373] . . . . . . . o o o e
LSTM Cell Structure . . . . . . . . . e e e e e e
GRU cell structure . . . . . . . . . e e e
Hlustration of Gradient on the Convex Curve . . . . . . . .. . .. ... .. ....
Comparison of Convergence for Large Learning Rate and Small Learning Rate

The plof of hedge ratio versus spot price with FNN model at different cost rates and
risk preferences . . . ...
The plof of hedge ratio versus spot price with GRU model at different cost rates
and risk preferences . .. ... L L
The plot of hedge ratio along the time horizon at different cost rates and risk pref-
CLEIICES « .« o o v v o e e e e e e e e e e
Pul under deep hedging strategies with FNN model at different cost rates and risk
preferences . ... .
sanity check on the indifference price for FNN model under different risk aversion
level . . e
sanity check on the indifference price for GRU model under different risk aversion
level . . o . e
PuL of deep hedging strategies with FNN and LSTM at different cost rates and risk
preferences . . ... L
PuL of deep hedging strategies with GRU and LSTM at different cost rates and risk
preferences . ... .. L L
PuL of deep hedging strategies with FNN and GRU at different cost rates and risk
preferences . ... oL

RNN structure with feedback coming from the output o'* [1, p375] . . .. .. ..
RNN structure with only 1 output at the last time stamp [1, p376] . . . .. .. ..

sanity check on the indifference price for LTSM model under different risk aversion
level . . . e
The plof of hedge ratio versus spot price with LSTM model at different cost rates
and risk preferences . ... oL
The plof of hedge ratio along the time horizon with LSTM model at different cost
rates and risk preferences . .. ..o Lo L
Pul under deep hedging strategies with LSTM model at different cost rates and
risk preferences . . ...
Pul under deep hedging strategies with GRU model at different cost rates and risk
preferences . ... . e

12

14

15

16

17

a7

39

41

B!

46

A7

50

52

H4

a7

a7

H8

59

60

61




List of Tables

5.1
5.2
5.3
h.4

5.5
5.6
5.7
5.8
5.9
5.10
511
5.12
5.13
5.14
5.15

5.16

results of FNN indifference prices under different cost rates and risk preferences . .
results of LSTM indifference prices under different cost rates and risk preferences .
results of GRU indifference prices under different cost rates and risk preferences . .

p-values for the one-sample sign test Hy : median(Pnlepnn) =05 . . o . o0 . L ..
p-values for one-sample sign test Hy : median(Pnlygra) =05 - 0 o0 0 o0 oL L.
p-values for the one-sample sign test Hy : median(Pnlgru) = 0;. . . . . . .. ..
p-values for the two-sample signed-rank test H, : median(LSTM) < median(FNN)
p-values for the two-sample signed-rank test H,, : median(FNN) < median(LSTM)
summary on LSTM and FNN median tests at 99.9% level of confidence . . . . . .
p-values for the two-sample signed-rank test H, : median(LSTM) < median(GRU)
p-values for the two-sample signed-rank test H, : median(GRU) < median(LSTM)
summary on LSTM and GRU median test at 99.9% level of confidence . . . . . . .
p-values for the two-sample signed-rank test H,, : median(FNN) < median(GRU) .
p-values for the two-sample signed-rank test H, : median(GRU) < median(FNN) .
summary on GRU and LSTM median test at 99.9% level of confidence . . . . . . .

45
45
45

48
48
48
48
49
49
49
5l
51
5l
53
53
53




Chapter 1

Introduction

Derivatives are crucial financial instriments for hedgers to mitigate the risk of volatile underly-
ing assets. Especially for the sell-side traders, hedging and pricing the derivatives products are
two major responsibilities for them. The famous Black-Scholes delta hedge [2] allows traders to
hedge the portfolios continuously under the complete market assumptions and obtain the risk-
neutral prices. In practice, traders are traded with restrictions such as transaction costs, bid-ask
spreads, the temporary and permanent price impacts and even the timing to execute the trade
in the discrete-market world. All these factors violate the Black-Scholes assnmption. There is
also literature studying the models under market frictions. For example, in [3], it treats illiquidity
as a transaction cost that has a temporary impact on the price, which follows the black-sheoles
model. By computing the system of partial differential equations (PDEs), optimal hedging strate-
gies under the liquidity constraints can be obtained. However, in reality, the numerical methods
such as the finite difference approximation for solving the PDEs is inefficient for computation and
time-consuming. Moreover, the Black-Scholes model does not generalize well on multi-dimensional
space.

Meanwhile, deep learning is known for its ability to self-learn the pattern of the existing data
and predict results using new data sets through optimizing a customized rule, namely the objective
unctions. Not surprisingly, machine learning training frameworks can be applied to the financial
industry. The unsupervised deep learning methods that apply to the derivatives products were
firstly conducted by JP Morgan and ETH Zurich in the paper [4]. It is more practical to solve the
hedging and pricing problems since they can easily handle market frictions and trading constraints.
According to the paper, the deep hedging method is especially suitable for pricing and managing
the risk of the over-the-counter derivatives, which do not have listed comparable market prices, or
the product may be too complicated to price and hedge using the traditional analytical methods.
Since it uses the deep learning method to solve the problem, it is data-driven and model-free in
nature, and also efficient in processing the large data set. The methods presented in this disserta-
tion are all based on the work in [5], [4] and [6].

Intuitively, the deep hedging methods obtain the optimal hedge ratios through minimizing
the objective functions. It is an unsupervised learning deep learning algorithm, so the objective
functions is not a function between the labels and the predictions, instead, the objective functions
£ will be a measure p of the profit and loss (PnlL), where

PnL = hedge portfolios - payoff of a contingent claim,

Le., £ = p(PnL). The deep hedging strategies produce the hedge portfolios that minimize the
objective functions. In other words, deep hedging strategies is the minimizer of the objective func-
tion £. This is where we can add the market [rictions and risk preferences.

For example, if we would like to obtain the risk-neutral hedging strategies, we can choose
plx) = E(PnlL?). Similarly, we can choose p(x) = E(exp(—Ar)), where A is the risk-averse level,
to lncorporate the risk preferences. Transaction costs can also be taken into the considerations by
subtracting the cost from the PnL.




This dissertation focuses on finding the optimized hedging strategies, i.e., the deep hedging
strategies, and the fair prices under different training models with different levels of cost rates
and risk preferences for the European call options. The underlying market simulator follows the
Black-Scholes model. The goal of the study is to illustrate how the variation in the cost rates and
risk preferences impact the trading strategies, interpret the results in the context of finance and
also demonstrate the difference in the training results under different deep learning models. The
objectives are as follows.

e implements deep hedging strategies under three different deep learning models, Feedfor-
ward Neutral Network (FNN), Long Short-term Memory (LSTM) and Gated Recurrent Unit

(GRU):

e applies different levels of proportional cost rates and risk preferences to the loss function of
each model and trains the model to get the deep hedging strategies;

e conducts statistical tests among predicted strategies under different learning models to de-
termine the differences and performances.

outline

The dissertation is organized into four chapters. Chapter 1 is going to introduce the overall deep
learning methods, where the three deep learning models, FNN, LSTM and GRU are discussed in
detail, as well as the three gradient-based optimization algorithms. Chapter 2 explains the deep
hedging methods, linking the deep learning framework to the financial pricing and hedging problem.
Chapter 3 will describe the training procedures and methodologies such as the market simulator
for the data input, the structures for the model implementation and the training algorithms. The
last chapter will demonstrate all the predicted hedging strategies, as well as the indifference prices.




Chapter 2

Deep Learning Models

2.1 Overview of Deep Learning

The deep learning models are good for capturing non-linearity relationships among data. It is
essentially a mapping from one data set, € R™, to another, g € R", ie., f: R™ - R"

9= flas0) (2.1.1)

where @ are parameters that can be repeatedly utilized, m,n € N+.
For supervised learning, it provides true values, y; € R" which is known as 'labels’, to compare
to the predicted values g;, while unsupervised learning does not have 'labels’, only a relerenced

alue y € B" is given. Then for each data set @; € R™, where i = 1,2,..., N, we have a loss
function that calculate a "score’ to measure the performance of the prediction, i.e.,

loss, = 1(§.y.) (2.1.2)

Then the network learns the data pattern by optimizing the objective funection which is the
empirical expectation of the loss function, denoted L, i.e.,

£ =E,v,)
oy L ys) (2.1.3)
iy U F (Bl =), ;).

I
e

= L£(0)

A commonly used optimization methodology for objective function is Stochastic Gradient De-
cent (SGD), which will be introduced in section 2.4.2. As mentioned in |7, chap 3.2], by separating
training data into multiple subsets, SGD becomes more ellicient than the traditional Gradient
Descent (GD) optimization, which makes large data sets processing possible.

The capacity to proceed with a large amount of data and to capture the complexity of the
functions enable deep learning to do complex tasks such as image classification [8], speech recog-
nition (9], and sequential data prediction, as mentioned in |7, p 5]. The deep hedging method also
inherits these advantages. More details about deep hedging are in the chapter 3.

Deep learning is being introduced in two parts in this dissertation. The first part is the place
where data input has been received and reformed, which includes model structures such as FNN
(2.2), LSTM (2.3.2) and GRU (2.3.3). The second part is about how data is learned under certain
gradient-based optimization methods (2.4), in which the parameters of models are altered through
the feedback from the objective function.

2.2 Feedforward Neutral Network

It is inevitable to introduce the feedforward neural networks(FNN) at the beginning since it is a
typical representation of the deep learning model. As mentioned in [1, Chapter 6], the data are
passed into the FNN in a forward direction and do not reuse the output information, and this is




where the name feedforward comes from. The FNN is composed of multiple linear transformations
between layers, combined with non-linear component-wise transformations (done by the activation
functions) at each layer, eventually constructing an output with a non-linear relationship to the
input.

2.2.1 Architecture

The illustration of the FNN structure is shown in the figure 2.1

Input ! Hidden **Hidden Output

Figure 2.1: Illustration of FNN Structure

The model has three parts, which are the input layer, the hidden layer(s) and the output layer.
Each layer is composed of one or multiple units. The number of units of the input layer is the
dimension of the input @ € B™, while the number of units of the output layer depends on the
y € B*. Hidden layers are all the layers between input and output layers, of which the number of
layers, r € N+, and the length of each hidden layer, d; € N+, i € N, are the choice of our own.

Each hidden layer is a linear transformation of the previous layer. In other words, each unit
of the hidden layer is the linear combination of all units of the previously hidden layer plus a bias
term. As presented in the last unit of the second column in the figure 2.1, it is the weighted average
of the units in the first column with a bias added to it. The procedure is the same with all units
in all layers after the input layer.

After the linear transformation is done, which may alter the dimension of the data, we regu-
larize the transformation, always a non-linear function, by applying a component-wise activation
function to it. This procedure is presented as the yellow rectangle in the figure 2.1. Some useful
activation functions will be introduced in section 2.2.2. The information go through each layer
following the same procedure and finally is reconstructed as a non-linear transformation of the
input.

Knowing how data proceeds within the FNN, we could represent the network that roughly
define in (2.1.1) in a more details way, the definition for FNN is presented as follows.

Definition 2.2.1 (feedforward neutral networks layer). Let do,d,,r € N+, where dy, d, are the
input size and output size respectively, and r —1 hidden layers and d; € N+ is the number of units
of the " layer for ¢ € {1,...,7 — 1}. Then we define each layer other than the input layer as
Hi R S RY wherei=1,2.....7,

=oi(Li(Hi-1)) (2.2.1)
=a.(Li.




where z;_; € B%-1 ig the output of the last layer, o; : B% 5 B% g the activation function
that applies at the layer and L; : R~ — R% is an affine function that is a linear transformation

of the previons layer such that
Li(x; 1) = Wiz, 1 + by, (2.2.2)

where W; € R%-1%9i ig the weight matrix, and b; € % is the bias vector.

Definition 2.2.2 (feedforward neural networks). Let dp,d,,r € M+, Define the feedforward
neural(FNN) as f: R% — R with r — 1 hidden layers and d; € N+ is the number of units of the
it layer fori € {L,...,r — L}.

Then the feedforward neural network is a composition of all layers H; such that
f=HroHr10...H, (2.2.3)
We denote the class of such functions f by

depth of the network

f_A_‘\
N dyody,. . de soq,. . o) (2.24)

We can see clearly the structure in Definition 2.2.2 that the FNN is multiple layers stack
together. The number of layers is also called the depth of the networks, while the number of units
is the width. The word 'deep’ learning is referred to the depth of the network, which is able to learn
the complexity of the function at an exponential learning speed due to the composition structure,
as mentioned in |7, p18].

2.2.2 Activation Functions

The activation functions, as mentioned in Definition 2.2.2 and Definition 2.2.1, are the keys to
the non-linearity fitting of FNN networks. Normally, activation functions can be characterized
in two categories, which are one-dimensional and two-dimensional. Some common 1-dimensional
activation functions are as follows.

o Identity:
glr) =z, gk (2.2.5)

The identity activation function usnally used in the output layer if we expect an unbounded
output. Note that it is not appropriate to use the identity function for all layers at a time, otherwise
it will make the FNN to be a linear approximation, or an affine funetion with respect to the input
function.

e Sigmoid:

glz) = H_,;-r g€ (0,1). (2.2.6)
o Hyperbolic Tangent (tanh):

glz) = 57, ge(-1.1). (2.2.7)

Sigmoid and Hyperbolic Tangent have been widely used in the output layers when we want a
bounded result. Traditionally they have been used in the hidden layers, however, the unboundness
in this case is not compatible to the gradient-based optimization [10, section 3].

e Rectified Linear Unit (ReLU):

g(z) = max{z,0},g € (0, o] (2.2.8)

ReLU function is one of the most popular activation functions for the hidden layers nowadays.
It is efficient due to its simple-to-calculate derivatives which is a crucial step in the gradient-based
optimization. Although when z = 0, the gradient is undefined, we can practically replace it by 1
with limited impact, as mentioned in [7]. It is also the activation function that our dissertation
uses. For other problem such as freezing gradient when » < 0, [L1] and [12] provide solutions using
modified version of ReLU functions.

10




2.2.3 Universal Approximation

The Universal Approximation Property is the source of power behind the FNN. While firstly the
single hidden layer FNN network has been proved to be a universal approximator under certain
restrictions on the activation function in articles [13] and [14], the universal approximation property
is also proved to be true in article [15] for multilayers FNN with a nonpolynomial activation
function. In other words, almost any reasonable relationship between input and output of the
FNN can be established under the certain assumption of activation functions.

Here, we follows the theorem that is more general by [15, Theorem 1 and Proposition 1] and
reformulated in 7, Theorem 2.22].

Theorem 2.2.3 (Universal approximation property). Let g : B — R be a measurable function
such that

e g is not a polynomial function,

e g is bounded on any finite interval,

o the closure of the set of all discountinuity peints of g in & has zero Lebesgue measure.
Let K < R pe compact and € > 0, where dy is the network input size.

1. For any v € C(K,R), there exist d1 € N+ and f € Na(do,dr,1; g, Id) such that

[l = fllsuprc <¢

2. Let p = 1. For anyv € LP (K, R), there exist dy € N+ and h € Na(dy,d',1;g,1d) such that
[Jor— fIHLJJ{KJ <E

where Ny is the FNN as in Definition 2.2.2 and Id is the identity sigmoid function as in (2.2.5)

This property also motivates the deep hedging methods as said in [6, section 4.2], and deep
hedging method will be introduced in chapter 3.

2.3 Recurrent Neural Network

2.3.1 Standard Recurrent Neural Network

While FNN is not capturing the information of previous data, the recurrent neural network (RNN)
is constantly taking advantage of the output at each time stamp of the input data. For example, if
we have a vector of sequential data @ € R™ input into the RNN, it will process z; € @ one at a time
and learn from the output generated by previous data, x1,...,x;_;. In other words, it can capture
the correlation between the current and previous data input, which is beneficial for processing the
time series data.

We can interpret the RNN in two ways, folded and unfolded, as shown on the left-hand and
right-hand sides of the the figure 2.2 respectively where hy represents the hidden state at time
stamp t.

For folded RNN (left-hand side of the figure 2.2), it represents that the current hidden state
depends on the previous hidden state and the data at the current time. In other words, RNN
depends on the previous information.

By unfolding the RNN, ie., keep expanding the previous hidden states until reaching the first
time stamp, the networks can be represented as multiple copies of the same networks with different

input values, as shown in the right-hand side of the figure 2.2. Now, the unfolded RNN has

1. afixed input size depends on the choice of the time stamp and

2. parameters shared by the repetitive networks at each time stamp.

11




Figure 2.2: Unfolding RNN [1, p373]

These two features allow RNN to determine the relationships among data history, save time
and space training different models at each time stamp and also illustrate how information pro-
ceeds forward (information flows into the system and generates output) and backward (calculate
gradient using backward-propagation algorithm).

In this dissertation, we refer to the RNN model as in the figure 2.2, i.e., at each time stamp
t=10,...,7 and T € N+, for each ' € R", the network produces an output o) € R™, and the
hidden states {h{iJ}t receive, store and pass past information, where m,n € N+, The output at
each time stamp is then inputted into the loss function L' together with a corresponding reference

value y(¥) € R™. Note that we usually set the initial hidden state hy = 0.

There is also RNN design pattern that only outputs values at the last time stamp, or that passes
the information depending on the transformed output instead of the hidden states. Illustrations
of other types of RNNs are in the appendix A.

Let us define an RNN forward propagation as shown in the figure 2.2 to clarify how data proceed
within the network.

Definition 2.3.1 {Recurrent Neural Networks Forward Propagation). Let i € N, and n,m, k, T €
M+, define the hidden state at each time stamp ¢ = 1,...7T as R R R™, weight matrices
for hidden-to-hidden connection as W e R™*™, for input-to-hidden connection as U & R™*"
and hidden-to-output connection as ¥V € B™*™ and bias vector b € R™ and e¢ € R*. Denote
component-wise activation functions as op, 0, : B™ — R™, we can represent the hidden state and
output at each time stamp f as,

Rl — o_h(wh{!*lJ LU o b), (2.3.1)

o =g, (VR +¢) (2.3.2)

Then, for output at each time stamp o,, we have loss; = I(Q{!J,om ), as introduced in (2.1.2), to
measure its performance, and use gradient-based optimization algorithm to update the parameters
as introduced in chapter 2.4.

Vanishing and Exploding Gradient Problem

Suppose that there exists an activation function e that lets the hidden-to-hidden connection
matrix W multiply by themselves repeatedly such that

12




R = th(hu)

cigendecomposition . (233)
PRI Qdiag(N)'Q" g(hy),

for some g.

We can see from (2.3.3) that if there exists a [A;] > 1 and A; € X, then W' — 0o as £ — oo.
Similarly, W' — 0 as t — oo if any |A| < 1. As introduced in chapter 2.4, the gradient with
respect to the model parameters tells us the direction to improve our training results. A large
magnitude of W' will cause the explosion of the gradient and makes the learning process unstable,
while if it becomes too close to 0, the parameters will stop learning since no direction for the
update is provided. This is the vanishing and exploding gradient problem [1, section 8.5.2].

Moreover, even if the gradients are not exploding or vanishing, due to the composition over the
same parameters, the weights still decrease exponentially when t becomes larger and larger, which
makes RNN loses information over long-term dependencies over data set.[1, chapter 10.7]

In conclusion, RNN is designed for capturing the dependencies of the sequential data, however,
the standard RNN has some drawbacks.

1. The gradient is unstable in some cases, either too large or too small and interrupts training,

2. may not catch the long-term dependencies of the sequential data.

2.3.2 Long Short-Term Memory

Fortunately, the Long Short-Term Memory (LSTM) [16] solves the vanishing or exploding
gradient problem by altering the connection weight matrices between hidden states at each time
stamp, avoiding a situation that the same weight matrix repeatedly multiplied by itself. The cru-
cial step is to let the network forget some of the older states. In other words, LSTM can learn
when and where to remove irrelevant information from the past.

The overall structure of LSTM is similar to the regular RNN regarding unfolded structure. It
is constructed by connected cell states. What is different from the RNN is computation within the
cell state. The special setting in LSTM is the memory cell states C; which is the stable information
flow carrying the relevant historical and current data at all time stamps and will not fade away as
t goes further. The LSTM cell structure is illustrated in the figure 2.3. It is updated at every time
stamp by three control gates.

The forget gate F; takes the previous hidden states H, ; and current data =, as inputs,
determines the relevance of the information and forget the previous irrelevant information in C;—
by applying a sigmoid activation function indicating the level of importance.

The input gate i, is going to decide the update of the current cell states, determining how
much current information should be obtained based on the new candidate memory cell state C,
also by applying a sigmoid activation function, determining the level of importance. The final
output from this gate will add to C;_.

At this stage, we have our new cell state C,_; updated to C; by forgetting irrelevant infor-
mation from the past and adding new information based on current data. A similar procedure is
then followed by the output gate O;, which also determines the level of importance by applying
a sigmoid activation function to &; and H; ;. Combining the indicator with the current cell state
C;, we have our output H; which is also the hidden states for the next cell.

Here is the definition of the procedures that happened within the cells.

Definition 2.3.2 (LSTM forward propagation). Let W, W, W W e R™™ U, U, U, U, €

R™*" bs,bi b, by € BR™, m,n,T € N+, @ € R, H, € R™', where t = 1,...,T, and a

component-wise sigmoid (o) and hyperbolic tangent (tanh), as defined in (2.2.6) and (2.2.7).
Define Fy, I;,Ct, Oy : B™*1 — R™*1 guch that
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Figure 2.3: LSTM Cell Structure

F::U(Wth—l—U_fm:—b_fL ( )
I =c(W,H, | +U;z; + b;), (2.3.5)
C,=tanh(W_ H, , +U.x; +b,), ( )
Oy=cW,H,  +U,x:+b,), ( )

where F; is the forget gate, I, is the input gate, C; is the candidate memory and O is the
output gate.

Then the updated cell will be .
Ci=F:Ci 1+ 1,Cy, (2.3.8)

and the final output at ¢ is
H, = O, tanh(C,) (2.3.9)

2.3.3 Gated Recurrent Unit

Another common and eflective gated RNN is the Gated Recurrent Unit (GRU). Similar to
LSTM, it also has a mechanism to update and optionally pass the necessary past information,
which solve the vanishing and exploding gradient problem. However, GRU ouly contains 2 gates,
which are update gate and reset gate. The cell structure is in the figure 2.4.

The GRU network first determines the level of importance of the previous and the current
information in the reset gate Iy and update gate Z,;, respectively, in the scale of 0 to 1 by applying
the component-wise sigmoid activation function as defined in (2.2.6). In other words, the outputs
of the Ry and Z; are the proportions of how much the past information we would like to preserve
and how nmuch new information is going to add to the states.

Apply the reset gate output R, to the previous hidden state H, | then combine it with the
current input data @; to generate a candidate hidden state H,. For example, it R; = 1, it means
that we keep all of the previous information and the complete hidden states H, ; from the past
will be input into the candidate hidden state H, becoming a standard RNN state as describled in
(2.3.1), Le., the candidate hidden states H; = tanh(Uz; + WH, + D).

The last step is to make a convex combination between the candidate hidden state H, and the
previons hidden state H, ; through the update gate Z,. The final output will be our new hidden
state H;.

Here we introduce the process in detail.
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Definition 2.3.3 (Gated Recurrent Unit forward propagation). Let W, W, W, ¢ Rmxm,
U, U, U, eR™ " and b, b, by, € B™, m,n €k, and o, € B", H, € B™*! where t =1,...,7T.
Denote the @ as the Hadamard Product(element-wise vector multiplication)

Define R;, Z,, H : Rm*! — Bm=1 guch that

Ri=cW.H;  +U,z: +b,) (2.3.10)
Zy=o(W.H, 1 +U.zy +b.) (2.3.11)
H, =tanh(W,.(H, 1 ® Ry) + Uz, + by,) (2.3.12)

Then the output hidden layer H; is

H,=Z,oH, ,+(1-2,)®H, (2.3.13)

2.4 Gradient-Based Optimization Problems

In the section 2.3.1, we introduced the procedure that after the output generated from the deep
learning network, they will then be measured by the objective function, or the empirical mean of
the loss functions (2.1.2). We want the objection function output to be as small as possible. This
chapter is going to introduce the method to minimize an objective function.

From [1, chapter 4], we know that optimization mostly refers to locate a minimum or max-
imum of a customised ohjective function, i.e., we want to find =* such that =* = arg min G(x)
for some function §. There are many types of optimizations, we are going to use introduce the
algorithms that calculate the first-order derivatives of the objective function. More information
for second-order optimization can be found in [1, chapter 4.3.1] and for convex optimization in [17].

Usnally, We find the minimum by setting the gradient VG(z) = 0, and solve for the critical
value. However, we cannot tell if this is a global or local extremum, or a saddle point of a function.
This motivate scientists to develop other methods to approximate a minimized value. The goal for
minimization in deep learning is to find a close enough minimized value instead of a true global
minimum, says [1, Chapter 4.3, p81].

2.4.1 Gradient Descent

Gradient tells us the direction to improve the optimized value. Intuitively, for example, in a 1-
dimension world as shown in the figure 2.5, a positive derivative of a function y = f(z) at some
point © = 3 means that there exists a point © = @ < 3 such that f(a) < f(3). Similarly, a negative
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derivative at # = —1 indicates that there exists a point x = ¢ > —1 such that f(c) < f(—1). In
order to find a smaller value, we need to go to the direction that is opposite from the sign of the
derivative.

Figure 2.5: Illustration of Gradient on the Convex Curve

The following mathematics proof behind it is shown in [1, chapterd| as follow.
This time we generalize the condition to f : B" — R. First we define a directional derivative
of f in direction d of our input data =, where ||d|| = 1, d € R" and = € B", as below.

Theorem 2.4.1. [1, chapter]|
%)
selocof (@ + ad) = d" V. f(@) (24.1)

The optimal direction d* which provides the most efficient way to reduce f to its minimum is
the one that can minimize the directional derivative (2.4.1), 1.e.,

mind._d""d:l dTme[:I:) = mind:d"'d:L ||d||2||v-‘-ﬂf(w}”2 cos (24.2)
=ming 4r4— cost
where J
cosfl = ————— " —— (2.4.3)
[ld]|2|IVa f(x)]]2
To minimized (2.4.2), d needs to have a opposite direction to V f(z)
Then we obtain a differential equation of the function f as follows.
20— _Vef(x(t)) t>0 (244)

In the paper (18], it defines the solution to the above differential equation (2.4.4) as gradient
flow. This differential equation is helpful since we can approximate it by the Euler approximation,
ie.,

(t +€) = 2(t) — €V, f2(t)). (2.4.5)

where € is the learning rate. The choice of the learning rates indeed have a big impact on the
rate of convergence of the training, as illustrated in the figure 2.6. It is an important tuning factor
when it comes to the actual implementation and training of the deep learning models.

This approximation then can be updated repeatedly, in the other words, we obtain an iterative
function as mentioned in [7, p33] as follow.

Tnew — Told — fvﬂ’.‘f(m()fd): (246)

given an initial condition xg.

In conclusion, (2.4.6) is the algorithm of gradient descent. Iirstly, you have your objective
function f. Then you input all the data sets in the algorithm and the result is the last iteration. In
the context of the deep learning, the algorithm updates the parameters of the networks to achieve
a minimized objective function, referring to the empirical mean of loss function (2.1.3), we can
write the corresponding learning algorithm as
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Figure 2.6: Comparison of Convergence for Large Learning Rate and Small Learning Rate

0,11 =0, —eVL(8;), (2.4.7)

wherei =0, 1, ..., N. Given some initial condition #.

2.4.2 Stochastic Gradient Descent

The SGD is almost the same as the GD, except that we separate the N data sets into g subsets,
where ¢ < N, N = gk and g,k € N4+. Each subset is called a minibatch, and the batch size is k.
SGD starts reforming a minibatch B; by randomly pick up k out of N data sets non-repeatedly,

where 1 = 1,...,q. In other words, the samples in the each minibatch are disjoint, i.e.,
2l
o
*
th

where @/ € R™ represents a j randomly and non-replacement picked up data set from all N data
sets, L.e.,

a
UB,‘ = {I}l.mg.....mﬁf}

i=1

This random selection procedures is the reason why it is called 'stochastic’ gradient descent.
SGD will then start to train each minibatch that includes k < N data sets instead of the whole
N data sets. The objective function for each minibatch becomes as follows.

1
L5(0) = > Uf(Blz =a')). (2.4.8)

v x'-I£B;
where i € {1,2,...,q}, j € {1,2,...,k}, &/ € B; is the j* data set in B, that randomly and

non-repeatedly drawn from the whole data sets and k is the size of a minibatch.

The k data sets will be trained following the same learning algorithm as (2.4.7) except that the
objective function is change to (2.4.8), so the new algorithm for SGD is

011 =0 — €VLg,(0), (2.4.9)

Once training of one minibatch B; is over, the up-to-date trained parameters @), are going to
passed to the next minibatch, B;,,, as the initial values 85" of training. We call it a training
epoch when training for all minibatches is done, or when all N data sets have been processed.

Moreover, as mentioned in (7, p36],

1& .
Vi (0) = ;ZVJ(f(ﬂm:m“-’]) (2.4.10)

i=1
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will be a unbiased estimate of the V£(#). This means that the cost for training the data mainly
depends on your choice of batch size k, instead of the size N of the whole data sets which consumes
large memory space and may cause overfitting.

This can be presented as in Algorithm 1, shown in |7, section3.2, p36].

Algorithm 1: Stochastic Gradient Descent
Input : # epochs: n,
Input : # batches: ny,
Input : batch size: b
Input : Initial Parameters: 8,
Input :learning rate: e
Output: trained network parameters Bﬁb

/* loop through all the epochs */
1 foriin {1, 2, ..., n.}: do
2 randomly select ny, samples with b data sets without replacement
/+ set up an initial cendition for each epoch */
3 if i == 1 then
4 | f; = 3[} // initialize the starting weight matrix
5 else
6 | 3:}:3:1 // take the last training result as initial conditien
7 end
/+ loocp through all minibatches */
8 for jin {1, 2, ... n,}: do
9 | §i+l :3(‘, —FYQBJ(GT,) // gradient update for each minibatch j
10 end
11 end
12 return 0"

ny

2.4.3 Adam Algorithm

Proposed by [19], adam is an efficient optimization algorithm similar to SGD but applies different
learning rates for different model at each time stamp by approximating the first and second mo-
ment of the gradient, and the name of "adam’ is coming from the 'adaptive moment estimation’
procedure.

The adam algorithm presented in [19] is shown in Algorithm 2. We can see from the algorithm
that it updates the first and second moments of gradient by computing the erponential-weighted
moving average (EWMA) of previous gradient, where the first moment estimate represents the
direction of update and the second moment estimate is the adjustment to the learning rate at each
time stamp. Noted that the direct estimation throngh the EWMA always generates bias towards
zero at the initial time stamp of training, so the algorithm also embeds more steps to utilize the
bias, and more details in bias correction can be found in [19, section 3].

Adam also combines the advantages of other popular optimization algorithms, AdaGrad[20]
and RMSProp [21]. The benefits of adams are as follows.

1. efficiency in computation since only the first-order derivatives of objective is calculated,

2. ability in dealing with the sparse gradient (when most of the gradient values are zero), which
is also the advantage of AdaGrad,

3. ability in approximating gradient on noisy and non-stationary objective functions, which
RMSprop can also perform well on as well.

Nowadays adam is popular among the deep learning training tasks and it is also the algorithms
that we are going to adapt in this dissertation.
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Algorithm 2: Adam algorithm, where all operations on vectors are element-wise compu-
tations, and default input o = 0.001, 3; = 0.9, F, = 0.999,¢ = 108

Input :step size: o

Input : exponential decay rates for moment estimates: 3y, 3, € [0,1)

Input :loss function with respect to parameters 8: ;(8)

Input : Initial parameter vector: 8y

Input :intial 1*f moment vector: my = 0

Input : inital 2°? moment vector: v, = 0

Output: updated model parameter vector: @,

1t=0// locop from the beginning of the time stamp
2 while 8; not converge do
3 t=1t+1;
4 my — ﬁlm!_l =+ (1 — ﬁl]Vf.g(Bg_l] // update biased first moment estimate
5 v = ﬁg'ui_l +(1— x’ig)(Vlt(BI_l)]z // update biased second moment estimate
6 ‘rﬁ.g = 12‘,;2 /{ bias-corrected first crder estimate

H1
7 'l?; = % // bias-corrected secocnd crder estimate

Ha
8 0, =0, ——=——m

6= 01T

9 end

10 return

2.4.4 Back-Propagation

(put algorithems) We have introduced how data flow into the network structure and give out loss
values and optimize them. We know from the previous sections that the parameters is updated
through determining the direction of change by the gradient. It is essentially a series of derivatives
composite together using chain rules. We first write down the forward path towards the step at the
objective output, and then calculate the derivative of loss function with respect to parameters. |7,
section3.3, p39] introduces the back-propagation formula for FNN and [1, chapterl0, p379] has
details in back-propagation in RINN.

2.5 Summary

In this chapter, we talked about the general procedures of how a deep learning network is work-
ing in 2.1. Then we move to have more details introduction on the three types of deep learning
models, FNN in 2.2, LSTM in 2.3.2 and GRU in 2.3.1, and the extra features of capturing time
dependencies in the latter two algorithms. The LSTM and GRU are two models similar in many
aspects,

In section 2.4, we talked about how the learning and updating is working under the gradient-
based optimization algorithms, including the traditional gradient descent method in 2.4.1, the
more efficient stochastic gradient descent in 2.4.2 and the state-of-the-art algorithm adam in
2.4.3. Finally, we talked about the general rule on calculate the gradient of the objective function,
namely back-propagation, in 2.4.4.

Here we also summarize some features between the LSTM and GRU network structure as
follows since they are both the extension of the standard recurrent neural networks and both have
the mechanisms to optionally select information.

As discussed in [22, section3.3], they both have the advantages as shown below.

e remembering important information along the longer time span and keeping the uniqueness
of information at each time stamp by the forget gate of LSTM and the update gate of GRU,

e the repeatedly multiplication of the non-linear and bounded activation functions allow back-
probagation to perform easily withont diminishing in gradient.
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There are also differences between GRU and LSTM, as mentioned in [22_. H()(‘ti()113.3].

e LSTM has its own memory cell that can only be accessed by the output gate while GRU
exposed the complete information flow without control.

e They also differs in the way of adding/updating new information into the memory. LSTM
updates the memory based on uncontrolled data from previous time stamp and current data
while GRU added the new information that depends on the selected data from previous
hidden state.

All the network structures introduced in this dissertation are proven to be effective and powerful
in many fields, which also motivates this research since we are interested in how deep hedging
performs differently under different structures.




Chapter 3

Deep Hedging Method

3.1 Overview
The deep hedging method treats the optimal strategies as a function of the price, i.e.,
o1 = ft(So,....5:8),

referred to the procedure introduced in (2.1.1). In this dissertation, {¢, }o<¢<r have been repre-
sented by FNN, LSTM and GRU. They optimized {¢; }n<¢<7 throngh minimizing the objective
function regarding the profit and loss. Since it is the unsupervised learning, it does not require
‘labels’, or reference strategies to compare to, instead, it needs a function that can measure the
PnlL. In this dissertation, we choose the exponential utility function to see how PnlL perform under
certain risk-averse level. In other words, the performance of Pnl will be the loss value in the
context of deep learning, referred to (2.1.2), ie.,

loss; = U(Pnl),
where [J is the measure of performance for Pnl. Consequently, our objective function will become

LO) =XV, U(PnL;),

i

=% 3 U(PnL;(0]So,-...57,4)),

where N is the number of price paths.

Another advantage of the deep hedging method is that we can easily incorporate the market
frictions by editing the PnL function. We use the proportional transaction cost to capture the cost
of execution at each time stamp, so all we need to do is to subtract the cost from the profit at the
maturity when calenlate the PnlL, i.e.,

PnL = hedge portfolio — contingent claim — transaction cost

3.2 Delta Hedge under Black-Scholes Model

Hedging is a strategy to offset the risk of the price movement of the underlying asset of a financial
instrument. Before looking into the deep hedging method, it is necessary to have a brief review on
the traditional delta hedge under the Black-Schales model.

3.2.1 Black-Scholes Model

In Black-Scholes model [2]_. the underlying stock prices (St)s=0 can be presented as a stochastics
differential equation as follows.

dS; = 8, (rdt + odW,), Sy =0, (3.2.1)

where (W;);~¢ is the Brownian motion on (€2, (F;),P), r = 0 is the risk-free interest rate, o > 0
is the volatility of the underlying. Then a european call option can be priced as
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C(S,8) = SN(d}) — Ke "N (d_), (3.2.2)

where A is the cdf of the standard normal distribution and

_ log (Spe™ /K) . U_\/E

d +
+ oy 5]

I

=3

is a model under the assumptions of

e 10 transaction costs,

e stocks not paying dividends,

e constant and known risk-free rate and volatility,
e returns are normally distributed.

The assumptions make any strategies rely on it unrealistic. However, it provides analytical
delta hedging strategies under the cost-free and risk-neutral environment, which are useful to be a
benchmark for the deep hedging strategies when A is large and cost rate equals 0.

3.2.2 Delta Hedge
Suppose that a the value process for the underlying is
V, = ¢3S, +dlB,, (3.2.3)

where e:-ﬁi.’_. o7 on (Q, F, (Fi)o<i<r. P) are locally bounded and F; —adapted, representing the amount
that held in stock and bond, respectively.

Let C(S,t) be the price of a attainable ! contingent claim ? Z. Then by the non-arbitrage
principle and law of one price, we have the equation

(8, 1) = Vi
f{:_vn-mlu»kac E.Q[e_{'r_!} L’T|}_t] (324)
ViZZ  pQe-(T-z|F)
e de IC(S ) = de TV, (3.2.5)

By simplifying the equation in (3.2.5), we will get the delta hedging strategy,

e
¢f = 35 (S.9), (3.2.6)

not only representing the sensitivity to the underlying price change but also the amount of indi-
vidual's holding of the stock at time ¢.

We are going to hedge the european eall option in this dissertation. In our case, the Black-
Scholes delta-dedge strategy becomes,

of S =de MV, (3.2.7)
where d is defined in (3.2.2).

This means that we know the exact amount of holdings at every time stamp. As long as we
follow this strategies all the time, it gunarantees that we will receive same amount of values as the
contingent claim at maturity. In other words, if we are the selling the contingent claim Y to the
clients and receive a premium of C'(S, ¢ = 0) in the beginning, we expect to pay ¥ = f(Sy,....S7),
the agreed contract value, back at the maturity to clients. In order to avoid the risk of volatile

1A contingent claim Y is attainable if there exists a sel-financing strategy ¢ such that Vp(¢) = Y [23, p23]
A contingent claim Y = f{Sp,...,Sr), where [ : RIT+U%d B where d is the number of assets, for the
maturity T is any square-integrable and positive random variable in (2, 7, F) [23, p19]
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underlying price, we reinvest our premium to buy the underlying and the risk-free assets. The
above strategies will instruct us how much should we hold before maturity. Theoretically, under
the Black-Scholes assnmption mentioned in 3.2.1, by following the strategies, our re-investment
will pay us back exactly the same amount as the agreed payment in the contingent claim Z.

Note that if we are under the discrete-time assumptions, i.e.,
Sg, = Sgl_] =+ Sg,‘(f&fg =+ UA"V;,].S[] =,

where i = 1,...,7T represents the index of the time stamp. the delta hedging would not be
continuous either, as a result, it would be the approximations of the corresponding contimous-
time delta-hedging strategies, i.c.,

P = ASH (S: t)~

where the perfect hedge can not be achieved.

Now, we have the analytical Black-Scholes delta hedging strategies for the european call option.
Later, we will use this formula to make comparison to the deep hedging strategies.

3.3 Deep Hedging Setting

For deep hedging, we consider a discrete-time market with finite number of time stamps 7" with
d risky assets, where T,d € N+. The underlying prices will then be {S,}.t = 0.....T and
S, € BY. They form an adapted, non-negative stochastic process on the finite probability space
(Q.F. {F:}.P), where Q@ = {wy,.... N} for some N € N. The corresponding self-financing and
adapted trading strategies, or the amount of portfolio held at t, is denoted as ¢¢. For simplicity,
assume the risk-free rate # = 0 and the number of underlying d = 1, then our value process in
discrete time becomes

t—1

Vi=Vo+ ) o (Siz1 =S, (3.3.1)

i=(0

where Vj is our initial wealth.

This can be seen as the same setting as the discrete Black-Scholes model. We are now going to
add the market friction to it.

3.3.1 Proportional Transaction Cost

We assume that for execution at timestamp t =0,..., T, it charges the transaction cost propor-

tionally at a constant rate k to the transaction amount. We define the transaction cost at maturity
as [ollows.

d T
cr(g: S, k) = Zki(\?ru__dsu__; + Z [me—1i — Te—n,i|Se—1,i + |Tr—14]5T4), (3.3.2)
i1 t=2

ith

where k; is the cost rate for the ¢** asset and d = 1 in our settings.

Apply the transaction cost efm; S) to our value process in (3.3.1), then it becomes

T—1
Ve =Vo+ Y i (Siv1 — Si) —er (65 5. k), (3.3.3)

i=l

where t =1,..., T and Vy € .
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3.3.2 Profit and Loss

The profit and loss at maturity is the difference between the current wealth Vr and the payoff of
the contingent claim Z = g(Sgy.. ., Sr), where g : RTHUxd 4 | je,

Pnlz(Vy,0:8.k) =Vr—Z
=Vo+ X0 60 (Siga — 8) —er(¢:8.k) - Z (3.3.4)
=Vo+ V(e S)—er(od: S k) — Z,

where

T-1
V(:S) = D i~ (Sivr — Si) = er($: S, k), (3.3.5)

i=l

is the change in portfolio holding.

3.3.3 Convex Risk Measure Deep Hedging Strategies

As mentioned in section 3.1, we need a measure to quantify the performance of PnL that takes into
account the risk arising from the position. The average of the aggregate performance is the objec-
tive £(8) of our model. The network will then train the network through minimizing the objective.

In the original work of the deep hedging from [6, section 3|, it provides a convex risk measures
definition as follows.

Definition 3.3.1. Assume X, X, Xy € A, representing the current positions, where X' : Q — R,
is set of all real-value random variable. We define a convex risk measure p: A — R if:

e Monotone Decreasing: if X; > X, then p(X;) < p(X3)
This means that the position with smaller loss and larger profit are favorable.

e Convex: p(aX) + (1 —a)X2) < ap(X))+ (1 — a)p(X2), where a € [0,1]
it indicates that the diversified position gives a better performance.

e Cash-Invariant: p(X +¢) = p(X) — ¢, where c€ R
It implies that the performance will of the strategies will improve the same amount as the
cash we add into the position, and ¢ = p(X) is the least amount that we need to add into
the position if we want p(X + ¢} < 0 since p(X + p(X)) = 0.

If p(0) = 0, we call the measure is normalized.

We would like to measure our risks related to the predicted hedge strategies following the above
properties. In other words, the convex risk measure provides a standard for us to find strategies
such that the risks towards our final gain, Pnl, would be minimized under such standard. This
leads to an optimization problem.

Definition 3.3.2. [6, p7| Let T be number of time stamps, and T € N+,¢t = 0,...,7 — 1.
{¢h¢ }+ is set of self-financing and adapted hedging strategies and ¢; € R. ez(-) is the acenmulated
proportional transaction cost at the maturity defined in (3.3.2). Under a conver risk measure
p: X — R, and for X € X where & : © — R, define the optimization problem as

T-1
7(X) 1= inf p(X + N e (Sir = Si) — exl(e: S k),

t=10

which has also been proved in [6, proposition 3.2] that it is monotone decreasing and cash-invariant.

In the meanwhile, if we think of the objective functions £(@) (2.1.3) as the risk measure of the
PnlL (3.34), ie.,
L(8) =p(Pnlz(Vy,0(8))),

then the optimization problem m becomes exactly the deep learning optimization problem. By

tuning the deep learning models parameters, @, we find a set of strategies, {¢] }s=0,....7—1 such that
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¢f = f(So,...,8::0%) and f as presented in (2.1.1) stands for a deep learning network, minimizing
the objective function £(8).

16§ iz, r—1 are the so-call deep hedging strategies. It is the minimizer of the objective

function under a convex measure. We can re-written the optimization problem in the context of
deep hedging as follows.

mPH(X) = infye) L(0)

= inf ) p(PnLz(X + Z;5,k),8(0); S, k), (3.3.6)

Definition 3.3.3. (deep hedging strategies) Let 77" be a optimization problem as shown in
(3.3.6). Define the deep hedging strategies {¢; };—o, 71 such that they are the solutions to
TPH (Vo = 2), Le,

TPH(Vy — Z) = infyue L(9)
=p(PnLlz(Vy; S, k), d*: S, k))
= p(Vo— Z + 310 ¢ - (Se1 — 81) — ex (¢35, k),

where Vj is the initial wealth, Z is a contingent claim and PnlL is referred to (3.3.4).

In this dissertation, we choose the loss function / (2.1.2) which measuring the risk deriving from
the predicted strategies to be the negative of the exponential utility function U, ie., I{z) = =U(x),
as shown in (3.3.11), and the objective is to minimize the empirical mean of the loss functions, i.e,

(PnLz(Vo,¢(0); S, k) := U (PnLz(Vo, $(8); 5, k),
L(8) = E[I[(PnLz(Vy, ¢(8): S k))).

The optimization problem in the context of deep hedging method applying in our dissertation will
b
o L
aPH(X) = inf =N U(PnLz(X + Z: k), 6(0): SV, k), (3.3.7)
o(8) N et
where PnLz(-) is introduced in (3.3.4), Z is the attainable contingent claim (see footnote 1) and
@(@) represents the outputs from deep learning models introduced in chapter 2.

3.3.4 Indifference Pricing

Under the Black-Scholes assumption, i.e., the complete market without market frictions, the price
of the call option is simply the premium of the contingent claim Z as shown in (3.2.4) by setting
t=10,1ie.,

Vo = C(8,0)

= EQe-(T-0g), (3.3.8)
and we have
PnlLz(W,$:;8) =Vr—2Z
=V +V(gS) -2 (3.3.9)

=0
by combining (3.3.4) and (3.2.4) and substituting the proportional transaction cost rate k = 0.
However, after applying the transaction cost to PnlL, the market becomes incomplete and the
fair price of the contingent claim is no longer C'(S,0). Pricing is difficult under the analytical

methods in this case, especially for some more complicated exotic products. Fortunately, [6]
provides a solution to the incomplete market pricing problem under a convex measure.

Definition 3.3.4 (indifference price). [6, pg]

Let m be a measure defined in Definition 3.3.2 and Z be a attainable contingent claim mentioned
in footnote 1. The indifference price for a contingent claim Z is p(Z) = py such that it satisfied
the equation m(—Z + py) = 7(0). As a result,

plZ) :=x(=2)—=(0),

due to the cash-invariant property of @ mentioned in the Definition 3.3.2.
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It means that if we sell the contingent claim Z at p = p(Z), applying the corresponding optimal
strategies, our expected loss will be the same as optimally executing the trade under U without
the contingent claim Z, i.e.,

inf E[I(V (¢: 5))] = infE[l(p + V(¢ S) — Z)]. (3.3.10)
where V(¢; §) is defined in (3.3.5).

In other words, the indifference price p(Z) = p of the contingent claim 2 should be the minimal
amount of cash that can cover the potential loss from Z at a given risk-preference, i.e., a convex
risk measure by our choice, and we call this minimal amount of compensation the indifference
price.

Exponential Utility indifference Pricing
In this dissertation, we follow the same setting as [5]. Choose our loss function as the negative
exponential utility function, i.e.,

l{z) = —Uy(z) = %p‘*“ (3.3.11)

which is a convex function. Plug it into (3.3.10), we get

inf, E[[(V(¢;S))] = infyE[te MptV(es)-2)]
= e Pinf, E[I(V (¢4 S) — Z)].

Extracting the indifference price p, then

1 infg E[f(lr(ﬁ‘)c}))]
P= —Xlog (inf“blhj[{“/(@;s) — Z)]) . (3.3.12)

The denominator

inf E[l(V (¢: 5) — Z)] = inf E[I(PnLz (0, ¢3 S, k)]

and numerator
inf B[I(V(¢: S))] = inf E[I[(PnLy(0,¢: S, k))]
@ @

that inside the log function in (3.3.12) can be fitted into the deep learning optimization problem
framework as shown in (3.3.7). In other words, the indifference price p caleulated from the expo-
nential utility function can be obtained by training the two independent deep learning networks
with different objective functions.

Suppose that the ¢} and ¢}, are the optimal deep hedging strategies for the denominator and
numerator respectively. We can approximate the exponential utility indifference price as

1 ( L YN [1(PnLo(0,63: 5. 1)) )

p=—Zlog 3 P (3.3.13)
2 H(PrLz(p, 04 SO, k)]

A

Moreover, if the underlying follows a martingale process, the initial wealth p in the exponential
utility function is essentially a scaling factor of the optimization process, as a result, the choice of
p does not affect the training.

3.4 Summary

In this chapter, we introduced the deep hedging methodology. In the section 3.1, we present the
overall procedure of the deep hedging, linking the financial concepts to the context of deep learning.
For example, the hedging strategies are represented by the network, the exponential utility func-
tion that measure the PnL is the loss function for each price path, and the emprical mean of the
loss funetions is our objective function that will be minimized by the gradient-based optimization
algorithm.
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We also have a brief review on the delta hedging under the Black-Scholes assumption in section
3.2, This will be our benchmark to compare to the deep hedging strategies later.

Then we move on to introduce the details of the deep hedging in section 3.3. Including the value
function on the discrete market setting, and how we define the PnL functions (section 3.3.2) after
incorporate the proportional transaction cost (section 3.3.1). After that, we also introduce the
convex measure to examine the performance of the PnlL under certain level of risk preference, and
it is the measures that used in the loss and objective functions. With these background knowledge
prepared, we can understand how the deep learning network obtain the optimal stategies. The
last part introduce a useful method to price the over-the-counter derivatives, indifference pricing
(section 3.3.4).




Chapter 4

Training Methedology

Now, let us introduce how we implemented the deep hedging strategies in our dissertation. The
overall procedures are shown as follows.
1. Data Simulation:

Create a Black-Scholes market simulator, and generate two sets of data, the training under-
lying set St ain and the validation set S,q;. For each data set, it has N = 100, 000 simulated
paths and T = 100 time steps;

More details are in the section 4.1.

2. Tailor Input:

Tailor the data set Sy.qin and 8,4 into { Xt ain modet Fmodel 804 { X 0p modet Fmodel, Where
model € {LSTM, FNN, GRU}, to satisty the input requirement for different model structures:

More details are in the section 4.2.

3. Model Implementation:

(a) Deep Learning Model Structures Implementation:
Implement structures fpy . Frerasand fopy. setting inputs, activation functions,
layers, outputs,and units. The output of £, 4.
such that ¢, 000 = Fnedet (X trainmodet; 8).
More details of the model structures are in section 4.2.

; will be the predicted hedging strategies

(b) General Loss Functions Implementation:
Implement the general loss functions [(Z, p, ¢, 4.0 F)) = %P"'P“L{Z-P-‘bmmfr‘-'=’\="'J, where
PnL(Z,p, @000 k) 18 defined in 3.3.4. Note that the parameters ¢, ,4.; arve the outputs
of the network, it is not editable while training taking place.
More details in the implementation of the loss functions are in the section 4.2.3.

() Optimizer selection

We chose the adam optimizer, as introduced in section 2.4.3, for all models. However,
the default learning rates were set to different values for different model structures.

4. Data Training:

Once the model structures have heen built, we are able to input our data and start train-
ing. There are two sets of results that we are interested in, the optimal hedging strategies,
as defined in Definition 3.3.3, and the fair price of the contingent claim Z, as defined in
Definition 3.3.4. To obtain the two sets of results, it requires different loss functions. More-
over, different models response differently regarding the data, so different training strategies
are applied to different deep learning model structures. As a result, the following steps are
adapted to solve the problems.

o sef loss function for optimal strategies training as in section 4.2.3;
e sct loss function for indifference pricing training as in section 4.2.3;

e set NN training strategies:
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o set LSTM and GRU training strategies;

o set explanatory variables for each model and start training;

5. Results Visualization

We obtain the deep hedging strategies and indifference prices under various conditions. There
are 4 different cost rates, 4 different risk-averse coeflicients A and 3 deep learning models,
resulting in 48 scenarios in total. We are going to present them regarding the models, i.e., for
each deep learning model, we illustrate the results under different cost rates and indifference
prices. More details on the results are shown in chapter 5.

4.1 Data Generation

We use the Black-Scholes data simulator to generate the underlying assets path. The stochastic
differential equation (SDE) of the price process is shown in (3.2.1), by solving the SDE, we obtain
the pricing process

2
5S¢ = Spexp [(r — %]f— rrH'}} ,

where ¢ > 0,7 > 0,55 > 0 and ¢ > (.

t
&=SMW{U—§JT—§%Z}JJ=&-qT (4.1.1)

This is our market simulator.

in the experiments, we set the number of paths as N = 100,00 and the number of time
steps as T = 100, risk-free rate r = 0, initial price Sy = 1, price volatility ¢ = 0.5. By
generating £, . = (& j)nxr, Where § ; follows N(0,1), we created our simulated underlying
Sirain = (Sij)nx(r41). Following the exact same setting, we generated another validation under-

lying matrix as S, € RV*'+1) by generating another set of standard normal random variables
NxT
gvuf cR :

Note that since we set r = 0 for simplicity, our simulations become a driftless martingale
process.

4.2 Models Settings

As introduced in chapter 3, our strategies can be represented by the networks as a function of
previons price stamps, i.e., for each path i, we have

o = fi(857.....8":0).

We are going to specily how structure of each model is implemented in our experiments. We used
the Keras package in the Tensorflow to create, compile and train the deep learning models.

4.2.1 FNN Implementation

Thanks to the markov property of the Black-Scholes price, for the FNN model structure, the
network structure can simplify to

i [ .
o) = (. 5.":00,1 =0,..T,

Previously, we have defined the structure of the FNN as (2.2.4), following the definition, we
implemented the FNN structure as

frnvn € Na(2,100,100, 100, 1; ReLU, Re LU, ReLU, sigmoid),
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meaning that the nctwork takes in a 2-dimensional input at each time stamp, ie., input X =
(Xij)nxr where X; ; = [ 9“ Joi=1,...,Nand j=0,...,T—1. Our 1mplomontod structure
has 3 hidden layers, for whmh cach of them has 100 11n1ta 'md equipped with ReLU (2.2.8) as
the activation function. The output layer always has a l-unit output since it represents the tho
hedge ratio for a underlying asset. The output is bounded by the sigmoid (2.2.6) function as the
Black-Scholes hedge ratios for call options are always in between 0 and 1.

4.2.2 LSTM and GRU Implementation

LSTM and GRU have very similar overall structures since they are both the extensions of the
RNN, except for how information proceeds within the cell state. As mentioned in section 2.3.3,
RNN has the vanishing and exploding gradient problem, so we choose the two more stable recur-
rent structures in our dissertation.

In our implementation, LSTM and GRU are sharing the same structure in terms of being
time-dependent based models.

Let us now represent a single LSTM layer network structure as
frsrar € Ro(T,10,1; LST M, sigmoid)

meaning that for each sample path i, our LSTM networks takes a whole sample path {qu}gzu,_;]"_l
as input.That is, the input data X = (X, ;)nxr = (Sij)nxr = S, where i = 1,..., N and
j=0,....T—1.

Then the data flow into the LSTM layer, generating hidden states with dimension 10, which
share the same size as the output at each time stamp, as introduced in section 2.3.2. As a result
there will be 7" = 100 outputs generated by the LSTM layer and each of the output has length 10.

Then all of the 100 output go through the sigmoid (2.2.6) output layer, transforming each of
the output from dimension 10 to 1, representing the hedge ratios.

Similarly, let us define the single-layer GRU model in the dissertation as

foru € Ro(T,10,1; GRU, sigmoid),
How data flow through the structure will be the same as LSTM except that it has a GRU
layer, and the process has been clarified in 2.3.3.
4.2.3 Loss Functions Implementation
From (3.3.7) and (3.3.11), we have our loss functions in general as function of 4 inputs, i.e., for

each sample path {SI{’J}!:[}_______T_L. i=1,..., N, we have

1
loss(Z,p, {Q, bi=0,.. 715 )\JJ)ZXQXP —A-PnL(Z,p, {Q; be=0,.. 71 }")]r

where Pnl is the same as (3.3.4).
Now, following the Definition 3.3.3, the loss function for the deep hedging strategies is

lossan = 1085(Zeatt, Pan, {03 Yoo, -1, A K),

where Zean = (97 — K)V, pan! is the initial wealth, {o! J}; —n....T—1 are the outputs from the deep

hedging network, and X 'md k are the risk proforonro'-. and cost rates that we are going to set for
different scenarios.

Similarly, for the indifference pricing training, referred to section 3.3.4 and (3.3.13), we have
the loss function for the numerator as

108Siprn = 1085(0, piprn = 0, {08 Yizo,.. 71, A, k),

'Note that the subscript dh stands for deep hedging.
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and the loss function for the denominator is set to

where ipr represents the indifference price, d represents the loss function for the denominator, and
n represents the loss for the numerator.

Since our underlying prices are the martingale, our initial wealth p, in this case, does not affect
our training, as mentioned in the section 3.3.4. For simplicity, all of them are set to 0 in our
implementation, L.e., pan = pipr.n = Pipra = 0.

4.3 Training Settings

The deep learning models optimize the models following the adam algorithm as introduced in sec-
tion 2.4.3. The following sections will present the procedures and parameters for the optimization
process.

4.3.1 FNN Training

We set batch size = 256, epochs = 40. There are no special procedures for the training with FNIN
model, it follows the adam algorithm as introduced in section 2.4.3. Under this setting, the results
are meaningful and as expected.

4.3.2 LSTM and GRU Training

However, the procedures for LSTM and GRU are more complicated. We first trained the model
with a faster learning rate. Then, turned down the learning rate and iterated the training with
the same slower one 10 times. The training procedure is shown in the appendix , Algorithm 3. We
set the parameters as follows.

The batch size = 256, epochs = 55, and the faster learning is set to 0.01 while the slower
learning rate is 0.001.

4.4 Training

By setting up the models and training parameters, we can start the training. Firstly, we are
interested in how the cost rates and A impact our strategies and indifference prices. Secondly, we
would like to examine how the results are performing under different deep learning models. We
set proportional cost rates k to be 0,0.05%,0.5% and 5%, respectively, involving the situations
where the market is complete and with relatively unrealistic higher costs. We have also set our
risk-averse coefficient A to be 0.1,1,5 and 10. In conclusion, there will be 48 sets of results, i.c.,
results for each model under each cost rate and risk-averse level, generated and all of them can be
found in chapter 5.

4.5 Statistical Tests on Result

4.5.1 Kolmogorov Smirnov Test

From the histograms of the Pnls under different training models at the same risk-averse level and
cost rate, we can hardly tell if they are significantly different. In this case, the first step is to test if,
at the same level of cost rate and A, different training modes produce the same Prls distributions.
If they produce different results statistically different, then we can further investigate how they
are different from each other.

The Two-sample Kolmogorov Smirnov Test [24] (KS test) is a non-parametric test on whether

the two samples are coming from the same distribution. The null hypothesis Hy is that the two
samples are from the same distributions. In the context of our dissertation, the two samples will
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be the PnLs calculated under different model structures at a specific level of cost rate and risk
preference.

The test statistics for the two-sample KS-test is

D, = sup |P;Illjll{.'ll] N ('1‘J - Pvllunl{.'];._:\“(-lj ) |:
-

where N is the number of simulated sample paths, model represents the model structures such
as FNN, LSTM and GRU, and F,,4., n(z) is the empirical cumulative distribution function of
PnLs resulting from training the N sample paths under a specific model structure, i.e.,

number of PuLs under a deep learning model < x

Pvmml{:]._:\" (z) = N

The rejection of the null hypothesis Hy happens at a level of significance if

1
)N

1

=]

Dy >/~ log(

4.5.2 One-sample Signe Test

If we are knowing that the PnLs resulting from different deep learning models coming from different
distributions, we use the one-sample sign test to test if the median of PnLs for each scenario is
non-negative, i.e., for each deep learning model we present a table containing the p-values for the
alternative hypothesis,

H,, :median({PnLygde1;biz1,. n) < 0,

under different cost rates and risk preferences X's.

We know that our data are not normally distributed or symmetric. The sign test does not
assume a prior known distribution of our data, but the disadvantage is that it is not as efficient as
other tests on the median such as Wilcoxon signed-rank test which requires symmetric distribution
of data.

The one-sample sign test first count for all values in a sample that are above the null hypothesis,
median = (0, so we have a Bernoulli random variable for each count such that

Ii =1paL, >0,

for i =1,..., N. Then summing all our counts together, i.c.,
N
i=1

where Y follows the binomial distribution Bin(N,py). The problem is now reformed as a
binomial test, determining if py = py where py = 0.5, as our goal is to find whether Y, the number
of values greater than 0 {our null hypothesis of median), is half of our sample size. For a large
sample size, the test statistics would be 7 = ——=2oV__

W/ Npo(1—po)

4.5.3 Two-sample Wilcoxon Signed-rank Test

The PnLs are generated based on the same validation data set but different learning models. The
dependent sample test, a two-sample Wilcoxon signed-rank test, is a suitable choice to compare
the differences in the medians among different models. we are going to conduct the test on the
alternative hypothesis

Hn . m“?dian[{IJanudr:il.x}(:l A") < m'ed?jan({jJanuder.(}(:]......N'J'

The test first calculates the differences between the two samples

{[IJanurh:il._x - I}anodr:EQ.j)}i:l,...."\".
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and then orders its absolute differences and assign the ranks ascendingly, denoted R;. Next, assign
back the sign of its corresponding differences in the sample to the rank I, ie.,

signed
R

i

= sgn(Pnlmodetni — Pnlmodez,:) - fi,
. . . signed _. L —
where sgn is the sign function. Sum up all the R]™"" with negative signs and W~ is its absolute
alue, i.e
— signed
W= 3 |Rimed).
{R.;u_qllr't(:-}z.;lgnr'r(i:.“}

Similarly, add up all the 'R,:"i”'“'d with positive values, denoted W7, Finally, we have the test
statistics W = min(W—, W),

The tables in the following sections show the p-values for the two-sample Wilcoxon signed-rank
test on sets between

e {Pnlisragiti=1,. v and {PnLpyyitiz1,

z

e {Pnlisrariti=1,.. v and {Pnlgroitiz1,. N,

e {Pnlpstariti=t,.. v and {Pnlgru,tiz,.. N

For each pair of comparison, we are going to demonstrate an overall performance, counting the
number of scenarios that one model generates better results (higher median in Pnls) than the
other, and also the scenarios that they perform similarly.




Chapter 5

Results and Discussion

This chapter is going to demonstrate the out-of-sample testing on the training under the FNN,
LSTM and GRU model. There are 16 scenarios for each training mode, and each of them rep-
resents a situation under a unique cost rate and a risk aversion level. We are interested in the
impact of the cost rate and risk preference on the hedge ratio.

Three types of plots illustrate different aspects of the effect.

e The plot of the predicted hedge ratios versus the spot price at the near-maturity time. We
set the near maturity time as 0.97 (section 5.1).

Practically speaking, when we are reaching the end of the trade horizon, traders are more
likely to take action on their portfolio, whether hedging or not. So it is necessary to see
the behaviour of our hedge strategies at different spot price levels under different levels of
cost rates and risk preferences. All the hedge ratios of our simulated paths at this time will
be reflected on the plot so that we can have a clear idea of the general condition of our
predictions at the time step.

e The plot of the predicted hedge ratios versus along the trade horizon (section 5.2).

Although this is a plot just for one of the simulated paths. The plot will illustrate how the
hedge ratio change as time increases, so we can see the discrepancy between our predicted
hedge ratios and the benchmark BS hedge ratios at each time.

e The plot of Pnls for each training mode under different cost rates and risk preferences (sec-
tion 5.3).
This is an important plot since it measures how our hedge ratios work. The skewness and
position of the distributions reflect our final holdings after trading,.

After examining the performance of cach model. We will have a statistical test among models
to see how results under 3 training models differ from each other. We will conduct the

¢ Two-sample Kolmogorov Smirnov test: fix cost rate and the risk aversion at the same
level, test if the Pn L calculated under different trading modes produce the same distribution.
The null hypothesis for the test is

Hy : two samples are from the same distribution.

We performed the test using the python seipy.stats.kstest package.
¢ Median Test:

One-sample sign test: test if the median of PnL for each scenario is greater than or
equal to 0 using the lower-tail test, and the null hypothesis is

Hp m.ﬁdia.n[{.f}ni.i}i:]________N] = .
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We performed the test using the python scipy.stats.binom_test library.

Two-sample Wilcoxon singed-rank test: fix cost rate and the risk aversion at the same
level, test if the median under one training model is smaller than the others, i.e.,

-H[} : m'edfan({-Pn-'{'mml{.'h,i}i:l._...._N) 2 m'ed?jan({I}n’{'nmd{:h.}}i:l._...._Wv)'
We performed the test using the python scipy. stats.wilecozon library.

Ideally, we would like the median of PnL under each training model for different scenarios
greater than (), so under the same level of cost rate and risk preference, we prefer the model with
a higher median value.

5.1 Hedge Ratio versus Spot Price

In this section, we explain the plot of the hedge strategies along the spot price at £ = 0.97 under 3
training modes. The column of the subplots represents the increase in A, while the row represents
the increase in the cost rate. The blue dashed line is the Black-Scholes delta hedging strategy, so
it is free from the change of cost rate and lambda and is risk-neutral. The red solid line is the
results after plugging in the sequence of (¢, S;), such that we set S; € [0,2],# = 0.97" The red
dotted scatter plot is the results from our validation set, i.e., they are the results from simulated
discrete-time paths at ¢ = 0.97", so the input is random.

5.1.1 General Behaviour

The general behaviour is consistent among different training modes with cost rate and risk prefer-
ence changing. The illustration in this section will use the results under the FNN (figure 5.1) and
GRU (figure 5.2) training for simplicity. The results for the LSTM (figure B.2) can be found in
in the appendix B.

Impact of the Cost Rate

We are examing the results from the figures 5.1 and 5.2. Let us remain lambda, or the risk aver-
sion level, at a fixed rate, ie., look at rows of the plots. We can see that the hedge ratio curve
becomes flattened and flattened. Especially around the out-of-money region, i.e., the region where
the spot price is less than the strike price X' = 1, we see a clear trend that it has a wider and wider
upward basis as the cost rate increases, except for the top right one which the predicted hedge
ratio is completely (0. This is caused by the small risk-averse coeflicient, which we will discuss later.

As introduced in the section 3.2.2, the hedge ratio represents our holding in the risky underlying
assets, so ¢ = 1 means that we hedge all our portfolios, while ¢ = 0 means that we can keep our
current positions. Intuitively, when the cost rate becomes large enough, traders hedge less around
the in-the-money region and over hedge around the out-of-money region because this will decrease
the sensitivity of hedge ratios towards the price change. The trend can be shown vividly when
fixing A = 1, i.e., the second row of the plot in 5.1. When the cost rate is large enough, hedge
ratios fix at a constant rate to avoid changes in holdings. In other words, no matter whether the
price jump to a higher place or lower place, our change in the portfolio will be less to avoid a higher
cost in the transaction. This can be demonstrated by the cost function (3.3.2) as well, i.e.,

|?T:—1__; - "T!—Q.i|sl—l._i

will become smaller.

Impact of the Risk Preference

We are examing the results from the figures 5.1 and 5.2. The A is the risk aversion coefficient.
The large value in the A represents that we are more risk-averse, indicating that we would like to
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perfectly hedge our portfolios and get rid of the risk of under-hedging, while the small X indicates
that we care more about the return; this behaviour is shown explicitly in the third column of the
graph 5.1 when the cost rate is 0.5%. We can see that our predicted values become more and more
attached to the Black-Scholes hedging strategies as A increases since in the case of Black-Scholes,
making sure all our portfolios are hedged, avoiding the risk arising from the contingent claim.

The sub-figure at the top right in the the figure 5.1 shows that in a very less risk-averse trading
environment, the strategies will be more sensitive to the change in the cost rate, and the change in
the cost rate will dominate the change in strategies while the cost rate has limited impact on the
strategies if A is large, i.e., more risk-averse and conservative, and vice-versa, i.e., strategies also
sensitive to A in a high-cost trading environment.
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5.1.2 Behaviour Specific to FNN

Under the FINN model, as shown in the figure 5.1, we found that the dotted red line overlaps with
the solid red line. This is expected since we have trained separate FNN models at each time stamp,
i.e., for each pair of input data =, = (¢, 5;), where t = 0,..., 7 — 1, we have a unique FNN model
f(z:6;) to process it and generate a prediction ¢y. It is a one-to-one relationship between the
input and output. Whenever a pair of data (t, S;) comes, the network f(ax; 8,) will always generate
the same output.

5.1.3 Behaviour Specific to LSTM and GRU

We can see the differences when we look into the recurrent network in the figure B.2 and 5.2. The
red scatter plot are not stick to a curve. The mechanism for the GRU and LSTM is different from
FNN, as mentioned in the section 2.3. They can capture the correlation among the historical data,
which means that the data inputs are different from the FNN either. While FNN treats data at
each time stamp separately, the two recurrent neural networks take in the whole simulated path as
input, so at each time stamp, the network will absorb the nseful information from previous time
stamps. This is the reason that the out-of-sample scatter plots are radiated since each path learns
from its own history and most often never produces the same output for the same spot price value.

Since predictions rarely stayed in lines, except for some extreme cases (small A's and large cost
rates), we also observed the impact on the spread of the predictions when the cost rates and risk
preferences are changing. Iixing the cost rates, the large A not only shifts the general trends of the
predictions towards the Black-Scholes delta hedging strategies but also tightens the predictions.
On the contrary, large values in the cost rates widen the spread of the predictions, as shown in the
second row of the figure 5.2.
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5.2 Hedge Ratio versus time

In the previous section 5.1, the results are shown in a freezing time. We can consider it as a
snapshot at a specific time spot for all simulated paths. Now, we are going to look at the result
from a different angle. This set of plots reflects how cost rates and risk preferences affect the
strategies’ sensitivity to the price change over time by how a simulated path from the validation
set is changing overtime.

5.2.1 General Behaviour
Impact of the Cost Rate

Now let us fix the risk aversion coefficient, i.e., look at only a sub plot in the FNN training results
(figure 5.3(a)) and GRU training results (figure 5.3(b))!. The red solid line is our benchmark, the
Black-Scholes hedging strategies over the time. This time we look at the plot where A = (.1 first
since it will be the one that most sensitive to change of cost rate as mentioned in section 5.1.1.

When A = 0.1 and cost rate = 0, we can see that the volatility of our strategies ¢ are following
the Black-Scholes strategies more closely, i.e., whenever the Black-Scholes hedging ratio is change,
the deep hedging ratio are more likely to follow the changes at the same rate and amount. This is
reasonable since the cost is in the tolerance range, and the frequency and magnitude in executing
the trades do not cause much extra spending. As cost rate increase to the next level, our deep hedg-
ing strategies hecome smoother and smoother and insensitive to the change in the underlying price.

Moreover, from the plot of ¢ v.s. S; (figure 5.1) as shown in the section 5.1, we know that
around the strike price it has the steepest slope, meaning the strategies is most sensitive to the
change in price and becomes unstable around strike price. As a result, if the underlying spot price
is around K, then at a reasonable amount (refer to values) of cost rate level, the curve will still
be volatile due to the relatively high sensitivity to the change in price.

For example, in our plot 5.3 at A = 0.1 and cost rate = 0.5%, we can see the purple dashed line
still have a relatively large decrease around ¢ € (0.57,0.67), following the Black-Scholes strategies.
It is cansed by this sensitivity towards price change around K and results in a sharp increase in
the hedge ratio. We can see from the black-schoels strategies that the price of the underlying is
staying out-of-the-money at the end of the horizons since the low hedge ratio corresponds to a low
spot price, so our deep hedging strategy, represented by the purple line in this scenario, is less
responsive to the change in price due to the rise in transaction cost and becomes smooth again.

Impact of the Risk Preferences

Let us keep looking at the figure 5.3. Now let us move on to the effect of the A on the deep hedging
strategies. In section 5.1, we know that the deep hedging strategies are sensitive to the change in
Ain a high-cost environment, so we are going to look at the yellow dotted line in the four subplots
first, which is under the scenario of cost rate = 5%. As A increases, it becomes closer and closer
to the Black-Scholes ones at each time stamp.

When A = 0.1, cost rate = 5%, the plot is matching the sitnation in the previous plot of hedge
ratio versus the spot prices (figure 5.1) under the same cost rates and risk preference levels. At
t = 0.97, which is a near-maturity time, we do not hedge at all spot price level and it is intuitively
predicable that the previous strategies are all 0 since normally the at the end of the trade horizon,
strategies are tend to be more responsive and dynamic.

The blue curves in the figure 5.3 demonstrate typical impacts from the change in A's. When
cost rate = 0, intuitively, if we are more willing to expose to the risk and less risk-averse, i.e.,
A = 0.1, the deep hedging strategies would tell trader to hedge more when in-the-money and hedge
less when out-of-money as shown in the figure 5.3, so we could have the chance to maximize our
PnlL instead of hedging perfectly to compensate the potential risk.

IThe plot for LSTM results is in the figure B.3.
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Figure 5.3: The plot of hedge ratio along the time horizon at different cost rates and risk preferences
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5.2.2 Behaviour Specific to LSTM and GRU

As shown in the figure 5.3, if we fix the cost rates at higher levels, as X increases, the changes are
initially ocenrring from the tails of the flattened curves, which around the maturity. At the end of
the trade, traders must decide whether execute the trade or not, so the changing in the strategies
are mostly occurs when the trade horizon is approaching to the end. Intuitively, FNN provides
the strategies for trader to trade only when it is necessary just before maturity to avoid the cost.

5.2.3 Behaviour Specific to RNN

On the other hands, GRU and LSTM are able to capture more information. In general, as we
can see from the figures 5.3(b) and B.3, they can capture more variation in the price change. This
can be reflected while the cost rate is high, which is resulting from its features of learning from the
past. The GRU and LSTM are expected to perform well regarding the path dependent product.
However, the product we are predicting is the vanilla call option which is not path-denpendent. We
expect that when A is big and without cost rate, the curve should overlap the Black-Scholes curve.
Comparing the red curve (Black-Scholes hedging strategies) and the blue curve (A = 10, cost-free)
in the last sub figure under all three training models, FNN 5.3(a), LSTM B.3 and GRU 5.3(b),
From figure 5.3(b), FNN has the prediction that are closest to the Black-Scholes’. However, alter
incorporate the proportional transaction costs, it becomes path-dependent, but in this case we do
not have a benchmark to compare to.

5.3 Histogram of PnL

In order to better compare the results, it is necessary to take a look at the PnL since it measures
our final gain after applying the strategies. Let us now see the general behaviour of the Pnls
under different cost rates and risk preferences.

5.3.1 General Behaviour

Since the general trends for all training modes are similar, in this section we demonstrate the
variations regarding the FINN results?, as shown in figure 5.4.

Similarly, there are 16 scenarios for different cost rates and risk preferences. Sub plots in a row
illustrate the inereases in the cost rate, while for each column it represents the increases in the
risk-averse level. Each of the sub plot have a histogram under the deep hedging strategies, as shown
in red, and a histogram under the Black-Scholes hedging method, as shown in blue. There are also
two lines locating the mean and median of the PnLs resulting from deep hedging strategies. The
two lines aim on better visualizing the movement of the general shifts and the skewness caused by
the changes in the cost rates and risk preferences.

Impact of the Cost Rate

Fixing A, in the figure 5.4, for each row, we observe that as cost rates increases,

1. the spread of the histograms becomes larger and larger;

The widen in the spread is cansed by the less traction to the changes in the prices as we
discussed in the previous section (section 5.1 and the section 5.2). We know that under the
Black-Scholes assumption, the mean of the PnL is around zero since it is calculated under the
risk-neutral measure, so the more discrepancy from the Black-Scholes strategies, the more
wider the spread is.

2. the histogram of the deep hedging strategies shows a skewness to the left, which can also be
demonstrated by the growing distance between the mean and median;

2The LSTM PnL results are shown in figure B.4, and GRU PoL results are shown in figure B.5
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Let first see an extreme case, the plot at top right corner in the figure 5.4, i.e., A = 0.1 and
cost rate = 5%, where our predicted hedge ratio ¢y = 0 for all £. If we do note hedge at all,
the distribution of PnL will be an inverse L shape, which has a highest median among all
plots but the loss can reach a highest among all other situations, either. From (3.3.4), we
can know that

PnLz(Vo,¢38,k) =Vo+Xilg 1+ (Sipr — Si) —el¢s S, k) — Z

so when spot price is out-of-the-money, our maximum gain is the premium we receive from
the contingent claim Z. In the meanwhile, the potential loss is unlimited as well, demon-
strated in the left tail of the histogram.

For a less extreme case, with a reasonable cost ratio, it follows the same logic. We know that
the cost would flatten the hedge rate curve with repect to time and spot price, indicating
that we hedge less when it is in-the-money and hedge more when it is out-of-the-money. As
long as the hedging strategies are not 0 at all time stamps, it will cover the loss caused by the
Z using the cashflow gained from premium depends on the frequency and amount a trader
would like to spend on it.

3. mean of the deep hedging also shifts to the right.
We can see that it is not obvious when the cost rates are controlled in a reasonable amount.

The obvious shift happens when the cost rate is extremely high and the shift in the skewness
is very likely to be the reason.

Impact of the Risk Preference

The changes in the PnL histrogram caused by A are consistent to our previous observation. That
is, fixing the cost rate, when A is increasing, our strategies are closer to the Black-Scholes delta
hedging strategies, pursuing a 'perfect’ hedge, and as a result the Pnl will becomes more sym-
metric and tightened.

Details for the performance of histograms under different networks are in section 5.5.
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5.4 indifference Pricing

The rest of the tables list the indifference prices obtained from the deep learning training. Each ta-
ble presents the results under 16 scenarios with a specific training mode, where table 5.1 shows the
results under FININ training, table 5.2 is the results under LSTM training and table 5.3 contains
the results under GRU training. The cells that are bolded in yellow represent that the model has
obtained the lowest indifference price compared to the other 2 models.

We introduced in section 3.3.4 that the indifference price is the minimal amount compensating
the risk from the contingent claim. We prefer a lower value in the result. As we can see from the
table, when the cost rate and A are the same, the GRU training results reach the lowest amount
in the indifference prices for 9 scenarios (as bolded in the table), while the other 3 scenarios have
the lowest indifference prices obtained by the FININ model. GRU obtains better results than the
other two models, especially in a high-cost environment.

Moreover, we have done the sanity check on the indifference price as well. [25] pointed out that
the indifference price with small transaction cost follows the relation p, — pok?'3, where k is the
cost rate. In other words, log(p: — pn) should have a linear relationship with k. We calculated
and plotted them to check if our indifference prices were reasonable. The plots for indifference
prices calculated under the FNN, GRU and LSTM model are shown in figure 5.5, figure 5.6 and
figure B.1, respectively.

When A = 1,5 and 10, the sample points are in a line, and the slopes are all in the range of
(0.7,0.81), which satisfies the linearity condition. For A = (.1, points are not behave as expected.
The issues may be cansed by the training. Intuitively, the exponential utility function has small
gradients when A is small so the update in gradient descent (section 2.4) is small, causing insuffi-
cient training.

Table 5.1: results of FNN indifference prices under different cost rates and risk preferences

cost rate = 0 | cost rate = 0.05% | cost rate = 0.5% | cost rate = 5% | BS Price
A=10.1 0.1975 0.1992 0.2039 0.2060 0.1974
A=1 0.1977 0.1998 0.2123 0.2694 0.1974
A=3 0.1992 0.2005 0.2170 0.3240 0.1974
A =10 0.1990 0.2014 0.2188 0.3457 0.1974

Table 5.2: results of LSTM indifference prices under different cost rates and risk preferences

cost rate = 0 | cost rate = 0.05% | cost rate = 0.5% | cost rate = 5% | BS Price
A=10.1 0.1978 0.1989 0.2039 0.2060 0.1974
A=1 0.1978 0.1993 0.2080 0.2663 0.1974
A=3 0.1988 0.2008 0.2118 0.2961 0.1974
A=10 0.1996 0.2021 0.2317 0.3143 0.1974

Table 5.3: results of GRU indifference prices under different cost rates and risk preferences

cost rate = 0 | cost rate = 0.05% | cost rate = 0.5% | cost rate = 5% | BS Price
A=10.1 0.1977 0.1987 0.2039 0.2060 0.1974
=1 0.1977 0.1992 0.2080 0.2643 0.1974
A=5 0.1985 0.2002 0.2117 0.2951 0.1974
A=10 0.1993 0.2015 0.2142 0.3086 0.1974
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5.4.1 General Behaviour
Impact of the Cost Rate

Fixing the risk-averse level A, looking at each row, we observe that there is a positive relationship
between the indifference prices and the cost rates. Increasing the transaction cost pushes up the
price.

Impact of the Risk Preference

If we are looking at the tables regarding the colummns, we can find that the more risk-averse we
are, the higher the indifference prices are, especially when market frictions are incorporated.

FNN Training Results
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Figure 5.5: sanity check on the indifference price for FNN model under different risk aversion level

5.5 Statistical Test on Results

In order to better compare the results with different cost rates and risk preferences under different
models, we would like to examine the overall performance on the PnL. Since the goal for hedging
is to ensure that traders are able to pay back the contingent liability, the PnL is expected to be
at least 0, i.e., we want the

PnL = (initial wealth + hedge portfolios) — (contingent claim + cost)

to be no less than 0. This motivates the statistical tests on the PnL distribution. Clearly, from the
results, the shape of PnLs under different scenarios is skewed so that the medians can reflect the
overall performance better than the means. As a result, the non-parametric tests on distribution

and median are adapted in our dissertation.
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GRU Training Results
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Figure 5.6: sanity check on the indifference price for GRU model under different risk aversion level

5.5.1 Kolmogorov Smirnov Test

Results

In the table 5.4, it presents the tests among the three training models, FNN, LSTM and GRU,
where the first column is the p-values [or comparing the distribution of PnLs between FNN train-
ing and LSTM training, second column is for FNN and GRU and third column is for GRU and
LSTM.

We observed that at a 99.9% confidence level, all results snggest that we will reject the nnll
hypothesis that the two empirical distributions are the same. In other words, less than 0.1% of
the times that the two empirical distributions are the same. From a statistical point of view, all
distributions are significantly different and it requires us to do further analysis on how they are
different from each other.

5.5.2 One-sample Signe Test
FNN Results

As shown in the bolded cell in table 5.5, almost all scenarios have large p-values approaching 1, indi-
cating that we do not have enough evidence to reject the null hypothesis Hy : median(Pnlpyy =
0) except for the condition where A = (1.1 and cost rate = (. That is, less than 0.1% of the times
the median of Pnls under the FNN training will larger than or equal to 0, and we reject Hy at a
99.9% confidence level. This can also be reflected by the histogram of PnL under FNN training,
as shown in the top left corner of the figure 5.4.
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Table 5.4: p-values for the ks-test Hy: {Pnlyoder,iti=1, v and {PnLlygdel,: fim1

same distribution, where N is the number of simulated underlying paths

scenarios FNN v.s. LSTM | FNN v.s. GRU | GRU v.s. LSTM
A=01,cr=10 0.0 0.0 0.0
A=0.1,cr =0.05% 0.0 0.0 0.0
A=0.1,er =0.5% 0.0 0.0 0.0
A=0.1,er =5% 0.0 0.0 0.0
A=1ler=20 0.0 0.0 0.0
A=1,er =0.05% 0.0 0.0 0.0
A=1,er =0.5% 0.0 0.0 0.0
A=1l,er =5% 0.0 0.0 0.0
A=h,er=10 0.0 0.0 0.0
A=5,er =0.05% 0.0 0.0 0.0
A=5,er =0.5% 0.0 0.0 0.0
A="5,er = 5% 0.0 0.0 0.0
A=10,cr =10 0.0 0.0 0.0
A=10,er = 0.05% 0.0 0.0 0.0
A=10er = 0.5% 0.0 0.0 0.0
A=10,cr = 5% 0.0 0.0 0.0

Table 5.5: p-values for the one-sample sign test Hy : medion(PnLpnn) = 0:
cost rate = 0 | cost rate = 0.05% | cost rate = 0.5% | cost rate = 5%

A=01 0.0 0.997434 1.0 1.0
A=1 1.0 1.0 1.0 1.0
A=35 1.0 1.0 1.0 1.0
A=10 1.0 1.0 1.0 1.0

Table 5.6: p-values for one-sample sign test Hy : median(Pnlpsrv) = 0;
cost rate = 0 | cost rate = 0.05% | cost rate = 0.5% | cost rate = 5%

A=0.1 1.0 1.0 1.0 1.0
A=1 1.0 1.0 1.0 1.0
A=35H 1.0 1.0 1.0 1.0
A=10 1.0 0.0 1.0 1.0

LSTM Results

Similarly, as bolded in the table 5.6, when we are training using the LSTM model, we have a
significantly small p-value when A = 10 and cost rate = 0.05% . For that scenario, we reject the
null hypothesis Hy : median(PnLypspas) = 0 also at a 99.9%-confidence level.

GRU Results

Table 5.7: p-values for the one-sample sign test Hy : median(PnLgru) = O;

cost rate = 0 | cost rate = 0.05% | cost rate = 0.5% | cost rate = 5%
A=10.1 1.0 1.0 1.0 1.0
A=1 1.0 1.0 1.0 1.0
A=5 1.0 0.999994 1.0 1.0
A=10 1.0 1.0 1.0 1.0

As shown in the table 5.7, for results coming from the GRU training, p-values under all cost
rates and risk preferences are nearly 1, so we do not have enough evidences to reject the nmll
hypothesis at a Hy : median(PnLgru) = 0 at a 99.9% significant level for all scenarios. That is,
under all circumstances, at least 99.9% of the times the median for the PnLs will be non-negative
under the GRU model.
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5.5.3 Two-sample Wilcoxon Signed-rank Test

In the previous section, we know that the deep hedging strategies trained by different models
produce non-negative PrnLs at a 99.9% level of confidence for almost every scenario in our exper-
iments. The next step is to identify which model structure provides a relatively higher median.

LSTM v.s. FNN

Table 5.8: p-values for the two-sample signed-rank test H,, @ median(LSTM) < median(FNN)

cost rate = 0 | cost rate = 0.05% | cost rate = 0.5% | cost rate = 5%
A=10.1 1.0 1.0 1.0 0.0
A=1 1.0 0.488999 0.0 0.000837
A=35 0.0 1.0 1.0 0.0
A=10 1.0 0.0 1.0 0.108538

For results in table 5.8, there are 6 scenarios (bolded in the cells) having pval < a = 0.1%,
indicating that we are rejecting the null hypothesis and the medians for LSTM training are smaller
than it for the FNN training at a 99.9% confidence level. Especially when the cost rates are high
(cost rate = 5%), the medians under the FNN training demonstrates better results.

Table 5.9: p-values for the two-sample signed-rank test H,, : median(FNN) < median(LSTM)

cost rate = 0 | cost rate = 0.05% | cost rate = 0.5% | cost rate = 5%
A=10.1 0.0 0.0 0.0 1.0
A= 0.0 0.511001 1.0 0.999163
A=5 1.0 0.0 0.0 1.0
A=10 0.0 1.0 0.0 0.891462

On the contrary, from the table 5.9 we observe that LSTM performs better than FINN in a
relatively lower-cost environments (cost rate = 0, 0.05% and 0.5%). Under such environments,
over 50% of the scenarios have medians in the PnLs under the LSTM model higher than it under
the FNN model, at a 99.9% confidence level. Moreover, notice that for a low risk-averse setting
(A =0.1), LSTM also performs better.

Table 5.10: summary on LSTM and FNN median tests at 99.9% level of confidence

condition count on scenarios  percentage out of all scenarios
median(LSTM) < median(FNN) 6 37.5%
median(LSTM) > median(FNN) 8 50%
median(LSTM) = median(FNN) 2 12.5%
total scenarios 16 100%

Overall speaking, medians are higher under the LSTM model than the FNN model, while
FNN can do better in a high-cost environment, as shown in the table 5.10. Visualization on the
PnlL distribution for the two models under each scenarios are presented in figure 5.7.

49




$20TaIeJaId HSLI pUR S9jRl 1500 JLILHIP 18 WIET PUR NN M sardajeays Suispar deap Jjo U :L°¢ 2msL]

(4] ro-
| h .0
- 000T
- 000z
- 000
ud HO WLST e
ud HO NNA e - 000F
ueIpBW Tud WIST —
ueIpaw ud NNd ——
000
%0°'5==1el }502 0T =Y
0
| .,
oot
- (00T
ud HO WLST B . g0
Tud HO NN e
UBIp3W Jud W1S] ——  000r
ueipaw —
1P Tud NN4 -
%0°G=31el 1502 s=v
0 oo zo-
] \ h 5
005
- (00T
- 0051
Tud HO WLST W - 000T
Tud HO NNd s - 0052
UEIPSLW Jud WLST ——  nor
UBIPSW JUd NNA ——
%0°G=a)el 1502 =Y
z0 00 zo- o= ,
- 00001
- 00002
0000E
ud HO WLST e
Jud HO NN s~ 0007
ueIpaLy Jud WLST —— - 00005
ueIpAW Tud NNA ——
%0'G=33eJ 1502 T0=Y

[4)

9%6'0=31€J 1503
N.._u

%5 0=1€ 1503
N__u

%6 0=2a31el 3502
m_a

oo

oo

oo

oo

vo-

Jud HO WLST
Tud HO NN4
ueIpaw Jud W1S1
uelpaw Tud NN4

vo-

ud HO W1ST
Jud HO NN4
ueIpaw ud W1ST
ueipawl Jud NN4

o

ud HO WiST
TuUd HO NN4
ueipaw Jud W1ST
ueIpBW Tud NN4

%8 '0=2a]€l 1500

Tud HO WLST
Tud HO NNS
uelpaw Jud W1S1
UBIpaW Tud NNA

¥

- 00ST

0005

00SL

- 000OT

00T

- 0005T

0001
0002

- 000E
- 000F

000%
0009
000L

- 005

- 0001
- DOST
- 0002
- 0052
- DOOE

- DOSE

o=V
WLST 'S'A NN4

%60 0="2)eJ 1507
0

%50 0="2)eJ 1507
z0 0

%G0°0=>9}eJ 3502
n_o L)

%S0°0=13]ed 3500

[

ud HO WLST mam
TUd HO NNd
uelpaw ud Wis1 —
uEIpaw Jud NN4

Tud HA WLST

Tud HO NN4
UBIPEW Tud W1ST
ueipaw Tud NN4

0 T

TUd HO WILST
ud HO NNS
UeIpaW Jud W1ST
ueipaw Tud NN4

_o [ L

Jud HA WLST

Tud HO NN4
uelpaw ud Wi1s1
uelpaw Jud NNd

- 0005

- 0000

- 000ST

= 0000

= 0000

= 000ST

00002

- 000Z
- D00t

- Dooe

- 0000T
- 000TT
- 000tT

00SE

9%0°0==2)€eJ 1503
N,.D

9%0°0=>2)€ed 1503
o

%0°0=>3}8J 3500
m,o

%0°0==a]eJ 3502

ud HO WS

“Tud HO NN4

ueIpaw Jud Wis1
uelpaw ud NN4

00

o= o=

Tud HA 1S
Tud HO NN4
UBIPSW Tud WLST
ueIpawW Jud NN4

o0 T o

Tud HO WLST
ud HO NN4
ueipawi Jud WiS1
ueIpaW Tud NN4

oo T Fo-

Tud HA WAST
Tud HO NN4
uelpaw Jud Wis1
ueipaw Jud NN4

o
=
I

w
I

T0=

- 000sL

- 00002

- 0005

- 0000T

- 00051

- 0000C

- 0052
- 0005

00sL

- 0000T
- 00STT

- 00051

000T

- 000z
- 000

- 000%

- 0009

50




LSTM v.s. GRU

Table 5.11: p-values for the two-sample signed-rank test H,, : median(LSTM) < median(GRU)

cost rate = 0 | cost rate = 0.05% | cost rate = 0.5% | cost rate = 5%
A=10.1 0.0 0.000010 0.630753 0.0
A=1 1.0 0.142254 0.0 0.0
A=35 1.0 1.0 1.0 1.0
A=10 1.0 0.0 1.0 1.0

From the table 5.11, we observe that under 6 scenarios that the pvals< 0.1%, meaning that the
medians obtained from the LSTM model are lower than it from the GRU model, at a confidence
level of 99.9%. The scenarios mainly oceurs when the risk-averse level is low, ie., A = 0.1.

Table 5.12: p-values for the two-sample signed-rank test H, : median(GRU) < median(LSTM)

cost rate = 0 | cost rate = 0.05% | cost rate = 0.5% | cost rate = 5%
A=10.1 1.0 0.999990 0.369247 1.0
A= 0.0 0.857746 1.0 1.0
A=35 0.0 0.0 0.0 0.0
A =10 0.0 1.0 0.0 0.0

Moving on to the table 5.12, we find that for 8 scenarios that the p values are smaller than
the significance level o« = 0.1% when A = 1, 5 and 10, which means that LSTM generates higher
medians in PnLs when the risk-averse levels are relatively higher, at a 99.9% of confidence level.
That is, for lambda = 5 and 10, only 1 out 8 scenario for which LSTM is nof better than GRU.

Table 5.13: summary on LSTM and GRU median test at 99.9% level of confidence
condition count on scenarios  percentage out of all scenarios

median(LSTM) < median(GRU) 6 37.5%
median(LSTM) > median(GRU) 8 50%
median(LSTM) = median(GRU) 2 12.5%
total scenarios 16 100%

Table 5.13 demonstrates the overall conditions regarding the results under different cost rates
and risk-averse level. Surprisingly the statistics are the same as in table 5.10, but LSTM are better
than GRU in a different perspective. While the differences in performance for LSTM and FNN
mostly appear among different cost rates, the LSTM model differentiate from the GRU model
when the risk-averse levels change. LSTM performs better in a higher risk-averse environment.
The comparison of the Pnl distribution between LSTM and GRU can be found in figure 5.8.
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FNN v.s GRU

From the previous two sections, we know that LSTM model ontperforms the GRU and FNN
from different perspectives when we are comparing the medians under different scenarios. Now we

are examining the performances between GRU and FINN in this section.

Table 5.14: p-values for the two-sample signed-rank test H,

: median(FNN) < median(GRU)

cost rate = 0 | cost rate = 0.05% | cost rate = 0.5% | cost rate = 5%
A=10.1 0.0 0.0 0.0 1.0
A= 0.0 0.722204 1.0 1.0
A=5 1.0 0.999521 0.0 1.0
A=10 0.999998 1.0 0.0 1.0

The table 5.14 demonstrates that under 6 scenarios (bolded in the cells) we reject the null
hypothesis that Pnls under GRU model are having higher median than it under FNN model.

At a cost rate of 0.5%, GRU performs better for most of the risk-averse levels.

Table 5.15: p-values for the two-sample signed-rank test H,

- median(GRU) < median(FNN)

cost rate = 0 | cost rate = 0.05% | cost rate = 0.5% | cost rate = 5%
A=10.1 1.0 1.0 1.0 0.0
A=1 0.999511 0.277796 0.0 0.0
A=5 0.0 0.000479 0.0 1.0
A=10 0.000002 0.0 1.0 0.0

In table 5.15, under 9 conditions for medians under the FININ training are greater than it under
the GRU training. Moreover, it is consistent that the FINN model produces higher medians under
the circumstances when cost rates are high (cost rate = 5%). Moreover, the FNN also performs
better under thigherger risk-averse levels (A = 5 and 10).

Table 5.16: summary on GRU and LSTM median test at 99.9% level of confidence

condition count on scenarios percentage out of all scenarios
median(FNN) < median(GRU) 6 37.5%
median(FNN) > median(GRU) 9 56.25%
median(FNN) = median(GRU) 1 6.25%
total scenarios 16 100%

The statistics in the table 5.16 show that in general FNN are better than GRU, especially
under a high risk-averse and high cost rates level environment. In other words, FNN performs
better than GRU if we are adapting conservative strategies. Visualizations can be found in
figure 5.9.
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Chapter 6

Conclusion

In this dissertation, we used the deep hedging method to solve the pricing and hedging problems
of the derivatives under certain market frictions and risk preferences. The hedging and pricing
problems can convert to deep learning optimization problems by setting up appropriate input and
output values and objective functions. In particular, the input will be the market states where
relevant market information such as underlying prices are included. The outputs are the predicted
hedging strategies using certain deep learning models, and it is the so-called deep hedging strate-
gies. Finally, we set the objective functions as the risk measurement regarding the PnrlL resulting
from the deep hedging strategies. In the context of deep learning, the deep hedging strategies are
a minimizer to the objective functions, while speaking in the language of finance, deep hedging
strategies are the strategies that minimize the risks of hedging at a certain level of preference in
the risk exposure. Moreover, it we choose a convex measure applied to the Pnl, we can get a
fair price for the derivatives even under an incomplete market. The pricing problem can also fit
into the deep learning framework, essentially the difference between two optimized risk measures
regarding the Pnl.

We are interested in how the changes in the costs of transactions and risk preferences impact
our deep hedging strategies and indifference prices, and how they vary under different deep learn-
ing models. We applied the proportional transaction cost which charges at a constant rate on
our change in portfolio when executing the trade at each time stamp. Moreover, we incorporated
the risk measure by inputting the Pnl into the exponential utility functions, so the objective of
the deep learning model is to minimize the empirical mean of the exponential utility functions
regarding the Pnl.

The deep hedging strategies and the indfference prices obtained under different deep learning
models, FNN, GRU and LSTM, behave consistently. The increases in the transaction cost make
the predicted hedging strategies less sensitive to the changes in spot price over time, making it a
smoother version of the black-sheoles hedging strategies. In other words, the amount of changes in
the deep hedging strategies will be less than the amount of changes in the Black-Scholes strategies
to avoid the costs in transactions. The higher the cost rates are, the less change in the hedge ratios
over time. If the cost rate is high enough, traders are expected to trade at a constant hedge ratio,
and in an extreme case, such as when the risk-averse level is low and the cost rate is high, the
predicted hedge ratios are 0 to avoid the cost. The discrepancy between the deep and Black-Scholes
hedging strategies causes a larger variance in our PnlLs under a high-cost environment. On the
other hand, if we fix the cost rate and increase the risk-averse level, our hedging strategies are
closer to the Black-Scholes strategies since under the Black-Scholes strategies we are expected to
perfectly hedge the portfolios.

The three deep learning models used in the dissertations generate reasonable results and we
conduct the statistical tests on the median of Pnls to investigate the differences in the overall
performances under different models. Owerall, under 16 different scenarios (with different cost
rates and risk preferences), LSTM model generates higher medians than the others in most cases,
while FNIN performs the best under a high-cost environment. LSTM stands out in producing
higher medians in PnLs by its well-performance under the high risk-averse levels. Compared to the




FNN and LSTM, the GRU model generates relatively lower medians in most of the scenarios.
However, speaking of the indifference pricing, GRU model obtained the lowest indifference prices
for 9 out of 16 scenarios, FNN model obtained 3 lowest indifference prices and LSTM were not
obtaining any lowest prices for any conditions.

We took the European call option as the contingent claim for hedging, which is a path-
independent derivative. For future developments, path-dependent options such as barrier option,
and Asian option can also be also taken into considerations, where the LSTM and GRU models
are expected to handle them well. It is also more than welcome to include the real market data
than the Black-Scholes market simulators. Regarding the model training, we used the expectation
of the exponential utility functions as the risk measure to the PnLs, while other risk measures such
as the Conditionanl Value At Risk, p(z) = inf cp{AE[(w — )]} [4, section 2.5], mean-variance
metriz, p(z) = ME(z?) — E(z)?) — E [4, section 2.5, and sharp ratio are also popular and worth
for testing.
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Appendix A

Examples

Figure A.l: RNN structure with feedback coming from the output o'* [1, p375]

Figure A.2: RNN structure with only 1 output at the last time stamp [1, p376]
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Appendix B

Other Related Results

B.1 LSTM Training Result

B.1.1 indifference Price

sope=0385

LSTM Training Results
A=010

slope=0.786

-

dope=0731 A =500 slope=0.699

A=100

A=10.00

Figure B.1: sanity check on the indifference price for LTSM model under different risk aversion

level
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B.1.3 hedge ratio versus time

¢:(hedge ratio) ¢(hedge ratio) ¢:(hedge ratio)

¢(hedge ratio)

Figure B.3: The plof of hedge ratio
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Appendix C

GRU and LSTM Training
Algorithm

Algorithm 3: training procedures for GRU and LSTM

Input : Initial model parameters: 8y

Input : # epochs: nepoch

Input : # batches: nyguep

Input : batch size: b

Input : fast learning rate: €7,

Input :fast learning rate: €.,

Input :adam_learning algo: adam_learning(8, €)
Input : # slower rate iterations: njerare

/+ train model using adam algorithm with a faster learning rate *

1 for ean {1, 2, ..., n.}: do
2 initialize Bf} = By for the first time of training, otherwise, Bf} = B;;rll“_h
3 for jin {1, 2,..., n,} do
4 | 9;_'_]_ = rrrfrrrnJertrrafrfg(B_j_.E_;“H,gj // referred to algorithm 2
5 end
¢ end
/+ continue training model using adam with a slower learning rate, and iterate the
train 7 at the slower rate for Migerate times. */
7 for kin {1, 2, ..., Niterate } do
8 initialize 8} , = 91:;}’:1‘:_‘;{"‘ for the first time of training, otherwise, 8} , = 9:;;::"":"_,‘__1.
9 for :in {1, 2, ..., ne}: do
10 initialize 8}, = Bﬁ;”’l’f:‘:‘ for the first time of training, otherwise, 8}, , = Bi‘:rll“_h_k
from the last batch
11 for jin {1, 2, ..., n} do
12 | 9;_'_17;‘ = rr.n’.rr.m._frfrr.r‘nin.g(9_;;‘_.ﬁmm.) // referred to algorithm 2
13 end
14 end
15 end

16 return @ ot

Mbatch Miterate
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