

The Rayleigh-Taylor instability and its impact on CO₂ mixing in saline aquifers

Supervisor: Prof Ann Muggeridge (<mailto:a.muggeridge@imperial.ac.uk>) and others (TBD)

Department: Department of Earth Science and Engineering

Overview:

This project will involve developing numerical models to study the Rayleigh-Taylor instability in porous media and methods to upscale it. It would suit anyone who has or is willing to learn a scientific computing and fluid dynamics background.

More background

One way to mitigate anthropogenic climate change due to carbon oxide emissions into the atmosphere is to store the CO₂ in underground saline aquifers rather than release it into the atmosphere. The expectation is that the CO₂ will then remain trapped underground for millennia, similar to the way that hydrocarbons have been trapped in underground reservoirs.

After the CO₂ is injected it will begin to dissolve into the upper part of the saline water of the aquifer. This is a relatively slow process but it reduces the mobility of the CO₂ and thus increases the storage security. As the CO₂ saturated brine is denser than the unsaturated brine it will want to sink through the aquifer towards the bottom. This leads to an instability, known as the Rayleigh Taylor instability, which results in the dense CO₂ saturated water forming fingers that descend downwards into the brine, increasing the rate of mixing of CO₂ into the water (see Figure 1, e.g. Riaz et al., 2006; Neufeld et al., 2010).

88

A. Riaz, M. Hesse, H. A. Tchelepi and F. M. Orr Jr

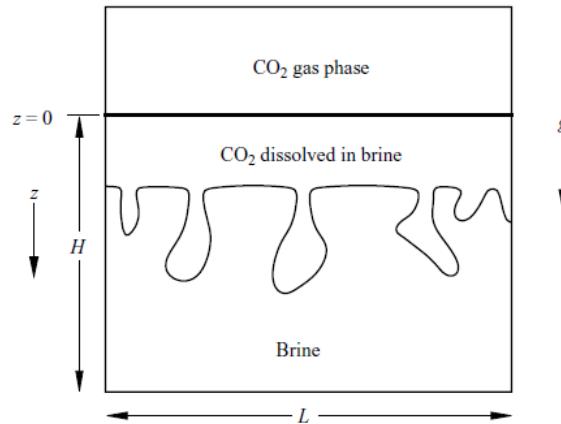


FIGURE 1. Sketch of the CO₂ sequestration process in a simple geometry. A CO₂ gas phase accumulates along the impermeable top boundary. It slowly dissolves into the underlying brine, forming a heavier boundary layer. The resulting gravitational instability leads to the convective transport of CO₂-saturated brine plumes.

Figure 1: After Riaz et al. (2006).

Numerical flow simulation is typically used by reservoir engineers to estimate the likely performance of alternative development plans for CO₂ storage. One aspect of this performance is storage security including how quickly the CO₂ will dissolve into the aquifer. The problem is that the Rayleigh Taylor instability depends on the mass diffusion as well as

the reservoir rock properties. This makes the numerical modelling of the Rayleigh instability challenging because very fine grids are needed to ensure that physical diffusion dominates over numerical diffusion.

The student will be working with an existing research code in C++, increasing its functionality and applying it to the modelling of the Rayleigh-Taylor instability. If interested they could also complement this research with mathematical analysis and applied reservoir simulation using commercial simulation software. There may also be an opportunity to undertake complementary beadpack experiments using a beadpack or Hele-Shaw cell

Research Environment: The researcher will be based within the Subsurface CO₂ Research Group <https://www.imperial.ac.uk/subsurface-co2/> We are a diverse group of individuals with background in geology, geochemistry, reservoir engineering, environmental engineering, applied mathematics, and numerical modelling. Researchers from the group have gone on to highly successful careers in academia, industry (CO₂ storage and otherwise), consulting, law, finance, and government. The researcher will be supported to participate in international conferences and encouraged to participate in internships and secondments as per their professional interests.

References

Abdul Hamid, S.A., Muggeridge A.H. (2020) Fingering Regimes in Unstable Miscible Displacements. *Physics of Fluids* 32, 016601

Keable, D., Jones, A. D. W., Krevor, S., Muggeridge, A. H., Jackson, S. J. (2022) The effect of viscosity ratio and Peclet number on miscible viscous fingering in Hele-Shaw cells. *Transport in Porous Media* 143(1), 23-45

Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A. and Huppert, H. E. (2010). Convective dissolution of carbon dioxide in saline aquifers. *Geophysical Research Letters* 37, L22404.

Riaz, A., Hesse, M., Tchelepi, H. A. and Orr, F. M. (2006). Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. *J. Fluid Mech* 548, 87-111.