
MEng Individual Project

Imperial College London
Department of Computing

Semantics of RDMA Remote
Read-Modify-Write Operations

Author:
Max Stupple

Supervisors:
Dr. Azalea Raad

Dr. Guillaume Ambal

Second Marker:
Prof. Alastair F. Donaldson

June 13, 2025

Abstract

Remote direct memory access (RDMA) allows each computer in a network to directly
access the memory of every other machine, without involving the operating system of
either side. This improves data transfer speeds, but reduces synchronisation, making it
harder to reason about program behaviours. Formal memory models allow us to precisely
describe which program behaviours are allowed, and to verify that a particular program
only observes behaviours that the programmer expects.

The rdmatso memory model describes the semantics of RDMA, but it lacks support
for remote read-modify-write operations. Read-modify-write (RMW) operations are the
foundation for all synchronisation in single-machine concurrent programming, and RDMA
remote RMWs allow the same techniques to be lifted to the network level, facilitating
high-speed, fine-grained concurrent programming.

In this report, we extend rdmatso with support for remote RMWs. We provide an
intuitive account of remote RMW behaviours, which has been reviewed and confirmed
by an expert from NVIDIA, a leading vendor of RDMA systems. We formalise these
behaviours through two models, one operational and the other declarative, and prove
that the two models are equivalent. This work expands the range of programs for which
rdmatso can describe a formal semantics, providing a robust mechanism to understand
and reason about RDMA programs involving remote RMWs.

Acknowledgements

I owe great thanks to my supervisors, Azalea Raad and Guillaume Ambal, who have
kindly and patiently supported me throughout this project. This work has been not
only deeply interesting in itself, but also personally enlightening, in that it has played a
significant role in my decision to pursue further research. I am very grateful to have had
the opportunity to work on this topic.

I would also like to thank my second marker, Alastair Donaldson, for his diligent
review of my interim report, which supported the final introduction and background
sections seen here. Thanks also to Haggai Eran, whose expertise in RDMA has been
invaluable in deepening and clarifying my understanding of this technology, and to Dan
Iorga, for helping me better understand the Alloy modelling language.

Finally, I want to thank all of my friends and family who have supported me through-
out this project and my degree. I am particularly grateful to my parents, who instilled
in me the curiosity and ambition that have driven me at Imperial, and to my partner
Laura, whose continual encouragement and support has helped me immeasurably.

Contents 2

Contents

1 Introduction 4

2 Background 6
2.1 Concurrency . 6
2.2 Synchronisation . 6
2.3 Memory Models . 7
2.4 RDMA . 9
2.5 Remote RMWs . 10

3 Overview 12
3.1 RDMA Concurrency . 12
3.2 Remote RMW Behaviours . 13

4 Operational Semantics 17
4.1 States of the Operational Semantics . 17

4.1.1 Memory . 17
4.1.2 Program State . 17
4.1.3 Store Buffers . 18
4.1.4 RDMA Operations . 18

4.2 Transitions of the Operational Semantics 19
4.2.1 Program Transitions . 20

4.3 Hardware Domains . 20
4.3.1 Hardware Transitions . 21
4.3.2 Queue-Pair Transitions . 21

5 Declarative Semantics 27
5.1 Events and Executions . 27
5.2 Semantics of a Program . 33

6 Equivalence 36
6.1 Structure of the Proof . 36
6.2 Annotated Semantics . 36
6.3 Annotated Semantics to Declarative Semantics 38
6.4 Declarative Semantics to Annotated Semantics 38
6.5 Operational and Annotated Semantics 39

7 Discussion 40
7.1 Conclusion . 40
7.2 Limitations . 40
7.3 Future Work . 40

A Declarations 44
A.1 Use of Generative AI . 44
A.2 Ethical Considerations . 44
A.3 Sustainability . 44
A.4 Availability of Materials . 44

Semantics of RDMA Remote RMWs Max Stupple

B Annotated Semantics 45
B.1 Annotated Labels and Inference Rules 45
B.2 Paths, Gluing, and Other Definitions . 50
B.3 From Annotated Semantics to Declarative Semantics 59
B.4 From Declarative Semantics to Annotated Semantics 67
B.5 Operational Semantics and Annotated Semantics 75

C Encoding the Declarative Model in Alloy 77
C.1 Prototype Encoding . 77
C.2 Example Litmus Test . 82

Chapter 1. Introduction 4

1 Introduction
Concurrency refers to the ability of a system to execute multiple tasks (threads) at once,
either by executing them simultaneously (in parallel) on multiple processor cores, or by
time-sharing a single core and frequently context switching between tasks. All modern
CPUs feature a multi-core design, so to maximise performance a program must distribute
its work across multiple threads, which can then run concurrently: if a program can fully
utilise all cores on a four-core multi-processor, then it would run in roughly one quarter of
the time compared to if it executed the same tasks sequentially on a single core. Since the
processor, not the programmer, decides how to distribute threads across cores and when
to interrupt a thread to allow another to execute, the programmer must assume that the
instructions of different threads may be executed in an arbitrary order. We call the rules
which govern the order in which program instructions may executed the memory model,
or concurrent semantics, of that processor.

Remote direct memory access (RDMA) technologies enable a machine to directly
read and write the memory of another machine within the network, bypassing the op-
erating system of each and thereby reducing the number of CPU cycles consumed in
transferring data [1]. This is particularly useful in massively parallel computer clusters
(e.g. cloud computing, big data and scientific computation), where this enables high-
throughput, low-latency networking [2]. While older implementations of RDMA, such as
InfiniBand [3], required specialised hardware, newer implementations of RDMA, such as
RDMA over Converged Ethernet [4], operate on top of ordinary networking infrastruc-
ture. This has brought costs in line with traditional networking [5], leading to widespread
adoption of RDMA as of 2018 [6].

Remote read (get) and write (put) operations are dispatched to the network interface
card (NIC), which executes transfers in parallel as the program continues on the CPU.
Due to the independent operation of CPU and NIC for local and remote operations re-
spectively, instructions may not be executed in the order the programmer intuitively
expects, leading to unintended behaviours; this is comparable to the operation of shared
memory in a multi-processor. However, there is the additional caveat that the concurrent
behaviour is multi-tiered: a program consists of several threads, with those threads dis-
tributed across a number of machines (nodes) in the network (inter-node concurrency),
and each node executing several threads (intra-node concurrency). To write correct pro-
grams for RDMA networks, we need to know the order in which local (CPU) and remote
(NIC) operations are executed, how they can be reordered, and when the effects of those
operations become visible, both to local and remote threads.

To this end, similarly to how the concurrent semantics of Intel-x86 [7] or ARM [8]
have been formalised, there has been some progress in formally describing the semantics
of RDMA. Namely, two models exist in the literature: coreRMA [9] and rdmatso [10].
The coreRMA model is subject to several significant limitations, most notably that it
models intra-node concurrency as following sequential consistency: an unrealistic and
simplified memory model which no modern processor adheres to by default. rdmatso

is instead based on the memory model of x86 processors, a reasonable assumption as
Intel and AMD processors that use this architecture are widespread. However, rdmatso

does not model the behaviour of every remote operation. While it does describe get
and put operations, as well as remote fences useful for synchronisation, it omits remote
read-modify-write (RMW, also known as atomic) operations.

Read-modify-write operations are an essential tool for concurrent programming [11],

Semantics of RDMA Remote RMWs Max Stupple

and RDMA specifies remote RMWs to allow similar techniques to be applied at the
network level. These operations read, modify, and write a remote memory location, while
guaranteeing that no other remote RMW acts on that memory location between the read
and write. This enables the implementation of shared higher-level synchronisation tools,
such as locks and barriers. We propose extensions to the formal models described by
rdmatso, to also specify the behaviour of such remote atomic operations.

Contributions and Outline
In §2, we review the existing literature on memory models and RDMA. In §3, we overview
the rdmatso memory model and present our intuitive account of the weak behaviours
of remote RMWs, which we illustrate through a number of examples. In §4, we develop
the operational semantics of rdmatso with new rules for remote RMWs, and in §5, we
extend the declarative model. In §6, we discuss how the two models are proven equivalent.
Finally in §7, we conclude with a discussion of the limitations of this project and future
work on this topic.

Chapter 2. Background 6

2 Background

2.1 Concurrency
Since the end of the “free ride” for processor speed enjoyed during the era of Moore’s law,
the microprocessor landscape has become dominated by multi-core processors (MCPs) [12],
which provide faster (effective) speeds than uniprocessors due to the distribution of work
across multiple cores, which execute in parallel. In order to maximise the utilisation
of these MCPs, and to minimise program execution time, programs must be written
concurrently so that their work can be efficiently distributed across processor cores.

However, concurrent programming is widely considered to be challenging [13]. This is
largely due to the non-deterministic nature of concurrent program execution: instructions
from each program thread may interleave arbitrarily, which can lead to “Heisenbugs” [14]
– errors which are only present in a subset of the possible interleavings, and hence appear
seemingly at random while evading reliable reproduction. A typical cause of these types
of bugs is a data race, where two program threads access the same memory location
without synchronisation, with at least one of the accesses being a write. Depending on
which thread happens to execute first, different program behaviours may be observed.

For example, consider the litmus test in Fig. 2.1a, where two threads attempt to
increment the counter x concurrently: only if the two threads execute sequentially – that
is, one thread executes to completion before the other commences – will the expected
result of x = 2 be achieved; any other interleaving will cause one thread to overwrite the
other, resulting in x = 1. This is equivalent to each thread executing x := x + 1, since
that instruction would also be separated into a read and a write step; we have explicitly
used two operations in our example for clarity.

2.2 Synchronisation
So, how can we avoid data races in our programs? We need a way to access data that
guarantees mutual exclusion: the guarantee that so long as one thread is performing an
operation on a shared memory location, no other thread may access it until the operation
is complete. Modern processors provide Read-Modify-Write (RMW) instructions that
facilitate this. An example of an RMW is Compare-and-Swap (CAS), which accepts three
parameters and returns a value: a := CAS(x, e, u). Given a memory location x containing
a value v, and values e (expected) and u (update), it checks if v = e, and if so assigns u
to location x; otherwise, it does not alter memory. It returns v – so in our example a = v
after the command returns – which allows the caller to check whether or not the swap
was performed. Crucially, the hardware guarantees that this happens atomically, without
any other thread accessing location x during the operation. In fact, CAS is sufficiently
powerful to implement all other RMWs [11], and can be used to implement higher-level
synchronisation tools such as locks and barriers [15, Chs. 7.2 and 17.2].

Another example of an RMW is Fetch-and-Add (FAA): a := FAA(x, i), which given a
memory location x containing value v, atomically assigns v + i to location x, returning
v. Unlike CAS, we might not know what value is stored at x before writing to it, but for
use cases such as counters it allows a simpler implementation than CAS. However, if we
needed to enforce a strict guarantee that the counter value stays within some bound, for
example, FAA would not be suitable since the update occurs unconditionally.

Semantics of RDMA Remote RMWs Max Stupple

x = 0

a := x
x := a + 1

b := x
x := b + 1

(a) x = 1, x = 2 ✓

x = 0

a := FAA(x, 1) b := FAA(x, 1)

(b) x = 1 ✗ x = 2 ✓

Figure 2.1: Left: unsafe incrementation of the counter results in a data race — whichever
thread reads first must write before the other reads or writes, or else its effect will be
lost. Right: safe implementation using FAA guarantees the effects of both threads will
be visible.
Notation. Columns (separated by |) denote distinct threads, variables x, y denote shared
memory locations, a, b are thread-local variables (assumed to be initially 0), and the first
line indicates the initial values of memory locations. Captions indicate allowed outcomes
for variables with ✓, and disallowed outcomes with ✗.

Fig. 2.1b shows a safe implementation for concurrently implementing a counter using
FAA. Since FAA guarantees that no other operation may occur on x between the read
and write, we can be sure that both incrementations will be visible, resulting in a final
state of x = 2.

2.3 Memory Models
Given the ability to synchronise between threads and ensure mutual exclusion where nec-
essary, it seems that it would not be too challenging for programmers to reason about
potential interleavings of instructions from each program thread, then use the tools avail-
able to write correct programs. However, the real world is significantly more complicated.
The interleaving model, called Sequential Consistency (SC), is not realistic: no modern
computer processor provides the guarantee that instructions within a thread are executed
in order [16]. Instead, they only provide weak memory models.

To be precise, under sequential consistency, it is guaranteed that instructions within
a thread execute in order, while instructions from different threads may interleave in an
arbitrary execution order. A weak memory model, then, is one which, in addition to
permitting any execution ordering allowed by SC, also permits some other orders – which
is to say that the guarantee that instructions within a thread execute in order is relaxed
in some way. It may also be, as we will see in the case of RDMA, that we cannot simply
define one order over the instructions, as the order in which they are issued and that in
which they become observable may be different.

There are numerous weak memory models, however we will focus on Total Store
Ordering (TSO). TSO is a description of program execution on multiprocessors with
store buffers, originally formulated to describe SPARC V8/9 processors [17]. It permits
certain reorderings of instructions that are not allowed in SC, namely:

Write-read reordering (on different locations): a later read may be reordered be-
fore an earlier write, provided it is on a different memory location. This leads to
weak behaviour known as store-buffering.

Write-to-read forwarding (on the same location): the value of an earlier write can
be copied into a later read.

Chapter 2. Background 8

x = y = 0

x := 1
a := y

y := 1
b := x

(a) a = b = 0 ✓

x = y = 0

x := 1
mfence
a := y

y := 1
mfence
b := x

(b) a = b = 0 ✗

x = y = 0

a := y
x := 1

b := x
y := 1

(c) a = b = 1 ✗

x = y = 0

x := 1
y := 1

a := y
b := x

(d) (a, b) = (1, 0) ✗

Figure 2.2: TSO litmus tests. Reproduced from [10] with permission.

Write-assignment reordering: a later assignment (which does not access memory)
may be reordered before an earlier write.

Store-buffering is so-called because it can be modelled by assuming a buffer between
a thread’s private registers and shared memory, which behaves as a FIFO queue for write
(store) instructions. Write instructions do not immediately affect memory, but rather
enter the store buffer and execute at some later point, once they have reached the head
of the queue. This facilitates write-read reordering, as a later read may not see an earlier
write because it is still in the buffer; similarly, an assignment may not observe a buffered
write. Write-to-read forwarding can be interpreted as a read viewing the latest value
from the thread’s store buffer, rather than reading from memory.

The TSO model has also been adapted to describe x86 processors, by Owens et al. [7].
In this paper, the authors define the concurrent semantics of the x86 architecture, which
they call x86-TSO due to its similarity to the SPARC memory model. Notably, x86-TSO
supports a memory fence instruction, which flushes a thread’s store buffer. Henceforth,
we use TSO to refer to the x86 memory model, rather than the original SPARC definition.

Inevitably, it is more challenging for programmers to reason about weak memory
models than SC; indeed, TSO is a relatively simple model, yet there may be far more
possible execution orders to consider due to the reordering within threads. In order to
make these weak models easier to understand, it is useful to provide a formal semantics
that programmers may use to build their intuition, or which may be used to write tools
to automatically check programs for bugs.

Operational semantics are well established in the literature for defining the step-by-
step execution of a program by providing a set of transition rules. These rules specify how
the program’s state can be updated at any given execution step, depending on whether
particular logical properties hold at that point. For any valid program execution, one may
write down a logical trace of the execution using the transition rules, called a derivation
tree. Hence, an operational semantics gives a low-level description of program execution,
which may be used for formal reasoning, and can help programmers understand program
behaviour.

Declarative semantics, on the other hand, describe program executions as a graph: we
use the program instructions (events) as nodes in the graph, and define several relations
over the events, representing dependencies. For example, we might define the reads-from
(rf) relation: if a read r reads the value written by an earlier write w, then we add an rf
dependency from w to r. We might also impose certain restrictions on the relations in our
graph, for example that our graph should not contain any cycles. Such execution graphs
are particularly useful for understanding the properties and correctness of a program,
and are much more concise than operational semantics; however they may be less useful
for gaining an intuitive understanding of how programs execute.

Semantics of RDMA Remote RMWs Max Stupple

Thread 1 ... Thread m NIC

PCIe
root

complexSB
uff

1

SB
uff

m

Memory

NIC

PCIe
root

complex

Thread 1 ... Thread m

SB
uff

1

SB
uff

m

Memory

Figure 2.3: RDMA network overview [10, page 10]. Communication between NICs occurs
in parallel to ongoing execution of local threads.

2.4 RDMA

Conventionally, communication over the network between separate machines requires the
involvement of the operating system, which is responsible for the network and transport
layers of the network stack. In common usage, the ~1ms latency introduced due to
encoding/decoding the TCP/IP stack is a negligible factor in the overall latency, however
in modern computer clusters the propagation delay is far lower. Thus, it is desirable to
use a thinner network stack which bypasses the OS, so that remote reads and writes use
fewer CPU cycles. This has led to widespread adoption of Remote Direct Memory Access
(RDMA), which allows computers in the network to directly transfer data without the
need for caches, switches, or any involvement by the CPU – the operation may be handled
solely by the Network Interface Card (NIC), which transfers messages directly between
main memory and the wire. Transfers are executed in parallel with system operations,
reducing latency and increasing throughput [6].

In particular, as these network operations are executed in parallel to other operations
on the CPU, they do not observe sequential consistency; hence it is necessary to define
a memory model for RDMA so that programmers may understand the weak behaviours
that can be observed, and use that knowledge to write correct programs and libraries for
RDMA networks.

The first attempt to provide a formal semantics of RDMA programs was coreRMA [9].
However, this work is subject to a number of significant shortcomings, as described by
Ambal et al. [10]. They identify four limitations of the coreRMA model: (1) the cor-
eRMA authors assume that the concurrency on each node follows sequential consistency
– this assumption is unrealistic as all modern CPU architectures (in particular, x86 and
ARM, which are ubiquitous) offer a weaker model by default; (2) they provide only a
declarative model, while operational models are required for certain applications, such
as invariant synthesis [18], and may provide better intuition than declarative models,
as they are explicitly intended to be easy to understand [19]; (3) the model is not val-
idated against existing implementations, and they could not observe any of the weak
behaviours permitted by coreRMA; (4) coreRMA is neither stronger nor weaker than the
RDMA specification, admitting certain behaviours not allowed by the specification, while
prohibiting behaviours which the specification permits.

Due to these limitations, Ambal et al. define rdmatso, a memory model for RDMA
which improves on coreRMA in a number of ways: it assumes an x86 architecture, hence
modelling individual nodes as observing TSO; they provide both operational and declar-
ative models; and they have validated that all weak behaviours permitted by the model

Chapter 2. Background 10

x = 0

a := CAS(x, 0, 7) b := FAA(x, 2)

(a) x = 2, x = 9 ✓ x = 7 ✗

x = 0

a := nCAS(x3, 0, 7) b := nFAA(x3, 2)

(b) x = 2, x = 9 ✓ x = 7 ✗

x = 0

a := nCAS(x2, 0, 7) b := FAA(x, 2)

(c) x = 2, x = 7, x = 9 ✓

Figure 2.4: Remote RMWs are non-atomic with respect to local operations: this results
in behaviours not visible when only using local RMWs. Remote RMWs are still atomic
with respect to each other. We note remote CAS (resp. FAA) by nCAS (resp. nFAA),
where n stands for NIC. Note that for RDMA litmus tests we use a double vertical line
to indicate threads on separate nodes, and xn to denote the variable x on foreign node n.

are either observed on actual hardware, or permitted by the specification but not imple-
mented in current systems. Thus, due to the multiple models being proven equivalent,
extensive hardware testing, and confirmation from hardware experts, rdmatso may be
observed to be a very accurate model of concurrency possible on RDMA systems running
on the x86 architecture.

2.5 Remote RMWs
Despite the advantages over coreRMA, the rdmatso model is arguably incomplete, as
it does not describe all operations provided by RDMA. It provides the semantics of
all local operations (as in TSO), and the semantics of remote read (get) and remote
write (put) operations, as well as the semantics of remote fences instructions used for
synchronisation. It does not provide, however, the semantics of remote read-modify-
write (rRMW) instructions defined in the RDMA specification. Remote RMWs have
the potential to be a very useful tool for synchronisation in distributed algorithms over
RDMA networks, however they are subject to a peculiar set of properties.

Under TSO, (local) RMWs are not subject to any reordering: this makes them easy to
reason about, since we know precisely what value the memory location in question held
immediately before and immediately after the execution of the RMW, and, since the
RMW executes as an atomic unit, we know that there was no intermediary value held or
operation executed on that location. RDMA remote RMWs are much more challenging
to understand and use by comparison.

Firstly, rRMWs have complex reordering rules with respect to other operations in
the same thread, as we will detail later. Secondly, and more importantly, rRMWs only
guarantee atomicity with respect to other rRMWs operations, not local operations on
the target node, nor other types of remote operations towards that node. Although an
option is available on some hardware to execute rRMWs with a higher level of atomicity,
this is not globally supported, nor enabled by default. Thus, RDMA programmers will
need to operate under the default assumption that other operations (in particular, local
or remote writes) may occur between the read and write of a remote RMW.

Consider the examples in Fig. 2.4. Fig. 2.4a shows how the strong atomicity guarantees

Semantics of RDMA Remote RMWs Max Stupple

of local RMWs require the effects of both operations to be visible: either the CAS succeeds
first, setting x to 7, after which the FAA adds two to it to achieve x = 9; or the FAA
occurs first, setting x = 2, after which the CAS fails. No other outcome is possible, as
the execution of the two RMWs may not overlap – we certainly cannot observe x = 7,
as this would mean we have somehow lost or overwritten the FAA. When using multiple
remote RMWs as in Fig. 2.4b, we observe similar behaviour due to the guarantee that an
rRMW is atomic with respect to other rRMWs operations. However in Fig. 2.4c, we see
that such an outcome is possible when using a mixture of local and remote RMWs: the
x = 7 result is achieved when the (local) FAA is executed between the read and write of
the remote CAS. Such an execution is permitted due to the weak atomicity guarantees
of remote RMWs.

For these reasons, a formal definition of the semantics of RDMA remote RMWs will
be particularly helpful to RDMA programmers, and to that end we will present suitable
extensions to rdmatso such that programmers may confidently reason about all aspects
of RDMA programs.

Chapter 3. Overview 12

3 Overview

3.1 RDMA Concurrency
An interesting consequence of RDMA operations being handled by the NIC separately to
the CPU is that it creates two distinct tiers of concurrency. In general, the CPU does not
wait for NIC operations to complete – this would greatly slow down program execution,
as despite network communication being relatively fast (compared to TCP/IP), it is
still much slower than local operations on the CPU. Therefore, we can consider CPU
(intra-node) concurrency (governed by TSO) separately to network-level (inter-node)
concurrency. The reordering rules between CPU and NIC operations are very simple: an
earlier NIC operations can always be reordered after a later CPU operation.

The CPU reordering rules have already been discussed in §2.3. Reordering rules for
RDMA operations on a single thread (except rRMWs) are described in [10] and shown
in Fig. 3.1. To summarise:

• CPU operations always complete before later RDMA operations (Fig. 3.1a)

• RDMA operations may be reordered after later CPU operations, as if executing
concurrently in a separate thread (Fig. 3.1b)

• Poll awaits the earliest (unpolled) RDMA operation towards a given node (Figs. 3.1c
and 3.1d)

• RDMA operations towards distinct nodes may be reordered (Figs. 3.1e and 3.1f)

• An earlier put always completes before a later get towards the same node (Fig. 3.1g)

• An earlier get may be reordered after a later put towards the same node (Fig. 3.1h)

• RDMA operations always complete before a later remote fence towards the same
node

We are more interested in RDMA programs running on multiple nodes. Fig. 3.2 shows
a number of litmus tests for inter-node concurrency. Store buffering, as seen in TSO, is
similarly possible under RDMA (Fig. 3.2a). Additional weak behaviours are also possible,
including load buffering (Fig. 3.2b); load buffering is analogous to store buffering, but
concerning unobserved reads rather than writes (in our case, the read is a get operation).

Furthermore, whilst polling can prevent most weak behaviours, including load buffer-
ing (Fig. 3.2c), store buffering cannot be prevented due to a difference in how a poll
awaits the completion of a put as opposed to a get. In the case of a get, the poll only
completes once the value read on the remote node has been written to local memory. A
put, however, may be considered complete while the write of the value to remote memory
is still pending: this is because the confirmation of a put is returned when the operation
is buffered, not when it is complete. In practice, the write is almost always de-buffered
before the confirmation has travelled across the network, but the behaviour of Fig. 3.2d
is allowed by the architecture specification.

However, it is still possible to prevent store buffering. To our knowledge, RDMA is
implemented on hardware which meets the PCIe standard [20]. In certain instances, PCIe
provides stronger guarantees than the RDMA specification, which we will always assume

Semantics of RDMA Remote RMWs Max Stupple

x=0 z =0

x := 1
z2 := x

(a) z =0 ✗ z =1 ✓

x=0 z =0

z2 := x
x := 1

(b) z =0 ✓ z =1 ✓

x=0 z =0

z2 := x
poll(2)
x := 1

(c) z =0 ✓ z = 1 ✗

x=0 z =0
z2 := x
z2 := x
poll(2)
x := 1
(d) z =0 ✓ z =1 ✓

x=0 z =1 y =2

x := z2

x := y3

(e) x=1 ✓ x=2 ✓

x=0 z =1 y =2

y3 := x
x := z2

(f) y =0 ✓ y =1 ✓

x=1 y =z =0

z2 := x
x := y2

(g) z =0 ✗ z =1 ✓

x = 1 y =z =0

x := y2

z2 := x

(h) z =0 ✓ z =1 ✓

x = 1 y =z =0
x := y2

rfence (2)
z2 := x

(i) z =0 ✓ z =1 ✗

Figure 3.1: RDMA litmus tests showing reordering rules for a single node. Column
(separated by ||) denote distinct nodes, and the top line of each column gives the initial
values for shared memory locations on that node. Reproduced from [10] with permission.

y =0 x=0

x2 := 1
a := y

y1 := 1
b := x

(a) a=b=0 ✓

x=0 y =0

a := y2

x := 1
b := x1

y := 1

(b) a=b=1 ✓

x=0 y =0

a := y2

poll(2)
x := 1

b := x1

poll(1)
y := 1

(c) a=b=1 ✗

y =0 x=0

x2 := 1
poll(2)
a := y

y1 := 1
poll(1)
b := x

(d) a=b=0 ✓

y=w=0 x=z=0
x2 := 1
c := z2

poll(2)
poll(2)
a := y

y1 := 1
d := w1

poll(1)
poll(1)
b := x

(e) a=b=0 ✗

Figure 3.2: RDMA litmus tests for concurrency across multiple nodes. Reproduced from
[10] with permission.

are available due to its ubiquity. The standard guarantees that a read cannot complete
before a write which was issued earlier. Therefore, a NIC remote read (get) must flush
all pending NIC remote writes (puts) to memory1, so by polling a get which follows a
put, we guarantee that the NIC remote write of the put has been committed to memory
(Fig. 3.2e).

3.2 Remote RMW Behaviours
We now present an intuitive account of rRMW behaviours.
Atomicity. Remote RMWs are atomic only with respect to each other – not with
respect to any other memory operations. This is in contrast to standard RMWs, which
are atomic with respect to all other operations. We will need to consider that either CPU
operations on the remote side, or other remote operations (puts and gets) from any node
can result in non-atomic behaviour for the rRMW.
Reordering. Due to the two-tiered concurrency of RDMA, all remote operations may
be reordered after a later local operation – this equally applies to rRMWs. From [10],

1The converse is also true: the NIC local read of a put flushes pending NIC local writes due to gets.
However this is not particularly useful, since poll is well behaved with respect to get.

Chapter 3. Overview 14

we know that an earlier get can be reordered after a later put. We can say that get/put
reordering is allowed. Other reorderings involving any combination of get and put are
not allowed: get/get1, put/get and put/put. Remote RMWs behave much like puts, so
that get/rRMW is allowed, and all other reorderings are disallowed.

The litmus tests in Fig. 3.3 illustrate these behaviours. Figs. 3.3a to 3.3d show that
if either a put or get reads or writes the location targeted by a remote CAS, non-atomic
behaviour may be observed. In contrast, Fig. 3.3e shows that multiple rRMWs are atomic
with respect to each other. Figs. 3.3f to 3.3i show that rRMWs never reorder with respect
to puts or other rRMWs, and an earlier rRMW completes before a later get. Fig. 3.3j
shows that an earlier get may be reordered after a later rRMW.

Discussion: Remote RMW Behaviours

Early in the project, it was believed that rRMWs had stronger atomicity guarantees,
and weaker reordering behaviours.
Atomicity. We initially believed that rRMWs were atomic with respect to all other
remote operations (i.e. puts and gets, in addition to other rRMWs). This confusion
came about due to overloaded use of the term “atomic access” in the InfiniBand spec-
ification [21]. Section 9.4.5.1 reads:

Atomicity of the read/modify/write on the responder’s node by the
ATOMIC Operation shall be assured in the presence of concurrent atomic
accesses [by the NIC].

The correct interpretation of this quote is that rRMWs guarantee atomicity only with
respect to rRMWs issued by other threads towards the same node – that is to say,
we take “atomic access” to mean an RDMA remote read-modify-write. However, the
term may also be used in the context of a simple read or write being atomic, meaning
that while a memory location is being written to, it cannot be read – for example,
see (non-)atomic accesses in C/C++ [22]. Without this guarantee, it is possible to
read a memory location as containing a value which was never written to it, even after
the memory location has been initialised. This “atomicity” is a far more ubiquitous
guarantee, and puts and gets would both be considered “atomic accesses” in this sense.
Fortunately, some other parts of the document help to clarify this: section 10.6.7.2
mentions that

AtomicOps are not required by the architecture to be atomic with respect
to RDMA writes

which reinforces that they are only atomic with respect to other rRMWs2.
Reordering. We also believed that an earlier rRMW could be reordered after a later
rRMW. This was due to Table 76, which shows which pairs of operations require a fence
to guarantee in-order semantics. It shows that when the first and second operations are
both RDMA Atomics, a fence is required. This seems to imply that without a fence,
a pair of rRMWs may execute out of order. In fact, such behaviour is not possible –
section 9.4.5.2 reads:

1Technically, a pair of gets may be partially reordered. They may read remote memory out of order,
but must write to local memory in order.

2The term ‘AtomicOp’ in the quote refers to an RDMA remote RMW.

Semantics of RDMA Remote RMWs Max Stupple

x = 0 y = 1

x := 2
y3 := x

a := nCAS(x1, 0, 3)

(a) (x, y) = (3, 2) ✓

x = 0

x3 := 1 a := nCAS(x3, 0, 2)

(b) x = 2 ✓

x = 0

a := x3 b := nCAS(x3, 0, 2) x := 1

(c) (a, x) = (1, 2) ✓

x = 0 y = 1

x := y3 a := nCAS(x1, 0, 2)

(d) x = 2 ✓

x = 0

a := nFAA(x3, 1) b := nCAS(x3, 0, 2)

(e) x = 1 ✓ x = 3 ✓ x = 2 ✗

x = 0

a := nCAS(x2, 1, 2)
b := nCAS(x2, 0, 1)

(f) x = 2 ✗

x = 0

a := nCAS(x2, 1, 2)
x2 := 1

(g) x = 2 ✗

x = 0

x2 := 2
a := nCAS(x2, 0, 1) b := x

(h) b = 1 ✗

x = 0

a := nCAS(x2, 0, 1)
b := x2

(i) b = 0 ✗

x = 0

a := x2

b := nCAS(x2, 0, 1)

(j) a = 1 ✓

Figure 3.3: Litmus tests illustrating atomicity and reordering of rRMWs with respect to
other remote operations.

Chapter 3. Overview 16

the ATOMIC Operation only accesses memory after prior (non-RDMA
READ) requests access memory and before subsequent requests access
memory

which clearly enforces that rRMWs are in-order with respect to each other.
It may be that the apparently erroneous table entry is due to completion of an rRMW
being defined not with respect to the rRMW accessing memory, but rather the response
packet it returns. This is described in section 9.4.5.2:

For the requestor [the thread issuing the rRMW], an ATOMIC Operation
is considered complete when the response packet returns.

So if we wish for a later rRMW to wait for the response of an earlier rRMW, we indeed
require a fence, however the order of memory accesses is maintained regardless.

Semantics of RDMA Remote RMWs Max Stupple

4 Operational Semantics
At its core, an operational semantics consists of a logical model of the state of a machine
or system, and a set of rules describing how that system may transition from one state
to the next. The transition rules can be composed into derivations, which describe the
execution of a program. If we can build a derivation tree for a given execution, then
we know the execution is possible for our system, because it is composed from allowed
transitions.

In our case, the system is a network of machines (nodes) communicating using RDMA,
and the states we are interested in are (a) the state of the program, i.e. which commands
have been executed, and which remain to be executed, for each program thread; (b) the
state of memory on each node; (c) the state of the TSO store buffer of each thread; and
(d) the state of any network communications. Under RDMA, each thread has access to a
queue pair for communicating with each other node in the network, so we are interested
in the state of the queue pairs of each thread.

4.1 States of the Operational Semantics

Throughout, we follow and extend the notation of [10].
Nodes and Threads. We write Node = {1..N} for the set of node identifiers, and
Tid = {1..M} for the set of thread identifiers. We write n (resp. t) to range over nodes
(resp. threads), and given some node n we write n to range over the set of all other nodes
Node \ {n}. Each thread runs on a particular node, so we write n(t) for the node the
thread belongs to.

4.1.1 Memory
Although all nodes can directly access all memory locations, whether an operation is
towards local or remote memory is pivotal to our semantics, so we are always careful to
note the node to which a memory location belongs. We write Locn for the set of locations
local to node n, and Loc = ⊎

n Locn for the set of all locations. We use Locn = Loc \ Locn

and write xn, yn, zn for values in Locn, respectively xn, yn, zn for Locn. When the node in
question is sufficiently clear, we elide the superscript and instead simply write x or x for
local or remote locations respectively.

4.1.2 Program State
Values and Expressions. The language of expressions is standard and elided. We
write v ∈ Val for values, with N ⊆ Val, and e ∈ Exp for expressions. We write elocs(e)
for the set of memory locations referenced in e, e[v/x] for the expression obtained by
substituting all references to location x in e with value v, and [[e]] for the evaluation of e
given it is closed, that is, elocs(e) = ∅. We use en for expressions where elocs(en) ⊆ Locn

Commands and Programs. Commands are described by the Cn grammar below.
CPU operations (CComm) are assignment, assumption of the value of a location, memory
fence, compare-and-set, and poll, which awaits the earliest completion notification of a
remote operations towards n.

Chapter 4. Operational Semantics 18

SBuff

wbL

pipe

wbR

M
em

or
y

M
em

or
y

Queue grows this way

Figure 4.1: Simple queue-pair structure.

RDMA operations (RComm) are either a ‘get’ of the form x := y which reads a remote
location y and writes its value to local location x, a ‘put’ (y := x) which does the reverse,
‘remote-CAS’1 (resp. ‘remote-FAA’) which executes a remote atomic compare-and-set
(resp. fetch-and-add), and ‘remote fence’ which ensures all prior RDMA operations to-
wards n complete before any later RDMA operations towards n execute.

Primitive operations (PComm) are CPU or RDMA operations, and commands (Comm)
are the no-op, primitive operations, sequential composition (executes the first command,
then the second), non-deterministic choice (executes one command or the other), and non-
deterministic loop (executes the command some finite, possibly zero number of times).

A program P consists of a map from threads to commands, such that each t ∈ Tid is
mapped to a command on n(t).

Comm ∋ Cn ::= skip | cn | Cn
1 ; Cn

2 | Cn
1 + Cn

2 | Cn∗ PComm ∋ cn ::= ccn | rcn

CComm∋ccn ::= x :=en | assume(x = v) | assume(x ̸= v) | mfence | x :=CAS(y, e1, e2) | poll(n)
RComm∋ rcn ::= x := y | y := x | x := nCAS(y, e1, e2) | x := nFAA(y, e) | rfence (n)

4.1.3 Store Buffers

To implement the weak behaviour of TSO described in §2.3, we assign each thread a store
buffer B(t), which is a FIFO queue containing pending writes to memory by that thread.
When a thread performs a CPU read, it reads the most recent entry for that location in
its store buffer, if there is one, instead of the value in memory. The write at the head
of the queue may be flushed to memory at any time, and mfence and CAS wait until the
store buffer is empty before executing.

4.1.4 RDMA Operations

Queue Pairs. We follow the simplified operational model described in [10], and there-
fore consider a queue-pair structure comprising three FIFO queues: pipe, which contains
pending or in-progress RDMA operations; wbR, the remote write buffer, which contains
pending writes to the memory of the remote node; and wbL, the local write buffer, which
contains pending writes to the memory of the local node. The structure is shown in
Fig. 4.1. Notice that under this simplified model, the transition between local and re-
mote node in pipe is continuous – we do not explicitly model the transition between local
(yellow) and remote (pink) sides.

1Note, we use the prefix n for ‘NIC’, rather than r for ‘remote’, for consistency with the notation
used later in §5.

Semantics of RDMA Remote RMWs Max Stupple

P t:ε−→ P′

P, M, B, A, QP ⇒ P′, M, B, A, QP
M, B, A, QP t:ε−→ M′, B′, A′, QP′

P, M, B, A, QP ⇒ P, M′, B′, A′, QP′

P t:l−→ P′ M, B, A, QP t:l−→ M′, B′, A′, QP′

P, M, B, A, QP ⇒ P′, M′, B′, A′, QP′

Figure 4.2: rdmatso operational semantics with the program and hardware transitions
given in Fig. 4.3 and Fig. 4.4

Remote Atomics. To model the behaviour of RDMA atomic operations, we assign
each node a remote atomic lock A(n), which is a boolean indicating whether an RDMA
atomic is currently in progress towards that node.

Discussion: States of the Operational Semantics

Extending the language of commands to accommodate the new remote atomic opera-
tions is straightforward – we just need to include the new RDMA commands. We also
need to introduce a remote atomic lock for each node, which will be used in the relevant
transition rules to guarantee atomicity. Without this structure, it would be necessary
to check all queue-pairs towards a particular n for in-progress rRMWs, which would be
semantically equivalent but much more verbose. See §4.3.2 for more discussion of the
structure A as it relates to the transition rules specifically.

4.2 Transitions of the Operational Semantics

We describe the rules governing the transitions between states, which comprise a program
P, global memory M, store buffers B, queue-pairs QP and remote atomic locks A.

ϕ

P, M, B, A, QP ⇒ P′, M′, B′, A′, QP′
Transitions take the form shown on the right,

which should be read as: if ϕ is true, then it is
allowed for the system to transition from the state
described by P . . . QP to the state described by P′ . . . QP′.

In practice, however, writing each transition rule in such a way would be verbose and
hard to understand, as most transitions do not affect every part of the state. We can sep-
arate program transitions concerning P from hardware transitions concerning M, B, A, QP.
In order to synchronise the two where necessary, we assign labels to certain transitions
and require that a labelled program transition only occur if it is matched by a hardware
transition with the same label (or vice-versa). Labels are of the form t : l where t is the
thread executing at that step and l ∈ Lab is the label of the operation. Silent transition,
which affect only the program (resp. only hardware) are written with the empty label, ϵ,
and may be taken independently.

Fig. 4.2 shows the top-level rules of the operational semantics which govern this sep-
aration. We can henceforth consider the program and hardware transitions separately.

Chapter 4. Operational Semantics 20

4.2.1 Program Transitions
Fig. 4.3 shows the program and command transitions (middle), labels (above) and ex-
pression rewriting rules (below). The transitions for non-remote commands are familiar
from TSO. Notice that the transitions for get and put simply transition to skip with
the relevant label; we know that this means there will be some relevant transition in the
hardware. The transition to skip allows the program to continue executing, which we
expect, as remote operations are handled asynchronously by the NIC.

This is similarly the case for the rules for remote-CAS and remote-FAA, highlighted in
yellow. The expressions involved are required to be closed, similarly to the rules for local
write and CAS; the expressions must be evaluated before the transition. It only makes
sense to use a value, not an expression, in the label, since the corresponding hardware
transition will only be concerned with values.

4.3 Hardware Domains
The upper section of Fig. 4.4 shows the hardware domains – that is, the states we are
interested in other than the program. We have already described memory, store buffers,
remote atomic locks and queue-pairs, but note that the structures B, A and QP are
specifically maps from threads, nodes, and both, respectively, to the particular structures.

A remote atomic lock is a boolean, ⊥ (available) or ⊤ (unavailable). A store buffer
is a sequence of CPU writes and RDMA operations. A queue-pair is a tuple of three
sequences pipe, wbR and wbL, where pipe may contain any of the operations described
below except for a confirmation notification, wbR may contain NIC remote writes and
NIC remote atomic writes, and wbL may contain NIC local writes and confirmation
notifications.

• yn := xn denotes a put operation where the value of local memory location x is yet
to be read (NIC local read);

• yn := v denotes a NIC remote write of value v to remote location y, which occurs
as the latter part of a put;

• ackp denotes the acknowledgement message returned by a put;

• xn := yn denotes a get operation where the value of the remote location y is yet to
be read (pending NIC remote read)

• xn := v denotes a NIC local write of value v to local location x, which occurs as
the latter part of a get or rRMW;

• nCAS(zn, xn, v, v′) denotes a remote (NIC) CAS towards remote location x, with
expected value v, update value v′, and returning to local location z;

• nFAA(zn, xn, v) similarly denotes a NIC FAA towards x and returning to z, with
increment value v;

• yn :=A v denotes a NIC remote write specifically in the case of an rRMW – it is
necessary for this to be disambiguated from the NIC remote write of a put, as we
will see in §4.3.2;

• rfence n denotes a remote fence towards node n;

• cn denotes a confirmation of a successful NIC remote write.

4.3.1 Hardware Transitions
All remote commands enter the queue-pair pipe via the thread’s store buffer. When
the program takes a transition step labelled with a remote CAS or FAA, the hardware
takes a transition with a matching label, which adds that operation to the store buffer
– once again these are highlighted in yellow, in the lower part of Fig. 4.4. The seventh
transition rule allows remote commands at the head of the store buffer to enter the pipe
of a queue-pair, determined by their target node.

So far, we have seen that when an rRMW appears in the program, we can expect
there to be a hardware transition which adds it to the store buffer, and later another
hardware transition which removes it from the head of the store buffer and adds it to the
suitable queue-pair.

The final hardware transition introduces the queue-pair transitions, indicated by
→sqp

2. When a particular queue-pair takes a transition step, involving memory and
the global remote atomic lock, the hardware takes a suitable corresponding transition.
The queue-pair transitions merely involve a particular subset of the hardware states,
so the relationship is straightforward. This separation is purely made for clarity and
simplification of the queue-pair transition rules.

4.3.2 Queue-Pair Transitions
The queue-pair transitions model most of the interesting behaviours discussed in §3.2.
The new transition rules for rRMWs are highlighted in yellow. From Fig. 4.1, recall that
remote operations enter the main pipe of the queue-pair, then are suitably processed
until they exit the pipe, possibly adding a write to wbL or wbR (or both). Note that
the pipe grows to the left, so throughout, α contains operations which are later in the
program, while β contains earlier operations which have not yet completed.

The rules for remote fence, put, and get share a simple structure, where the premise
for a transition either requires the operation to be at the head of the pipe sqp.pipe =
α · (operation), or allows it to be in the middle of the pipe sqp.pipe = α · (operation) · β,
with some stipulation as to the operations allowed in β. In the prior case, the operation
never executes before another, earlier operation; in the latter, it can execute before any
operation in β which was issued before it. There may also be some requirement that
buffers wbL or wbR contain no writes, due to PCIe guarantees: wbL ∈

{
cn
}∗

(wbL

contains only confirmation notifications) or wbR = ϵ (there are no operations in wbR).
Consider, for example, the first step of a put, which is a NIC local read described by rule
2. The value of location x is read from memory, so long as wbL has no pending writes
and there are no other NIC local reads earlier in the pipe.

We can then describe the rules for rfence, put and get at a high level:

Remote fence (rule 1) An rfence may be removed from the pipe once it reaches the
head (there are no earlier operations remaining to be processed). In combination

2SQP stands for simplified queue-pair. We only considered the simplified three-buffer queue-pair, so
this disambiguation is technically unnecessary, but we maintain the notation for consistency with [10]

Chapter 4. Operational Semantics 22

Program transitions: Prog Tid:Lab⊎{ε}−−−−−−−→ Prog Command transitions: Comm Lab⊎{ε}−−−−−→ Comm

Lab ≜
⋃
n

Labn l∈Labn ≜


lW(xn, v), lR(xn, v), CASS(xn, v1, v2), CASF(xn, v),
F, P(n), Get(xn, yn), Put(yn, xn), rF(n),
nCAS(y, xn, v1, v2), nFAA(y, xn, v)

x, y ∈Loc,
v, v1, v2 ∈Val


C1

l−→ C′
1

C1; C2
l−→ C′

1; C2 skip; C ε−→ C
i ∈ {1, 2}

C1 + C2
ε−→ Ci C∗ ε−→ skip C∗ ε−→ C; C∗

C ⇝ C′

C ε−→ C′

elocs(e) = ∅

x := e
lW(x,[[e]])−−−−−→ skip

elocs(eold) = elocs(enew) = ∅ v ̸= [[eold]]

z := CAS(x, eold, enew) CASF(x,v)−−−−−−→ z := v

elocs(eold) = elocs(enew) = ∅

z := CAS(x, eold, enew) CASS(x,[[eold]],[[enew]])−−−−−−−−−−−−−→ z := [[eold]] mfence F−→ skip

x := y
Get(x,y)−−−−−→ skip y := x

Put(y,x)−−−−−→ skip

elocs(eold) = elocs(enew) = ∅ v = [[eold]] v′ = [[enew]]

z := nCAS(x, eold, enew) nCAS(z,x,v,v′)−−−−−−−−→ skip

elocs(e) = ∅ v = [[e]]

z := nFAA(x, e) nFAA(z,x,v)−−−−−−−→ skip rfence n
rF(n)−−−→ skip poll(n) P(n)−−→ skip

assume(x = v) lR(x,v)−−−−→ skip

v ̸= v′

assume(x ̸= v′) lR(x,v)−−−−→ skip

P(t) l−→ C

P t:l−→ P[t 7→ C]

x := e⇝ assume(y = v); x := e[v/y] for y ∈ elocs(e), v ∈ Val
z := CAS(x, eold, enew)⇝ assume(y = v); z := CAS(x, eold[v/y], enew) for y ∈ elocs(eold), v ∈ Val
z := CAS(x, eold, enew)⇝ assume(y = v); z := CAS(x, eold, enew[v/y]) for y ∈ elocs(enew), v ∈ Val

z := nCAS(x, eold, enew)⇝ assume(y = v); z := nCAS(x, eold[v/y], enew) for y ∈ elocs(eold), v ∈ Val
z := nCAS(x, eold, enew)⇝ assume(y = v); z := nCAS(x, eold, enew[v/y]) for y ∈ elocs(enew), v ∈ Val

z := nFAA(x, e)⇝ assume(y = v); z := nFAA(x, e[v/y]) for y ∈ elocs(e), v ∈ Val

Figure 4.3: The rdmatso program and command transitions

Semantics of RDMA Remote RMWs Max Stupple

M∈Mem ≜ Loc → Val B∈SBMap ≜ λt ∈ Tid.SBuffn(t)

A∈RAMap ≜ λn. {⊥, ⊤} QP∈SQPMap ≜ λt.
(
λn(t).SQPairn

n

)
b∈SBuffn≜

{
xn:=v,yn:=xn,xn:=yn,nCAS(zn, xn, v, v′),nFAA(zn, xn, v),rfence n

}∗

sqp ∈ SQPairn
n ≜ Pipen

n × WBRn
n × WBLn

n

wbL ∈WBLn
n ≜

{
cn, xn := v

}∗ wbR ∈WBRn
n ≜

{
yn := v, yn :=A v

}∗

pipe ∈ Pipen
n ≜

{
yn := xn, yn := v, yn :=A v , ackp, xn := yn, xn := v,

nCAS(zn, xn, v, v′),nFAA(zn, xn, v),rfence n

}∗

B′ = B[t 7→ (x := v) · B(t)]

M, B, A, QP t:lW(x,v)−−−−−→ M, B′, A, QP

(M◁ B(t))(x) = v

M, B, A, QP t:lR(x,v)−−−−−→ M, B, A, QP

B(t) = ε M(x) = v1

M, B, A, QP t:CASS(x,v1,v2)−−−−−−−−−→ M[x 7→ v2], B, A, QP

B(t) = ε M(x) = v

M, B, A, QP t:CASF(x,v)−−−−−−→ M, B, A, QP

B(t) = ε

M, B, A, QP t:F−→ M, B, A, QP

B(t) = b · (x := v)

M, B, A, QP t:ε−→ M[x 7→ v], B[t 7→ b], A, QP

B(t)=b·rcn rcn ∈
{

x := yn, yn := x, nCAS(z, x, v, v′), nFAA(z, x, v), rfence n
}

QP(t)(n)=sqp sqp′ = sqp[pipe 7→ rcn · sqp.pipe]

M, B, A, QP t:ε−→ M, B[t 7→ b], A, QP[t 7→ QP(t)[n 7→ sqp′]]

B′ = B[t 7→ (x := y) · B(t)]

M, B, A, QP t:Get(x,y)−−−−−−→ M, B′, A, QP

B′ = B[t 7→ (y := x) · B(t)]

M, B, A, QP t:Put(y,x)−−−−−−→ M, B′, A, QP

B′ = B[t 7→ nCAS(z, x, v, v′) · B(t)]

M, B, A, QP t:nCAS(z,x,v,v′)−−−−−−−−−→ M, B′, A, QP

B′ = B[t 7→ nFAA(z, x, v) · B(t)]

M, B, A, QP t:nFAA(z,x,v)−−−−−−−−→ M, B′, A, QP

B′ = B[t 7→ (rfence n) · B(t)]

M, B, A, QP t:rF(n)−−−−→ M, B′, A, QP

QP(t)(n)=sqp sqp.wbL =α · cn sqp′ =sqp[wbL 7→ α]

M, B, A, QP t:P(n)−−−→ M, B, A, QP[t 7→ QP(t)[n 7→ sqp′]]

M, A, QP(t)(n) →sqp M′, A′, sqp (Fig. 4.5)

M, B, A, QP t:ε−→ M′, B, A′, QP[t 7→ QP(t)[n 7→ sqp]]

with (M◁ α)(x) ≜
{

v if α = β · (x := v) · − ∧ ∀v′. x := v′ ̸∈ β

M(x) if ∀v. x := v ̸∈ α

Figure 4.4: rdmatso simplified hardware domains (above) and hardware transitions (below)

Chapter 4. Operational Semantics 24

with the fact that no other transition rule allows a step to be taken when there is
an rfence later in the pipe, this enforces the behaviour that all remote operations
prior to an rfence complete before it, and all later ones after it.

Put (rules 2-5) Rule 2: a NIC local read is performed, replacing the location x with its
value in memory. Rule 3: the NIC remote write is sent to wbR, and an acknowl-
edgement created in the pipe. Rule 4: the remote write is committed to memory
once it reaches the head of the queue. Rule 5: the acknowledgement in the pipe is
converted to a confirmation notification in wbL, so that it can be polled.

Get (rules 6-8) Rule 6: a NIC remote read replaces the location y with its value in
memory. Rule 7: the NIC local write is sent to wbL, with a confirmation notification
for the purpose of polling. Rule 8: the local write is committed to memory once
there are no pending earlier writes in the queue.

Now, consider the rules for rRMWs, highlighted in yellow. These rules are more
complicated due to the need to check and update the remote atomic lock for the target
node, which we see as A(n(x)) = ⊥ (the remote atomic lock for the target node is
available), and A′ = A[n(x) 7→ ⊤] (update the remote atomic lock for the target node
to indicate it is busy). We also have distinct rules for success and failure of nCAS,
depending on whether the remote memory location holds the expected value (M(x) = v
or M(x) ̸= v).

The rules can then be interpreted as follows:

(Rule 9) A failed nCAS read – the remote memory location does not hold the expected
value. This read can only occur when the remote atomic lock is available, otherwise
it would violate the atomicity guarantee. The value of x is read, and a NIC local
write is added to the pipe to return that value to z. This is then handled by the
same rules as for a get. The remote atomic lock is not obtained, since the remote
location will not be written to.

(Rule 10) A successful nCAS read – the remote location contains the expected value.
Once again, this requires that the remote atomic lock be available, and it is also
obtained to ensure atomicity until the remote location is written to. A NIC local
write is added to the pipe (similarly to 9), and a NIC remote atomic write to update
the remote location is also added.

(Rule 11) The remote read of an nFAA – this is unconditionally successful. It is very
similar to a successful nCAS, but the value for the NIC remote atomic write is
calculated by adding v to the value of x in memory.

(Rule 12) A NIC remote atomic write in the pipe is processed into wbR similarly to a
regular NIC remote write.

(Rule 13) A NIC remote atomic write is committed to memory, and the remote atomic
lock is released.

Semantics of RDMA Remote RMWs Max Stupple

sqp.pipe = α · (rfence n)
M, A, sqp →sqp M, A, sqp[pipe 7→ α]

sqp.pipe = α · (y := x) · β wbL ∈
{

cn
}∗

β ∈
{

y′ := v′, y′ :=A v′, y′ := v′, x′ := y′, nCAS(z, x, v, v′), nFAA(z, x, v), ackp
}∗

M, A, sqp →sqp M, A, sqp[pipe 7→ α · (y := M(x)) · β]

sqp.pipe = α · (y := v) · β

β ∈
{

x′ := y′, x′ := v′, ackp
}∗

sqp′ = sqp[pipe 7→ α · ackp · β][wbR 7→ (y := v) · sqp.wbR]
M, A, sqp →sqp M, A, sqp′

sqp.wbR = α · (y := v)
M, A, sqp →sqp M[y 7→ v], A, sqp[wbR 7→ α]

sqp.pipe = α · ackp
sqp′ = sqp[pipe 7→ α][wbL 7→ cn · sqp.wbL]

M, A, sqp →sqp M, A, sqp′

sqp.pipe=α·(x := y)·β β ∈
{

x′ := y′, x′ := v′, ackp
}∗

sqp.wbR =ε sqp′=sqp[pipe 7→ α · (x := M(y))·β]
M, A, sqp →sqp M, A, sqp′

sqp.pipe = α · (x := v)
sqp′ = sqp[pipe 7→ α][wbL 7→ cn · (x := v) · sqp.wbL]

M, A, sqp →sqp M, A, sqp′

sqp.wbL = α · (x := v) · β β ∈
{

cn
}∗

sqp′ = sqp[wbL 7→ α · β]
M, A, sqp →sqp M[x 7→ v], A, sqp′

sqp.pipe = α · nCAS(z, x, v, v′) · β sqp.wbR = ϵ

A(n(x)) = ⊥ M(x) ̸= v β ∈
{

x′ := y′, x′ := v′, ackp
}∗

sqp′ = sqp[pipe 7→ α · (z := M(x)) · β]
M, A, sqp →sqp M, A, sqp′

sqp.pipe = α · nCAS(z, x, v, v′) · β sqp.wbR = ϵ

M(x) = v β ∈
{

x′ := y′, x′ := v′, ackp
}∗

A(n(x)) = ⊥ A′ = A[n(x) 7→ ⊤]
M, A, sqp →sqp M, A′, sqp[pipe 7→ α · (z := v) · (x :=A v′) · β]

sqp.pipe = α · nFAA(z, x, v) · β sqp.wbR = ϵ

M(x) + v = v′ β ∈
{

x′ := y′, x′ := v′, ackp
}∗

A(n(x)) = ⊥ A′ = A[n(x) 7→ ⊤]
M, A, sqp →sqp M, A′, sqp[pipe 7→ α · (z := v) · (x :=A v′) · β]

sqp.pipe = α · (x :=A v) · β
wbR

′ = (x :=A v) · sqp.wbR
β ∈

{
x′ := y′, x′ := v′, ackp

}∗

sqp′ = sqp[pipe 7→ α · β][wbR 7→ wbR
′]

M, A, sqp →sqp M, A, sqp′

sqp.wbR = α · (x :=A v)
A′ = A[n(x) 7→ ⊥]

sqp′ = sqp[wbR 7→ α]
M, A, sqp →sqp M[x 7→ v], A′, sqp′

Figure 4.5: Queue-pair transitions of the simplified rdmatso operational semantics

Chapter 4. Operational Semantics 26

y =0 x=0

x2 := 1
poll(2)
a := y

y1 := 1
poll(1)
b := x

(a) (a, b) = (0, 0) ✓

y =0 x=0

c := nFAA(x2, 1)
poll(2)
a := y

d := nFAA(y1, 1)
poll(1)
b := x

(b) (a, b) = (0, 0) ✓

Figure 4.6: Remote RMWs exhibit the same weak behaviours as puts, including store
buffering even in the presence of polls.

Discussion: Queue-Pair Transitions

The atomicity requirement motivated the addition of A, however it previously took on
a different form. Initially, rather than extending pipe and introducing A, only A was
present. When an rRMW was in progress, the description of it would be held in A,
rather than a boolean. This simplified the atomicity checks, however made reordering
much more complicated, as other rules would need to check A as well as β for reordering
purposes. Using a boolean instead, and maintaining the in-progress rRMW in the pipe,
made the semantics much clearer.
It is also noteworthy that the local and remote write of an rRMW may be processed
in either order. In particular, this means that local write may reach memory while the
remote write is still in wbR. The local write indicates the completion of the rRMW
for the local thread, so this seems problematic: the rRMW is considered complete for
the local side before it has finished on the remote side. In fact, this is because rRMWs
allow all the same weak behaviours as puts, other than those excluded by the atomicity
guarantee. As discussed in §3.1, some of these cannot be prevented by a poll as we
would expect. See Fig. 4.6 which replicates the store buffering example from Fig. 3.2d,
and shows the same behaviour with rRMWs.

Semantics of RDMA Remote RMWs Max Stupple

5 Declarative Semantics
A declarative semantics, in contrast to an operational one, describes only the events that
occur in a system, not the state of the system itself. An execution is represented by a
graph, with various relations over events. For example, given an event r, we say that it
“reads-from” event w if r reads the value written to memory by w. We write (w, r) ∈ rf
in this case. We then constrain these relations suitably to only allow execution graphs
which make sense in the context of a program: considering rf again, we would naturally
only allow (w, r) ∈ rf if the values of the read and write match.

Then, we know that an execution of a program is allowed if the graph of the execution
is consistent. Contrast this with the operational semantics: there, our guarantee comes
from the individual transition rules; here, it is due to the overall structure of the graph.

5.1 Events and Executions
An execution is a graph comprising a set of events and several relations over events;
events are represented as graph nodes, and the relations are edges. An event has a
unique identifier ι, is created by a thread t ∈ Tid, and has an event label l ∈ ELab which
describes the event.

Definition 1 (Labels and events). Each event label is associated to a node n. The set of
event labels of node n is denoted by l ∈ ELabn, where l is a tuple with one of the following
forms:

• (CPU) local read: l = lR(xn, vr)

• (CPU) local write: l = lW(xn, vw)

• (CPU) CAS: l = CAS(xn, vr, vw)

• (CPU) memory fence: l = F

• (CPU) poll: l = P(n)

• NIC local read: l = nlR(xn, vr, n)

• NIC remote write: l = nrW(yn, vw)

• NIC remote read: l = nrR(yn, vr)

• NIC local write: l = nlW(xn, vw, n)

• NIC fence: l = nF(n)

• NIC atomic remote read:
l = narR(yn, vr)

• NIC atomic remote write:
l = narW(yn, vw)

The set of event labels are defined ELab ≜ ⋃n ELabn.
An event, e ∈ Event, is a triple (ι, t, l), where ι ∈ N, t ∈ Tid and l ∈ ELabn(t).

We distinguish between events associated with the CPU (left) or NIC (right), with
the prefix n used for all NIC event labels. Note that a put, get, or rRMW is modelled
by multiple events: a put x := y comprises a NIC local read event of type nlR (on y)
followed by a NIC remote write event nrW (on x); conversely a get x := y comprises
events of type nrR (on y) and nlW (on x). A successful rRMW (either successful nCAS
or nFAA) is modelled by three events of type narR, narW and nlW, while a failed rRMW
(nCAS only) is modelled by only narR and nlW.

Chapter 5. Declarative Semantics 28

For a given label l, we write type(l), loc(l), vr(l), vw(l), n(l) and n(l) for the type,
location, value read or written, and local or remote node, where applicable. For example,
consider l = nlR(xn, vr, n):

• type(nlR(xn, vr, n)) = nlR

• loc(nlR(xn, vr, n)) = x

• vr(nlR(xn, vr, n)) = vr

• vw(nlR(xn, vr, n)) is undefined

• n(nlR(xn, vr, n)) = n

• n(nlR(xn, vr, n)) = n

We write ι(e), t(e), l(e) for the relevant constituents of an event tuple e = (ι, t, l). We
lift the functions on event labels to functions on events, for example type(e) ≜ type(l(e)).
Issue and Observation Points. Some types of events do not occur instantaneously:
for example, a local write event lW first enters the store before, before later being com-
mitted to memory. We therefore distinguish between the point at which an event is issued
by the CPU or NIC, and the point at which it is observed, when its effect becomes visible
in memory. An event is instantaneous if it either has no visible effect on memory, or if it
affects memory immediately, as is the case for a local CAS operation. For instantaneous
events, the issue and observation points coincide.
Notation. Once again, we follow and extend the notation of [10]. For a set A and
relations r, r1, r2, we write:

r+ for the transitive closure of r;

r−1 for the inverse of r;

r|A ≜ r ∩ (A × A) for the restriction of r to set A;

[A] ≜ {(a, a) | a ∈ A} for the identity relation

r1; r2 ≜ {(a, b) | ∃c.(a, c) ∈ r1 ∧ (c, b) ∈ r2} for relational composition;

r|imm ≜ r \ (r; r) for the immediate edges in r, when r is a strict partial order.

For a set of events E, location x and label type X, we also define:
Ex ≜ {e ∈ E | loc(e) = x}, the events towards x;

E.X ≜ {e ∈ E | type(e) = X}, the events of type X;

E.R ≜ E.lR ∪ E.CAS ∪ E.nlR ∪ E.nrR ∪ E.narR, the set of reads;

E.W ≜ E.lW ∪ E.CAS ∪ E.nlW ∪ E.nrW ∪ E.narW, the set of writes;

E.Inst ≜ E \ (E.lW ∪ E.nlW ∪ E.nrW ∪ E.narW), the set of instantaneous events.

Finally, we define the following relations:

Same-location: sloc ≜
{
(e, e′) ∈ Event2 | loc(e) = loc(e′)

}
Same-thread: sthd ≜

{
(e, e′) ∈ Event2 | t(e) = t(e′)

}
Same-queue-pair: sqp ≜

{
(e, e′) ∈ Event2 | t(e) = t(e′) ∧ n(e) = n(e′)

}
Note that these relations are all symmetric, and sqp ⊆ sthd. Given events E, we write
E.sloc for sloc|E, likewise for E.sthd and E.sqp.

Semantics of RDMA Remote RMWs Max Stupple

x = y = 0

a := nCAS(x3, 0, 7) b := nCAS(y3, 0, 42)

x := 1
y := 2
y := 3
x := 4

(a) (x, b) = (7, 2) ✗

Figure 5.1: Remote RMWs are guaranteed to be mutually exclusive whenever they are
towards the same node, even if they target different locations.

Definition 2 (Pre-executions). A pre-execution is a tuple G = ⟨E, po, rf, mo, pf, nfo, rao⟩,
where:

• E ⊆ Event is the set of events and includes a set of initialisation events, E0 ⊆ E,
comprising a single write with label lW(x, 0) for each x ∈ Loc.

• po ⊆ E ×E is the ‘program order ’ relation defined as a disjoint union of strict total
orders, each ordering the events of one thread, with E0 × (E \ E0) ⊆ po.

• rf ⊆ E.W × E.R is the ‘reads-from’ relation on events of the same location with
matching values; i.e. (a, b) ∈ rf ⇒ (a, b) ∈ sloc ∧ vw(a)=vr(b). Moreover, rf is total
and functional on its range: every read in E.R is related to exactly one write in
E.W .

• mo ≜ ⋃
x∈Loc mox is the ‘modification-order ’, where each mox is a strict total order

on E.Wx with E0
x × (E.Wx \ E0

x) ⊆ mox describing the order in which writes on x
reach the memory.

• pf ⊆ (E.nlW∪E.nrW)×E.P is the ‘polls-from’ relation, relating earlier (in program-
order) NIC writes to later poll operations on the same queue pair ; i.e. pf ⊆ po∩sqp.
Moreover, pf is functional on its domain (every NIC write can be be polled at most
once), and pf is total and functional on its range (every poll in E.P polls from
exactly one NIC write).

• nfo ⊆ E.sqp is the ‘NIC flush order ’, such that for all (a, b) ∈ E.sqp, if a ∈
E.nlR, b ∈ E.nlW, then (a, b) ∈ nfo ∪ nfo−1, and if a ∈ (E.nrR ∪ E.narR), b ∈
(E.nrW ∪ E.narW), then (a, b) ∈ nfo ∪ nfo−1.

• rao ≜ ⋃
n∈Node raon is the ‘remote-atomic-order ’, where each raon is a strict total

order on {e | e ∈ E.narR ∧ n(e) = n} describing the order in which remote atomics
towards n are executed.

The definitions of po, rf and mo are familiar from TSO, while pf and nfo are intro-
duced in [10]. The reason nfo is important is subtle: recall from §3.1 that we model
the requirement from PCIe that a NIC local read flushes pending NIC remote writes on
the same queue pair, and likewise for NIC local reads/writes. We will therefore need to
maintain an order over these events to check that the property holds.

We introduce rao, which totally orders NIC remote atomic reads towards a given node.
This will help us to check the atomicity guarantee.

Chapter 5. Declarative Semantics 30

Discussion: Pre-executions

At first glance, it might appear that rao should be a total order per-location, rather
than per-thread; indeed, it was so in an earlier draft of the semantics. However, this
results in an atomicity guarantee which is too weak. Consider the example shown in
Fig. 5.1. When we observe the outcome x = 7, this means that every local write on
node 3 occurred between the read and write of the nCAS towards x: in particular,
y = 2 is only ever true within this critical period, not outside it. Thus if x = 7 then we
cannot have b = 2, as this would imply the two rRMWs were not mutually exclusive.
If atomicity were only guaranteed per-location, then this would be allowed, but this is
forbidden by the specification.

Derived Relations. Given a pre-execution ⟨E, po, rf, mo, pf, nfo, rao⟩, we define the
following derived relations:

• rb ≜ (rf−1; mo) \ [E] is the reads-before relation, relating each read r to writes that
are mo-after the write from which r reads.

• rfb ≜ [lW]; (rf ∩ sthd); [lR] is the rf-buffer relation, which includes rf edges only for
CPU operations on the same thread, which thus share a store buffer; therefore when
w

rfb−→ r, it may be that the write w is not yet visible (committed to memory) when
it is read by r, since CPU reads check the store buffer.

• rfb ≜ rf \ rfb is the rfb-complement: if w
rfb−→ r, then r only occurs after w is

observable.

• rbb ≜ [lR]; (rb ∩ sthd); [lW] is the rb-buffer relation, analogously.

• ar ≜ [narW]; (po|imm
−1) is the atomic-write-to-read relation, connecting the remote

write of an rRMW to their corresponding read.

Note that these derived relations contain no additional information. We introduce them
for ease and brevity of notation.
Preserved Program Order. In order to model the reordering rules of §3.1, we must
identify which events in po are issued in order, and which are observed in order. The
observation point of an event is no earlier than its issue point, so two events in po are
only observed in order if they are issued in order. Furthermore, when the po-earlier event
is instantaneous, the events are observed in order if and only if they are issued in order.

We therefore define two relations: ippo, the issue-preserved-program-order relation,
and oppo, the observation-preserved-program-order relation, where oppo ⊆ ippo ⊆ po.
The tables in Fig. 5.2 show these relations, with the new cells due to rRMW events
highlighted. Each row indicates the po-earlier event, while each column indicates that
which is po-later. A cell labelled ✓ indicates the event pair is in ippo (resp. oppo) and
must be issued (resp. observed) in program order, while ✗ indicates they are not in
ippo/oppo and may be issued/observed out of program order. The label sqp indicates
that the events are in ippo/oppo if they are events on the same queue-pair.

We can observe high-level reordering rules by looking at each quadrant of the two
tables, which partition the event pairs by their categorisation as CPU or NIC events.
The top left quadrant contains pairs of CPU events. Observe that CPU events are
always issued in program order, and only an earlier CPU write may be observed out of

Semantics of RDMA Remote RMWs Max Stupple

Later in Program Order

ippo
CPU NIC

1 2 3 4 5 6 7 8 9 10 11 12
lR lW CAS F P nlR nrW narR narW nrR nlW nF

Ea
rli

er
in

Pr
og

ra
m

O
rd

er

C
PU

A lR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B lW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C CAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E P ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

N
IC

F nlR ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp sqp
G nrW ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp
H narR ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp
I narW ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp
J nrR ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp
K nlW ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp
L nF ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp sqp

Later in Program Order

oppo
CPU NIC

1 2 3 4 5 6 7 8 9 10 11 12
lR lW CAS F P nlR nrW narR narW nrR nlW nF

Ea
rli

er
in

Pr
og

ra
m

O
rd

er

C
PU

A lR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B lW ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C CAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E P ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

N
IC

F nlR ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp sqp
G nrW ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp ✗

H narR ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp
I narW ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp ✗ ✗

J nrR ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sqp sqp
K nlW ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ sqp ✗

L nF ✗ ✗ ✗ ✗ ✗ sqp sqp sqp sqp sqp sqp sqp

Figure 5.2: The rdmatso ordering constraints on ippo (above) and oppo (below), where
✓ denotes that instructions are ordered (and cannot be reordered), ✗ denotes they are
not ordered (and may be reordered), and sqp denotes they are ordered iff they are on the
same queue pair. Highlighted: new cells due to rRMWs.

Chapter 5. Declarative Semantics 32

order, as all other CPU events are instantaneous. The bottom left quadrants shows that
an earlier NIC event may always be issued or observed after a later CPU event, matching
our intuition that NIC events execute concurrently, as if in a separate thread; conversely
the top right shows that earlier CPU events always complete before later NIC events. In
the bottom right quadrant, we can see that a pair of NIC events are only ordered if they
are on the same queue-pair.

The relations ippo and oppo differ in only six cells. A CPU write may be buffered
and hence not observed by a later CPU read or poll (B1 and B5). Other CPU writes
and CAS or fence operations go via the store buffer, so earlier writes will be observed
first. Similarly, a remote fence may be observed before an earlier NIC remote (atomic)
write (resp. local), if that write is buffered in wbR (resp. wbL) (G12 and I12, resp.
K12). Finally, a po-later nlW may be observed before a po-earlier narW (I11). This occurs
specifically in the case where both are created by the same rRMW, because the writes
are sent to wbL and wbR respectively and may be committed in either order.

Definition 3 (Executions). A pre-execution G=⟨E, po, rf, mo, pf, nfo, rao⟩ is well-formed
if the following hold for all w, r, w1, w2, p2:

1. Poll events poll-from the oldest non-polled remote operation on the same queue
pair:
if w1 ∈ G.nlW ∪ G.nrW and w1

po∩sqp−−−−→ w2
pf−→ p2, then there exists p1 such that

w1
pf−→ p1

po−→ p2.

2. Each put (resp. get) operation corresponds to two events: a read and a write with
the read immediately preceding the write in po: (a) if r ∈G.nlR (resp. r ∈G.nrR),
then (r, w) ∈ po|imm for some w ∈ G.nrW (w ∈ G.nlW); and (b) if w ∈ G.nrW then
(r, w)∈po|imm for some r∈G.nlR. The case w ∈ G.nlW is handled by (6) below.

3. Read and write events of a put (resp. get) have matching values:
if (r, w) ∈ G.po|imm, type(r) ∈ {nlR, nrR} and type(w) ∈ {nlW, nrW}, then vr(r) =
vw(w).

4. Each rRMW operation corresponds to either an atomic remote read followed by a
local write, or an atomic remote read, followed by an atomic remote write, followed
by a local write: (a) if r∈G.narR then (r, w1)∈po|imm for some w1 ∈G.narW∪G.nlW,
and if w1 ∈G.narW then (w1, w2)∈po|imm for some w2 ∈G.nlW, and (b) if w1 ∈G.narW
then (r, w1) ∈ po|imm for some r ∈ narR, and (w1, w2) ∈ po|imm for some w2 ∈ nlW.
The case for w2 ∈ nlW is handled by (6) below.

5. Remote atomic read and local write events of an rRMW have matching values: if
(r, w) ∈ G.po|imm, type(r) = narR and type(w) = nlW, then vr(r) = vw(w); and if
(r, w1), (w1, w2) ∈ G.po|imm, type(r) = narR, type(w1) = narW and type(w2) = nlW,
then vr(r) = vw(w2).

6. (2) and (4) auxiliary in the case of w ∈ nlW. If w ∈ G.nlW then either:
(a) (r, w) ∈ po|imm for some r ∈ G.nrR or
(b) (r, w) ∈ po|imm for some r ∈ G.narR or
(c) (r, w′), (w′, w) ∈ po|imm for some r ∈ G.narR and w′ ∈ G.narW.

An execution is a pre-execution (Def. 2) that is well-formed.

Semantics of RDMA Remote RMWs Max Stupple

Given an execution G, we write G.E, G.mo, G.ippo and so forth to project the com-
ponents and derived relations of G. When the execution is question is clear, we simply
write E, mo or similar.

Definition 4 (rdmatso-consistency). An execution ⟨E, po, rf, mo, pf, nfo, rao⟩ is rdmatso-
consistent iff 1. ib is irreflexive; and 2. ob is irreflexive, where:

ib ≜
(
ippo ∪ rf ∪ pf ∪ nfo ∪ rbb ∪ rao ∪ (ob; [Inst])

)+
(‘issued-before’)

ob ≜
(
oppo ∪ rfb ∪ ([nlW]; pf) ∪ nfo ∪ rb ∪ mo ∪ (ar; rao) ∪ ([Inst]; ib)

)+

(‘observed-before’)

These relations extend ippo and oppo respectively to describe the issue and observation
orders across threads and nodes. They are required to be irreflexive, i.e. an event cannot
be issued or observed before itself.

The remaining components of ib are (a) rf: if w
rf−→ r then w was at least issued (if not

observed) before r – recall that if the read and write are both CPU events on the same
thread, w may not be observable; (b) pf: similarly w

pf−→ p only if w was issued before p;
(c) nfo: NIC events arrive in wbL/wbR in the order they are issued; (d) rbb: if r

rbb−→ w,
then r must be issued before w, otherwise r would read from w or an mo-later w′; (e) rao:
remote atomic reads are issued in the defined order; (f) ob; [Inst]: in general, an event
is observed no earlier than it is issued, and for an instantaneous event, the two points
coincide. Thus e

ob−→ e′ implies e
ib−→ e′ when e′ is instantaneous.

On the other hand, for ob we have (a) rfb: if w
rfb−→ r then w was committed to memory

before r, since r cannot read from the store buffer of another thread; (b) [nlW]; pf: NIC
local writes cannot be polled until they are committed to memory; (c) nfo: NIC events
are observed in the same order they arrive in wbL/wbR; (d) rb: if r

rb−→ w, then w was not
observed before r, otherwise it would have been committed to memory before r; (e) mo:
if w

mo−→ w′, then w was observed in memory before w′; (f) ar; rao: if w
ar−→ r

rao−→ r′, then
we have that r and w are the read and write of the same rRMW operation, thus w must
be observed before the rao-later r′ to ensure atomicity. (g) [Inst]; ib: by a similar logic
to above, we know that the ib-earlier instantaneous event is also observed earlier, since
its issue and observation points coincide.

5.2 Semantics of a Program

Given a program P, we can generate an event graph (E, po), by a standard process,
which we describe below. We then choose any rf, mo, pf, nfo, rao such that the execution
is consistent. The semantics of P are the set of consistent executions of P.
Thread to Event Graph. Given a thread identifier t ∈ Tid and a sequence of labels
l1, . . . , ln ∈ ELab, we define the event graphs of t as ({e1, . . . , en} , po) ∈ Gt(l1, . . . , ln)
where: (a) l(ei) = li for all 1 ≤ i ≤ n; (b) ι(ei) ̸= ι(ej) for all 1 ≤ i < j ≤ n; (c) t(ei) = t
for all 1 ≤ i ≤ n; (d) po = {(ei, ej) | 1 ≤ i < j ≤ n}.
Initial Event Graph. Given a set of locations Loc, we define Ginit = (E0, ∅), such that
for each x ∈ Loc there is exactly one e ∈ E0 with l(e) = lW(x, 0), and every event in E0
has a unique identifier. We call E0 the set of initialisation events.

Chapter 5. Declarative Semantics 34

Sequential Composition. For two event graphs G1 and G2, we define their sequential
composition G1; G2 = (E, po) where

E ≜ G1.E ⊎ G2.E

po ≜ G1.po ∪ G2.po ∪ (G1.E × G2.E)

Note that all events in G2 are ordered po-after every event in G1. Sequential composition
is defined only where the set of events of each graph are disjoint, i.e. G1.E ∩ G2.E = ∅.
Parallel Composition. We define parallel composition by G1 ∥ G2 = (E, po) where

E ≜ G1.E ⊎ G2.E

po ≜ G1.po ∪ G2.po

Note that the events of each graph are not po-ordered with respect to one another.
We also require that the event sets be disjoint. As this operation is commutative and
associative, it is straightforward to lift it to sets of graphs, which we denote by ∥ G, where
G is a set of event graphs.
Program to Event Graph. A program P generates G if G = Ginit; (∥t∈Tid Gt) and
there is a set of sequences st ∈ S such that P(t)↣ st and Gt ∈ Gt(st) for all t ∈ Tid.

The operation C ↣ s relates a sequential program C to a sequence of labels s it
generates. The definition is standard and show in Fig. 5.3. Note that RDMA opera-
tions generate multiple events, and for local and remote CAS operations, we distinguish
between success and failure cases.

Theorem 1. The operational and declarative semantics of rdmatso are equivalent.

Proof. See §6

Semantics of RDMA Remote RMWs Max Stupple

C ⇝ C ′ C ′ ↣ s

C ↣ s

C1 ↣ s1 C2 ↣ s2

C1; C2 ↣ s1, s2

elocs(e) = ∅
x := e↣ lW(x, [[e]])

elocs(eold) = elocs(enew) = ∅
z := [[eold]]↣ s

z := CAS(x, eold, enew)↣ CAS(x, [[eold]], [[enew]]), s

elocs(eold) = elocs(enew) = ∅
v ̸= [[eold]] z := v↣ s

z := CAS(x, eold, enew)↣ F, lR(x, v), s mfence↣ F assume(x = v)↣ lR(x, v)

v′ ̸= v

assume(x ̸= v)↣ lR(x, v′) x := yn ↣ nrR(yn, v), nlW(x, v, n)

yn := x↣ nlR(x, v, n), nrW(yn, v) rfence (n)↣ nF(n) poll(n)↣ P(n)

skip↣ ϵ

elocs(eold) = elocs(enew) = ∅ v ̸= [[eold]]
z := nCAS(xn, eold, enew)↣ narR(xn, v), nlW(z, v, n)

elocs(eold) = elocs(enew) = ∅
z := nCAS(xn, eold, enew)↣ narR(xn, [[eold]]), narW(xn, [[enew]]), nlW(z, [[eold]], n)

elocs(e) = ∅ v′ = v + [[e]]
z := nFAA(xn, e)↣ narR(xn, v), narW(xn, v′), nlW(z, v, n)

Figure 5.3: Label Sequences Construction

Chapter 6. Equivalence 36

6 Equivalence
The proof of Theorem 1 can be found in Appendix B, which directly adapts the proof
given in [10]. However, this proof is necessarily verbose, so this section provides an
overview of the structure, highlights, and notable additions to the proof.

6.1 Structure of the Proof
The goal of the proof is to show that the operational and declarative models, given in §4
and §5 respectively, are equivalent.

By ‘equivalent’, we mean that given a program P, the set of executions of P given by
either semantics each describe the same program behaviours, such that each execution
derived by the operational semantics has a corresponding execution graph given by the
declarative semantics, and vice-versa.

Therefore, we aim to show that (a) given an execution graph G generated by a program
P, there is an equivalent derivation D of an execution of P; and (b) given a derivation D
of an execution of P, there is an equivalent execution graph G generated by P.

We note that a derivation D of an execution takes the form
P, M0, B0, A0, QP0 ⇒∗ λt.skip, M, B0, A0, λt.λn.⟨ϵ, ϵ, cn∗⟩

where ⇒∗ is the reflexive transitive closure of ⇒ defined in Fig. 4.2.
Note that M0 and similar denote initial states. A derivation must finish with the

empty program (all threads contain only skip), all store buffers empty, all remote atomic
locks released, and queue pairs containing no pending operations except for confirmation
notifications, as it is allowed for these not to be polled.

However, it will be very challenging to convert between operational and declarative
semantics directly, because the prior is concerned primarily with states while the latter
only represents events. For the proof in the direction from operational to declarative
(resp. declarative to operational), we would first need to derive the events that are implicit
in the transitions between states (resp. the states implied by the events), then remove
information about states (resp. events) that is no longer relevant.

In other words, for the proof in either direction, we first need to build a view that
contains all the information of both semantics, then remove information to arrive at the
appropriate form. There would be no reason not to use the same intermediary form for
both directions. Therefore, we define an annotated semantics, as a direct extension of
the operational semantics, where states are extended with event labels.

We then aim to prove that 1. the operational semantics is equivalent to the annotated
semantics and 2. the declarative semantics is equivalent to the annotated semantics.
Naturally, each point will require a proof in either direction.

Ensuring that the annotated semantics is defined as a direct extension of the opera-
tional one will make the proof of the two directions for the first point straightforward,
while the latter point will be more complex.

6.2 Annotated Semantics
The annotated semantics is defined in §B.1. The states of the operational semantics
are extended to contain events, rather than values. For example, a memory location

Semantics of RDMA Remote RMWs Max Stupple

will contain a particular write event, rather than a mere value. This will help us to
associate related events, in order to build the relations of the declarative semantics. The
set of labels used is an extension of those defined for the declarative semantics, with the
introduction of labels representing the operations put, get, nCAS and nFAA, and RDMA
acknowledgement messages, as these are not explicitly modelled by labels in an execution
graph, only by relations.

We then define annotated labels, which will be the labels for the transitions of the
annotated semantics; each comprises a label type and tuple of events. The annotated
labels explicitly connect transitions that concern the same event. Recall that for RDMA
operations in the operational semantics, we expect to see a number of related transitions
as it is processed into, through, and out of a queue-pair. In the annotated semantics,
we directly connect those transitions by generating an event in the relevant program
transition, then including that event in the label of each related hardware and queue-pair
transition.

The transitions of the annotated semantics correspond directly to those of the op-
erational semantics, but with events instead of values checked in most places. These
transitions have been suitably extended to match the corresponding extensions to the
operational semantics.
Paths. We extend the annotated semantics with a path π, which is a sequence of
annotated labels. This serves as a history of transitions taken, as each time a labelled
transition occurs, the label is added to π. This means that, given a particular state of
the operational semantics, we are able to use π to determine every transition taken up to
that point. We maintain a number of invariants to ensure that a path is well-formed, and
to identify if it corresponds to a complete execution. A number of these invariants need
to be updated due to the introduction of rRMWs, and we also introduce a new invariant
to model the atomicity guarantee.
Path Conditions. A path is complete if there are no pending operations. We can
check if an operation is complete by looking for all the relevant labels in the path. For
example, if there was a put operation in the program, there should be labels in the path
corresponding to the operation being pushed to the store-buffer, pushed to the queue-
pair, a NIC local read, NIC remote write, acknowledgement, and committing the NIC
remote write to memory.

A path is backwards-complete if labels do not appear out of thin air. For example, if
there is a NIC remote write, there must be a corresponding prior NIC local read, since a
NIC remote write can only appear as part of a put operation. Likewise there must be an
earlier label pushing the operation to the queue pair, and so on.

A path is well-formed if it is backwards-complete and observes a number of ordering
rules.

• Poll order: for any two writes on the same queue-pair, if the later write is polled,
then the earlier write must be polled first;

• Flush order: any pair of writes that go via the same buffer (i.e. store buffer or
queue-pair write buffer) must be committed to memory in the order they were
buffered;

• NIC order: for a pair of operations which are pushed to the same queue-pair,
describes the minimum progress achieved by the first operation, given the progress
of the second operation;

Chapter 6. Equivalence 38

• NIC atomicity: an earlier successful rRMW must have had its remote write com-
mitted to remote memory before a later rRMW reads;

• Read order: a read should observe the latest write that is visible to it, i.e. for NIC
reads, the latest write in memory, and for CPU reads, the latest write in the store
buffer, if there is one, or else the latest write in memory.

We then define well-formedness for M, B, A, and QP with respect to π, which requires
that events in π are reflected in those states. For example, the write event at a location
in M should match the latest write event to that location which has been flushed in π.

We then observe the result that well-formedness is preserved by the transitions of the
annotated semantics.

6.3 Annotated Semantics to Declarative Semantics

For this part of the proof, we show that a well-formed and complete path π yields a
consistent execution. We define getEG(π) which finds E, po, rf, pf, mo, nfo and rao. This
is straightforward, as by construction π provides an explicit total order for every event.

We then prove that getEG(π) is a pre-execution and meets the conditions for well-
formedness and consistency. Showing that it is a well-formed pre-execution is straightfor-
ward, while consistency is more interesting. The conceit of the proof is to show that each
component of ib and ob is a subset of the total orders on issue and observation points
given by π. The notable new cases are due to the extensions to ippo and oppo, and the
new component of ob, ar; rao. The proofs for the new cases of ippo and oppo rely heavily
on the extended definition of NIC order, the cases of which broadly correspond to cells
in the ippo/oppo tables. In the case of ar; rao, the new invariant regarding NIC atomicity
is used.

6.4 Declarative Semantics to Annotated Semantics

Now, we need to do the converse: given a consistent execution G = ⟨E, po, rf, pf, mo, nfo, rao⟩,
we aim to construct a well-formed path π. Using π, it is then straightforward to recon-
struct the rest of the annotated semantics derivation.

To build π, we extend ib and ob into total orders. We update this process to accom-
modate rRMWs, which requires some additional work not present in the prior version of
the proof. The event graph does not contain information about failed nCAS operations,
nor does it distinguish between a successful nCAS and an nFAA. Therefore, we need to
look at the derivation from P to G, as described in §5.2. By checking the derivation, we
can retrieve the information that was lost during the creation of the event graph.

We then need to show that each path invariant holds. The most interesting case is the
proof of NIC atomicity. We argue that when a successful rRMW with read r1 and write
w1 appears in the path, there is no other rRMW with read r1 towards the same node
which reads between r1 and w1. Such a read would force r1

rao−→ r2, and thus w1
ar;rao−−−→ r2,

which make ib and ob reflexive. This is not allowed by the consistency conditions.

Semantics of RDMA Remote RMWs Max Stupple

6.5 Operational and Annotated Semantics
The annotated semantics was deliberately designed as a direct extension of the opera-
tional semantics in order to make this side of the proof much easier. The rules extending
a derivation of the operational semantics to one of the annotated semantics are straight-
forward, as is the respective process for restricting an annotated semantics derivation to
one of the operational semantics. We extend these definitions with rules in the case of
rRMWs, which leads to the result we require.

Chapter 7. Discussion 40

7 Discussion

7.1 Conclusion
This project gives the first intuitive and formal descriptions of the behaviour of RDMA
remote RMWs, outside of a hardware manual. We extend the rdmatso memory model to
provide operational and declarative semantics, enabling formal reasoning and verification
of programs reliant on these operations. By formalising remote RMW behaviours, we have
clarified ambiguities in the hardware specification, enabling programmers to understand
them in simple terms. In the future, we hope this will lead to more reliable RDMA
program and libraries, and potentially to the development of automated verification tools
for RDMA.

We are confident that the models given in this report align with intended behaviour
for rRMWs given by the InfiniBand technical specification [21]. The behaviours given by
these models have been checked against the specification, and confirmed by an expert
from NVIDIA, a leading vendor of RDMA hardware.

7.2 Limitations
Although we have sought to confirm the accuracy of our model, we have not conducted
independent validation on RDMA hardware. Only an extensive testing campaign would
reveal whether real networks implement the specification faithfully. As is the case with
all memory models, there may be some behaviours which are permitted but not observed.
It was noted in [10] that store buffering with puts was not observed when the earlier put
was polled. NVIDIA have confirmed that their current hardware implements a stronger
guarantee for polled NIC remote writes, which means the same behaviour is also not
possible when rRMWs are used. Therefore, the examples shown in Fig. 4.6 are not
possible under current NVIDIA hardware, but this may change in future implementations.
In general, we cannot be sure the weak behaviours we have described are possible on
current hardware, unless we observe it through empirical validation.

Our work is also limited to RDMA implementations where individual machines adhere
to x86-TSO. While x86 is the most common architecture used for RDMA, there are
other possibilities; recent research has shown the viability of ARM processors for high-
performance computing workloads [23, 24, 25]. This could lead to wider use of RDMA
on ARM, which does not observe TSO.

7.3 Future Work
Conformance Testing. The models presented here could be used to develop confor-
mance tests, to confirm that implementation of RDMA faithfully adhere to the specifi-
cation. One approach to this would be to follow the method shown in [26], by encoding
the declarative model in Alloy, a tool for bounded model checking. This is then used
to find program executions which are on the boundary of being allowed or disallowed.
Appendix C contains a prototype encoding of the declarative semantics, and an example
encoding of a litmus test. The next step would be to extend this with a framework for
encoding litmus tests, as the process is too tedious and verbose to be done manually.

Semantics of RDMA Remote RMWs Max Stupple

It is equally possible to encode the operational semantics using other bounded model
checkers, such as CMBC [27].
Other Architectures. It would be interesting to investigate the semantics of RDMA
in the presence of other architectures such as ARMv8. As the semantics of RDMA
operations is independent from the semantics of local operations, it may be possible
to develop a memory model for RDMA which is parametric in the semantics of the
underlying architecture. This would make the semantics durable with respect to changes
in the hardware with which RDMA is used.
Verifying Programs and Libraries. The main utility of these models is to verify
RDMA libraries and programs. This may be performed manually using the event graph
construction we have described, but developing a tool to automate this would enable
faster and more extensive verification. One approach is to extend an existing verification
tool such as Memalloy [28], which is extensible to arbitrary memory models, such as
rdmatso.

References 42

References
[1] M. Su et al. RFP: A remote fetching paradigm for RDMA-accelerated systems.

CoRR, abs/1512.07805, 2015. arXiv: 1512.07805. url: http://arxiv.org/abs/
1512.07805.

[2] N. Boscia and H. S. Sidhu. Comparison of 40G RDMA and Traditional Ether-
net Technologies. Technical report NAS-2014-01, NASA Advanced Supercomput-
ing Division, NASA Ames Research Center, Moffett Field, CA, 2014. url: https:
//www.nas.nasa.gov/assets/nas/pdf/papers/NAS_Technical_Report_NAS-
2014-01.pdf.

[3] Introduction to InfiniBand. White Paper 2003WP, Mellanox Technologies Inc.,
2003. url: https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_
190.pdf.

[4] Annex A16: RDMA over Converged Ethernet (RoCE). Technical report, InfiniBand
Trade Association, Beaverton, OR, 2010. Available upon request.

[5] R. Gerstenberger et al. Enabling highly scalable remote memory access program-
ming with MPI-3 one sided. Commun. ACM, 61(10):106–113, 2018. doi: 10.1145/
3264413.

[6] A. Shpiner et al. RoCE rocks without PFC: detailed evaluation. In M. Alizadeh
and Y. Zhu, editors, Proceedings of the Workshop on Kernel-Bypass Networks, KB-
Nets@SIGCOMM 2017, Los Angeles, CA, USA, August 21, 2017, pages 25–30.
ACM, 2017. doi: 10.1145/3098583.3098588.

[7] S. Owens et al. A better x86 memory model: x86-tso. In S. Berghofer et al., editors,
Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs
2009, Munich, Germany, August 17-20, 2009. Proceedings, volume 5674 of Lecture
Notes in Computer Science, pages 391–407. Springer, 2009. doi: 10.1007/978-3-
642-03359-9_27.

[8] C. Pulte et al. Simplifying ARM concurrency: multicopy-atomic axiomatic and
operational models for ARMv8. Proc. ACM Program. Lang., 2(POPL):19:1–19:29,
2018. doi: 10.1145/3158107.

[9] A. M. Dan et al. Modeling and analysis of remote memory access programming.
In E. Visser and Y. Smaragdakis, editors, Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Nether-
lands, October 30 - November 4, 2016, pages 129–144. ACM, 2016. doi: 10.1145/
2983990.2984033.

[10] G. Ambal et al. Semantics of remote direct memory access: operational and declar-
ative models of RDMA on TSO architectures. Proc. ACM Program. Lang., 8(OOP-
SLA2):1982–2009, 2024. doi: 10.1145/3689781.

[11] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, 1991. doi: 10.1145/114005.102808.

[12] A. McMenamin. The end of dennard scaling, 2013. url: https://cartesianproduct.
wordpress.com/2013/04/15/the-end-of-dennard-scaling/.

https://arxiv.org/abs/1512.07805
http://arxiv.org/abs/1512.07805
http://arxiv.org/abs/1512.07805
https://www.nas.nasa.gov/assets/nas/pdf/papers/NAS_Technical_Report_NAS-2014-01.pdf
https://www.nas.nasa.gov/assets/nas/pdf/papers/NAS_Technical_Report_NAS-2014-01.pdf
https://www.nas.nasa.gov/assets/nas/pdf/papers/NAS_Technical_Report_NAS-2014-01.pdf
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://doi.org/10.1145/3264413
https://doi.org/10.1145/3264413
https://doi.org/10.1145/3098583.3098588
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3158107
https://doi.org/10.1145/2983990.2984033
https://doi.org/10.1145/2983990.2984033
https://doi.org/10.1145/3689781
https://doi.org/10.1145/114005.102808
https://cartesianproduct.wordpress.com/2013/04/15/the-end-of-dennard-scaling/
https://cartesianproduct.wordpress.com/2013/04/15/the-end-of-dennard-scaling/

Semantics of RDMA Remote RMWs Max Stupple

[13] J. Alglave et al. Frightening small children and disconcerting grown-ups: concur-
rency in the linux kernel. In X. Shen et al., editors, Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018,
pages 405–418. ACM, 2018. doi: 10.1145/3173162.3177156.

[14] Heisenbug - Wikipedia. url: https://en.wikipedia.org/wiki/Heisenbug.
[15] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming, Revised Reprint.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2012. isbn:
9780123973375.

[16] P. Sewell et al. x86-TSO: a rigorous and usable programmer’s model for x86 mul-
tiprocessors. Commun. ACM, 53(7):89–97, 2010. doi: 10.1145/1785414.1785443.

[17] SPARC International, editor. The SPARC architecture manual: version 8. Prentice
Hall, Englewood Cliffs, N.J, 1992. isbn: 978-0-13-825001-0.

[18] A. Godbole et al. Automated conversion of axiomatic to operational models: theory
and practice. CoRR, abs/2208.06733, 2022. doi: 10.48550/ARXIV.2208.06733.
arXiv: 2208.06733.

[19] G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebraic
Methods Program., 60-61:17–139, 2004.

[20] PCI-SIG. PCI Express Base Specification Revision 6.0 Version 1.0. Technical report,
PCI-SIG, 2022. url: https://pcisig.com/pci-express-6.0-specification.

[21] InfiniBand Architecture Specification Volume 1, Release 1.2.1. Available upon re-
quest. InfiniBand Trade Association. Beaverton, OR, 2007.

[22] J. Preshing. Atomic vs. Non-Atomic Operations, 2013-06-18. url: https://preshing.
com/20130618/atomic-vs-non-atomic-operations/.

[23] F. Mantovani et al. Performance and energy consumption of HPC workloads on a
cluster based on arm thunderx2 CPU. CoRR, abs/2007.04868, 2020. arXiv: 2007.
04868. url: https://arxiv.org/abs/2007.04868.

[24] N. A. Simakov et al. Are we ready for broader adoption of ARM in the HPC com-
munity: performance and energy efficiency analysis of benchmarks and applications
executed on high-end ARM systems. In Proceedings of the HPC Asia 2023 Work-
shops, HPC Asia 2023, Singapore, 27 February 2023 - 2 March 2023, pages 78–86.
ACM, 2023. doi: 10.1145/3581576.3581618.

[25] A. Jackson et al. Evaluating the ARM ecosystem for high performance computing.
CoRR, abs/1904.04250, 2019. arXiv: 1904.04250. url: http://arxiv.org/abs/
1904.04250.

[26] V. Klimis et al. Taking back control in an intermediate representation for GPU
computing. Proc. ACM Program. Lang., 7(POPL), 2023-01. doi: 10.1145/3571253.

[27] D. Iorga et al. Simulating operational memory models using off-the-shelf program
analysis tools. IEEE Trans. Software Eng., 49(12):5084–5102, 2023. doi: 10.1109/
TSE.2023.3326056.

[28] J. Wickerson et al. Automatically comparing memory consistency models. In G.
Castagna and A. D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 190–204. ACM, 2017. doi: 10.1145/3009837.3009838.

https://doi.org/10.1145/3173162.3177156
https://en.wikipedia.org/wiki/Heisenbug
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.48550/ARXIV.2208.06733
https://arxiv.org/abs/2208.06733
https://pcisig.com/pci-express-6.0-specification
https://preshing.com/20130618/atomic-vs-non-atomic-operations/
https://preshing.com/20130618/atomic-vs-non-atomic-operations/
https://arxiv.org/abs/2007.04868
https://arxiv.org/abs/2007.04868
https://arxiv.org/abs/2007.04868
https://doi.org/10.1145/3581576.3581618
https://arxiv.org/abs/1904.04250
http://arxiv.org/abs/1904.04250
http://arxiv.org/abs/1904.04250
https://doi.org/10.1145/3571253
https://doi.org/10.1109/TSE.2023.3326056
https://doi.org/10.1109/TSE.2023.3326056
https://doi.org/10.1145/3009837.3009838

Appendix A. Declarations 44

A Declarations

A.1 Use of Generative AI
No generative AI models have been used in the production of this report.

A.2 Ethical Considerations
As with all research into the precise behaviour of computer systems, it is possible, however
unlikely, that some behaviour identified may be abused by bad actors to achieve nefarious
goals, such as unauthorised access to a system. However, RDMA is typically used on
private network executing trusted code, so this is very unlikely in our case. As a primarily
theoretical project, there are no other notable ethical considerations.

A.3 Sustainability
No resource intensive tasks were involved in this project. The computer used for the
research and writing of this report was a Macbook with an energy efficient Apple M1
chip.

A.4 Availability of Materials
All materials are available within the text of this report, in particular the theoretical
models are described in §4 and §5, and the Alloy encoding of the declarative model is
provided in Appendix C.

Semantics of RDMA Remote RMWs Max Stupple

B Annotated Semantics

B.1 Annotated Labels and Inference Rules
On top of the 12 labels presented in §5, we create six new labels: Put(y, x), Get(x, y),
nCAS(z, x, v, u), nFAA(z, x, u), nlEX(n), and nrEX(n). These labels can also be used to
create events (when bundled with an event identifier and a thread identifier).

We note Eext the extended set of all events, including the six new labels.
Recall that R = lR ∪ CAS ∪ nlR ∪ nrR ∪ narR ⊆ Eext and W = lW ∪ CAS ∪ nlW ∪ nrW ∪

narW ⊆ Eext. We also note nEX = nlEX ∪ nrEX and nRMW = nCAS ∪ nFAA.
For annotated labels, we reuse most names from labels, but they are different entities.

For instance we note r ∈ lR for an event with label lR, while λ = lR⟨. . .⟩ is an annotated
label.

We use type(λ) to denote the type of the annotated label (lR, lW, CAS, F, Push, NIC,
nlR, nrR, nlW, nrW, CN, P, nF, B, E). We use r(λ), w(λ), u(λ), a(λ), f(λ), p(λ), e(λ), . . . to
access the elements of a λ ∈ ALabel where applicable. Also, we note t(λ) for the thread
of the first argument of λ.

The annotated program transitions (Fig. B.2) use an additional annotated label
CASF⟨r, w⟩ with r ∈ lR and w ∈ W to represent a failed CAS operation. This case
is then translated into two labels (a memory fence and a local read) when creating a path
in §B.2. Also, note that the annotated domains (e.g. the store buffers and the queue
pairs) contain events, not annotated labels.
initialisation Given a program P, let

M0 ∈ AMem s.t. ∀x ∈ Loc. M0(x) = initx with l(initx) ≜ lW(x, 0)
b0 ∈ ASBuff b0 ≜ ε

B0 ∈ ASBMap B0 ≜ λt.b0
A0 ∈ RAMap A0 ≜ λt.⊥
qp0 ∈ AQPair qp0 ≜ ⟨ε, ε, ε⟩
QP0 ∈ AQPMap QP0 ≜ λt.λn.qp0

Appendix B. Annotated Semantics 46

λ ∈ ALabel

λ ≜ | lR⟨r, w⟩ where r ∈ lR, w ∈ W , eqloc&v(r, w)
| lW⟨w⟩ where w ∈ lW
| CAS⟨u, w⟩ where u ∈ CAS, w ∈ W , eqloc&v(u, w)
| F⟨f⟩ where f ∈ F
| Push⟨a⟩ where a ∈ (Put ∪ Get ∪ nCAS ∪ nFAA ∪ nF)
| NIC⟨a⟩ where a ∈ (Put ∪ Get ∪ nCAS ∪ nFAA ∪ nF)
| nlR⟨r, w, a, w′⟩ where r ∈ nlR, w ∈ W , a ∈ Put, w′ ∈ nrW, eqloc&v(r, w),

locr(a) = loc(r), locw(a) = loc(w′), vr(r) = vw(w′)
| nrR⟨r, w, a, w′⟩ where r ∈ nrR, w ∈ W , a ∈ Get, w′ ∈ nlW, eqloc&v(r, w),

locr(a) = loc(r), locw(a) = loc(w′), vr(r) = vw(w′)
| narR⟨r, w, a, w′, w′′⟩ where r ∈ narR, w ∈ W , a ∈ nRMW, w′ ∈ nlW, w′′ ∈ narW,

eqloc&v(r, w), locr(a) = loc(r) = loc(w′′),
locw(a) = loc(w′), vr(r) = vw(w′),
a ∈ nCAS =⇒ vr(r) = ve(a) ∧ vw(w′′) = vu(a)
a ∈ nFAA =⇒ vw(w′′) = vr(r) + v(a)

| naF⟨r, w, a, w′⟩ where r ∈ narR, w ∈ W , a ∈ nRMW, w′ ∈ nlW, eqloc&v(r, w),
locr(a) = loc(r), locw(a) = loc(w′),
vr(r) = vw(wl), vr(r) ̸= ve(a)

| nlW⟨w, e⟩ where w ∈ nlW, e ∈ nlEX, sameqp(w, e)
| nrW⟨w, e⟩ where w ∈ nrW, e ∈ nrEX, sameqp(w, e)
| narW⟨w⟩ where w ∈ narW
| CN⟨e⟩ where e ∈ nrEX
| P⟨p, e⟩ where p ∈ P, e ∈ nEX, sameqp(p, e)
| nF⟨f⟩ where f ∈ nF
| B⟨w⟩ where w ∈ W
| E⟨t⟩ where t ∈ Tid

eqloc&v(r, w) ≜ loc(r) = loc(w) ∧ vr(r) = vw(w)
sameqp(e, e′) ≜ t(e) = t(e′) ∧ n(e) = n(e′)

Figure B.1: Annotated Labels

Semantics of RDMA Remote RMWs Max Stupple

Program transitions: Prog ALabel⊎{CASF}−−−−−−−−−→ Prog
Command transitions: Comm ALabel⊎{CASF}−−−−−−−−−→ Comm

C1
λ−→ C′

1

C1; C2
λ−→ C′

1; C2 skip; C E⟨t⟩−−→ C

i ∈ {1, 2}

C1 + C2
E⟨t⟩−−→ Ci C∗ E⟨t⟩−−→ skip

C∗ E⟨t⟩−−→ C; C∗
C ⇝ C′

C E⟨t⟩−−→ C′

elocs(e) = ∅ w = (ι, t, lW(x, [[e]]))

x := e
lW⟨w⟩−−−→ skip

elocs(eold) = elocs(enew) = ∅ v ̸= [[eold]] r = (ι, t, lR(x, v))

z := CAS(x, eold, enew) CASF⟨r,w⟩−−−−−−→ z := v

elocs(eold) = elocs(enew) = ∅ u = (ι, t, CAS(x, [[eold]], [[enew]]))

z := CAS(x, eold, enew) CAS⟨u,w⟩−−−−−→ z := [[eold]]

f = (ι, t, F)

mfence
F⟨f⟩−−→ skip

a = (ι, t, Get(x, y))

x := y
Push⟨a⟩−−−−→ skip

a = (ι, t, Put(y, x))

y := x
Push⟨a⟩−−−−→ skip

a = (ι, t, nF(n))

rfence n
Push⟨a⟩−−−−→ skip

elocs(eold) = elocs(enew) = ∅ v = [[eold]] u = [[enew]] a = (ι, t, nCAS(z, x, v, u))

z := nCAS(x, eold, enew) Push⟨a⟩−−−−→ skip

elocs(e) = ∅ u = [[e]] a = (ι, t, nFAA(z, x, u))

z := nFAA(x, e) Push⟨a⟩−−−−→ skip

p = (ι, t, P(n))

poll(n) P⟨p,e⟩−−−→ skip

r = (ι, t, lR(x, v))

assume(x = v) lR⟨r,w⟩−−−−→ skip

v ̸= v′ r = (ι, t, lR(x, v′))

assume(x ̸= v) lR⟨r,w⟩−−−−→ skip

P(t(λ)) λ−→ C

P λ−→ P[t(λ) 7→ C]

Figure B.2: rdmatso program and command transitions for the annotated semantics

Appendix B. Annotated Semantics 48

M ∈ AMem ≜ {m ∈ Loc → W | ∀x ∈ Loc.loc(m[x]) = x} B ∈ ASBMap ≜ Tid → ASBuff
A∈RAMap ≜ λn. {⊥, ⊤} QP ∈ AQPMap ≜ Tid → (Node → AQPair)

b ∈ ASBuff ≜ (lW ∪ Get ∪ Put ∪ nF ∪ nCAS ∪ nFAA)∗ sqp ∈ AQPair ≜ APipe × AWBR × AWBL
pipe ∈ APipe ≜ (Get ∪ Put ∪ nF ∪ nrW ∪ narW ∪ nrEX ∪ nlW ∪ nCAS ∪ nFAA)∗

wbR ∈ AWBR ≜ (nrW, narW)∗ wbL ∈ AWBL ≜ (nlW ∪ nlEX ∪ nrEX)∗

B′ = B[t(w) 7→ w · B(t(w))]

M, B, A, QP lW⟨w⟩−−−→ M, B′, A, QP

(M ◀ B(t(r)))(loc(r)) = w vr(r) = vw(w)

M, B, A, QP lR⟨r,w⟩−−−−→ M, B, A, QP

B(t(u)) = ε M(loc(u)) = w vr(u) = vw(w)

M, B, A, QP CAS⟨u,w⟩−−−−−→ M[x 7→ u], B, A, QP

B(t(f)) = ε

M, B, A, QP F⟨f⟩−−→ M, B, A, QP

B′ = B[t(a) 7→ a · B(t(a))]

M, B, A, QP Push⟨a⟩−−−−→ M, B′, A, QP

B(t(w)) = b · w w ∈ lW

M, B, A, QP B⟨w⟩−−−→ M[x 7→ w], B[t(w) 7→ b], A, QP

B(t(a)) = b · a a /∈ lW QP(t(a))(n(a)) = qp qp′ = qp[pipe 7→ a · qp.pipe]

M, B, A, QP NIC⟨a⟩−−−−→ M, B[t(a) 7→ b], A, QP[t(a) 7→ QP(t(a))[n(a) 7→ qp′]]

QP(t(p))(n(p)) = qp qp.wbL = α · e e ∈ nEX qp′ = qp[wbL 7→ α]

M, B, A, QP P⟨p,e⟩−−−→ M, B, A, QP[t(p) 7→ QP(t(p))[n(p) 7→ qp′]]

M, A, QP(t(λ))(n) λ−→sqp M′, A′, qp

M, B, A, QP λ−→ M′, B, A′, QP[t(λ) 7→ QP(t(λ))[n 7→ qp]]

with (M ◀ α)(x) =


M[x] α = ε

w α = w · β ∧ w ∈ W ∧ loc(w) = x

(M ◀ β)(x) α = e · β ∧ (e ̸∈ W ∨ loc(e) ̸= x)

Figure B.3: rdmatso hardware domains and hardware transitions for the annotated
semantics

Semantics of RDMA Remote RMWs Max Stupple

pipe = α · f f = (ι, t, nF(n))

M, A, ⟨pipe, wbR, wbL⟩ nF⟨f⟩−−−→sqp M, A, ⟨α, wbR, wbL⟩

pipe = α · a · β a = (ιa, t, Put(y, x)) M(x) = w r = (ιr, t, nlR(x, vw(w), n(y)))
w′ = (ιw′ , t, nrW(y, vw(w))) β ∈ (nrW ∪ narW ∪ Get ∪ nlW ∪ nCAS ∪ nFAA ∪ nrEX)∗ wbL ∈ nEX∗

M, A, ⟨pipe, wbR, wbL⟩ nlR⟨r,w,a,w′⟩−−−−−−−−→sqp M, A, ⟨α · w′ · β, wbR, wbL⟩

pipe = α · w · β w = (ιw, t, nrW(y, v)) e = (ιe, t, nrEX(n(y))) β ∈ (Get ∪ nlW ∪ nrEX)∗

M, A, ⟨pipe, wbR, wbL⟩ nrW⟨w,e⟩−−−−−→sqp M, A, ⟨α · e · β, w · wbR, wbL⟩

wbR = α · w w ∈ nrW

M, A, ⟨pipe, wbR, wbL⟩ B⟨w⟩−−−→sqp M[loc(w) 7→ w], A, ⟨pipe, α, wbL⟩

pipe = α · e e ∈ nrEX

M, A, ⟨pipe, wbR, wbL⟩ CN⟨e⟩−−−→sqp M, A, ⟨α, wbR, e · wbL⟩

pipe = α · a · β a = (ιa, t, Get(x, y)) M(y) = w r = (ιr, t, nrR(y, vw(w)))
w′ = (ιw′ , t, nlW(x, vw(w), n(y))) β ∈ (Get ∪ nlW ∪ nrEX)∗ wbR = ε

M, A, ⟨pipe, wbR, wbL⟩ nrR⟨r,w,a,w′⟩−−−−−−−−→sqp M, A, ⟨α · w′ · β, wbR, wbL⟩

pipe = α · w w = (ιw, t, nlW(x, v, n)) e = (ιe, t, nlEX(n))

M, A, ⟨pipe, wbR, wbL⟩ nlW⟨w,e⟩−−−−−→sqp M, A, ⟨α, wbR, e · w · wbL⟩

wbL = α · w · β w ∈ nlW β ∈ nEX∗

M, A, ⟨pipe, wbR, wbL⟩ B⟨w⟩−−−→sqp M[loc(w) 7→ w], A, ⟨pipe, wbR, α · β⟩

pipe = α · a · β wbR = ε M(x) = w vw(w) ̸= v A(n(x)) = ⊥ a = (ιa, t, nCAS(z, x, v, u))
r = (ιr, t, narR(x, vw(w))) w′ = (ιw′ , t, nlW(z, vw(w), n(x))) β ∈ (Get ∪ nlW ∪ nrEX)∗

M, A, ⟨pipe, wbR, wbL⟩ naF⟨r,w,a,w′⟩−−−−−−−−→sqp M, A, ⟨α · w′ · β, wbR, wbL⟩

pipe = α · a · β wbR = ε M(x) = w
vw(w) = v A(n(x)) = ⊥ a = (ιa, t, nCAS(z, x, v, u)) r = (ιr, t, narR(x, vw(w)))

w′′ = (ιw′′ , t, narW(x, u)) w′ = (ιw′ , t, nlW(z, vw(w), n(x))) β ∈ (Get ∪ nlW ∪ nrEX)∗

M, A, ⟨pipe, wbR, wbL⟩ narR⟨r,w,a,w′,w′′⟩−−−−−−−−−−−→sqp M, A[n(x) 7→ ⊤], ⟨α · w′ · w′′ · β, wbR, wbL⟩

pipe = α · a · β wbR = ε M(x) = w
vw(w) + v = u A(n(x)) = ⊥ a = (ιa, t, nFAA(z, x, v)) r = (ιr, t, narR(x, vw(w)))

w′′ = (ιw′′ , t, narW(x, u))) w′ = (ιw′ , t, nlW(z, vw(w))) β ∈ (Get ∪ nlW ∪ nrEX)∗

M, A, ⟨pipe, wbR, wbL⟩ narR⟨r,w,a,w′,w′′⟩−−−−−−−−−−−→sqp M, A[n(x) 7→ ⊤], ⟨α · w′ · w′′ · β, wbR, wbL⟩

pipe = α · w · β β ∈ (Get ∪ nlW ∪ nrEX)∗ w = (ιw, t, narW(x, v))

M, A, ⟨pipe, wbR, wbL⟩ narW⟨w⟩−−−−−→sqp M, A, ⟨α · β, w · wbR, wbL⟩

wbR = α · w w = (ιw, t, narW(x, v))

M, A, ⟨pipe, wbR, wbL⟩ B⟨w⟩−−−→sqp M[loc(w) 7→ w], A[n(x) 7→ ⊥], ⟨pipe, α, wbL⟩

Figure B.4: Annotated 3 Buffers NIC Semantics

Appendix B. Annotated Semantics 50

B.2 Paths, Gluing, and Other Definitions

We define a path as: π ∈ Path ≜ (ALabel \ E⟨t⟩)∗

We define Annotated Operational Semantics Gluing with the following rules.

P E⟨t⟩−−→ P′

P, M, B, A, QP, π ⇒ P′, M, B, A, QP, π

P λ−→ P′

M, B, A, QP λ−→ M′, B′, A, QP′ λ ∈ (lR ∪ lW ∪ CAS ∪ F ∪ Push ∪ P) fresh(λ, π)
P, M, B, A, QP, π ⇒ P′, M′, B′, A, QP′, λ · π

M, B, A, QP λ−→ M′, B′, A′, QP′

λ ∈ (NIC ∪ nlR ∪ nrR ∪ nlW ∪ nrW ∪ naF ∪ narR ∪ narW ∪ CN ∪ nF ∪ B) fresh(λ, π)
P, M, B, A, QP, π ⇒ P, M′, B′, A′, QP′, λ · π

P CASF⟨r,w⟩−−−−−→ P′ λ1 = F⟨(ι, t(r), F)⟩ λ2 = lR⟨r, w⟩
M, B, A, QP λ1−→ M, B, A, QP λ2−→ M, B, A, QP fresh(λ1, π) fresh(λ2, π)

P, M, B, A, QP, π ⇒ P′, M, B, A, QP, λ2 · λ1 · π

Two annotated labels are non-conflicting (λ1 ▷◁ λ2) if they are of a different type or if
their relevant arguments are disjoints. An annotated label is fresh if it does not conflict
with any previous annotated label.

Relevant : ALabel → 2Eext

Relevant(lR⟨r, _⟩) ≜ {r}
Relevant(lW⟨w⟩) ≜ {w}

Relevant(CAS⟨u, _⟩) ≜ {u}
Relevant(F⟨f⟩) ≜ {f}

Relevant(Push⟨a⟩) ≜ {a}
Relevant(NIC⟨a⟩) ≜ {a}

Relevant(nlR⟨r, _, a, w′⟩) ≜ {r, a, w′}
Relevant(nrR⟨r, _, a, w′⟩) ≜ {r, a, w′}
Relevant(naF⟨r, _, a, w′⟩) ≜ {r, a, w′}

Relevant(narR⟨r, _, a, w′′, w′⟩) ≜ {r, a, w′, w′′}
Relevant(narW⟨w⟩) ≜ {w}

Relevant(nlW⟨w, e⟩) ≜ {w, e}
Relevant(nrW⟨w, e⟩) ≜ {w, e}

Relevant(CN⟨e⟩) ≜ {e}
Relevant(P⟨p, e⟩) ≜ {p, e}
Relevant(nF⟨f⟩) ≜ {f}
Relevant(B⟨w⟩) ≜ {w}
Relevant(E⟨_⟩) ≜ {}

λ1 ▷◁ λ2 ≜ type(λ1) ̸= type(λ2) ∨ Relevant(λ1) ∩ Relevant(λ2) = ∅
fresh(λ, π) ≜ ∀λ′ ∈ π, λ ▷◁ λ′

nodup(π) ≜ ∀π2, λ, π1. π = π2 · λ · π1 =⇒ fresh(λ, π1)

Semantics of RDMA Remote RMWs Max Stupple

Relevant(λ) are the arguments that are important to consider to avoid duplicating
events. The excluded events are the write operations we lookup when reading. For
instance:

• Having both lR⟨r1, w⟩ and lR⟨r2, w⟩ during an execution is fine, since w can be
looked up any number of time.

• Having both nlR⟨r1, w1, a, e1⟩ and nlR⟨r2, w2, a, e2⟩ during an execution is problem-
atic, since it means the put operation a is being run twice.

Completeness

complete(π) ≜ ∀a, w′, e, r, w, f, w′′.

lW⟨w⟩ ∈ π =⇒ B⟨w⟩ ∈ π

∧ Push⟨a⟩ ∈ π =⇒ NIC⟨a⟩ ∈ π

∧ NIC⟨f⟩ ∈ π ∧ f ∈ nF =⇒ nF⟨f⟩ ∈ π

∧ NIC⟨a⟩ ∈ π ∧ a ∈ Put =⇒ ∃r, w, w′. nlR⟨r, w, a, w′⟩ ∈ π

∧ NIC⟨a⟩ ∈ π ∧ a ∈ Get =⇒ ∃r, w, w′. nrR⟨r, w, a, w′⟩ ∈ π

∧ NIC⟨a⟩ ∈ π ∧ a ∈ nFAA =⇒ ∃r, w, w′. narR⟨r, w, a, w′, w′′⟩ ∈ π

∧ NIC⟨a⟩ ∈ π ∧ a ∈ nCAS =⇒
(

∃r, w, w′. naF⟨r, w, a, w′⟩ ∈ π
∨ ∃r, w, w′, w′′. narR⟨r, w, a, w′, w′′⟩ ∈ π

)
∧ nlR⟨r, w, a, w′⟩ ∈ π =⇒ ∃e. nrW⟨w′, e⟩ ∈ π

∧ nrR⟨r, w, a, w′⟩ ∈ π =⇒ ∃e. nlW⟨w′, e⟩ ∈ π

∧ narR⟨r, w, a, w′, w′′⟩ ∈ π =⇒ narW⟨w′′⟩ ∈ π

∧ narR⟨r, w, a, w′, w′′⟩ ∈ π =⇒ ∃e. nlW⟨w′, e⟩ ∈ π

∧ naF⟨r, w, a, w′⟩ ∈ π =⇒ ∃e. nlW⟨w′, e⟩ ∈ π

∧ nlW⟨w, e⟩ ∈ π =⇒ B⟨w⟩ ∈ π

∧ nrW⟨w, e⟩ ∈ π =⇒ B⟨w⟩ ∈ π ∧ CN⟨e⟩ ∈ π

∧ narW⟨w⟩ ∈ π =⇒ B⟨w⟩ ∈ π

Informal: every pending operation is done and (most) buffers are empty. Note that
some nEX (i.e., completion notifications) might still be in wbL.

For a path π without duplicate (e.g. if nodup(π) holds), we define the total ordering
of its annotated labels as follows. Note that the early part of the path is on the right.

λ1 ≺π λ2 ≜ ∃π1, π2, π3 s.t. π = π3 · λ2 · π2 · λ1 · π1

Appendix B. Annotated Semantics 52

Backward Completeness (with ordering)

backComp(π) ≜ ∀a, w′, e, r, w, f, p, w′′.

B⟨w⟩ ∈ π =⇒


lW⟨w⟩ ≺π B⟨w⟩

∨ ∃e.nlW⟨w, e⟩ ≺π B⟨w⟩
∨ ∃e.nrW⟨w, e⟩ ≺π B⟨w⟩
∨ ∃e.narW⟨w⟩ ≺π B⟨w⟩


∧ NIC⟨a⟩ ∈ π =⇒ Push⟨a⟩ ≺π NIC⟨a⟩
∧ nF⟨f⟩ ∈ π =⇒ NIC⟨f⟩ ≺π nF⟨f⟩
∧ nlR⟨r, w, a, w′⟩ ∈ π =⇒ NIC⟨a⟩ ≺π nlR⟨r, w, a, w′⟩
∧ nrR⟨r, w, a, w′⟩ ∈ π =⇒ NIC⟨a⟩ ≺π nrR⟨r, w, a, w′⟩
∧ naF⟨r, w, a, w′⟩ ∈ π =⇒ NIC⟨a⟩ ≺π naF⟨r, w, a, w′⟩
∧ narR⟨r, w, a, w′, w′′⟩ ∈ π =⇒ NIC⟨a⟩ ≺π narR⟨r, w, a, w′, w′′⟩
∧ nrW⟨w′, e⟩ ∈ π =⇒ ∃r, w, a. nlR⟨r, w, a, w′⟩ ≺π nrW⟨w′, e⟩

∧ nlW⟨w′, e⟩ ∈ π =⇒


∃r, w, a. nrR⟨r, w, a, w′⟩ ≺π nlW⟨w′, e⟩

∨ ∃r, w, a. naF⟨r, w, a, w′⟩ ≺π nlW⟨w′, e⟩

∨ ∃r, w, a, w′′.

(
narR⟨r, w, a, w′, w′′⟩
≺π narW⟨w′′⟩ ≺π nlW⟨w′, e⟩

)


∧ narW⟨w′⟩ ∈ π =⇒ ∃r, w, a, w′′.narR⟨r, w, a, w′, w′′⟩ ≺π narW⟨w′⟩
∧ CN⟨e⟩ ∈ π =⇒ ∃w. nrW⟨w, e⟩ ≺π CN⟨e⟩

∧ P⟨p, e⟩ ∈ π =⇒
(

∃w. nlW⟨w, e⟩ ≺π B⟨w⟩ ≺π P⟨p, e⟩
∨ CN⟨e⟩ ≺π P⟨p, e⟩

)

Poll Order

pollOrder(π) ≜ ∀e1, e2.


sameqp(e1, e2)

∧ λ1 ∈ {nlW⟨_, e1⟩, CN⟨e1⟩}
∧ λ2 ∈ {nlW⟨_, e2⟩, CN⟨e2⟩}
∧ λ1 ≺π λ2
∧ P⟨_, e2⟩ ∈ π

 =⇒ P⟨_, e1⟩ ≺π P⟨_, e2⟩

Semantics of RDMA Remote RMWs Max Stupple

Flush Order

bufFlushOrd(π) ≜

∀w1, w2 ∈ lW.

(
t(w1) = t(w2) =⇒
(B⟨w2⟩ ∈ π ∧ lW⟨w1⟩ ≺π lW⟨w2⟩) ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩

)
∧ ∀a1, a2 ∈ (Get ∪ Put ∪ nF ∪ nCAS ∪ nFAA).(

t(a1) = t(a2) =⇒
(NIC⟨a2⟩ ∈ π ∧ Push⟨a1⟩ ≺π Push⟨a2⟩) ⇐⇒ NIC⟨a1⟩ ≺π NIC⟨a2⟩

)
∧ ∀a1 ∈ (Get ∪ Put ∪ nF ∪ nCAS ∪ nFAA), w2 ∈ lW. t(a1) = t(w2) =⇒

(B⟨w2⟩ ∈ π ∧ Push⟨a1⟩ ≺π lW⟨w2⟩) ⇐⇒ NIC⟨a1⟩ ≺π B⟨w2⟩
∧ (NIC⟨a1⟩ ∈ π ∧ lW⟨w2⟩ ≺π Push⟨a1⟩) ⇐⇒ B⟨w2⟩ ≺π NIC⟨a1⟩


∧ ∀w1, w2 ∈ nlW.

(
sameqp(w1, w2) =⇒
(B⟨w2⟩ ∈ π ∧ nlW⟨w1⟩ ≺π nlW⟨w2⟩) ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩

)

∧ ∀w1, w2 ∈ nrW.

(
sameqp(w1, w2) =⇒
(B⟨w2⟩ ∈ π ∧ nrW⟨w1⟩ ≺π nrW⟨w2⟩) ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩

)

∧ ∀w1, w2 ∈ narW.

(
sameqp(w1, w2) =⇒
(B⟨w2⟩ ∈ π ∧ narW⟨w1⟩ ≺π narW⟨w2⟩) ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩

)

∧ ∀w1 ∈ nrW, w2 ∈ narW.

(
sameqp(w1, w2) =⇒
(B⟨w2⟩ ∈ π ∧ nrW⟨w1⟩ ≺π narW⟨w2⟩) ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩

)

∧ ∀w1 ∈ narW, w2 ∈ nrW.

(
sameqp(w1, w2) =⇒
(B⟨w2⟩ ∈ π ∧ narW⟨w1⟩ ≺π nrW⟨w2⟩) ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩

)
∧ ∀w ∈ lW, f ∈ F. lW⟨w⟩ ≺π F⟨f⟩ ∧ t(w) = t(f) =⇒ B⟨w⟩ ≺π F⟨f⟩
∧ ∀w ∈ lW, u ∈ CAS. lW⟨w⟩ ≺π CAS⟨u, _⟩ ∧ t(w) = t(u) =⇒ B⟨w⟩ ≺π CAS⟨u, _⟩
∧ ∀w ∈ nlW, r ∈ nlR.

(nlW⟨w, _⟩ ≺π nlR⟨r, _, _, _⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π nlR⟨r, _, _, _⟩
∧ ∀w ∈ nrW, r ∈ nrR.

(nrW⟨w, _⟩ ≺π nrR⟨r, _, _, _⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π nrR⟨r, _, _, _⟩
∧ ∀w ∈ nrW, r ∈ narR.

(nrW⟨w, _⟩ ≺π naF⟨r, _, _, _⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π naF⟨r, _, _, _⟩
∧ ∀w ∈ nrW, r ∈ narR.

(nrW⟨w, _⟩ ≺π narR⟨r, _, _, _, _⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π narR⟨r, _, _, _, _⟩
∧ ∀w ∈ narW, r ∈ nrR.

(narW⟨w⟩ ≺π nrR⟨r, _, _, _⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π nrR⟨r, _, _, _⟩
∧ ∀w ∈ narW, r ∈ narR.

(narW⟨w⟩ ≺π naF⟨r, _, _, _⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π naF⟨r, _, _, _⟩
∧ ∀w ∈ narW, r ∈ narR.

(narW⟨w⟩ ≺π narR⟨r, _, _, _, _⟩ ∧ sameqp(w, r)) =⇒ B⟨w⟩ ≺π narR⟨r, _, _, _, _⟩

Appendix B. Annotated Semantics 54

NIC Order

nicActOrder(π) ≜ ∀a1, a2. NIC⟨a1⟩ ≺π NIC⟨a2⟩ ∧ sameqp(a1, a2) =⇒
(a1 ∈ nF ∧ a2 ∈ Get ∧ nrR⟨_, _, a2, _⟩ ∈ π =⇒ nF⟨a1⟩ ≺π nrR⟨_, _, a2, _⟩)

∧ (a1 ∈ nF ∧ a2 ∈ Put ∧ nlR⟨_, _, a2, _⟩ ∈ π =⇒ nF⟨a1⟩ ≺π nlR⟨_, _, a2, _⟩)
∧ (a1 ∈ nF ∧ a2 ∈ nCAS ∧ naF⟨_, _, a2, _⟩ ∈ π =⇒ nF⟨a1⟩ ≺π naF⟨_, _, a2, _,⟩)
∧ (a1 ∈ nF ∧ a2 ∈ nRMW ∧ narR⟨_, _, a2, _, _⟩ ∈ π =⇒ nF⟨a1⟩ ≺π narR⟨_, _, a2, _, _⟩)
∧ (a1 ∈ nF ∧ a2 ∈ nF ∧ nF⟨a2⟩ ∈ π =⇒ nF⟨a1⟩ ≺π nF⟨a2⟩)
∧ (a1 ∈ Get ∧ a2 ∈ nF ∧ nF⟨a2⟩ ∈ π =⇒ nrR⟨_, _, a1, w1⟩ ≺π nlW⟨w1, _⟩ ≺π nF⟨a2⟩)

∧
(

a1 ∈ Put ∧ a2 ∈ nF ∧ nF⟨a2⟩ ∈ π
=⇒ nlR⟨_, _, a1, w1⟩ ≺π nrW⟨w1, e1⟩ ≺π CN⟨e1⟩ ≺π nF⟨a2⟩

)

∧

 a1 ∈ nCAS ∧ a2 ∈ nF ∧ nF⟨a2⟩ ∈ π
=⇒ narR⟨_, _, a1, w1, w2⟩ ≺π narW⟨w2⟩ ≺π nlW⟨w1, _⟩ ≺π nF⟨a2⟩

∨ naF⟨_, _, a1, w1⟩ ≺π nlW⟨w1, _⟩ ≺π nF⟨a2⟩


∧
(

a1 ∈ nFAA ∧ a2 ∈ nF ∧ nF⟨a2⟩ ∈ π
=⇒ narR⟨_, _, a1, w1, w2⟩ ≺π narW⟨w2⟩ ≺π nlW⟨w1, _⟩ ≺π nF⟨a2⟩

)

∧
(

a1 ∈ Get ∧ a2 ∈ Get ∧ nrR⟨_, _, a2, w2⟩ ≺π nlW⟨w2, _⟩
=⇒ nrR⟨_, _, a1, w1⟩ ≺π nlW⟨w1, _⟩ ≺π nlW⟨w2, _⟩

)

∧
(

a1 ∈ Get ∧ a2 ∈ Put ∧ nlR⟨_, _, a2, w2⟩ ≺π nrW⟨w2, e2⟩ ≺π CN⟨e2⟩
=⇒ nrR⟨_, _, a1, w1⟩ ≺π nlW⟨w1, _⟩ ≺π CN⟨e2⟩

)

∧

 a1 ∈ Get ∧ a2 ∈ nCAS ∧
(

narR⟨_, _, a2, w2, _⟩ ≺π nlW⟨w2, _⟩
∨ naF⟨_, _, a2, w2⟩ ≺π nlW⟨w2, _⟩

)
=⇒ nrR⟨_, _, a1, w1⟩ ≺π nlW⟨w1, _⟩ ≺π nlW⟨w2, _⟩


∧
(

a1 ∈ Get ∧ a2 ∈ nFAA ∧ narR⟨_, _, a2, w2, _⟩ ≺π nlW⟨w2, _⟩
=⇒ nrR⟨_, _, a1, w1⟩ ≺π nlW⟨w1, _⟩ ≺π nlW⟨w2, _⟩

)

∧
(

a1 ∈ Put ∧ a2 ∈ Get ∧ nrR⟨_, _, a2, _⟩ ∈ π
=⇒ nlR⟨_, _, a1, w1⟩ ≺π nrW⟨w1, _⟩ ≺π nrR⟨_, _, a2, _⟩

)

∧
(

a1 ∈ Put ∧ a2 ∈ Get ∧ nrR⟨_, _, a2, w2⟩ ≺π nlW⟨w2, _⟩
=⇒ nlR⟨_, _, a1, w1⟩ ≺π nrW⟨w1, e1⟩ ≺π CN⟨e1⟩ ≺π nlW⟨w2, _⟩

)

∧
(

a1 ∈ Put ∧ a2 ∈ nCAS ∧ naF⟨_, _, a2, w2⟩ ∈ π
=⇒ nlR⟨_, _, a1, w1⟩ ≺π nrW⟨w1, e1⟩ ≺π naF⟨_, _, a2, w2⟩

)

∧
(

a1 ∈ Put ∧ a2 ∈ nCAS ∪ nFAA ∧ narR⟨_, _, a2, w2, _⟩ ∈ π
=⇒ nlR⟨_, _, a1, w1⟩ ≺π nrW⟨w1, e1⟩ ≺π narR⟨_, _, a2, w2, _⟩

)
∧ (a1 ∈ Put ∧ a2 ∈ Put ∧ nlR⟨_, _, a2, _⟩ ∈ π =⇒ nlR⟨_, _, a1, _⟩ ≺π nlR⟨_, _, a2, _⟩)

∧
(

a1 ∈ Put ∧ a2 ∈ Put ∧ nlR⟨_, _, a2, w2⟩ ≺π nrW⟨w2, _⟩
=⇒ nlR⟨_, _, a1, w1⟩ ≺π nrW⟨w1, _⟩ ≺π nrW⟨w2, _⟩

)

∧
(

a1 ∈ Put ∧ a2 ∈ Put ∧ nlR⟨_, _, a2, w2⟩ ≺π nrW⟨w2, e2⟩ ≺π CN⟨e2⟩
=⇒ nlR⟨_, _, a1, w1⟩ ≺π nrW⟨w1, e1⟩ ≺π CN⟨e1⟩ ≺π CN⟨e2⟩

)

Semantics of RDMA Remote RMWs Max Stupple

∧

 a1 ∈ (nCAS ∪ nFAA) ∧ a2 ∈ Get ∧ nrR⟨_, _, a2, _⟩ ∈ π

=⇒
(

a1 ∈ nCAS ∧ naF⟨_, _, a1, _⟩ ≺π nrR⟨_, _, a2, w2⟩
∨ narR⟨_, _, a1, w1, _⟩ ≺π narW⟨w1⟩ ≺π nrR⟨_, _, a2, w2⟩

) 

∧

 a1 ∈ (nCAS ∪ nFAA) ∧ a2 ∈ Get ∧ nrR⟨_, _, a2, w2⟩ ≺π nlW⟨w2, _⟩

=⇒
(

a1 ∈ nCAS ∧ naF⟨_, _, a1, w1⟩ ≺π nlW⟨w1, _⟩ ≺π nlW⟨w2, _⟩
∨ narR⟨_, _, a1, w1, _⟩ ≺π nlW⟨w1, _⟩ ≺π nlW⟨w2, _⟩

) 

∧

 a1 ∈ (nCAS ∪ nFAA) ∧ a2 ∈ Put ∧ nlR⟨_, _, a2, w2⟩ ≺π nrW⟨w2, _⟩

=⇒
(

a1 ∈ nCAS ∧ naF⟨_, _, a1, w1⟩ ≺π nrW⟨w2, _⟩
∨ narR⟨_, _, a1, w1, _⟩ ≺π narW⟨w1⟩ ≺π nrW⟨w2, _⟩

) 

∧

 a1 ∈ (nCAS ∪ nFAA) ∧ a2 ∈ Put ∧ nlR⟨_, _, a2, w2⟩ ≺π nrW⟨w2, e2⟩ ≺π CN⟨e2⟩

=⇒
(

a1 ∈ nCAS ∧ naF⟨_, _, a1, w1⟩ ≺π nlW⟨w1, _⟩ ≺π CN⟨e2⟩
∨ narR⟨_, _, a1, w1, _⟩ ≺π nlW⟨w1, _⟩ ≺π CN⟨e2⟩

) 

∧

 a1 ∈ (nCAS ∪ nFAA) ∧ a2 ∈ nCAS ∧ naF⟨_, _, a2, _⟩ ∈ π

=⇒
(

a1 ∈ nCAS ∧ naF⟨_, _, a1, _⟩ ≺π naF⟨_, _, a2, _⟩
∨ narR⟨_, _, a1, _, w1⟩ ≺π narW⟨w1⟩ ≺π naF⟨_, _, a2, _⟩

) 

∧

 a1, a2 ∈ (nCAS ∪ nFAA) ∧ narR⟨_, _, a2, _, _⟩ ∈ π

=⇒
(

a1 ∈ nCAS ∧ naF⟨_, _, a1, w1⟩ ≺π narR⟨_, _, a2, _, _⟩
∨ narR⟨_, _, a1, _, w1⟩ ≺π narW⟨w1⟩ ≺π narR⟨_, _, a2, _, _⟩

) 

∧


a1, a2 ∈ (nCAS ∪ nFAA) ∧

(
a1 ∈ nCAS ∧ naF⟨_, _, a2, w2⟩ ≺π nlW⟨w2, _⟩

∨ narR⟨_, _, a2, w2, _⟩ ≺π nlW⟨w2, _⟩

)

=⇒
(

a1 ∈ nCAS ∧ naF⟨_, _, a1, w1⟩ ≺π nlW⟨w1, _⟩ ≺π nlW⟨w2, _⟩
∨ narR⟨_, _, a1, w1, _⟩ ≺π nlW⟨w1, _⟩ ≺π nlW⟨w2, _⟩

)


NIC Atomicity

nicAtomicity(π) ≜ ∀a1, a2, r, w. λ1 = narR⟨r1, _, a1, _, w⟩
∧ λ2 ∈ {naF⟨_, _, a2, _⟩, narR⟨_, _, a2, _, _⟩}
∧ a1, a2 ∈ nRMW ∧ n(a1) = n(a2) ∧ λ1 ≺π λ2

 =⇒ B⟨w⟩ ≺π λ2

Read Order

wfrd(π) ≜ ∀π2, r, w, π1. π = π2 · lR⟨r, w⟩ · π1 =⇒ wfrdCPU(r, w, π1)
∧ ∀π2, u, w, π1. π = π2 · CAS⟨u, w⟩ · π1 =⇒ wfrdCPU(u, w, π1)
∧ ∀π2, r, w, π1. π = π2 · nlR⟨r, w, _, _⟩ · π1 =⇒ wfrdNIC(r, w, π1)
∧ ∀π2, r, w, π1. π = π2 · nrR⟨r, w, _, _⟩ · π1 =⇒ wfrdNIC(r, w, π1)
∧ ∀π2, r, w, π1. π = π2 · naF⟨r, w, _, _⟩ · π1 =⇒ wfrdNIC(r, w, π1)
∧ ∀π2, r, w, π1. π = π2 · narR⟨r, w, _, _, _⟩ · π1 =⇒ wfrdNIC(r, w, π1)

Appendix B. Annotated Semantics 56

wfrdCPU(r, w, π) ≜


∃π2, λ, π1. π = π2 · λ · π1
∧ λ ∈ {B⟨w⟩, CAS⟨w, _⟩}
∧ {B⟨w′⟩, CAS⟨w′, _⟩ ∈ π2 | loc(w′) = loc(r)} = ∅

∧
{

w′
∣∣∣∣∣ lW⟨w′⟩ ∈ π ∧ B⟨w′⟩ /∈ π ∧

loc(w′) = loc(r) ∧ t(w′) = t(r)

}
= ∅



∨

 ∃π2, λ, π1. π = π2 · λ · π1
∧ λ = lW⟨w⟩ ∧ t(w) = t(r) ∧ B⟨w⟩ /∈ π2
∧ {lW⟨w′⟩ ∈ π2 | loc(w′) = loc(r) ∧ t(w′) = t(r)} = ∅



∨

 w = initloc(w)∧{
B⟨w′⟩, CAS⟨w′, _⟩ ∈ π,
lW⟨w′′⟩ ∈ π

∣∣∣∣∣ loc(w′) = loc(r) ∧
loc(w′′) = loc(r) ∧ t(w′′) = t(r)

}
= ∅



wfrdNIC(r, w, π) ≜

 ∃π2, λ, π1. π = π2 · λ · π1
∧ λ ∈ {B⟨w⟩, CAS⟨w, _⟩}
∧ {B⟨w′⟩, CAS⟨w′, _⟩ ∈ π2 | loc(w′) = loc(r)} = ∅


∨
(

w = initloc(w)∧
{B⟨w′⟩, CAS⟨w′, _⟩ ∈ π | loc(w′) = loc(r)} = ∅

)

Well-formed path

wfp(π) ≜ nodup(π)
∧ backComp(π)
∧ bufFlushOrd(π)
∧ pollOrder(π)
∧ nicActOrder(π)
∧ nicAtomicity(π)
∧ wfrd(π)

Definition 5.

wf(M, B, A, QP, π) ≜ wfp(π)
∧ ∀x ∈ Loc. M(x) = read(π, x)
∧ ∀t ∈ Tid.B(t) = mksbuff(ε, t, π)
∧ ∀n ∈ Node.A(n) = chkatm(n, π)

∧ ∀t ∈ Tid.∀n ∈ (Node \ {n(t)}).

 QP(t)(n).pipe = mkpipe(ε, t, n, π)
QP(t)(n).wbR = mkwbR(ε, t, n, π)
QP(t)(n).wbL = mkwbL(ε, t, n, π)


Where, the functions read, mksbuff, chkatm, mkpipe, mkwbR, and mkwbL are defined

below.

read(λ·π, x) ≜
w λ ∈ {B⟨w⟩, CAS⟨w, _⟩} ∧ loc(w) = x

read(π, x) otherwise
read(ε, x) ≜ initx

Semantics of RDMA Remote RMWs Max Stupple

mksbuff(b, t, ε) ≜ b

mksbuff(b, t, π·λ) ≜


mksbuff(w·b, t, π) λ = lW⟨w⟩ ∧ t(w) = t ∧ B⟨w⟩ /∈ π

mksbuff(a·b, t, π) λ = Push⟨a⟩ ∧ NIC⟨a⟩ /∈ π ∧ t(a) = t

mksbuff(b, t, π) otherwise

chkatm(n, π) ≜


⊥ ∀w.

 narR⟨_, _, a, _, w⟩ ∈ π

∧ n(a) = n

 =⇒ B⟨w⟩ ∈ π

⊤ otherwise

mkpipe(pipe, t, n, ε) ≜ pipe

mkpipe(pipe, t, n, π·λ) ≜



mkpipe(a·pipe, t, n, π) if


t(λ) = t ∧ n(λ) = n ∧ λ = NIC⟨a⟩
∧ nlR⟨_, _, a, _⟩ ̸∈ π ∧ nrR⟨_, _, a, _⟩ ̸∈ π

∧ nF⟨a⟩ ̸∈ π ∧ naF⟨_, _, a, _⟩ ̸∈ π

∧ narR⟨_, _, a, _, _⟩ ̸∈ π


mkpipe(w·pipe, t, n, π) if

 t(λ) = t ∧ n(λ) = n ∧ λ = NIC⟨a⟩
∧ nlR⟨_, _, a, w⟩ ∈ π ∧ nrW⟨w, _⟩ ̸∈ π



mkpipe(e·pipe, t, n, π) if


t(λ) = t ∧ n(λ) = n ∧ λ = NIC⟨a⟩
∧ nlR⟨_, _, a, w⟩ ∈ π ∧ nrW⟨w, e⟩ ∈ π

∧ CN⟨e⟩ ̸∈ π


mkpipe(w·pipe, t, n, π) if

 t(λ) = t ∧ n(λ) = n ∧ λ = NIC⟨a⟩
∧ nrR⟨_, _, a, w⟩ ∈ π ∧ nlW⟨w, _⟩ ̸∈ π


mkpipe(w·pipe, t, n, π) if

 t(λ) = t ∧ n(λ) = n ∧ λ = NIC⟨a⟩
∧ naF⟨_, _, a, w⟩ ∈ π ∧ nlW⟨w, _⟩ ̸∈ π


mkpipe(w·w′·pipe, t, n, π) if

 t(λ) = t ∧ n(λ) = n ∧ λ = NIC⟨a⟩
∧ narR⟨_, _, a, w, w′⟩ ∈ π ∧ narW⟨w′⟩ ̸∈ π


mkpipe(pipe, t, n, π) otherwise

mkwbR(wbR, t, n, ε) ≜ wbR

mkwbR(wbR, t, n, π·λ) ≜


mkwbR(w·wbR, t, n, π) if

 t(λ) = t ∧ n(λ) = n ∧ B⟨w⟩ /∈ π

∧ λ ∈ {nrW⟨w, _⟩, narW⟨w⟩}


mkwbR(wbR, t, n, π) otherwise

Appendix B. Annotated Semantics 58

mkwbL(wbL, t, n, ε) ≜ wbL

mkwbL(wbL, t, n, π·λ) ≜



mkwbL(e·w·wbL, t, n, π) if
 t(λ) = t ∧ n(λ) = n ∧ λ = nlW⟨w, e⟩

∧ B⟨w⟩ /∈ π ∧ P⟨_, e⟩ /∈ π


mkwbL(e·wbL, t, n, π) if

 t(λ) = t ∧ n(λ) = n ∧ λ = nlW⟨w, e⟩
∧ B⟨w⟩ ∈ π ∧ P⟨_, e⟩ /∈ π


mkwbL(e·wbL, t, n, π) if

 t(λ) = t ∧ n(λ) = n ∧ λ = CN⟨e⟩
∧ P⟨_, e⟩ /∈ π


mkwbL(wbL, t, n, π) otherwise

Theorem 2. For all P, P′, M, M′, B, B′, A, A′, QP, QP′, π, π′:

• wf(M0, B0, A0, QP0, ε);

• if P, M, B, A, QP, π ⇒ P′, M′, B′, A′, QP′, π′ and wf(M, B, A, QP, π) then wf(M′, B′, A′, QP′, π′);

• if P, M0, B0, A0, QP0, ε ⇒∗ (λt.skip), M, B0, A0, QP, π such that forall t, n we have
QP(t)(n) = ⟨ε, ε, nEX∗⟩, then wf(M, B0, A0, QP, π) and complete(π).

The proof of the first part follows trivially from the definitions of M0, B0, A0, and QP0.
The second part is proved by induction on the structure of ⇒. The last part follows from
the previous two parts and induction on the length of ⇒∗, as well as how the definition of
wf on empty store buffers and queue pairs (regardless of nEX in wbL) implies complete(π).

Semantics of RDMA Remote RMWs Max Stupple

B.3 From Annotated Semantics to Declarative Se-
mantics

We define

getEG(π) ≜
(Event, po, rf, pf, mo, nfo, rao) if wfp(π) ∧ complete(π)

undefined otherwise

with

Event ≜ Event0 ∪ {getA(λ) | λ ∈ π}

Recall that Event0 is the set of initialisation events {initx | x ∈ Loc}, where l(initx) =
lW(x, 0)

getA : ALabel ⇀ Event

getA(lR⟨r, _⟩) ≜ r

getA(lW⟨w⟩) ≜ w

getA(CAS⟨u, _⟩) ≜ u

getA(F⟨f⟩) ≜ f

getA(nlR⟨r, _, _, _⟩) ≜ r

getA(nrW⟨w⟩) ≜ w

getA(nrR⟨r, _, _, _⟩) ≜ r

getA(nlW⟨w, _⟩) ≜ w

getA(naF⟨r, _, _, _⟩) ≜ r

getA(narR⟨r, _, _, _, _⟩) ≜ r

getA(narW⟨w⟩) ≜ w

getA(P⟨p, _⟩) ≜ p

getA(nF⟨f⟩) ≜ f

getA(B⟨w⟩) ≜ w

getA(Push⟨_⟩) is undefined
getA(NIC⟨_⟩) is undefined
getA(CN⟨_⟩) is undefined

getA(E⟨_⟩) is undefined

We define getIλ(_, π) and getOλ(_, π) to perform the reverse operation of getA. In
the case of write events, getIλ(_, π) retrieves the first label sending the write to the buffer,
while getOλ(_, π) retrieves the second label committing the write to memory.

getIλ(_, π), getOλ(_, π) : {getA(λ) | λ ∈ π} → ALabel

For all λ ∈ π:

• if type(λ) ∈ {lR, CAS, F, P, nlR, nrR, narR, naF, nF},
then getIλ(getA(λ), π) ≜ getOλ(getA(λ), π) ≜ λ;

• if type(λ) ∈ {lW, nlW, nrW, narW},
then getIλ(getA(λ), π) ≜ λ while getOλ(getA(λ), π) ≜ B⟨λ⟩.

• if λ = B⟨w⟩, then from backComp(π) there is λ′ ≺π λ such that type(λ) ∈ {lW, nlW, nrW, narW}
and getA(λ′) = getA(λ) = w. From the previous case, we have getIλ(w, π) ≜ λ′ and
getOλ(w, π) ≜ λ.

Appendix B. Annotated Semantics 60

From this we define two relations IB and OB on Event total on all meaningful events
by copying the ordering in π.

IB ≜ {(e1, e2) | getIλ(e1, π) ≺π getIλ(e2, π)} ∪ (Event0 × (Event \ Event0))
OB ≜ {(e1, e2) | getOλ(e1, π) ≺π getOλ(e2, π)} ∪ (Event0 × (Event \ Event0))

From wfp(π), IB and OB are transitive and irreflexive. Note: we could make IB and
OB total by adding an arbitrary total order on Event0.

rf ≜
{

(w, r)
∣∣∣∣∣ lR⟨r, w⟩ ∈ π ∨ nlR⟨r, w, _, _⟩ ∈ π ∨ nrR⟨r, w, _, _⟩ ∈ π ∨ CAS⟨r, w⟩ ∈ π

∨ narR⟨r, w, _, _, _⟩ ∈ π ∨ naF⟨r, w, _, _⟩ ∈ π

}

pf ≜
{

(w, p)
∣∣∣∣∣ nlW⟨w, e⟩ ≺π P⟨p, e⟩

∨ nrW⟨w, e⟩ ≺π P⟨p, e⟩

}

λ generates e in π ≜



λ ∈ {lR⟨e, _⟩, lW⟨e⟩, CAS⟨e, _⟩, Push⟨e⟩, P⟨e, _⟩, F⟨e⟩}

∨ λ = Push⟨a⟩ ∧



λ ≺π nlR⟨e, _, a, _⟩
∨ λ ≺π nlR⟨_, _, a, e⟩
∨ λ ≺π nrR⟨e, _, a, _⟩
∨ λ ≺π nrR⟨_, _, a, e⟩
∨ λ ≺π naF⟨e, _, a, _⟩
∨ λ ≺π naF⟨_, _, a, e⟩
∨ λ ≺π narR⟨e, _, a, _, _⟩
∨ λ ≺π narR⟨_, _, a, e, _⟩
∨ λ ≺π narR⟨_, _, a, _, e⟩





po ≜



Event0 × (Event \ Event0)

∪

(e1, e2)

∣∣∣∣∣∣∣
λ1 ≺π λ2 ∧ t(λ1) = t(λ2)

∧ λ1 generates e1 in π
∧ λ2 generates e2 in π


∪

(r, w)

∣∣∣∣∣∣∣∣∣
nlR⟨r, _, _, w⟩ ∈ π

∨ nrR⟨r, _, _, w⟩ ∈ π
∨ naF⟨r, _, _, w⟩ ∈ π
∨ narR⟨r, _, _, _, w⟩ ∈ π


∪ {(w1, w2) | narR⟨_, _, _, w2, w1⟩} ∈ π



mo ≜

(w1, w2)

∣∣∣∣∣∣∣
w1 = initx

∧ (B⟨w2⟩ ∈ π ∨ CAS⟨w2, _⟩ ∈ π)
∧ loc(w1) = x = loc(w2)

∪

(w1, w2)

∣∣∣∣∣∣∣∣∣
λ1 ≺π λ2

∧ λ1 ∈ {B⟨w1⟩, CAS⟨w1, _⟩}
∧ λ2 ∈ {B⟨w2⟩, CAS⟨w2, _⟩}
∧ loc(w1) = loc(w2)



nfo ≜


{(r, w) | sameqp(r, w) ∧ nlR⟨r, _, _, _⟩ ≺π nlW⟨w, _⟩ ≺π B⟨w⟩}

∪ {(r, w) | ∃λr, λw.sameqp(r, w) ∧ λr ≺π λw ≺π B⟨w⟩}
∪ {(w, r) | sameqp(w, r) ∧ nlW⟨w, _⟩ ≺π B⟨w⟩ ≺π nlR⟨r, _, _, _⟩}
∪ {(w, r) | ∃λr, λw.sameqp(w, r) ∧ λw ≺π B⟨w⟩ ≺π λr}


where λr ∈ {nrR⟨r′, . . .⟩, naF⟨r′, . . .⟩, narR⟨r′, . . .⟩}

λw ∈ {nrW⟨w, _⟩, narW⟨w⟩}

Semantics of RDMA Remote RMWs Max Stupple

rao ≜


(r1, r2)

∣∣∣∣∣∣∣ n(a1) = n(a2) ∧

 λ1 ≺π λ2
∧ λ1 ∈ {naF⟨r1, a1, . . .⟩, narR⟨r1, a1, . . .⟩}
∧ λ2 ∈ {naF⟨r2, a2, . . .⟩, narR⟨r2, a2, . . .⟩}





From an execution graph E = getEG(π), we use the definitions of the paper to define
oppo, ippo, rfb, rfb, rb, rbb, ar, ob, and ib.

Lemma 1. w ∈ nlW =⇒ ∃r.

(
r ∈ nrR ∧ (r, w) ∈ po|imm

∨ r ∈ narR ∧ (r, w) ∈ po|imm ∪ (po|imm)2

)

Proof. By definition of po, we can only have such w ∈ nlW if there is some λ = Push⟨a⟩
which generates w in π. Then we can consider the cases of a such that Push⟨a⟩ generates
some w ∈ nlW. Either:

• a ∈ Put, then there is some r ∈ nrR with (r, w) ∈ po|imm

• a ∈ nCAS ∪ nFAA, then there is some r ∈ narR with either (r, w) ∈ po|imm (in the
case of a failed nCAS) or (r, w) ∈ (po|imm)2 (in the case of a successful nCAS or nFAA)

Theorem 3. getEG(π) is well-formed.

Proof. We need to check the conditions of a pre-execution (Def. 2) and of well-formedness
(Def. 3). For the pre-execution conditions:

• Checking Event0 × (Event \ Event0) ⊆ po:
by definition.

• Checking po is a union of strict partial orders each on one thread:
If t(e1) ̸= t(e2), then (e1, e2) ̸∈ po and (e2, e1) ̸∈ po by definition. If t(e1) = t(e2),
then either (e1, e2) ∈ po or (e2, e1) ∈ po. This comes from the second case of the
definition of po: if there is λ1 and λ2 such that λi generates ei in π, then either
λ1 ≺π λ2 or λ2 ≺π λ1.

• Checking that rf is functional on its range:
If r ∈ R ⊆ {getA(λ) | λ ∈ π}, then we have either lR⟨r, _⟩, nlR⟨r, _, _, _⟩, nrR⟨r, _, _, _⟩,
naF⟨r, _, _, _⟩, or narR⟨r, _, _, _, _⟩ in π, and r have at least one antecedent.
If (w, r) ∈ rf, let us assume r ∈ nlR, then by definition nlR⟨r, w, _, _⟩ ∈ π. Since
nodup(π), for all w′ ̸= w, we have nlR⟨r, w′, _, _⟩ /∈ π, and syntactically we cannot
write lR⟨r, _⟩ or nrR⟨r, _, _, _⟩, so (w′, r) /∈ rf. Similarly, r ∈ lR, r ∈ nrR, r ∈ naF
or r ∈ narR only have one antecedent.

• Checking that rf relates events on the same location with matching values:
By syntactic definition of the annotated labels lR, nlR, nrR, naF and narR, e.g.,
lR⟨r, w⟩ =⇒ eqloc&v(r, w).

• Checking that mo is a union of strict total orders for writes on each variables:
By definition of mo, given that we have complete(π), e.g., if lW⟨w⟩ ∈ π then B⟨w⟩ ∈
π.

Appendix B. Annotated Semantics 62

• Checking that pf ⊆ po ∩ sqp:
If (w, p) ∈ pf with w ∈ nlW (resp. nrW), then we have nlW⟨w, e⟩ ≺π P⟨p, e⟩. There
is λ such that λ generates w in π, and we have λ ≺π nlW⟨w, e⟩ ≺π P⟨p, e⟩. Also,
t(p) = t(w) and n(p) = n(e) = n(w), so we have (w, p) ∈ po and (w, p) ∈ sqp.

• Checking that pf is functional on its domain:
If (w, p) ∈ pf with w ∈ nlW (resp. nrW), then we have nlW⟨w, e⟩ ≺π P⟨p, e⟩. From
nodup(π), for all p′ ̸= p we have P⟨p, e⟩ /∈ π, so w has at most one image.

• Checking that pf is total and functional on its range:
If p ∈ Event, then there is e ∈ nlEX (resp. nrEX) such that P⟨p, e⟩ ∈ π. From
backComp(π) there is w ∈ nlW (resp. nrW) such that nlW⟨w, e⟩ ≺π P⟨p, e⟩, and so
(w, p) ∈ pf. From nodup(π), e cannot be used in another nlW (resp. nrW) annotated
label, and p has exactly one antecedent.

• Checking that for all (a, b) ∈ sqp, a ∈ nrR ∪ naF ∪ narR, b ∈ nrW ∪ narW, (resp.
nlR/nlW) then (a, b) ∈ nfo ∪ nfo−1:
By definition of nfo, given that bufFlushOrd(π) forbids such interleavings as nrW⟨w, _⟩ ≺π

nrR⟨r, _, _, _⟩ ≺π B⟨w⟩ (resp. nlW and nlR) when sameqp(r, w).

• Checking that rao is a union of strict total orders for remote atomic reads:
By definition of rao.

For the well-formedness conditions:

(1) Let us assume (w1, w2) ∈ po ∩ sqp and (w2, p2) ∈ pf. The three events are on the
same thread and queue pair.
If w1 ∈ nlW, then by complete(π) there is a chain Push⟨a1⟩ ≺π NIC⟨a1⟩ ≺π nR ≺π

nlW⟨w1, e1⟩ for some nR ∈ {nrR⟨_, _, a1, w1⟩, naF⟨_, _, a1, w1⟩, narR⟨_, _, a1, w1, _⟩};
if w1 ∈ nrW, there is instead a chain Push⟨a1⟩ ≺π NIC⟨a1⟩ ≺π nlR⟨_, _, a1, w1⟩ ≺π

nrW⟨w1, e1⟩ ≺π CN⟨e1⟩. Similarly there is a chain for w2. By (w1, w2) ∈ po we have
Push⟨a1⟩ ≺π Push⟨a2⟩, and by bufFlushOrd(π) we have NIC⟨a1⟩ ≺π NIC⟨a2⟩.
Let us call λ1 the last annotated label on the chain for w1, i.e., either nlW⟨w1, e1⟩
or CN⟨e1⟩. Similarly, λ2 is the last annotated label on the chain for w2. There are
four cases to consider, but in all four nicActOrder(π) implies λ1 ≺π λ2.
Then, from pollOrder(π), there is p1 such that P⟨p1, e1⟩ ≺π P⟨p2, e2⟩. By definitions,
we have both (w1, p1) ∈ pf and (p1, p2) ∈ po.

(2) If r ∈ nlR, then there is w ∈ nrW (taken from nlR⟨r, _, _, w⟩) such that (r, w) ∈
po|imm. This is by the last case of definition of po, since there is λa such that we
have both λa generates r in π and λa generates w in π.
Similarly for nrR/nlW and nrW/nlR.

(3) If (r, w) ∈ po|imm, type(r) ∈ {nlR, nrR}, and type(w) ∈ {nlW, nrW}, then (r, w) ∈ po
comes from the third case of the definition of po, and we have either nlR⟨r, _, _, w⟩
or nrR⟨r, _, _, w⟩ in π. In both cases, we have vr(r) = vw(w) by syntactic definition
of the annotated labels.

Semantics of RDMA Remote RMWs Max Stupple

(4) (a) If r ∈ narR, then either: There is naF⟨r, _, _, w⟩ ∈ π such that w ∈ nlW
and (r, w) ∈ po|imm. This follows from the second case definition of po. There is
narR⟨r, _, _, w2, w1⟩ ∈ π such that w1 ∈ narW, w2 ∈ nlW, and (r, w1), (w1, w2) ∈ po|imm.
This follows from the second and third cases of the definition of po since there is
λa which generates r, w1 and w2 in π. (b) If w ∈ narW then (r, w), (w, w′) ∈ po|imm
with r ∈ narR and w′ ∈ nlW comes from the second case definition of po.

(5) If (r, w) ∈ G.po|imm, type(r) = narR and type(w) = nlW, then (r, w) comes from the
second case definition of po and we have naF⟨r, _, _, w⟩ ∈ π. Then vr(r) = vw(w)
by the syntax of annotated labels. If (r, w1), (w1, w2) ∈ G.po|imm, type(r) = narR,
type(w1) = narW and type(w2) = nlW, then (r, w1) comes from the second case
definition of po and (w1, w2) from the third case, so we have narR⟨r, _, _, w2, w1⟩ ∈
π. Then vr(r) = vw(w2) by the syntax of annotated labels.

(6) Comes from lemma 1.

Lemma 2. OB; [Inst] ⊆ IB and [Inst]; IB ⊆ OB.
Proof. If (e1, e2) ∈ OB; [Inst], then getOλ(e1, π) ≺π getOλ(e2, π) = getIλ(e2, π).

• If e1 ∈ Inst, then getOλ(e1, π) = getIλ(e1, π), so we have getIλ(e1, π) ≺π getIλ(e2, π)
and (e1, e2) ∈ IB.

• If e1 ∈ {lW, nlW, nrW, narW}, there is λ such that type(λ) ∈ {lW, nlW, nrW, narW},
getA(λ) = e1, and getIλ(e1, π) = λ ≺π B⟨e1⟩ = getOλ(e1, π). By transitivity we
again have getIλ(e1, π) ≺π getIλ(e2, π) and (e1, e2) ∈ IB.

With a similar reasoning, we can see that [Inst]; IB ⊆ OB.

Theorem 4. getEG(π) is consistent.
Proof. From Definition 4, we need to check that both ib and ob are irreflexive. Since IB
and OB are irreflexive, it is enough to show that ib ⊆ IB and ob ⊆ OB.

The explicit definition using limits is the following (where rfb ≜ (rf \ rfb) includes
(rf ∩ sqp) since we assume the PCIe guarantees hold):

ib0 ≜ (ippo ∪ rf ∪ pf ∪ rbb ∪ nfo)+

ob0 ≜ (oppo ∪ rfb ∪ [nlW]; pf ∪ rb ∪ nfo ∪ mo ∪ ar; rao)+

ibn+1 ≜ (ibn ∪ obn; [Inst])+

obn+1 ≜ (obn ∪ [Inst]; ibn)+

ib ≜ lim
n→∞

ibn

ob ≜ lim
n→∞

obn

It is then enough to show that ib0 ⊆ IB and ob0 ⊆ OB. Using Lemma 2 above, we can
check the induction case:

ibn+1 = (ibn ∪ obn; [Inst])+ ⊆ (ibn ∪ OB; [Inst])+ ⊆ (IB ∪ IB)+ = IB
obn+1 = (obn ∪ [Inst]; ibn)+ ⊆ (obn ∪ [Inst]; IB)+ ⊆ (OB ∪ OB)+ = OB

Since IB and OB are transitive, we need to check the components of ib0 and ob0. There
are twelve cases to verify.

Appendix B. Annotated Semantics 64

• Checking ippo ⊆ IB.
Let Ecpu = {lR, lW, CAS, F, P} and Enic = {nlR, nrR, narR, naF, nlW, nrW, narW, nF}.
[Ecpu]; po ⊆ IB by definition of po and IB: Ecpu are the events for which the same an-
notated label is used to define po and IB, i.e., ∀e ∈ Ecpu, getIλ(e, π) generates e in π.
To check that [Enic]; ippo; [Enic] ⊆ IB, there are 36 cases to consider. They are all
trivially satisfied by nicActOrder(π) and backComp(π).

• Checking oppo ⊆ OB.
From above we have [Inst]; oppo ⊆ [Inst]; ippo ⊆ [Inst]; IB ⊆ OB.
[lW]; po; [Event \ (lR ∪ P)] ⊆ OB by using bufFlushOrd(π).
For the remaining cases:

(G7) [nrW]; (po ∩ sqp); [nrW] ⊆ OB comes from nicActOrder(π) (i.e., nrW⟨. . .⟩ ≺π

nrW⟨. . .⟩) and bufFlushOrd(π) (i.e., B⟨. . .⟩ ≺π B⟨. . .⟩).
(G8) [nrW]; (po ∩ sqp); [narR] ⊆ OB comes from nicActOrder(π) (i.e., nrW⟨. . .⟩ ≺π

narR⟨. . .⟩) and bufFlushOrd(π) (i.e., B⟨. . .⟩ ≺π narR⟨. . .⟩).
(G9) If e1 ∈ nrW, e3 ∈ narW, and (e1, e3) ∈ (po ∩ sqp), then from Def. 3 there is

e2 ∈ narR such that (e2, e3) ∈ po|imm and thus (e1, e2) ∈ (po ∩ sqp). From
case G8 above, we have (e1, e2) ∈ OB. From backComp(π), we have (e2, e3) ∈
[Inst]; IB ⊆ OB. Thus [nrW]; (po ∩ sqp); [narW] ⊆ OB.

(G10) [nrW]; (po ∩ sqp); [nrR] ⊆ OB comes from nicActOrder(π) (i.e., nrW⟨. . .⟩ ≺π

nrR⟨. . .⟩) and bufFlushOrd(π) (i.e., nrW⟨. . .⟩ ≺π B⟨. . .⟩ ≺π nrR⟨. . .⟩).
(G11) If e1 ∈ nrW, e3 ∈ nlW, and (e1, e3) ∈ (po ∩ sqp), then from Def. 3 there is e2 ∈

(narR∪nrR) such that (e2, e3) ∈ po|imm
{1,2} and thus (e1, e2) ∈ (po∩sqp). Then

(e1, e2) ⊆ OB comes from cases G9 and G10 respectively. From backComp(π),
we have (e2, e3) ∈ [Inst]; IB ⊆ OB. Thus [nrW]; (po ∩ sqp); [nlW] ⊆ OB.

(I7) [narW]; (po ∩ sqp); [nrW] ⊆ OB comes from nicActOrder(π) (i.e., narW⟨. . .⟩ ≺π

nrW⟨. . .⟩) and bufFlushOrd(π) (i.e., B⟨. . .⟩ ≺π B⟨. . .⟩).
(I8) [narW]; (po∩sqp); [narR] ⊆ OB follows from Def. 3, nicActOrder(π) and bufFlushOrd(π)

by similar reasoning to I7.
(I9) [narW]; (po ∩ sqp); [narW] ⊆ OB follows similarly to I7.

(I10) [narW]; (po ∩ sqp); [nrR] ⊆ OB follows similarly to I7.
(K11) [nlW]; (po ∩ sqp); [nlW] ⊆ OB comes from nicActOrder(π) (i.e., nlW⟨. . .⟩ ≺π

nlW⟨. . .⟩) and bufFlushOrd(π) (i.e., B⟨. . .⟩ ≺π B⟨. . .⟩).

• Checking rfb ⊆ OB.
If (w, r) ∈ rfb, there is π1 and π2 such that π = π2 · getOλ(r, π) · π1, and we use
wfrd(π).

– If r ∈ lR, we have wfrdCPU(r, w, π1). The definition allow for three dif-
ferent cases. In the first case, λ ∈ {B⟨w⟩, CAS⟨w, _⟩} is in π1; we have
λ = getOλ(w, π) ≺π getOλ(r, π) and so (w, r) ∈ OB. In the second case,
we have λ = lW⟨w⟩ and t(w) = t(r); so (w, r) ∈ [lW]; (rf ∩ sthd); [lR] = rfb,
which contradicts (w, r) ∈ rfb = rf \ rfb. In the third case, w = initx for some
location x, so (w, r) ∈ Event0 × (Event \ Event0) ⊆ OB.

Semantics of RDMA Remote RMWs Max Stupple

– If r ∈ CAS, similarly to above, except the second case of wfrdCPU(r, w, π1) is
not possible because of bufFlushOrd(π): B⟨w⟩ /∈ π1 while CAS acts as a memory
fence.

– If r ∈ nlR, we have wfrdNIC(r, w, π1), with two possibilities. In the first case,
λ ∈ {B⟨w⟩, CAS⟨w, _⟩} is in π1; we have λ = getOλ(w, π) ≺π getOλ(r, π)
and so (w, r) ∈ OB. In the second case, w = initx for some location x, so
(w, r) ∈ Event0 × (Event \ Event0) ⊆ OB.

– If r ∈ nrR or narR, similarly to above.

• Checking rf ⊆ IB.
From above we have rfb = rfb; [Inst] ⊆ OB; [Inst] ⊆ IB.
If (w, r) ∈ rfb ⊆ [lW]; rf; [lR], then there is lR⟨r, w⟩ ∈ π. There is π1 and π2 such
that π = π2 · lR⟨r, w⟩ · π1. So by wfrd(π) we have wfrdCPU(r, w, π1) which implies
lW⟨w⟩ ≺π lR⟨r, w⟩ and (w, r) ∈ IB.

• Checking [nlW]; pf ⊆ OB.
If (w, p) ∈ pf with w ∈ nlW, then there exists e such that nlW⟨w, e⟩ ≺π P⟨p, e⟩.
From backComp(π), we have nlW⟨w, e⟩ ≺π B⟨w⟩ ≺π P⟨p, e⟩ and so (w, p) ∈ OB.

• Checking pf ⊆ IB.
If (w, p) ∈ pf, then there exists e such that either nlW⟨w, e⟩ ≺π P⟨p, e⟩ or nrW⟨w, e⟩ ≺π

P⟨p, e⟩. In both cases we immediately have (w, p) ∈ IB.

• Checking rbb ⊆ IB.
If (r, w′) ∈ rbb then r ∈ lR, w′ ∈ lW, t(r) = t(w′), and there exists w such that
(w, r) ∈ rf and (w, w′) ∈ mo. There is π4 and π3 such that π = π4 · lR⟨r, w⟩ · π3. So
by wfrd(π) we have wfrdCPU(r, w, π3), and there is three cases to consider.

– In the first case, π3 = π2 ·λw ·π1, with λw ∈ {B⟨w⟩, CAS⟨w, _⟩}, and B⟨w′⟩ /∈ π2.
Since (w, w′) ∈ mo we have B⟨w′⟩ /∈ π1, an so B⟨w′⟩ /∈ π3. The last condition
of the first case then gives us lW⟨w′⟩ /∈ π3, which implies (r, w′) ∈ IB.

– In the second case, π3 = π2 · λw · π1, with λw = lW⟨w⟩, thread(w) = thread(r),
and B⟨w⟩ /∈ π3. Then w and w′ are on the same thread, and by bufFlushOrd(π)
and (w, w′) ∈ mo we have lW⟨w⟩ ≺π lW⟨w′⟩ and lW⟨w′⟩ /∈ π1. The last condi-
tion of the second case gives us lW⟨w′⟩ /∈ π2, so lW⟨w′⟩ /∈ π3 and (r, w′) ∈ IB.

– In the last case, w = initx for some location x, and we immediately get
lW⟨w′⟩ /∈ π3, which implies (r, w′) ∈ IB.

• Checking rb ⊆ OB.
If (r, w′) ∈ rb, then there exists w such that (w, r) ∈ rf and (w, w′) ∈ mo.
By definition of rf, there is π4 and π3 such that π = π4 · λr · π3, with λr ∈
{lR⟨r, w⟩, CAS⟨r, w⟩, nlR⟨r, w, _, _⟩, nrR⟨r, w, _, _⟩, naF⟨r, w, _, _⟩, narR⟨r, w, _, _, _⟩}.
So by wfrd(π) we have either wfrdNIC(r, w, π3) or wfrdCPU(r, w, π3), and there are
five cases to consider.

– In the first case of wfrdNIC(r, w, π3), π3 = π2·getOλ(w, π)·π1, and getOλ(w′, π) /∈
π2. Since (w, w′) ∈ mo we have getOλ(w′, π) /∈ π1, and thus getOλ(w′, π) /∈ π3.
So getOλ(w′, π) ∈ π4 and (r, w′) ∈ OB.

Appendix B. Annotated Semantics 66

– In the last case wfrdNIC(r, w, π3), w = initx for some location x, and we
immediately have getOλ(w′, π) /∈ π3, which implies (r, w′) ∈ OB.

– For the first case of wfrdCPU(r, w, π3), same reasoning as for the first case of
wfrdNIC.

– For the second case of wfrdCPU(r, w, π3), π3 = π2 · getIλ(w, π) · π1, with
thread(w) = thread(r), and getOλ(w, π) /∈ π3. So getOλ(w, π) ∈ π4, and
since (w, w′) ∈ mo we have getOλ(w′, π) ∈ π4 as well, and (r, w′) ∈ OB.

– For the last case of wfrdCPU(r, w, π3), same reasoning as for the last case of
wfrdNIC.

• Checking nfo ⊆ IB.
By definition of nfo.

• Checking nfo ⊆ OB.
By definition of nfo.

• Checking mo ⊆ OB.
By definition of mo, as what matters are the initx, B⟨w⟩, and CAS⟨w, _⟩ events.

• Checking rao ⊆ IB.
By definition of rao.

• Checking ar; rao ⊆ OB.
If (w, r1) ∈ ar then narR⟨r1, a1, _, _, w⟩ ∈ π for some a1 ∈ nRMW, and if (r1, r2) ∈ rao
then narR⟨r1, _, a1, _, w⟩ ≺π λr for some λr ∈ {naF⟨r2, _, a2, _⟩, narR⟨r2, _, a2, _, _⟩},
with n(a1) = n(a2). Then using nicAtomicity(π) we have that B⟨w⟩ ≺π λr.

Semantics of RDMA Remote RMWs Max Stupple

B.4 From Declarative Semantics to Annotated Se-
mantics

From a program P and a well-formed consistent execution graph G = (Event, po, rf, pf, mo, nfo, rao),
where (Event, po) is generated by P, we want to reconstruct an annotated semantics ex-
ecution.

Theorem 5. ib and ob can be extended into total relations IB and OB on Event such
that:

• IB and OB are irreflexive and transitive;

• OB; [Inst] ⊆ IB and [Inst]; IB ⊆ OB.

Proof. We show that if ib is not already total we can extend it (and maybe ob) into a
strictly bigger relation satisfying the constraints of the theorem. Let us assume that there
is (a, b) ∈ Event2 such that (a, b) /∈ ib and (b, a) /∈ ib. We arbitrarily decide to include
(a, b) in our relation and we define ib′ = (ib ∪ {(a, b)})+ and ob′ = (ob ∪ [Inst]; ib′)+.

Clearly ib′ and ob′ are transitive, ib′ is irreflexive, and [Inst]; ib′ ⊆ ob′. We need to
prove the following two facts: ob′ is still irreflexive; and ob′; [Inst] ⊆ ib′.

First, let us check that (ob ∪ [Inst]; ib′)+ is irreflexive. Since ob and ([Inst]; ib′) are
both transitive and irreflexive, a cycle would only be possible by alternating between
the two components, so it is enough to show that (ob; ([Inst]; ib′))+ is irreflexive. But
(ob; ([Inst]; ib′))+ = ((ob; [Inst]); ib′)+ ⊆ (ib; ib′)+ ⊆ ib′ is irreflexive. Thus ob′ is irreflex-
ive.

Then, we need to check that ob′; [Inst] ⊆ ib′. Using some rewriting, ob′ = (ob ∪
[Inst]; ib′)+ = ob ∪ (ob∗; ([Inst]; ib′))+; ob∗. We know ob; [Inst] ⊆ ib′, which also implies
ob∗; [Inst] ⊆ ib′∗. So ob′; [Inst] = ob; [Inst] ∪ ((ob∗; [Inst]); ib′)+; (ob∗; [Inst]) ⊆ ib′ ∪
(ib′∗; ib′)+; ib′∗ ⊆ ib′.

Once ib is a total relation on Event, we can similarly freely extend ob into a total
relation.

We use Theorem 5 above to extend ib and ob into total relations IB and OB.
Since (Event, po) is derived from P, by §5.2 we have that for all t ∈ Tid there are st

and Gt such that Gt ∈ Gt(st), P(t)↣ st and (Event, po) = Ginit; (∥t∈Tid Gt). We consider
each premise of the form C ↣ s, where C is a primitive command, to generate new
events and annotated labels.

• If s = r ∈ lR, from well-formedness conditions, there is w such that (w, r) ∈ rf and
eqloc&v(r, w). We create an annotated label lR⟨r, w⟩.

• If s = u, s′ where u ∈ CAS, from well-formedness conditions, there is w such that
(w, u) ∈ rf and eqloc&v(u, w). We create an annotated label CAS⟨u, w⟩, then process
s′.

• If s = f, r, s′ where f ∈ F, r ∈ lR, and w ∈ lW, from well-formedness conditions,
there is w′ such that (w′, r) ∈ rf and eqloc&v(r, w′). We create annotated labels
F⟨f⟩, lR⟨r, w′⟩, lW⟨w⟩ and B⟨w⟩, then process s′.

• If s = w ∈ lW, we create annotated labels lW⟨w⟩ and B⟨w⟩.

Appendix B. Annotated Semantics 68

• If s = f ∈ F, we create annotated labels F⟨f⟩.

• If s = r, w where r ∈ nlR and w ∈ nrW, we create two events a ∈ Put and
e ∈ nrEX, and the annotated labels Push⟨a⟩, NIC⟨a⟩, nlR⟨r, w′, a, w⟩ (where (w′, r) ∈
rf), nrW⟨w, e⟩, B⟨w⟩, and CN⟨e⟩. If there is p such that (w, p) ∈ pf, we also
create an annotated label P⟨p, e⟩. To simplify later definition, we also extend
po such that the event a is placed just before r, and e just after w. I.e., let
po′ = po ∪ {(e′, a) | (e′, r) ∈ po} ∪ {(a, e′) | (r, e′) ∈ po∗} and redefine po = po′ ∪
{(e′, e) | (e′, w) ∈ po′∗} ∪ {(e, e′) | (w, e′) ∈ po′}.
Note: from well-formedness conditions, every nlR and every nrW are part of such a
pair.

• If s = r, w where r ∈ nrR and w ∈ nlW, we similarly create a ∈ Get, e ∈ nlEX,
Push⟨a⟩, NIC⟨a⟩, nrR⟨. . .⟩, nlW⟨. . .⟩, B⟨. . .⟩, and potentially P⟨. . .⟩.

• If s = r, w where r ∈ narR and w ∈ nlW, we have C of the form z := nCAS(x, e, e′),
so we use the values [[e]] and [[e′]] to create a ∈ nCAS, Push⟨a⟩, NIC⟨a⟩, naF⟨. . .⟩,
nlW⟨. . .⟩, B⟨. . .⟩, and potentially P⟨. . .⟩.

• If s = r, w1, w2 where r ∈ narR, w1 ∈ narW, w2 ∈ nlW, we have C either of the
form z := nFAA(x, e) or z := nCAS(x, e1, e2), so we create a ∈ nFAA or a ∈ nCAS
accordingly, and Push⟨a⟩, NIC⟨a⟩, narR⟨. . .⟩, narW⟨w1⟩, nlW⟨w2, . . .⟩, B⟨w1⟩, B⟨w2⟩
and potentially P⟨. . .⟩.

• If s = f ∈ nF, we create the annotated labels Push⟨f⟩, NIC⟨f⟩, and nF⟨f⟩.

• We ignore s = p ∈ P, as this is already handled by our earlier cases.

Then, we use IB and OB to reconstruct a partial path from these annotated labels.
We define a path π0 such that:

• π0 ∈ (ALabel \ (Push ∪ NIC ∪ CN))∗

• getIλ(e1, π0) ≺π0 getIλ(e2, π0) ⇐⇒ (e1, e2) ∈ IB

• getOλ(e1, π0) ≺π0 getOλ(e2, π0) ⇐⇒ (e1, e2) ∈ OB

• ∀w ∈ {lW, nlW, nrW, narW}, getIλ(w, π0) ≺π0 getOλ(w, π0)

This is possible from the properties of IB and OB. For pairs of annotated labels not
ordered by IB or OB, we decide to order lW⟨w⟩/nlW⟨w, _⟩/nrW⟨w, _⟩/narW⟨w⟩ first and
B⟨w⟩ last. Note that the annotated labels Push⟨. . .⟩, NIC⟨. . .⟩, and CN⟨. . .⟩ not covered
by IB/OB are not yet integrated in π0.

Then we extend π0 to add annotated labels not considered by the declarative seman-
tics. We use the following extension function that introduces a new annotated label as
early as possible after a set of dependencies.

extend(π, λ, S) ≜
π2 · λ · λ′ · π1 if π = π2 · λ′ · π1 ∧ λ′ ∈ S ∧ π2 ∩ S = ∅

π · λ if π ∩ S = ∅

We define a new function to recover the first annotated label corresponding to an
event:

Eext ≜ Event ∪ (Get ∪ Put ∪ nCAS ∪ nFAA ∪ nlEX ∪ nrEX)

Semantics of RDMA Remote RMWs Max Stupple

getCPU : Eext ⇀ ALabel

getCPU(e) ≜


getIλ(e, π0) if e ∈ Ecpu = {lR, lW, CAS, F, P}
Push⟨e⟩ if e ∈ {Put, Get, nCAS, nFAA, nF}
undefined otherwise

And a similar function for events emptying a CPU buffer:

getTSO : Eext ⇀ ALabel

getTSO(e) ≜


B⟨e⟩ if e ∈ lW
NIC⟨e⟩ if e ∈ {Put, Get, nCAS, nFAA, nF}
undefined otherwise

Let us consider (a1, . . . , an) = Event ∩ {Put, Get, nCAS, nFAA, nF} in po order, i.e., if
i < j then (aj, ai) /∈ po. We extend π0 successively until we get πn:

• We introduce Push as early as possible:
Let π′ = extend(πi−1, Push⟨ai⟩, {getCPU(e) | (e, ai) ∈ po})

• We introduce NIC as early as possible:
Let π′′ = extend(π′, NIC⟨ai⟩, {Push⟨ai⟩} ∪ {getTSO(e) | (e, ai) ∈ po})

• If ai ∈ Put, there is ei ∈ nrEX such that nlR⟨_, _, ai, w⟩ ≺π0 nrW⟨w, ei⟩. We also in-
troduce CN: Let S = {nrW⟨w, ei⟩}∪{nlW⟨_, e⟩ | (e, ei) ∈ po ∩ sqp}∪{CN⟨e⟩ | (e, ei) ∈ po ∩ sqp},
we pose πi = extend(π′′, CN⟨ei⟩, S).
Otherwise, i.e. ai /∈ Put, we simply have πi = π′′

Finally, π = πn is our path for an annotated semantics reduction. We clearly have
complete(π) by definition. Our goal is then to prove that wfp(π) holds. It is composed
of seven properties. Note that we already have the existence of the relevant annotated
labels, and we need to show that the ordering constraints are respected.

nodup
nodup(π) directly comes from the definition of annotated labels. There is no conflict

in event usage.

backComp
Here are a couple lemmas showing that the new annotated labels are not placed too

late and do not disturb the expected ordering.

Lemma 3. For all a ∈ {Put, Get, nCAS, nFAA, nF} and b ∈ Event, if (a, b) ∈ po∗, then
Push⟨a⟩ ≺π getIλ(b, π0).

Proof. We take an arbitrary b, and proceed for a in po order, i.e., we can assume it
holds for e ∈ {Put, Get, nCAS, nFAA, nF} such that (e, a) ∈ po. By definition, Push⟨a⟩
comes from an extension π′′ = extend(π′, Push⟨a⟩, {getCPU(e) | (e, a) ∈ po}) and has been
placed either first—and the result is trivial—or just after some getCPU(e) with (e, a) ∈
po. If e ∈ {Put, Get, nCAS, nFAA, nF}, we have Push⟨e⟩ ≺π′′ Push⟨a⟩ ≺π′′ getIλ(b, π0)
by induction hypothesis. If e ∈ Ecpu = {lR, lW, CAS, F, P}, we have getIλ(e, π0) ≺π′′

Push⟨a⟩ ≺π′′ getIλ(b, π0) since (e, b) ∈ ippo ⊆ IB.

Appendix B. Annotated Semantics 70

Lemma 4. ∀a ∈ {Put, Get, nCAS, nFAA, nF}, ∀b ∈ {nF, nrR, nlR, narR, lW}, if (a, b) ∈ po∗,
then NIC⟨a⟩ ≺π getOλ(b, π0).

Proof. We take an arbitrary b ∈ {nF, nrR, nlR, narR}, and proceed for a in po order,
i.e., we can assume it holds for e ∈ {Put, Get, nCAS, nFAA, nF} such that (e, a) ∈ po.
By definition, NIC⟨a⟩ comes from an extension π′′ = extend(π′, NIC⟨a⟩, S), with S =
{Push⟨a⟩} ∪ {getTSO(e) | (e, a) ∈ po}, and has been placed just after some λ ∈ S.

• If λ = Push⟨a⟩, then we have λ ≺π′′ NIC⟨a⟩ ≺π′′ getOλ(b, π0) using Lemma 3 above,
since getIλ(b, π0) = getOλ(b, π0) or getIλ(b, π0) ≺π′′ getOλ(b, π0).

• If λ = getTSO⟨e⟩ = NIC⟨e⟩ for some e ∈ {Put, Get, nCAS, nFAA, nF}, then we have
λ ≺π′′ NIC⟨a⟩ ≺π′′ getOλ(b, π0) by induction hypothesis.

• If λ = getTSO⟨e⟩ = B⟨e⟩ for some e ∈ lW, then we have B⟨e⟩ ≺π′′ NIC⟨a⟩ ≺π′′

getOλ(b, π0) since (e, b) ∈ oppo ⊆ OB.

Lemma 5. Forall w,e,p, if nrW⟨w, e⟩ ∈ π and P⟨p, e⟩ ∈ π, then CN⟨e⟩ ≺π P⟨p, e⟩.

Proof. Once again, we proceed for e in po order, i.e., we can assume the result holds for
e′ ∈ nrEX such that (e′, e) ∈ po. CN⟨e⟩ is inserted in some operation π′′ = extend(π′, CN⟨e⟩, S),
with S = {nrW⟨w, e⟩} ∪ {nlW⟨_, e′⟩ | (e′, e) ∈ po ∩ sqp} ∪ {CN⟨e′⟩ | (e′, e) ∈ po ∩ sqp}. It
is then placed just after some label λ ∈ S.

• If λ = nrW⟨w, e⟩, we have λ ≺π′′ CN⟨e⟩ ≺π′′ P⟨p, e⟩ because (w, p) ∈ pf ⊆ IB.

• If λ = CN⟨e′⟩ with (e′, e) ∈ po ∩ sqp, then there is some w′ such that (w′, w) ∈
po ∩ sqp and nrW⟨w′, e′⟩ ∈ π′. From well-formedness condition number 1 (see
Definition 3), there is some p′ such that (w′, p′) ∈ pf and (p′, p) ∈ po. By induction
hypothesis, we have CN⟨e′⟩ ≺π′ P⟨p′, e′⟩, and from (p′, p) ∈ IB we have P⟨p′, e′⟩ ≺π′

P⟨p, e⟩. In the end, we have the result CN⟨e′⟩ ≺π′′ CN⟨e⟩ ≺π′′ P⟨p, e⟩.

• If λ = nlW⟨w′, e′⟩ with (e′, e) ∈ po ∩ sqp, then we also have (w′, w) ∈ po ∩ sqp, so
from well-formedness condition number 1 (see Definition 3), there is some p′ such
that (w′, p′) ∈ pf and (p′, p) ∈ po. We have nlW⟨w′, e′⟩ ≺π′′ CN⟨e⟩ ≺π′′ P⟨p′, e′⟩ ≺π′′

P⟨p, e⟩.

We can then check that we have backComp(π):

• lW⟨w⟩ ≺π B⟨w⟩ comes from the third property when defining π0; similarly for nlW,
nrW and narW.

• Push⟨a⟩ ≺π NIC⟨a⟩ comes from the extension process.

• NIC⟨f⟩ ≺π nF⟨f⟩ comes from Lemma 4; similarly for NIC⟨a⟩ ≺π nlR/nrR/naF/narR⟨. . .⟩.

• nlR⟨r, w, a, w′⟩ ≺π nrW⟨w′, e⟩ comes from (r, w′) ∈ ippo ⊆ IB; similarly for nrR/nlW,
naF/nlW, narR/nlW and narR/narW.

• nrW⟨w, e⟩ ≺π CN⟨e⟩ comes from the extension process

Semantics of RDMA Remote RMWs Max Stupple

• nlW⟨w, e⟩ ≺π B⟨w⟩ ≺π P⟨p, e⟩ comes from (w, p) ∈ [nlW]; pf ⊆ OB.

• CN⟨e⟩ ≺π P⟨p, e⟩ comes from Lemma 5.

Thus we have backComp(π).

bufFlushOrd

• lW⟨w1⟩ ≺π lW⟨w2⟩ ⇐⇒ B⟨w1⟩ ≺π B⟨w2⟩ when t(w1) = t(w2) comes the fact that
[lW]; po; [lW] ⊆ (IB∪OB), so both sides are true if and only if (w1, w2) ∈ po; similarly
for nlW and nrW/narW on the same queue pair.

• When t(a1) = t(a2), Push⟨a1⟩ ≺π Push⟨a2⟩ ⇐⇒ NIC⟨a1⟩ ≺π NIC⟨a2⟩ ⇐⇒
(a1, a2) ∈ po from the definition of the extension process (to define πn).

• For a ∈ {Put, Get, nF, nCAS, nFAA}, w ∈ lW, such that t(a) = t(w):

– If (w, a) ∈ po, then lW⟨w⟩ ≺π Push⟨a⟩ and B⟨w⟩ ≺π NIC⟨a⟩ from the definition
of the extension process.

– If (a, w) ∈ po, then Push⟨a⟩ ≺π lW⟨w⟩ and NIC⟨a⟩ ≺π B⟨w⟩ from Lemmas 3
and 4.

• When t(w) = t(f), lW⟨w⟩ ≺π F⟨f⟩ implies (w, f) ∈ po (since [F]; po; [lW] ⊆ ippo ⊆
IB), which implies B⟨w⟩ ≺π F⟨f⟩ (since [lW]; po; [F] ⊆ oppo ⊆ OB); similarly for
CAS.

• If w ∈ nlW, r ∈ nlR, and sameqp(w, r), then from the definition of pre-executions
(see condition 6 of Definition 2), either (w, r) ∈ nfo or (r, w) ∈ nfo. If nlW⟨w, _⟩ ≺π

nlR⟨r, _, _, _⟩, then (r, w) /∈ nfo (since nfo ⊆ IB) and (w, r) ∈ nfo. Thus, B⟨w⟩ ≺π

nlR⟨r, _, _, _⟩ (since nfo ⊆ OB); similarly for w ∈ {nrW, narW} and r ∈ {nrR, narR}.

Thus we have bufFlushOrd(π).

pollOrder

Lemma 6. For all e1, e2 ∈ {nlEX, nrEX}, such that sameqp(e1, e2), let λ1 ∈ {nlW⟨_, e1⟩, CN⟨e1⟩},
λ2 ∈ {nlW⟨_, e2⟩, CN⟨e2⟩}, then (e1, e2) ∈ po ⇐⇒ λ1 ≺π λ2.

Proof. By symmetry, we only need to show (e1, e2) ∈ po =⇒ λ1 ≺π λ2. Once again,
we proceed for e1 in po order, i.e., we can assume the result holds for e′ ∈ nEX such that
(e′, e1) ∈ po.

• If λ1 = nlW⟨w1, e1⟩ and λ2 = nlW⟨w2, e2⟩, then (e1, e2) ∈ po implies (w1, w2) ∈
(po ∩ sqp), so (w1, w2) ∈ ippo ⊆ IB and λ1 ≺π λ2.

• If λ1 = nlW⟨w1, e1⟩ and λ2 = CN⟨e2⟩, then by definition of the extension process we
have λ1 ≺π λ2.

• If λ1 = CN⟨e1⟩ and λ2 = nlW⟨w2, e2⟩, then λ1 is inserted in some operation π′′ =
extend(π′, CN⟨e1⟩, S), with S = {nrW⟨_, e1⟩} ∪ {nlW⟨_, e′⟩ | (e′, e1) ∈ po ∩ sqp} ∪
{CN⟨e′⟩ | (e′, e1) ∈ po ∩ sqp}. It is then placed just after some label λ ∈ S.

– If λ = nrW⟨w1, e1⟩, we have λ ≺π′′ λ1 ≺π′′ λ2 because (w1, w2) ∈ ippo ⊆ IB.

Appendix B. Annotated Semantics 72

– If λ = CN⟨e′⟩ or λ = nlW⟨_, e′⟩, with (e′, e1) ∈ po ∩ sqp, then by induction
hypothesis λ ≺π′′ λ1 ≺π′′ λ2.

• If λ1 = CN⟨e1⟩ and λ2 = CN⟨e2⟩, then by definition of the extension process we
have λ1 ≺π λ2.

Let us assume we have e1, e2, p2, λ1, λ2 such that sameqp(e1, e2), λ1 ∈ {nlW⟨_, e1⟩, CN⟨e1⟩},
λ2 ∈ {nlW⟨_, e2⟩, CN⟨e2⟩}, λ1 ≺π λ2, and P⟨p2, e2⟩ ∈ π.

From the creation of the events e1 and e2, there is some w1, w2 ∈ {nlW, nrW} such that
(wi, ei) ∈ po|imm. From Lemma 6, we have (e1, e2) ∈ po and thus (w1, w2) ∈ (po ∩ sqp).
By definition, we also have (w2, p2) ∈ pf. From well-formedness condition number 1 (see
Definition 3), there is some p1 such that (w1, p1) ∈ pf and (p1, p2) ∈ po. Thus we have
P⟨p1, e1⟩ ≺π P⟨p2, e2⟩ as required to prove pollOrder(π).

nicActOrder
Let a1 and a2 such that NIC⟨a1⟩ ≺π NIC⟨a2⟩ and sameqp(a1, a2). From the definition

of the extension process, we have (a1, a2) ∈ po.

• If a1 ∈ nF or a2 ∈ nF, then most of the required results hold by definition of ippo.
The only exception is CN⟨e⟩ ≺π nF⟨a2⟩ which holds (by induction on e in po order)
because all the dependencies of CN⟨e⟩ are before nF⟨a2⟩ by ippo.

• If (a1 ∈ Get ∧ a2 ∈ Get), the result holds by ippo.

• If (a1 ∈ Get ∧ a2 ∈ Put), the result holds by Lemma 6.

• If (a1 ∈ Get ∧ a2 ∈ nCAS ∪ nFAA), the results hold by ippo.

• If (a1 ∈ Put ∧ a2 ∈ Get), the first result holds by ippo, the second by Lemma 6.

• If (a1 ∈ Put ∧ a2 ∈ Put), the first two results hold by ippo, the last one by Lemma 6.

• If (a1 ∈ Put ∧ a2 ∈ nCAS ∪ nFAA), the results hold by ippo.

• If (a1 ∈ nCAS ∪ nFAA ∧ a2 ∈ Get), the results hold by ippo.

• If (a1 ∈ nCAS ∪ nFAA ∧ a2 ∈ Put), the first result holds by ippo, the latter by Lemma 6.

• If (a1, a2 ∈ nCAS ∪ nFAA), the first result holds by ippo, the latter by Lemma 6.

Thus we have nicActOrder(π).

nicAtomicity
For every a1, a2 ∈ nRMW where n(a1) = n(a2), if narR⟨r1, a1, _, _, w⟩ ≺π λr where

λr ∈ {naF⟨r2, _, a2, _⟩, narR⟨r2, _, a2_, _⟩}, then from the extension process we have
(r1, w) ∈ po|imm, and w ∈ narW, so (w, r1) ∈ ar. Then we need to show that (r1, r2) ∈
rao. Suppose, for contradiction, that (r1, r2) ̸∈ rao. By definition of rao, for each node
n, raon is a total order on {e ∈ narR | n(e) = n}. Thus we have either (r1, r2) ∈ rao
or (r2, r1) ∈ rao, and by assumption the prior is not the case so (r2, r1) ∈ rao ⊆ IB.
However, since narR⟨r1, . . .⟩ ≺π λr, we have (r1, r2) ∈ IB, which is a contradiction, as IB
is irreflexive. Therefore reject our original assumption. Thus (r1, r2) ∈ rao, then we have
(w, r2) ∈ ar; rao ⊆ OB, so B⟨w⟩ ≺π λr. Thus we have nicAtomicity(π).

Semantics of RDMA Remote RMWs Max Stupple

wfrd
Let us assume we have π = π4 · λr · π3, with λr ∈ {lR⟨r, w⟩, CAS⟨r, w⟩, nlR⟨r, w, _, _⟩,

nrR⟨r, w, _, _⟩, naF⟨r, w, _, _⟩, narR⟨r, w, _, _, _⟩}. In all cases we have (w, r) ∈ rf.
Another important fact is that ∀w′, (w, w′) ∈ mo =⇒ (r, w′) ∈ rb.

• If λr = lR⟨r, w⟩, we need to show wfrdCPU(r, w, π3).

– If w = initloc(w), then we need to check that {B⟨w′⟩, CAS⟨w′, _⟩ ∈ π3 | loc(w′) = loc(r)} =
∅ and {lW⟨w′′⟩ ∈ π3 | loc(w′′) = loc(r) ∧ t(w′′) = t(r)} = ∅. For the first, such
a w′ would imply (r, w′) ∈ rb ⊆ OB, which contradicts the ordering with λr.
For the second, such an w′′ would imply (r, w′′) ∈ rbb ⊆ IB, and λr ≺π lW⟨w′′⟩
which similarly contradicts the ordering with λr.

– If w ∈ lW, t(w) = t(r), and B⟨w⟩ /∈ π3. From (w, r) ∈ rfb ⊆ IB, we
have λw = lW⟨w⟩ ≺π λr, i.e., π3 = π2 · λw · π1. We need to show that
{lW⟨w′⟩ ∈ π2 | loc(w′) = loc(r) ∧ t(w′) = t(r)} = ∅. Such a w′ would imply
(w, w′) ∈ po (from [lW]; po; [lW] ⊆ ippo ⊆ IB, and the execution graph forc-
ing either (w, w′) ∈ po or (w′, w) ∈ po), (w, w′) ∈ mo (from [lW]; po; [lW] ⊆
oppo ⊆ OB, and well-formedness conditions forcing either (w, w′) ∈ mo or
(w′, w) ∈ mo), and (r, w′) ∈ rbb ⊆ IB would contradicts the ordering with λr.

– Else we have λw ∈ π3, with λw ∈ {B⟨w⟩, CAS⟨w, _⟩}. If w ∈ lW and t(w) = t(r),
this is the remaining subcase, else it comes from (w, r) ∈ rfb ⊆ OB. Thus we
have π3 = π2 · λw · π1, and we need to check two properties. First, we check
that
{B⟨w′⟩, CAS⟨w′, _⟩ ∈ π2 | loc(w′) = loc(r)} = ∅. It holds because such a w′

would again imply (r, w′) ∈ rb ⊆ OB and contradict the ordering with λr.

Second, we check that
{

w′
∣∣∣∣∣ lW⟨w′⟩ ∈ π3 ∧ B⟨w′⟩ /∈ π3 ∧

loc(w′) = loc(r) ∧ t(w′) = t(r)

}
= ∅. It holds

because such a w′ would again imply (w, w′) ∈ mo, (r, w′) ∈ rbb ⊆ IB and
contradict the ordering with λr.

• If λr = CAS⟨r, w⟩, we similarly check that wfrdCPU(r, w, π3) holds. The difference
is that cases that previously contradicted (rbb ⊆ IB) now contradict bufFlushOrd(π)
that forces the buffer of t(r) to be empty when performing λr.

• If λr = nlR⟨r, w, _, _⟩, we need to show wfrdNIC(r, w, π3).

– If w = initloc(w), then we need to check that {B⟨w′⟩, CAS⟨w′, _⟩ ∈ π3 | loc(w′) = loc(r)} =
∅. Such a w′ would imply (r, w′) ∈ rb ⊆ OB, which contradicts the ordering
with λr.

– Else we have λw ∈ π3, with λw ∈ {B⟨w⟩, CAS⟨w, _⟩}. This comes from (w, r) ∈
rfb ⊆ OB. Thus we have π3 = π2 · λw · π1, and we need to check that
{B⟨w′⟩, CAS⟨w′, _⟩ ∈ π2 | loc(w′) = loc(r)} = ∅. It holds because such a w′

would again imply (r, w′) ∈ rb ⊆ OB and contradict the ordering with λr.

• If λr = nrR⟨r, w, _, _⟩, naF⟨r, w, _, _⟩ or narR⟨r, w, _, _, _⟩, we similarly check
that wfrdNIC(r, w, π3) for the same reasons.

Thus we have wfrd(π).

Appendix B. Annotated Semantics 74

Theorem 6. Let G be a well-formed consistent execution graph generated from a pro-
gram P. Let π be the path obtained from G by the process defined above. Then
there is M′, QP′ (such that forall t, n we have QP′(t)(n) = ⟨ε, ε, nEX∗⟩), and an equiv-
alent path π′ (producing the same outcome as π) such that P, M0, B0, A0, QP0, ε ⇒∗

(λt.skip), M′, B0, A0, QP′, π′.

Proof. From above, we have wf(π). This shows that the program configuration can
perform the events described by the annotated labels of π. The remaining part of the
proof is simply to check that the command rewritings used when deriving the execution
graph from P (see Fig. 5.3) can be used as E transitions in the annotated semantics for
P, which follows from the definitions.

Semantics of RDMA Remote RMWs Max Stupple

B.5 Operational Semantics and Annotated Seman-
tics

We define forgetful functions from annotated configurations to operational configurations.
For memories, we replace the write event by the value written. For labels within annotated
configurations, we drop some arguments to recover the data structure of the operational
semantics.

[[·]]M : AMem → Mem
[[M]]M ≜ λx.vw(M(x))

[[·]]op : Eext ⇀

{
yn := xn, yn := v, ackp, xn := yn, xn := v,
x := nCAS(yn, v, v′), x := nFAA(yn, v), cn, rfence n

}

[[lW(x, vw)]]op ≜ x := vw

[[nrW(y, vr)]]op ≜ y := vr

[[nlW(x, vw, n)]]op ≜ x := vw

[[nF(n)]]op ≜ rfence n

[[Put(y, x)]]op ≜ y := x

[[Get(x, y)]]op ≜ x := y

[[nCAS(z, x, v, v′)]]op ≜ z := nCAS(x, v, v′)
[[nFAA(z, x, v)]]op ≜ z := nFAA(x, v)

[[nlEX(n)]]op ≜ cn

[[nrEX(n)]]op ≜ ackp

[[F]]op is undefined
[[P(. . .)]]op is undefined

[[lR(. . .)]]op is undefined
[[CAS(. . .)]]op is undefined
[[nlR(. . .)]]op is undefined
[[nrR(. . .)]]op is undefined
[[naF(. . .)]]op is undefined

[[narR(. . .)]]op is undefined
[[narW(. . .)]]op is undefined

[[·]]opl : Eext ⇀

{
yn := xn, yn := v, xn := yn, xn := v,
x := nCAS(yn, v, v′), x := nFAA(yn, v), cn, rfence n

}

[[l]]opl =
cn if l = nrEX(n)

[[l]]op otherwise
The labels that cannot appear in a well-formed annotated configuration are not

mapped. For put operations, the operational semantics uses both (ackp) and (cn) while
the annotated semantics uses the label nrEX, so the mapping is different for labels in
wbL.

[[·]]op and [[·]]opl are extended to lists in an obvious way.

We then extend this to configurations as expected. We overload notations to simplify
the formulas.

For qp = ⟨pipe, wbR, wbL⟩ ∈ AQPair, we define [[qp]] ≜ ⟨[[pipe]]op, [[wbR]]op, [[wbL]]opl⟩.
For QP ∈ AQPMap, we define [[QP]] ≜ λt.λn.[[QP(t)(n)]].
For B ∈ ASBMap, we define [[B]] ≜ λt.[[B(t)]]op.

Theorem 7. For all P, P′ ∈ Prog, M, M′ ∈ AMem, B, B′ ∈ ASBMap, A, A′ ∈ RAMap,
QP, QP′ ∈ AQPMap, π, π′ ∈ Path, if P, M, B, A, QP, π ⇒ P′, M′, B′, A′, QP′, π′ and wf(M, B, A, QP, π),
then P, [[M]]M, [[B]], A, [[QP]] ⇒ P′, [[M′]]M, [[B′]], A′, [[QP′]].

Appendix B. Annotated Semantics 76

Proof. By straightforward induction on ⇒.

Theorem 8. For all M ∈ AMem, M′′ ∈ Mem, B ∈ ASBMap, B′′ ∈ SBMap, A, A′ ∈
RAMap, QP ∈ AQPMap, QP′′ ∈ QPMap, and π ∈ Path, if P, [[M]]M, [[B]], A, [[QP]] ⇒
P′, M′′, B′′, A′, QP′′ and wf(M, B, A, QP, π), then there exists M′ ∈ AMem, B′ ∈ ASBMap,
QP′ ∈ AQPMap, and π′ ∈ Path such that [[M′]]M = M′′, [[B′]] = B′′, [[QP′]] = QP′′, and
P, M, B, A, QP, π ⇒ P′, M′, B′, A′, QP′, π′.

Proof. By straightforward induction on ⇒. In some cases, the reduction enforces a spe-
cific annotated label λ and we have π′ = λ · π; we then need wf(M, B, A, QP, π) to check
that λ is fresh enough for π.

Theorem 9 (Operational and Annotated Semantics Equivalence). For all program P.

• [[M0]]M, [[B0]], A0, and [[QP0]] are the initialisation for the operational semantics;

• If P, M0, B0, A0, QP0, ε ⇒∗ P′, M′, B′, A′, QP′, π′ then P, [[M0]]M, [[B0]], A0, [[QP0]] ⇒∗

P′, [[M′]]M, [[B′]], A′, [[QP′]]

• If P, [[M0]]M, [[B0]], A0, [[QP0]] ⇒∗ P′, M′′, B′′, A′, QP′′ then there exists M′ ∈ AMem,
B′ ∈ ASBMap, QP′ ∈ AQPMap, and π′ ∈ Path such that [[M′]]M = M′′, [[B′]] = B′′,
[[QP′]] = QP′′, and P, M0, B0, A0, QP0, ε ⇒∗ P′, M′, B′, A′, QP′, π′.

Proof. The first point comes from unfolding the definitions. The other two are proved by
straightforward induction on ⇒∗ and using Theorems 7 and 8. The condition wf(M, B, A, QP, π)
is obtained by applying Theorem 2 when needed.

Semantics of RDMA Remote RMWs Max Stupple

C Encoding the Declarative Model in Alloy
These models are written for Alloy Analyzer 6.2.0, which is available for download at
https://alloytools.org.

C.1 Prototype Encoding

module rdma_tso

fun memoryLoc[e: Event]: lone Loc {
{ l: Loc | e in MemEvent and loc[e & MemEvent] = l }

}

fun reads: set Event {
lR + CAS + nlR + nrR + narR

}

fun writes: set Event {
lW + CAS + nlW + nrW + narW

}

fun nicWrites: set Event {
nlW + nrW

}

fun nicEvents: set Event {
nlR + nrW + narR + narW + nrR + nlW + nF

}

fun nicMemEvents: set Event {
nlR + nrW + narR + narW + nrR + nlW

}

fun instEvents: set Event {
Event - Write

}

fun ippo: Event -> Event {
{e1, e2: Event |

e1 -> e2 in po and
(

e1 in lR + lW + CAS + F + P
or (e1 in nlR + nF and e2 in nicEvents and e1 -> e2 in sqp)
or (e1 in nrW + narR + narW and e2 in nicEvents - nlR

and e1 -> e2 in sqp)
or (e1 in nrR + nlW and e2 in nlW + nF and e1 -> e2 in sqp)

)
}

}

https://alloytools.org

Appendix C. Encoding the Declarative Model in Alloy 78

fun oppo: Event -> Event {
{e1, e2: Event |

e1 -> e2 in po and
(

e1 in lR + CAS + F + P
or (e1 in lW and e2 in lW + CAS + F + nicEvents)
or (e1 in nlR + nF and e2 in nicEvents and e1 -> e2 in sqp)
or (e1 in nrW and e2 in nicEvents - (nlR + nF)

and e1 -> e2 in sqp)
or (e1 in narR and e2 in nicEvents - nlR and e1 -> e2 in sqp)
or (e1 in narW and e2 in nicEvents - (nlR + nlW + nF)

and e1 -> e2 in sqp)
or (e1 in nrR + nlW and e2 in nlW + nF and e1 -> e2 in sqp)

)
}

}

fun sloc: Event -> Event {
{e1, e2: Event | memoryLoc[e1] = memoryLoc[e2] }

}

fun sthd: Event -> Event {
{e1, e2: Event | thread[e1] = thread[e2] }

}

fun sqp: Event -> Event {
{ e1, e2: Event | thread[e1] = thread[e2]

and node[memoryLoc[e1]] = node[memoryLoc[e2]] }
}

pred totalOrder[s: set Event, r: Event -> Event] {
all a: s | not a in r[a]
all a, b, c: s |

(a -> b in r and b -> c in r) implies a -> c in r
all a, b: s | a != b implies (a -> b in r or b -> a in r)

}

abstract sig Execution {
events: set Event,
po: Event -> Event,
rf: Event -> Event,
mo: Event -> Event,
pf: Event -> Event,
nfo: Event -> Event,
rao: Event -> Event

}

one sig E extends Execution {}

fun Events: set Event { E.events }
fun po: Event -> Event { E.po }
fun rf: Event -> Event { E.rf }

Semantics of RDMA Remote RMWs Max Stupple

fun mo: Event -> Event { E.mo }
fun pf: Event -> Event { E.pf }
fun nfo: Event -> Event { E.nfo }
fun rao: Event -> Event { E.rao }

fact po {
all e1: Init | all e2: Event - Init |

e1 -> e2 in po

all t: Thread |
let es = { e: Event | e.thread = t } | totalOrder[es, po]

}

fact rf {
all r: Event | some w: Event |

r in reads implies (w in writes and w -> r in rf
and w.loc = r.loc
and valueWritten[w] = valueRead[r])

}

fact mo {
all ex: Execution | all x: Loc {

let wx = { w: writes | w.loc = x } | totalOrder[wx, ex.mo]
}

}

fact pf {
all ex: Execution | all p: P | some w: Event |

w in nicWrites and w -> p in ex.pf
}

fact nfo {
all ex: Execution | all e1, e2: Event |

(e1 in nicMemEvents and e2 in nicMemEvents and e1 != e2)
implies (e1 -> e2 in ex.nfo or e2 -> e1 in ex.nfo)

}

fact rao {
all ex: Execution | all n: Node {

let rn = { r: narR | r.loc.node = n } | totalOrder[rn, ex.rao]
}

}

fun rb: Event -> Event {
(~rf . mo) - (iden & (Event -> Event))

}

fun rfb: Event -> Event {
(iden & (lW -> lW)) . (rf & sthd) . (iden & (lR -> lR))

}

fun rfbc: Event -> Event {
rf - rfb

}

Appendix C. Encoding the Declarative Model in Alloy 80

fun rbb: Event -> Event {
(iden & (lR -> lR)) . (rb & sthd) . (iden & (lW -> lW))

}

fun imm(r: Event -> Event): Event -> Event {
{ a, b: Event |

a -> b in r
and no c: Event |

a -> c in r and c -> b in r and a != c and b != c }
}

fun ar: Event -> Event {
(iden & (narW -> narW)) . imm[~po]

}

fun ib: Event -> Event {
^(ippo + rf + pf + nfo + rbb + rao)

}

fun ob: Event -> Event {
^(oppo + rfb + ((iden & (nlW -> nlW)) . pf) + nfo + mo + (ar . rao))

}

pred preExecution[X:Execution] {
Event in X.events

}

pred wellFormedExecution[X: Execution] {
preExecution[X]
all w1, w2: nlW + nrW + narW | all p2: P |

((w1 -> w2) in (po & sqp) and (w2 -> p2) in pf)
implies (some p1: P | (w1 -> p1) in pf and (p1 -> p2) in po)

all r: nlR | some w: nrW |
(r -> w) in imm[po] and valueRead[r] = valueWritten[w]

all r: nrR | some w: nlW |
r -> w in imm[po] and valueRead[r] = valueWritten[w]

all w: nrW | some r: nlR |
r -> w in imm[po] and valueRead[r] = valueWritten[w]

all w: nlW | some r: nrR + narR |
r -> w in imm[po] and valueRead[r] = valueWritten[w]

all r: narR | some wl: nlW |
valueRead[r] = valueWritten[wl]
and (r -> wl in imm[po]

or some wr: narW |
r -> wr in imm[po] and wr -> wl in imm[po])

all w: narW | some r: narR, w2: nlW |
r -> w in imm[po] and w -> w2 in imm[po]
and valueWritten[w2] = valueRead[r]

}

pred consistentExecution[X: Execution] {
wellFormedExecution[X]

Semantics of RDMA Remote RMWs Max Stupple

all e: Event | e -> e not in ib
all e: Event | e -> e not in ob
all e: Event |

e -> e not in ^((iden & (instEvents -> instEvents)) . ib . ob)
}

Appendix C. Encoding the Declarative Model in Alloy 82

C.2 Example Litmus Test
Alloy encoding of the litmus test Fig. 3.1a.

open rdma_tso

one sig x extends Loc {}
one sig y extends Loc {}

one sig n1 extends Node {}
one sig n2 extends Node {}

one sig t1 extends Thread {}
one sig t2 extends Thread {}

fact { t1.node = n1 }
fact { t2.node = n2 }

pred RDMA_seq_a[X:Execution] {
consistentExecution[X]
some disj e1, e2, e3, e4, e5: Event {

e1 in Init and loc[e1] = x and thread[e1] = t1
and e2 in Init and loc[e2] = y and thread[e2] = t2
and e3 in lW and loc[e3] = x and valueWritten[e3] = 1 and thread[e3] = t1
and e4 in nlR and loc[e4] = x and thread[e4] = t1
and e5 in nrW and loc[e5] = y and thread[e5] = t1
and e3 -> e4 in X.po
and e4 -> e5 in X.po

}
}

run RDMA_seq_a
for exactly 3 Loc, 2 Node, 2 Thread, 5 Event

	Introduction
	Background
	Concurrency
	Synchronisation
	Memory Models
	RDMA
	Remote RMWs

	Overview
	RDMA Concurrency
	Remote RMW Behaviours

	Operational Semantics
	States of the Operational Semantics
	Memory
	Program State
	Store Buffers
	RDMA Operations

	Transitions of the Operational Semantics
	Program Transitions

	Hardware Domains
	Hardware Transitions
	Queue-Pair Transitions

	Declarative Semantics
	Events and Executions
	Semantics of a Program

	Equivalence
	Structure of the Proof
	Annotated Semantics
	Annotated Semantics to Declarative Semantics
	Declarative Semantics to Annotated Semantics
	Operational and Annotated Semantics

	Discussion
	Conclusion
	Limitations
	Future Work

	Declarations
	Use of Generative AI
	Ethical Considerations
	Sustainability
	Availability of Materials

	Annotated Semantics
	Annotated Labels and Inference Rules
	Paths, Gluing, and Other Definitions
	From Annotated Semantics to Declarative Semantics
	From Declarative Semantics to Annotated Semantics
	Operational Semantics and Annotated Semantics

	Encoding the Declarative Model in Alloy
	Prototype Encoding
	Example Litmus Test

