Imperial College
London

MENG INDIVIDUAL PROJECT
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Rendering Network Namespaces
Obsolete with eBPF

Author: Supervisor:
Lucas Graeff Buhl-Nielsen Marios Kogias

Acknowledgements

I would like to thank my supervisor, Marios Kogias, for supporting me throughout the en-
tirety of this project. Marios would always ask the kinds of thought-provoking questions that
made me challenge my assumptions, deepen my understanding, and ultimately guide me towards
a better solution. I am incredibly grateful for having had the opportunity to benefit from his
mentorship.

My four years at Imperial have exceeded my expectations in every way. In particular, I've met
some of the most creative, motivated, and inspiring people who I’'m grateful to call my friends.
Thank you all for the memories, laughter, and lunchtime debates. I cannot wait to continue our
adventures together!

Finally, I would like to thank my parents. Aside from being by my side and supporting me in
everything I've done, I owe my parents for my love of Computer Science. My parents were always
incredibly supportive of my passion of building, and introduced me to the world of software at
an early age. I'll never be able to truly express how grateful I am for my parents.

Abstract

State-of-the-art system call rewriting mechanisms are typically implemented in user space and
require rewriting binaries, which makes them unsuitable for cloud providers. By extending the
capabilities eBPF, this thesis presents an alternative mechanism that allows for kernel space
system call argument rewriting. To demonstrate the utility of this mechanism, we use it to
implement a lightweight alternative to network namespaces. This allows containers to have
an isolated network environment without having to pay the substantial performance penalties
associated with creating its own network namespace. This is not feasible with user-space system
call interception mechanisms. Evaluation results show that this approach results in 92 x reduction
in launching 200 containers in parallel and a 60% reduction in the launch time of a single
container. Furthermore, this approach improves the throughput of a containerized nginx web
server running in an overlay network by 35% and reduces the latency by 33%. The overhead
of the eBPF hooks is comparable to current state-of-the-art user-space system call interception
mechanisms.

Contents

1 Introduction

1.1 Motivation e
1.2 Contributions
1.3 Outline e
Background
2.1 eBPFEF . .
2.1.1 Program and Attach Types
2.1.2 Maps. e e
2.1.3 Helper Functions
2.1.4 KFuncs Lo
2.1.5 Verifier e
2.2 System Call Interception
2.2.1 Loading a Shared Library
2.2.2 Binary Rewriting o
2.2.3 eBPF Socket Address Hooks
2.3 Contalners
2.3.1 Historical Context
2.3.2 Implementation Overview
2.4 Network Namespaces e
2.4.1 Virtual Network Devices
2.4.2 Kernel Implementation 0oL
2.4.3 Overhead
2.5 Container Networking L
2.5.1 Imtra-host
2.5.2 Inter-host e
2.5.3 Virtual Extensible Local Area Network
2.6 Netlink. e

Related Work

3.1 SHm . .
3.1.1 Quantifying VXLAN Overhead
3.1.2 Design and Implementation L.
3.1.3 Limitations

3.2 ONCache
3.2.1 Design and Implementation L.
3.2.2 Limitations

3.3 Particle
3.3.1 Quantifying Network Namespace Setup Overhead
3.3.2 Design and Implementation 0oL
3.3.3 Limitations

[S1 B2 TSN

NeJN<NNo slNo slNo s HEN SIEN BEN BEN)2}

e e S e e T e T e T e T e T
© 1 3O UL UL i W W +—= O O

3.4 Summary ...

eBPF System Call Interception

4.1 Designo e
4.1.1 Imterface e
4.1.2 Program Context
4.1.3 Kernel Hooking Points oL
4.1.4 Program Behaviour
4.2 Implementation
4.2.1 Program Type Definition
4.2.2 Context Safety and TOCTTOU Mitigations
4.2.3 Verifier Enforcement of Context Accesses
4.2.4 Symbolic Context Access Resolution
4.2.5 Attach Point Integration Lo

Lightweight Alternative to Network Namespaces

5.1 Design oL e
5. 1.1 Overview e
5.1.2 Restricted Network Access
5.1.3 Userspace Netlink Server
5.1.4 Communication Fast Path
5.1.5 Filesystem Network State
5.1.6 Defencein Depth

5.2 Implementation
5.2.1 Architecture
5.22 eBPF Programs.
5.2.3 Userspace Netlink Server
5.2.4 Communication Fast Path

Evaluation

6.1 Microbenchmarks
6.1.1 Interception Overhead,
6.1.2 Container Startup Time L
6.1.3 Throughput and Latency,

6.2 Real-world Applications
6.2.1 nginxo
6.2.2 postgres

Conclusion

7.1 SUMMATY . . . o o o e e e e e e e

7.2 Limitations e

7.3 Future Work L

Declarations

8.1 Useof Generative AL

8.2 Ethical Considerations

8.3 Sustainability

8.4 Availability of Data and Materials 0 0L

26
26
26
26
27
27
28
28
29
30
30
31

34
34
34
35
36
36
37
37
38
39
39
40
40

42
42
42
43
45
46
46
47

49
49
49
49

Chapter 1

Introduction

eBPF is a Linux kernel technology that enables user-defined programs to safely extend and modify
kernel behaviour without changing kernel source code. Over the past decade, eBPF has evolved to
support a diverse set of use cases, and is now widely adopted in production systems at companies
such as Meta [1], Netflix 2], AWS [3]|, and Cloudflare [4, 5]. In this project, we extend the
capabilities of eBPF by introducing support for system call interception, allowing eBPF programs
to inspect and modify system call arguments. We leverage this to create a lightweight alternative
to network namespaces that provides network isolation for containers without the overhead of
creating an entirely separate networking stack. This approach substantially improves container
startup time, throughput, and latency compared to traditional namespace-based isolation.

1.1 Motivation

State-of-the-art system call interception mechanisms involve disassembling binaries and rewrit-
ing system call instructions such that they instead call a user-space interposition process [6, 7],
as shown in Figure 1.1. Cloud providers are often unwilling to rewrite customer binaries be-
cause it crosses the boundary established by the shared responsibility model [8] which places the
security burden of the application on the customer rather than cloud provider. Furthermore,
the performance overhead introduced by user-space interposition is unacceptable for production
workloads [9, 10]. Existing kernel-space system call interception mechanisms, such as seccomp
[11], kprobes [12] and tracepoints [13], focus on system call filtering and do not allow for safely
rewriting system call arguments. This restriction makes these mechanisms unsuitable for many
use cases |14, 15]. We believe that eBPF could be extended to provide a system call argument
rewriting mechanism that could unlock substantial performance benefits for cloud providers.

Interposed
Syscall Userspace
Process P Process
¢—— Response |nte|’poser
Syscall Response Syscall Response
K L & eBPF
erne
Kernel

Figure 1.1: A comparison of state-of-the-art user-space interposition (left) and eBPF based
system call interception (right).

Host Machine Host Machine Host Machine
Virtual Machine Virtual Machine
ah) b Container Container Container Container

[App | App

-- App App App [App

| Network Stack | | Network Stack | | App I App I App | | App

| Kernet | | Kernel | [Networkstack ||| [Networkstack | < eBPF | < eBPF |
| Network Stack | | Network Stack | | Network Stack |

Kernel Kernel Kernel

Figure 1.2: A comparison of virtual machines, containers isolated with network namespaces, and
containers isolated with an eBPF based system call interception approach.

As a specific motivating example, we consider how such a mechanism could be used to
implement a lightweight alternative to network namespaces. Prior studies have demonstrated
that the creation and setup of network namespaces is the most significant bottleneck in container
startup times [16, 17] and have quantified the impact on throughput and latency in container
overlay networks |18, 19]. Standard overlay networks experience a drop in throughput of up to
48% and an increase in latency of up to 85% [18]. With eBPF based system call interception, we
can avoid these performance penalties by allowing containers to share the host network stack.
This is analogous to how containers avoid the overhead of virtual machines by sharing the host
kernel, as shown in Figure 1.2.

1.2 Contributions
In this project, we make the following two contributions:

e Prepare a kernel patch that extends the eBPF subsystem to support safe and exhaustive
system call argument rewriting with performance comparable to state-of-the-art user-space
system call interception mechanisms

e Design and implement a lightweight alternative to network namespaces that leverages the
eBPF system call rewriting mechanism to achieve a 60% decrease in container startup
time as well as improving the throughput of container overlay networks by up to 35% while
reducing latency by up to 33%.

1.3 Outline

This thesis presents the design and implementation of both the eBPF based system call inter-
ception and the specific use-case of a lightweight alternative to network namespaces. We begin
by first covering the necessary background information required to understand the contributions
(chapter 2 and chapter 3). Following this, we present the design and implementation of a set of
eBPF system call hooks that support safe argument rewriting in chapter 4. Then, we describe
the design and implementation of a Kubernetes-based lightweight alternative to network names-
paces in chapter 5. This design relies on the eBPF system call hooks, and would not be possible
without them. In chapter 6, we evaluate the overhead of our eBPF hooks and the performance
of our lightweight alternative to network namespaces by comparing it to traditional network
namespaces using microbenchmarks and two real-world applications. Finally, we conclude the
thesis in chapter 7 and discuss future work.

Chapter 2

Background

In this chapter introduce eBPF as a powerful technology that allows users to extend the func-
tionality of the Linux kernel in a fast and secure way. Then, we briefly cover some existing
mechanisms for intercepting, rewriting and filtering system calls. This motivates the need to an
eBPF based system call argument rewriting mechanism, which we see as a natural extension to
existing eBPF hooks and a push towards a fully extensible kernel. Next, we introduce the tech-
nical underpinning of Linux containers and network namespaces as well as the various existing
options for container networking. We end the chapter with an introduction to netlink, which is
a communication mechanism between userspace processes and the Linux kernel. This chapter
provides the necessary context to understand the motivation behind as well as the design and
implementation of a new eBPF program that allows for system call argument rewriting and a new
network isolation mechanism that offers a more lightweight alternative to network namespaces.

2.1 eBPF

eBPF is a technology that enables its users to extend the functionality of the Linux kernel in
a fast and secure way [20]. This is done by injecting custom code into the kernel which can
be run without the need to recompile the kernel or load a module. eBPF stands for extended
Berkeley Packet Filter. Originally, BPF was a way to write programs that could filter network
packets, but has since evolved into a much more powerful mechanism which allows developers
to dynamically adjust and extend the behaviour of the Linux kernel. There is now support for
a wide range of use cases: it’s possible to use eBPF to intercept a selection of network related
system calls such as bind() and connect () and overwrite their arguments.

The big advantage of eBPF is that it allows developers to augment the behavior of the
kernel without having to understand or modify the kernel source code. This is in comparison to
creating a kernel module or patching the kernel, both of which require a deep understanding of
the kernel internals. Furthermore, kernel modules and patches are at risk of crashing the kernel
or introducing security vulnerabilities. eBPF programs are verified by the kernel before they
are loaded, which means that they are guaranteed to not crash the kernel. Kernel patches can
also take months or years to be accepted into the mainline kernel, which introduces a significant
overhead for companies by requiring them to maintain a fork of the kernel until the patch is
accepted.

eBPF is already gaining significant traction in industry and is being used by large scale
organizations such as Meta, Cloudflare, Netflix and Cilium. For example, Meta uses eBPF
to implement their load balancer (Katran) [1], Cloudflare uses eBPF to implement their L4
load balancer (Unimog) [4] and their DDoS mitigation system (L4Drop) [5], Netflix uses eBPF
for tracing and observability [2] and Cillium uses eBPF to provide more efficient and secure
networking for container [21]. This section gives an overview of the key components of eBPF.
We start by introducing the concept of eBPF program and attach types as well as maps, then we

discuss eBPF helper functions and KFuncs, and end with an explanation of the eBPF verifier.

2.1.1 Program and Attach Types

An eBPF program is a piece of code that can be injected into specific points inside the kernel.
Each program has a specific program type, which defines the set of hooks that the program
can be attached to. The hook that the program attaches to is known as the attach type. One
example of an eBPF program is the BPF_PROG_TYPE_CGROUP_SOCK_ADDR program type, which is
allowed to attach to multiple hooks in the kernel that are related to socket system calls. For
example, it can be attached to the bind() system call handler for AF_INET sockets using the
BPF_CGROUP_INET4_BIND attach type.

Programs are called with a context, which is a structure containing information passed
from the kernel to the program that can be read or modified by the kernel. For example, the
BPF_PROG_TYPE_CGROUP_SOCK_ADDR program allows a user to read or modify the IP address and
port number that the socket will be bound to. Typically, programs are written in a restricted
subset of C and compiled with LLVM to BPF bytecode.

2.1.2 Maps

Maps are a way for eBPF programs to store and retrieve data. They can be shared between
multiple eBPF programs, which allows them to communicate with each other. Furthermore,
maps can be accessed from user-space, which allows for eBPF programs to communicate with
user-space processes. There are multiple different types of maps that offer slightly different
functionality:

e BPF_MAP_TYPE_HASH: essentially a hash map that has no restrictions on the structure of
the key or the value.

e BPF_MAP_TYPE_ARRAY: a fixed size array that can be used to store large amounts of data.
The key starts at zero, as a normal array.

e BPF_MAP_TYPE_QUEUE: a map that resembles a first-in-first-out queue, with the ability to
push and pop elements.

Maps can be pinned to the filesystem, which means associating the map with a particular file
path in the /sys/fs/bpf directory. This allows userspace processes and other eBPF programs
to share the map and access any of its data.

2.1.3 Helper Functions

Helper functions are functions defined inside the kernel that have been written to be used by
eBPF programs. They perform actions that are not possible in standalone eBPF programs, such
as reading the PID of the calling process or writing to user space memory. These are actions that
would be difficult to verify the safety of, which is why they are implemented as helper functions
inside the kernel where their safety can be ensured by kernel developers. Helper functions have a
stable API, which means that eBPF programs that use the helper functions are compatible with
future kernel releases and eBPF developers have a guarantee that their programs will continue
to work as the kernel evolves.

2.1.4 KFuncs

The kernel community is no longer accepting new helper functions, but instead allowing kernel
functions to be marked as usable from eBPF programs. The subtle difference is that these
functions (called KFuncs) do not necessarily expose a stable API to eBPF programs, so they

don’t have the same advantages as helper functions. The unsustainable maintenance bloat of
eBPF helper functions became too much of a burden for the kernel community.

2.1.5 Verifier

Since eBPF programs are executed directly in the kernel, it’s possible that a bug in the eBPF
program could cause the kernel to crash. To prevent this, all eBPF programs must be verified
before being loaded. This is done by the eBPF verifier, which primarily ensures that the eBPF
program does not make any out of bounds or unsafe memory accesses and that the program ter-
minates. The verifier exhaustively analyses every possible execution path of the eBPF program.
It does this by placing bounds of the values of all registers (according to the type of the value
held) and exhaustively trying every single combination to ensure that it terminates.

2.2 System Call Interception

System call interception is a technique that allows users to monitor, modify, or restrict the
behaviour of user-space applications by acting as a man-in-the-middle between the application
and the kernel. A distinction can be made between system call interception mechanisms that
allow for rewriting arguments and those that only allow for filtering system calls. The former
is commonly used in applications like Wine [14] which allows Windows binaries to run on Unix
operating systems. The latter is commonly used in security contexts, such as seccomp [11]| which
allows users to restrict the set of system calls that an application can make. The focus of this
section is on system call interception mechanisms that allow for rewriting system call arguments.
This section first introduces two user-space interception mechanisms: LD_PRELOAD and binary
rewriting. It then introduces an eBPF program type that allows for intercepting and rewriting
a limited set of socket related system calls.

2.2.1 Loading a Shared Library

Unix operating systems allow for users to load dynamically linked shared library objects into an
existing application. Any functions or symbols defined in this shared library will override any
identical functions or symbols defined in the original application binary. This can be used to
override any 1ibc system call wrapper functions. If the shared library exposes the same interface
as a libc system call wrapper function, then the shared library function will be called instead
of libc.

$ LD_PRELOAD=/path/to/mywrapper.so ./target_program

Listing 2.1: An example of using LD_PRELOAD to dynamically link a shared library when running
an application.

This is suitable for applications that are dynamically linked, but has no effect for statically
linked binaries. The shared library is able to perform any actions it likes: it can keep a record of
the system call, rewrite the arguments, block the system call or even invoke an entirely different
system call. However, an important limitation is that this is not an exhaustive system call
interception mechanism. For example, an application can directly invoke system calls rather
than using the 1ibc wrapper functions. In this case, the shared library will not be called. This
makes the approach completely unsuitable for any security applications, as it fails to provide
robust system call filtering. Furthermore, for applications like Wine [14] which rely on system
call rewriting to port binaries between operating systems, the lack of exhaustiveness is too
significant a limitation as many applications will be incompatible.

2.2.2 Binary Rewriting

Current state-of-the-art system call argument rewriting mechanisms [6, 7| rely on disassembling
application binaries and rewriting the system call instructions to point to a custom interception
function. This approach solves many of the problems with the LD_PRELOAD approach: it is able to
exhaustively intercept all system calls, it’s efficient, and it has no limitations in what actions the
interception function can perform. Such approaches are even able to rewrite system calls made
by JIT compilers [6], which has traditionally been a difficult problem to solve [7]. Typically,
these mechanisms use the LD_PRELOAD environment variable to load custom shared libraries
that contain custom system call handler functions. This makes the interception an extremely
lightweight operation. However, this approach is still unsuitable for security applications as a
malicious application could attempt to modify or remove the interception code. Fundamentally,
any approach which fails to isolate the intercepted code from the interception code is unsuitable
for security applications as it is vulnerable to tampering by the application. Furthermore, cloud
providers are unwilling to perform binary rewriting on customer applications. This is because
it breaks the boundary established by the shared responsibility model [8], which states that the
cloud provider is responsible for security of the cloud and the customer is responsible for security
in the cloud. By rewriting customer binaries, cloud providers are taking on the responsibility
of ensuring that the application is secure and that the interception code does not introduce
any security vulnerabilities into the application. Furthermore, maintaining the mechanisms for
rewriting binaries is a significant burden due to the number of cloud products offered and different
image configurations. Despite this, there are various use cases where cloud providers could benefit
from system call rewriting. This requires the ability to rewrite system call arguments in kernel
space, which can be done with the eBPF socket address hooks.

2.2.3 eBPF Socket Address Hooks

The BPF_PROG_TYPE_CGROUP_SOCK_ADDR eBPF program type offers a set of hooks that allow us
to intercept a limited set of socket related system calls [22]. These hooks allow us to both modify
the system call arguments and even conditionally block the system call entirely. Furthermore,
they provide a set of helper functions that allow a limited set of other system calls to be called
from within the eBPF program. For example, you can invoke the bpf_bind () helper from the
BPF_CGROUP_INET4_CONNECT hook to force the socket to bind to a particular interface before
it attempts to connect to a remote host. Currently, there exist hooks for the following socket
related system calls:

e bind() and connect () for INET4 and INET6
e sendmsg() and recvmsg() for UDP (INET4 and INETS6)
e getpeername() and getsockname () for INET4 and INET6

SEC("cgroup/bind4")
int bind_v4_prog(struct bpf_sock_addr *ctx)

{
// Block the syscall if the requested IP address is not 10.0.0.1
if (bpf_ntohl(ctx->user_ip4) != 0x0A000001)
return 0;
// Allow the syscall to proceed
return 1;
}

Listing 2.2: An eBPF program that only allows a socket to be bound to the network interfaces
with the IP address 10.0.0.1

As a concrete use case, cloud providers can use these hooks to implement a Network Address
Translation, or to force all processes inside a cgroup to use a single IP address on a host which
has multiple IPs configured [23]. Whilst these eBPF hooks are incredibly powerful, they are
limited to AF_INET and AF_INET6 sockets. Currently, eBPF offers no mechanism for intercepting
other system calls. Furthermore, the placement of these hooks are in the address family specific
system call handlers. This limits the power of the hooks: for example, they are unable to change
the address family. Other system call interception mechanisms could be used to downgrade all
AF_INET6 sockets to AF_INET sockets, but these hooks would not be able to do that as the address
family in the context structure is read only. Cloud providers are much more willing to use these
hooks as they don’t involve tampering with customer binaries and therefore doesn’t break the
shared responsibility model [8], as the security of the kernel is already the responsibility of the
cloud provider.

2.3 Containers

Over the past two decades, containers have emerged as the standard way [24] to deploy ap-
plications, such as web servers [25], databases [26] and in-memory key-value stores [27]. The
primary two benefits of containers is that they are lightweight and provide a strong level of
isolation between applications, which is useful in the context of managing conflicting application
dependencies as well as in a security context [28]. In this section, we first provide the historical
context that motivated the need for containers, and then we dive into the fundamental technical
components of containers in Linux.

2.3.1 Historical Context

In the early days of computing, applications were run directly on physical machines [28]. An issue
that quickly arises with this approach is that applications can often have conflicting dependencies.
This means that those two applications cannot be run on the same machine at the same time.
Another issues with this approach is that there are no security boundaries isolating applications
from one another: if one application is either compromised or malicious, it can potentially
compromise all other applications running on the same machine. Yet another issue is that there
was no way to restrict the amount of resources that a single application could consume, which
meant that one application could starve others of resources such as CPU or memory and lead
to a significant degradation in performance. Again, this could be the result of a malicious,
compromised or malfunctioning application.

These issues motivated the deployment of applications on virtual machines. A virtual ma-
chine is an emulation of a physical machine that is able to run all the same components as a
physical machine (such as an entire operating system) [28]. Virtual machines allowed for the
complete isolation of applications from one another, meaning that one compromised or malicious
application could not affect other applications running on the same physical host. However,
virtual machines are an extremely heavy-weight solution to deploying an application since they
require that a full operating system be deployed alongside it. The overhead of running a full
operating system for each application results in a substantial decrease in the number of applica-
tions that can be deployed on a single physical host. This meant that virtual machines were not
a particularly cost-effective solution for deploying applications.

As a result, containers were developed as a light-weight approach of achieving isolation be-
tween applications. A container is a group of processes that have their own view of the host

10

kernel: they have their own set of process IDs, networking stack, hostname and filesystem.
Furthermore, it’s possible to place constraints on how many resources processes belonging to a
container can consume. The processes inside a container run on the host kernel, which means
that they do not require a full operating system to be deployed alongside them. This means
that many more applications can be run inside containers on a single physical host than virtual
machines. Containers also provide the foundations of serverless cloud functions [29], which are
short-lived applications that are typically used to run small pieces of code in response to some
event. Containers are appropriate for this use case because of their very short startup time in
comparison to virtual machines.

2.3.2 Implementation Overview

The historical context of containers provides us with the perspective required to understand
the technical implementation of containers in Linux. As mentioned, containers are a way of
placing processes into groups such that those processes have an isolated view of the host kernel
and are subject to resource constraints. To achieve this, Linux provides two key components:
namespaces and control groups (cgroups). Namespaces provide isolation in terms of what a
process can observe about the state of the system. Control groups allow you to place restrictions
on resource consumption. In the following two subsections, we explain each of these components
in more detail.

Namespaces

Linux offers eight different types of namespaces [30], each of which provide a different aspect
of isolation. The PID namespaces isolates the process ID number space [31]. By default, every
process in Linux is assigned a unique process ID (PID) that is used to identify it. You can view
the PIDs of processes running on the system by running the ps -A command:

$ ps -A
PID TTY TIME CMD
17 00:01:41 systemd
27 00:00:00 kthreadd
37 00:00:00 rcu_gp

2064359 pts/4 00:00:00 python3
2064360 pts/3 00:00:00 bash
2064377 pts/3 00:00:00 ps

Since the PID namespaces are hierarchical, all processes running on the system are visible
when running ps -A in the host PID namespace. For example, if we create a new PID namespace
and start a python process in it, we’d be able to see that process by running ps -A in the host
PID namespace. This process may be assigned a PID of 2064579 in the host PID namespace,
but would be assigned a much lower PID in our new PID namespace (e.g 3). The python process
would not be visible from other PID namespaces that are not a parent of the PID namespace
in which it is running. This is an important for containers: we don’t want to allow applications
inside containers to see what other processes are being run on the system (potentially by other
containers belong to other users). Not all namespaces are hierarchical. For example, network
namespaces all exist alongside each other and create entirely separate instances of the Linux
network stack.

As mentioned, namespaces allow you to control what a process can observe about the state
of the system. There are several different types of namespaces in Linux, each of which controls
a different aspect of the system.

11

To create a new namespace, you can use the unshare() syscall. This syscall takes a set of
flags that specify which namespaces you want to create. It also takes a program argument, which
is the program that will be run inside the new namespaces.

lucas@machine:~$ sudo unshare --mount --uts --ipc --net --pid --user --cgroup
— --time --fork --mount-proc bash
nobody@machine: /home/user$ ps -A
PID TTY TIME CMD
1 pts/4 00:00:00 bash
7 pts/4 00:00:00 ps
nobody@machine: /home/user$ ip 1
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default glen
— 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
nobody@machine: /home/user$ 1s

1s: cannot open directory '.': Permission denied

Listing 2.3: An example of how the unshare () system call can be used to place processes in new
namespaces

Listing 2.3 shows the unshare () syscall in action: the PID numbers have been reset to 1, the
namespaces isolate the network interfaces so that only the loopback interface is visible, and the
user namespace boots us out of the ‘lucas’ user and into the ‘nobody’ user, which means that we
have no permissions to read the current directory.

Control Groups

Whilst namespaces provide isolation in terms of what a process can observe about the state of
the system, control groups allow processes to be placed in hierarchical groups that can be used
to restrict the amount of resources that they can consume [32].

/sysl/fs/cgroup
CPU: 100%
Memory: 8096MB

/sys/fs/cgroup/containerl /sys/fs/cgroup/container2
CPU: 20% CPU: 20%
Memory: 1024MB Memory: 1024MB

Figure 2.1: The cgroup hierarchy in Linux: new cgroups can be created by creating subdirectories
under /sys/fs/cgroup. Files within these subdirectories control various resource limits such as
CPU and memory.

A cgroup is created by creating a new directory under /sys/fs/cgroup, and processes can
be placed in a cgroup by writing their PIDs to the cgroup.procs file in that directory. All
child processes are placed in the same cgroup as their parent process. At its core, a container
is created by placing the program that the unshare() syscall executes in a cgroup, and then
setting resource limits on that cgroup (by modifying files within the cgroup directory, as shown
in Figure 2.1).

12

2.4 Network Namespaces

This section explains how network namespaces are used in containers to provide network isolation
[33] inside a container. Network isolation is necessary to prevent a faulty, compromised or
malicious process inside a container from viewing or manipulating network state controlled by
other processes outside the container. For example, a process inside a container should not be
able to see that another container is establishing a TCP connection to a remote host and should
not be able to inspect or modify the packets being sent over that connection.

The network isolation provided by network namespaces can be seen by running a bash shell
inside a new network namespace, as shown in Listing 2.4. Processes inside the new network
namespace don’t have access to any of the network interfaces that are present in the host’s
network namespace, which means that they cannot communicate with any remote hosts.

lucas@machine:~$ sudo unshare --net bash

root@machine: /home/lucas % ip a

1: lo: <LOOPBACK> mtu 65536 qdisc noop state UP group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

root@machine:/home/lucas $ ping 8.8.8.8

ping: connect: Network is unreachable

root@machine: /home/lucas curl google.com

curl: (6) Could not resolve host: google.com

root@machine: /home/lucas $ ping -c 1 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.027 ms

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 1 received, 0} packet loss, time Oms
rtt min/avg/max/mdev = 0.027/0.027/0.027/0.000 ms

Listing 2.4: When a new network namespace is created, by default processes inside that
namespace cannot access any remote hosts and only have access to the loopback interface.

Providing network isolation by preventing processes from accessing the networking function-
ality of the kernel is rather limiting: containers very often need to be able to communicate with
the outside world in order to function. To support this, Linux provides a powerful set of virtual
network devices that can be placed inside a network namespace such that processes can use them
to communicate over the host network.

2.4.1 Virtual Network Devices

We can allow processes inside a network namespace to communicate with a remote host by using
Linux’s virtual network devices. In particular, the virtual ethernet device (veth) and the virtual
bridge. There are many other types of virtual network devices, such as tap devices, but we will
only focus on veths and bridges in this section.

A virtual ethernet device is often compared to an ethernet cable: packets transmitted on one
end of the veth device will immediately be received on the peer end of the veth device [34]. Each
end of the veth device can be placed in a different network namespace. By doing placing one
end of a veth inside a network namespace and the other end in the host’s network namespace,
we can allow processes inside the network namespace to send data to processes running inside
the host network namespace.

By attaching the host end of the veth device to a bridge [35], we can forward the packets
to the host network interface that is connected to the outside world. This requires the use of
something like network address translation (NAT'), which rewrites the source IP address to that

13

of the host network interface so that the remote host knows how to send packets back. Figure 2.2
shows the setup of this.

veth: 10.0.0.1
[

veth-peer
brO

eth0:1.1.1.1

Figure 2.2: A basic setup of a network namespace in Linux which uses a virtual ethernet device
and a bridge to communicate with remote hosts. The orange dotted line represents a network
namespace.

lucas@machine:~$ ip netns exec myns tcpdump -i veth
listening on veth

14:56:10 IP 10.0.0.1 > 8.
14:56:10 IP 8.8.8.8 > 10.

8: ICMP echo request
g

8.8.
0.0. ICMP echo reply

lucas@machine:~$ tcpdump -i veth-peer

listening on veth-peer

14:58:13 IP 10.0.0.1 > dns.google: ICMP echo request
14:58:13 IP dns.google > 10.0.0.1: ICMP echo reply

lucas@machine:~$ tcpdump -i br0

listening on brO

14:59:59 IP 10.0.0.1 > dns.google: ICMP echo request
14:59:59 IP dns.google > 10.0.0.1: ICMP echo reply

lucas@machine:~$ tcpdump -i ethO

listening on ethO

15:01:53 TP 1.1.1.1 > dns.google: ICMP echo request
15:01:53 IP dns.google > 1.1.1.1: ICMP echo reply

Listing 2.5: tcpdump allows us to follow the journey of an ICMP ping packet sent from the myns
network namespace through all of the network interfaces

Listing 2.5 shows the output of tcpdump when run on the veth device inside the network
namespace, the peer veth device in the host network namespace, the bridge and the host network
interface. This shows the NAT masquerading in action: the source IP address of the ICMP echo
request is rewritten to that of the host network interface. The reply is then forwarded back up
the same path.

2.4.2 Kernel Implementation

To further understand how network namespaces provide network isolation between processes, we
can look at their high level implementation details inside the Linux kernel. Network namespaces

14

are represented by the struct net type. Each process, which is internally represented by the
struct task_struct type, has a pointer to a struct net object. When a process is forked,
a new struct task_struct object is created, and it inherits the struct net pointer from its
parent process. This means that it inherits the same network namespace as its parent process.
The unshare() system call behaves slightly differently: it allocates a new struct net object
and assigns it to the process that is being created.

The struct net object contains fields that represent network state. For example, it contains
a hash map containing all the network devices belonging to that network namespace. These
network devices are represented by the struct net_device type. We also store the routing
table, forwarding rules and socket state in the struct net object. In fact, all state that makes
up the Linux network stack is stored in the struct net object. One important detail is that
a struct net_device object cannot be shared between multiple struct net objects. This
restriction is foundational to how network namespaces provide network isolation. By enforcing
this restriction, the kernel can reuse the same data structures to track entirely isolated network
state, such as routing tables and socket state, without having to worry about which processes
should or should not be able to see or manipulate that state. Network isolation is a natural
by-product of the ability to create entirely separate network stacks and assign them to processes.
Allowing network namespaces to belong to multiple struct net objects would make the job
of the kernel much more difficult and the implementation required to support all networking
functionality would be much more complex.

2.4.3 Overhead

Linux provides an elegant and simple way to provide network isolation by creating and maintain-
ing entirely separate network stacks and providing virtual network devices. However, this comes
at a cost. The first cost is due to the fact that network devices cannot be shared between network
namespaces. If we want processes inside a network namespace to be able to communicate with
a remote host, we must either use virtual network devices (as shown in Figure 2.2) or move a
physical network device to the namespace. If we choose the first option, we create additional
communication overhead as packets must traverse the Linux network stack twice: once in the
network namespace and once in the host network namespace. If we choose the second option,
then we cannot use that physical network device in any other network namespace.

Furthermore, as analysed by [16] and discussed in section 3.3, the second cost is that moving
network devices between network namespaces requires holding a lock (to ensure that the network
device can only belong to one network namespace at a time). This is an expensive operation and
can result in serious contention when attempting to create many network namespaces in parallel.
This sort of workload is not an uncommon pattern. For example, serverless cloud functions [29]
will often create an entire network namespace for each function invocation despite the fact that
the function may only run for a few milliseconds. This lock contention can lead to the namespace
creation time being substantially longer than the application run time [16].

This overhead is analogous to the original motivation for containers: virtual machines require
an entire operating system to be deployed alongside each application. The overhead of doing
this is so substantial that organizations looked for a more lightweight solution, resulting in the
development of containers. Similarly, containers require that an entire networking stack be
created for each application. The aim of this thesis is to determine whether we can eliminate
the need for creating an entire networking stack to provide network isolation.

2.5 Container Networking

Network namespaces and virtual network devices provide developers with an extremely flexibility
mechanism for providing networking functionality to containers. The example outlined in Fig-

15

ure 2.2 is only one of many possible setups that can be used to provide networking capabilities
to containers. This section gives a brief overview of some of the most common container net-
working configurations, and then provides a more focused look at the VXLAN overlay container
networking approach, the overhead of which is a core focus of this thesis. It’s useful to separate
container networking into two categories: intra-host and inter-host. Intra-host networking refers
to networking between containers running on the same host, while inter-host networking refers
to networking between containers running on different hosts.

2.5.1 Intra-host

There are four common networking modes for intra-host container communication: none, bridge,
container and host. We briefly explain each of these in the following subsections. Figure 2.3
shows a diagram of these four modes.

Container A Container B J: Container A Container B
T e e [[] vt]
vetn | vetn |
‘ bridge ‘
| lo | eth0:1.1.11 |l || eth0:1111 |
i Container A Container B 5 Container A Container B
[][vemn | |
et
‘ bridge ‘
| lo || eth0:1111 | | o || eth0:1111 |

Figure 2.3: The four common intra-host container networking modes. Top left: none, top right:
bridge, bottom left: container and bottom right: host. The orange dotted line represents a
network namespace.

None

The none networking mode is used when a container does not require any networking capabilities.
In this mode, the container is only assigned a loopback network interface which allows processes
inside the container to communicate with other processes inside the same container. An example
of when this might be useful is when you want to run untrusted code. By explicitly disabling
any network capabilities you can ensure that the code cannot access the network.

Bridge

The bridge networking mode creates a Linux bridge along with a virtual ethernet device. One
end of the virtual ethernet device is placed inside the container’s network namespace, while the
other end is placed in the host’s network namespace and attached to the bridge. This places
containers in a virtual LAN so that they can communicate with each other, but not the outside
world.

16

Container

The container networking mode shares a network namespace among multiple containers. This
is the default setup for Kubernetes pods, where the namespace is shared among all containers in
the same pod. This allows a greater level of flexibility by allowing containers within the same
pod to communicate using the loopback device and address family types such as AF_UNIX, which
are optimized for intra-host communication. This is appropriate when all containers belong to a
single user and are therefore trusted. The drawback of this approach is that it offers no network
isolation between containers, which may make it unsuitable for running untrusted code.

Host

Finally, the host networking mode places the container in the host’s network namespace. This
networking mode offers no network isolation between the container and the host, and is therefore
unsuitable for running untrusted code. However, it offers the best performance in terms of
throughput, latency and container startup time as it does not require the overhead of creating
or using network namespaces and virtual network devices.

2.5.2 Inter-host

Two of the most common approaches to inter-host container networking are NAT and overlay.
Host mode can also be used for inter-host networking, but we won’t discuss it here because we’ve
already discussed it in the intra-host setting, and it isn’t particularly common in practice.

NAT

NAT mode maps a <host-ip>:<host-port> pair to a <container-ip>:<container-port> pair.
Whenever a packet is received on the host network interface, the kernel routes it to the container
by rewriting the destination IP address and port to that of the container. The reverse transfor-
mation happens when a packet is sent from the container. NAT doesn’t tend to scale well because
it requires keeping track of a large amount of per connection state and limits the number of
source ports that an application can use.

Overlay

The overlay networking mode allows containers to communicate with each other as if they were
on the same local area network (LAN) even if they are running on different hosts. This is similar
to the bridge intra-host networking mode but extended to multiple hosts. Overlay networks
usually involve the encapsulation of container packets in another set of UDP headers which are
then sent over the host network interface. This creates a ‘tunnel’ between two hosts so that the
containers think they are on the same LAN. The trade-off of overlay networks is that they require
additional processing to encapsulate and decapsulate packets, which can lead to increased latency
and reduced throughput. Furthermore, the encapsulation reduces the maximum transmission
unit (MTU) of the network, which can lead to fragmentation and further reduce throughput. In
the next section, we take a deeper look at the VXLAN overlay network implementation, which
is one of the most common overlay networks.

2.5.3 Virtual Extensible Local Area Network

VXLAN is the technology on which many overlay container networking mode implementations
[36] rely on. It can be understood as a tunnelling scheme to overlay Layer 2 networks on top of
Layer 3 networks [37]. This section will provide a brief explanation of what this means and how
it works, specifically in the context of inter-host container networking.

17

The fundamental aim is for containers to be assigned a static private IP address that is inde-
pendent of the underlying machine that it is running on. This way, containers can communicate
with one another as if they were on the same LAN, despite actually being connected via the
internet. Figure 2.4 demonstrates this idea, with the virtual LAN being the ‘overlay’ network
and the underlying internet being the ‘underlay’ network.

Overlay Network

C1 c2

H1 H2

Figure 2.4: An overlay network running on top of an underlay network

Underlay Network

A VXLAN tunnel endpoint (known as a VTEP) is an interface which implements the VXLAN
protocol, and is therefore responsible with encapsulating all outgoing packets and decapsulating
all incoming packets.

Outer MAC Outer IP UDP VXLAN
Header Header Header Header

Figure 2.5: VXLAN header encapsulation

When outgoing packets are encapsulated, we specify the source and destination IP addresses
and port numbers of the machines that the containers are running on. This way, we can use
the underlay network to deliver the packets (via UDP) to the correct VITEP, which can then
decapsulate the packet and route it to the correct container. Each VTEP is responsible for
maintaining a mapping between the MAC address of each node on the overlay network and the
public IP address of the machine that hosts the overlay node. This mapping is used to fill in the
destination IP address in the UDP header during encapsulation. There are different mechanisms
for a VTEP to learn these mappings, but most commonly used in container networking solutions
like Docker Swarm is an unicast-based mechanism which takes advantage of a control plane. The
controller is a node which stores the mappings in a key-value store and is statically assigned such
that all other nodes only need to know its underlying IP address in order to find the underlying
IP address of all other nodes.

Traditional VXLAN-based container overlay networks introduce a communication overhead
due to the fact that packets have to traverse the kernel networking stack twice (for an egress
packet, once in the host namespace and then again in the container namespace once the VTEP
has removed the encapsulation headers). This has been shown to have a significant impact on the
latency and throughput of containerized applications compared to applications running directly

18

in the host network namespace [18|.

2.6 Netlink

Netlink is a means for user-space processes to communicate with the Linux kernel [38]. User-
space processes can use netlink with the standard POSIX socket interface to retrieve information
about the state of the kernel. The protocol used when creating the socket determines the type
of information that the user-space process can retrieve. For example, three of the supported

protocols are:

e NETLINK_ROUTE: information about routing and network devices.

e NETLINK_SOCK_DIAG: information about currently open sockets and their state.

e NETLINK_FIB_LOOKUP: information about the forwarding information base.

struct nlmsghdr {

_u32 nlmsg_len; /* Size of message including header */

__ul6 nlmsg_type; /# Type of message content */

};

_ul6 nlmsg_flags; /* Additional flags */
_u32 nlmsg_seq; /* Sequence number */
_u32 nlmsg_pid; /* Sender port ID */

Listing 2.6: The netlink message header. The nlmsg_type tells the kernel what information we
want to receive (e.g a list of network interfaces), the nlmsg_pid is a unique port identifier for
that socket so that the kernel can correctly route the information to the socket receive buffer.

int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);

struct {

struct nlmsghdr nh;
struct ifinfomsg ifm;

} req;

memset (&req, 0, sizeof(req));

req.nh.nlmsg_len =

req.nh.nlmsg_type =

req.nh.nlmsg_flags
req.nh.nlmsg_seq =
req.ifm.ifi_family
struct sockaddr_nl

bind(sock, (struct

sendto (sock, &req,

NLMSG_LENGTH(sizeof (struct ifinfomsg));
RTM_GETLINK;
NLM_F_REQUEST | NLM_F_DUMP;

B

AF_UNSPEC;

(|

addr = {.nl_family = AF_NETLINK};
sockaddrx*)&addr, sizeof (addr));

req.nh.nlmsg_len, O, NULL, 0);

Listing 2.7: A client that sends a RTM_GETLINK message to the kernel so that it can receive
information about the network interfaces in its network namespace.

19

In order to enforce network isolation between processes, we must have the ability to control
netlink messages that are sent by the kernel as well as the actions that are taken by the kernel in
response to user-space netlink messages. This is because netlink is used to retrieve information
about the state of the network, such as the list of network interfaces. For example, the ip link
command creates a NETLINK_ROUTE socket and sends a netlink message to the kernel requesting
a list of network interfaces using the RTM_GETLINK message type. The kernel then responds with
a list of network interfaces in the network namespace corresponding to the calling process.

20

Chapter 3

Related Work

Prior work has explored various approaches to address the overheads of network namespaces
in overlay networks. Slim and ONCache focus on reducing the communication overheads, while
Particle aims to increase the parallelism of launching several hundreds or thousands of containers
at once.

3.1 Slim

Slim is a container overlay network that provides a translation layer that sits between the con-
tainer and the host network stack, allowing containers to achieve near-native network perfor-
mance.

3.1.1 Quantifying VXLAN Overhead

The authors of Slim quantify the overhead of the double encapsulation and double network stack
traversal in a VXLAN-based overlay network. They compare the throughput and latency of a
VXLAN-based overlay network to the throughput and latency achieved between two hosts on
the same physical network.

Setup Throughput (Gbps) RTT (us)
Intra, Host 48.4+ 0.7 5.94+0.2
Intra, Overlay 374+£0.38 7.9+0.2
Inter, Host 26.8 +0.1 11.3+0.2
Inter, Overlay 14.0+0.4 209+0.3

Table 3.1: Throughput and latency overhead of overlay networks [18]

Table 3.1 shows that the overhead of the overlay network is substantial, with a 23% reduction
in throughput and a 34% increase in round-trip time (RTT) for intra-host communication, and
a 48% reduction in throughput and an 85% increase in RTT for inter-host communication.

3.1.2 Design and Implementation

Slim consists of three components: SlimSocket, SlimRouter and SlimKernModule. SlimSocket is
a user-space shim-layer that exposes the POSIX socket API to intercept socket related system
calls such as bind and connect. SlimSocket passes the system calls to SlimRouter, which is a
process that runs in the host network namespace. SlimRouter then executes the system calls
inside the host network and passes the file descriptors back to the container via SlimSocket.
SlimKernModule is an optional kernel module that can be used to restrict the operations that
the container can perform on the host network socket file descriptors.

21

sock = socket() p— - h_s = socket() h_c = socket() hﬁ con = socket()
S _C
bind(sock, hs
10.0.0.1, 80) Lt bind(h_s, 1.2.3.4, 1234)
listen(sock) | host connection established |
listen(h_s) 1 ‘
h_s connect(h_c, he connect(con,
con = accept(P41 h_c = accept(h_s, addr) 1.2.3.4, 1234) 10.0.0.1, 80)
sock, addr) hc
- SlimRouter SlimRouter
dup2(h_c, con) dup2(h_c, con)
w
recv(con, buf) @ < Host Network Host Network g 5 send(con, buf)
3 Interface Interface o
send(con, buf) 5 > > > 2 recv(con, buf)
3 IP=1.234 IP=1.235 @
Container - Container
(a) Web Server (b) Web Client

Figure 3.1: TCP connection setup between a web client and server atop Slim [18].

SlimRouter dynamically translates the container IP address and port number to the host IP
address and any free port on the host, and distributes this mapping among the entire cluster so
that clients can connect to the server. One important caveat of Slim is that it sets up two TCP
connections: the first TCP connection uses the standard VXLAN overlay network, and tells the
server which host IP address and port the client is about to make a connection from. This allows
the server to perform the same translation as the client when it receives a request.

As a result, Slim can achieve throughputs and latencies akin to that of running applications
directly on the host, while still maintaining the same isolation guarantees as VXLAN-based
overlay networks.

3.1.3 Limitations

Whilst Slim achieves near-native throughput and latency for TCP, there are a a few limitations.
We summarize three of them below.

e UDP: Slim does not support UDP, ICMP or other non-connection oriented protocols. The
authors argue that this is an acceptable trade-off due to the fact that UDP is used when
the connection setup time of TCP is too high, and Slim increases the connection setup
time meaning that it isn’t appropriate for UDP anyway.

e Connection Setup Time: Slim requires two TCP connections to be established between
the client and server, which more than doubles the time it takes to establish a connection.

e Container Launch Time: Slim still requires the container to create a standard VXLAN
overlay network, which means that there is no performance gain when launching containers.

3.2 ONCache

ONCache is a cache-based overlay network that eliminates the extra overhead of VXLAN-based
overlay networks while maintaining flexibility and compatibility. It is implemented with eBPF tc
(traffic control) programs. We specifically focus on the ONCache-t design which proposes a slight
modification to the VXLAN overlay protocol to remove the overhead of double encapsulation.

3.2.1 Design and Implementation

The authors design and implement four tc eBPF programs: the egress cache init, ingress cache
init, the egress fast path and the ingress fast path.

22

(1) Egress Cache on Host 1

(1) Egress Cache on Host 2

Key Value Key Value
Host ifidx Host 1 Host 2 Host ifidx
i Host sdMAC q a i Host sdMAC
Container | 70813 @1 | Container Container Container | oS! ®
sdIP HostsdIP | | e P sdIP HostsdIP | |
Restore key |@) (e] (_Applation_] Restore key @)
(2) IngressIP Cache on Host 1 Application Network Stack Application Network Stack (2) IngressIP Cache on Host 2
. — Veth Veth : —
ey alue — [L oy I ey alue
Host sIP & . (g et (EProg et Host sIP & .
Restore key Container sdIP| @ Bridge/0VS etc. Bridge/0VS etc. Restore key Container sdIP|®
(3)I—C h Host 1 — |\ | VXLAN Network Stack VXLAN Network Stack (3)I—C h Host 2 —
ngress Cache on Hos = = = = ngress Cache on Hos
— O el D@ (e | o
| Key | alue .~ Hostinterface | . Hostnterface) | "%Y alue
Container |Container dMAC @ | A T Container |Container dMAC @
dIP Veth ifidx dIP Veth ifidx

Figure 3.2: The cache initialisation of ONCache-t [19].

Figure 3.2 shows which interfaces these programs are attached to in the standard VXLAN
overlay network setup.

To understand how ONCache works, we will walk through how packets flow between host 1
and host 2 and how caching certain invariants allows ONCache to eliminate the overhead.

Suppose the container on host 1 wants to send a packet to the container on host 2. The
containers network stack will first build the packet and send it via its virtual ethernet device.
This will first be processed by the egress fast path program on the virtual ethernet peer device,
which resides in the host network namespace. The egress fast path program checks the egress
cache, which at this point is empty. The packet is marked with a cache miss flag and allowed to
proceed as normal.

When the packet reaches the host network interface, it will be processed by the egress cache
init program. The egress cache init program will check the packet for the cache miss flag. If
present, it will initialize the egress cache and the ingressIP cache. The idea here is to inspect both
the outer and inner IP headers of the VXLAN packet and cache the mapping between container
IP addresses and host IP addresses. This allows future invocations of the egress fast path program
to rewrite the inner packet IP header and redirect it to the host interface, bypassing VXLAN
encapsulation and processing by the bridge and VXLAN network stack. The egress cache init
program also generates a restore key which it expects to receive in future ingress packets so that
it can restore the IP header to the original container IP address.

When host 2 receives the packet, the ingress fast path program is executed. This program
needs a mechanism to ‘undo’ the IP header rewriting done in the egress fast path program, so
that the packet can be delivered to the correct container. This is the job of the ingress cache
init program, which records the restore key generated by the egress cache init program on the
other host. The egress fast path program then marks IP packets with this restore key so that
the other host can reverse the IP header rewriting.

The authors are able to show that the throughput and latency of ONCache-t is comparable
to that of bare-metal, and performs slightly better than Slim whilst also being compatible with
all layer 4 protocols rather than just connection oriented ones.

3.2.2 Limitations

ONCache is designed to maintain compatibility and flexibility, meaning that there are very few
limitations to its design. However, there is at least one important limitation in the ONCache-t
design, which is that it requires using the DSCP field in the IP header to store the restore key.

23

This is an 8 byte field that in randomly initialized in the egress cache init program. This limits
the number of concurrent connections that can be established between two containers whilst still
benefiting from the performance improvements. This seems like an acceptable trade-off for most
applications, but is worth noting.

3.3 Particle

Particle proposes an alternative approach for configuring virtual network devices and network
namespaces in a way that allows for launching hundreds to thousands of containers in parallel
substantially faster than is possible with standard VXLAN-based overlay networks.

3.3.1 Quantifying Network Namespace Setup Overhead

The authors of Particle use eBPF to pinpoint the exact bottleneck in creating and setting up
network namespaces for containers. In particular, they focus on the overhead incurred when
launching multiple containers in parallel on the same node.

Step Time (s) Percent of Total
Creating namespace 0.10 0.92%
Create VETHs 0.10 0.92%
Moving VETHs between namespaces 9.95 91.66%
Misc 0.71 6.48%

Table 3.2: Breakdown of the time spent by the kernel in setting up 100 network namespaces,
adapted from [16]

They note that the majority of the time spent in setting up network namespaces is in moving
virtual ethernet devices between namespaces. This is because doing so requires holding a global
lock (rtnetlink) that prevents this operation from happening in parallel. This means all 100
containers must have their network namespaces setup sequentially.

3.3.2 Design and Implementation

To address the overhead identified, the authors propose that network namespaces are instead
allocated on a per-tenant basis (rather than per-container), and that a single virtual ethernet
device is used for all containers. Multiple IPs can be attached to the same virtual ethernet device
to allow for different applications to be assigned different IPs.

The authors argue that dispensing with network namespace for each container is acceptable
because in the context of burst-parallel workloads, the containers are working together to achieve
a common goal under the management of the same application.

Particle results in a speed-up of 17x when creating 100 containers, and a speed-up of 213 with
1000 containers. Particle only needs to create a single namespace and move on virtual ethernet
device from the host namespace to the tenant namespace, which allows for significant parallelism
in the creation of containers.

3.3.3 Limitations

Despite the significant performance improvements, Particle has some limitations that prevent it
from overcoming all the overheads of network namespaces.

e Multi-tenancy: Particle does not provide any benefit in the case where a cloud provider

is hosting hundreds or thousands of tenants on a single machine - in this case each tenant
would still need its own network namespace.

24

invoke (200, A, 2)

node 0 'l
Particle Net Namespace

Particle Net Namespace

Figure 3.3: Particle namespace with containers attached [16].

e Latency Critical Applications: The time is takes to set up a single container is un-
changed, meaning that Particle does not provide any benefit for single container latency

critical applications

e Communication Overhead: Particle does not address (or attempt to address) the com-

Burst parallel job is invoked

Particle Namespaces are provisioned
on multiple nodes. One namespace
per job per node.

Create one VETH device per node.
Multiple IP addresses are attached to
this device in a batch.

Containers are created and inherit the
VETH and IP pool from the Particle
Namspace. They immediately begin
using available IPs to transmit data
between each other and other nodes.

munication overheads of overlay networks

3.4 Summary

Slim, ONCache and Particle all address overheads associated with the use of network namespaces
in overlay networks, but all fundamentally still rely on the usage of network namespaces and aim
to subvert the overheads rather than eliminating or reimagining their cause altogether.

This motivates the need for a new approach to container network isolation that no longer

relies on network namespaces and virtual network devices.

25

Chapter 4

eBPF System Call Interception

This chapter presents the design and implementation of a set of eBPF hooks that allow for
intercepting system calls and rewriting their arguments. These hooks are attached at the cgroup
level, meaning they can easily be attached to containers. In section 4.1, we describe the user-
facing interface of the hooks exposed to eBPF developers and the actions that the eBPF programs
can perform. Then, in section 4.2, we describe the kernel modifications required to enable safely
rewriting of kernel space copies of system call arguments.

4.1 Design

Existing eBPF hooks for system calls [22]| are limited to a very small subset of socket related
operations, and are further limited to the AF_INET address family. We introduce a new set of
eBPF hooks that enable attaching programs to the entry and exit points of any system call. The
primary purpose of these hooks is to provide a kernel-space mechanism for rewriting system call
arguments and return values. However, these hooks also support fine-grained filtering of system
calls based on deep argument inspection.

4.1.1 Interface

We define a new eBPF program type, BPF_PROG_TYPE_CGROUP_SYSCALL, along with a family
of attach types that fall under this program type. For each system call, there are two as-
sociated attach types: one for the entry point and one for the exit point. These are named
BPF_CGROUP_SYSCALL_<syscall> and BPF_CGROUP_SYSCALL_<syscall>_EXIT, respectively. This
follows the pattern established by BPF_PROG_TYPE_CGROUP_SOCK_ADDR [22|, which is an existing
eBPF hook that allows for rewriting a small subset of networking related system call arguments.
These hooks are attached to cgroups rather than to the system as a whole. This allows them
to be selectively applied to a collection of processes — such as those belonging to a container
— without requiring the eBPF program to implement its own process tracking logic. We allow
multiple eBPF programs to be attached to the same hook in the same cgroup, and run the
programs in the order that they were attached.

4.1.2 Program Context

The context passed to each eBPF program depends on the particular system call being inter-
cepted (defined by the attach type). We design the context structure to closely mirror the original
system call arguments, while introducing an additional field representing the return value. For
entry point hooks, this field can be set by the eBPF program to override the system call return
value and short-circuit execution. For exit point hooks, it reflects the actual return value and
can also be modified before being returned to userspace.

26

The BPF_PROG_TYPE_CGROUP_SOCK_ADDR hooks use a single shared context structure for all
attach types. This is reasonable because the attach types all relate to AF_INET socket operations
and share similar arguments. In contrast, we are proposing a more generic set of hooks that can
be used to intercept any system call, making it more appropriate to define a distinct context
structure for each system call. This approach enforces a clear separation between attach types
and provides eBPF developers with an explicit, unambiguous view of the accessible system call
arguments.

struct bpf_cgroup_syscall_socket {
__u32 family;
__u32 type;
__u32 protocol;
__832 ret;
};

Listing 4.1: The context provided to an eBPF program attached to the socket system call hook.

4.1.3 Kernel Hooking Points

It is essential that entry point hooks run as early as possible in the system call handler, and exit
point hooks run immediately before the system call returns to user-space. This ordering allows
eBPF programs to observe and modify system call arguments prior to any kernel validation
checks, which means the modifications made by the eBPF programs undergo the same validation
as arguments passed to the kernel by user-space applications. To protect against time-of-check-
to-time-of-use race conditions (discussed in subsection 4.2.2), these hooks must not provide any
pointers to user-space memory in the context structure. Instead, the system call handler should
copy the user-space memory into kernel space and then pass a kernel pointer to the eBPF
program.

4.1.4 Program Behaviour

The eBPF programs have read-write access to all the system call arguments via the context
structure. Provided the program passes the verifier, there are no restrictions on how it manipu-
lates these arguments. To short-circuit the system call, the program must set the return value
field in the context and return BPF_SYSCALL_EXIT. Otherwise, returning BPF_SYSCALL_PASS will
allow the system call to proceed as normal, potentially with modified arguments.

SEC("cgroup/syscall_socket")
int bpf_ns_socket(struct bpf_cgroup_syscall_socket *ctx)
{
switch (ctx->family) {
case AF_INET6:
/* Allow the creation of AF_INET6 sockets */
return BPF_SYSCALL_PASS;
case AF_INET:
/* Rewrtite the socket family to AF_INET6 */
ctx->family = AF_INET6;
return BPF_SYSCALL_PASS;
default:
/* Block the creation of all other sockets with a permission denied
* error. */
ctx->ret = -EPERM;
return BPF_SYSCALL_EXIT;

27

Listing 4.2: An example of the socket () system call entry point hook being used to short-circuit
with a permission error for all sockets except AF_INET and AF_INET6. All AF_INET sockets have
their family argument changed so that the kernel instead creates a AF_INET6 socket.

4.2 Implementation

To support the proposed eBPF hooks for rewriting system call arguments, we extend the Linux
kernel with a new eBPF program type, as outlined in subsection 4.1.1. Once the program type
is implemented, support for individual system calls can be added through a straightforward,
reusable pattern. Accordingly, we separate the implementation of the program type (subsec-
tion 4.2.1) from that of the attach types (subsection 4.2.5). This section also covers key consid-
erations, including TOCTTOU mitigations in subsection 4.2.2, context safety in subsection 4.2.3,
and symbolic context access resolution in subsection 4.2.4.

4.2.1 Program Type Definition

Before adding any system call specific hooks, we first need to introduce a new eBPF program
type, BPF_PROG_TYPE_CGROUP_SYSCALL. New eBPF program types are defined in the header file
include/linux/bpf_types.h using the BPF_PROG_TYPE macro. We place our new program type
alongside other cgroup related program types, which are wrapped in an #ifdef so that they
are only compiled if the kernel is configured with the CONFIG_CGROUP_BPF option, as shown in
Listing 4.3.

#ifdef CONFIG_CGROUP_BPF

BPF_PROG_TYPE (BPF_PROG_TYPE_CGROUP_SYSCALL, cg_syscall
#endif

u64, u6b4)

N

Listing 4.3: The new eBPF program type definition. The first argument defines the type name,
the second argument is a prefix used to identify program specific verification functions, and the
last two arguments define the program return type.

We must also explicitly add the new program type in the include/uapi/linux/bpf.h header
file, so that it is visible to userspace programs. This is done by updating the enum bpf_prog_type
with the BPF_PROG_TYPE_CGROUP_SYSCALL type. There are a number of switch statements in
the kernel where we need to add support for the new program type. In the bpf () system
call handler, we update a function that defines which attach types are supported for our new
program type. For now, we don’t support any attach types. We also update a function which
defines how the program should be attached and detached, which is done by calling an existing
function that handles cgroup program types. Finally, we must update the verifier to place
restrictions on the return value of our new program type. We restrict the return value to be
either BPF_SYSCALL_PASS or BPF_SYSCALL_EXIT.

The BPF verifier relies on a set of helper functions that must be implemented for each
new program types. These must be prefixed with the prefix specified in the program type
definition, which in our case is cg_syscall (see Listing 4.3). The first helper function we defined
is cg_syscall_func_proto() which defines the eBPF helper functions that a program type can
access. We allow our programs to access all generic eBPF helper functions (such as accessing
the PID of the calling process), but don’t give them access to any helper functions that are

28

typically more restricted. We discuss the implementation of cg_syscall_is_valid_access()
and cg_syscall_convert_ctx_access() in subsection 4.2.3 and subsection 4.2.4 respectively.

We also define a macro, as shown in Listing 4.4, which will be used to cleanly insert eBPF
hooks into the system call code. This macro takes a type_macro argument which is used to
identify the desired attach type and a fn_suffix argument which is used to identify the function
responsible for constructing the eBPF program context struct (specific to the particular attach
type). The __VA_ARGS__ argument is used to pass system call arguments.

#define __BPF_CGROUP_RUN_PROG_SYSCALL(type_macro, fn_suffix, ...) \
€t \
u32 __flags = 0; \
int __ret = 0; \
int ret_val = 0; \
if (cgroup_bpf_enabled (CGROUP_SYSCALL_##type_macro)) { \
__ret = __cgroup_bpf_run_filter_syscall_##fn_suffix(__VA_ARGS__,
— &ret_val, &__flags); \
if (__flags & BPF_SYSCALL_EXIT) { \
return ret_val; \
} \
} \
__ret; \

b

Listing 4.4: A macro which will be used to invoke our eBPF program at specific hooking points.

4.2.2 Context Safety and TOCTTOU Mitigations

Some system calls take pointers to user space memory as arguments. For example, the bind ()
system call takes a pointer to a struct sockaddr which defines the network interface that the
socket should be bound to. Our eBPF hooks need to be able to read and modify these arguments
before the system call is executed. Directly modifying user space memory is not safe, because
a malicious program could attempt to modify the user space memory after our eBPF program
does so, but before the system call is executed. This is known as a time-of-check to time-of-use
(TOCTTOU) race condition. To protect against this, we carefully place our eBPF hooks so
that we can provide our eBPF programs with a kernel space copy of the user space memory.
Fortunately, the kernel already does this copying into kernel space memory. Listing 4.5 shows
an example of how we place the eBPF hook for the bind() system call. The hook is placed
immediately after the kernel has copied the user space memory into kernel space memory, but
before the kernel checks that the file descriptor is valid and that the socket is of the correct type.

int __sys_bind(int fd, struct sockaddr
{

__user *umyaddr, int addrlen)

struct socket *sock;

struct sockaddr_storage address;
CLASS(fd, f)(fd);

int err;

err = move_addr_to_kernel (umyaddr, addrlen, &address);
if (unlikely(err))
return err;

BPF_CGROUP_RUN_PROG_SYSCALL_BIND(&fd, &address, &addrlen);

if (fd_empty(£))
return -EBADF;

29

sock = sock_from_file(fd_file(f));
if (unlikely(!sock))
return -ENOTSOCK;

return sys_bind_socket(sock, &address, addrlen);

Listing 4.5: The bind() system call hook is executed with a struct sockaddr_storage which
resides in kernel space to protect against TOCTTOU race conditions.

4.2.3 Verifier Enforcement of Context Accesses

The eBPF verifier is responsible for ensuring that eBPF programs are only allowed to make
verified accesses to the context structure. For example, they do not allow arbitrary reads of
any pointers located within the context structure. For example, if you want to read or write
to a system call argument, you are allowed read and write access a pointer that points to the
beginning of that argument, but not necessarily halfway through. For our attach types, we must
define which accesses are valid with the is_valid_access() function.

We want the verifier to allow most reads and writes to the context structure. Our hooks
allow for the rewriting of system call arguments, which mean the programs should have flexible
access to those arguments. This means that the function should return true whenever a read or
write access is made to any offset corresponding to the field representing a system call argument.
Furthermore, if the access is to an array, we should allow read and write access to any byte
within that array.

4.2.4 Symbolic Context Access Resolution

To allow eBPF programs to read and write to the provided context struct, the kernel developer
must implement a function called convert_ctx_access(). The verifier calls this function to
replace symbolic references to the exposed context struct fields with the appropriate eBPF byte-
code instructions that can be used to read and write to kernel memory. This function is provided
with its own internal context struct that contains pointers to the kernel memory corresponding
to the fields in the user-facing context struct exposed to eBPF programs. Listing 4.6 shows this
internal context struct for the bind() system call hook.

struct bpf_cg_syscall_bind_kern {
u32 *fd;
struct sockaddr_storage *addr;
u32 *addrlen;
s32 *ret;
/* Temporary "register" to make indirect stores to fields defined above.
* e need three registers to make such a store, but only two (src and dst)
* are available at convert_ctxz_access time
*/
u64 tmp_reg;
};

Listing 4.6: The kernel keeps an internal context struct that stores pointers to the kernel memory
containing the system call arguments and return value

Whenever the verifier encounters a read that references a field inside the context struct,
it calls the convert_ctx_access() function with the offset within the context struct of the
field being accessed and a destination register where the value should be loaded into. The

30

convert_ctx_access() uses this offset to find the corresponding field in the internal context
struct and then emits two BPF_LOAD instructions: the first one loads the kernel memory address
into the destination register and the second one dereferences that address and loads the value
into the destination register.

Writing to a field in the context struct is slightly more complicated. In this case, we also have
a source register containing the value that we want to write to kernel memory. The destination
register contains the offset of the field within the context struct. Since the write should not have
any side effects on any registers, we need to use another BPF register to store the pointer to
the kernel memory that we want to write to. This is done by picking a BPF register (that isn’t
either the source or destination register) and storing its value in a temporary field in the internal
context struct. We then load the kernel pointer into this register and write the value from the
source register. Finally, we restore the value of the temporary register so that the write does not
result in any side effects.

One limitation is that the convert_ctx_access() function is not able to support writing
variable sized values. For example, we couldn’t allow for both 4 byte and 16 byte writes to the
struct sockaddr field. This makes dealing with polymorphic types (such as struct sockaddr)
in the context struct difficult. To work around this, we only allow single byte read and writes to
the struct sockaddr field. This allows maximum flexibility, but requires the eBPF programs
to implement their own helper functions to interpret the byte array as a struct sockaddr.

4.2.5 Attach Point Integration

Now that the program type has been defined, we can start adding support for specific system
calls by defining attach types. This section walks through the implementation of the connect ()
system call hook to demonstrate the reusable pattern used to add support for new system calls.
The process is as follows:

1. Define the new attach type, the internal context structure and the eBPF program facing
context structure

2. Implement the function that prepares the internal context structure

3. Update the context access verification function and the symbolic context access resolution
function

4. Place the hook in the appropriate location inside the system call handler

For the connect () system call, we first define the attach type BPF_CGROUP_SYSCALL_CONNECT
in the include/linux/bpf-cgroup-defs.h and include/uapi/linux/bpf.h header files. Next,
we defined the internal context structure and the eBPF facing context structure:

struct bpf_cg_syscall_connect_kern {
u32 *fd;
struct sockaddr_storage *addr;
u32 *addrlen;
s32 *ret;
u64 tmp_reg;

};

struct bpf_cg_syscall_connect {
__u32 fd;
unsigned char ss_datal[128];
__u32 addrlen;
__s32 ret;

31

Inside the kernel/bpf/cgroup.c file, we implement the function that is called by the hook
macro (see Listing 4.4) to prepare the internal context structure and invoke the eBPF program.
The internal context structure is passed to the verifier so that it can be used to resolve symbolic
references to the eBPF facing context structure at verification time. We use a read lock to ensure
safe access to the cgroup of the current process. Listing 4.7 shows the implementation of this
function for the connect () system call hook.

int __cgroup_bpf_run_filter_syscall_connect(int *fd,
struct sockaddr_storage *addr, int *addrlen,
int *ret_val, u32 *ret_flags) {
struct bpf_cg_syscall_connect_kern ctx = {
.fd = fd,
.addr = addr,
.addrlen = addrlen,
.ret = ret_val,
};

int ret;

rcu_read_lock();

struct cgroup *cgrp = task_dfl_cgroup(current);

ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SYSCALL_CONNECT, &ctx,
bpf_prog_run, 0, ret_flags);

rcu_read_unlock();

return ret;

Listing 4.7: Delegation function that prepares the internal context structure and runs all eBPF
programs attached to the connect system call hook.

To update the context access verification function, we add a switch statement case for the
BPF_CGROUP_SYSCALL_CONNECT attach type and allow access to the offsets of the start of each
field in the eBPF facing context structure. The symbolic context access resolution function is
also updated to support a switch statement case for the attach type. We define two macros that
can be used to provide read and write access to the fields in the context struct, as shown in
Listing 4.8. Finally we place a hook in the __sys_connect () function, which is the system call
handler for connect (), as shown in Listing 4.9.

case BPF_CGROUP_SYSCALL_CONNECT:
switch (si->off) {
CG_SYSCALL_FIELD_RW_ACCESS (connect, fd, fd);
CG_SYSCALL_FIELD_RW_ACCESS_RANGE(connect, ss_data, 127);
CG_SYSCALL_FIELD_RW_ACCESS(connect, addrlen, addrlen);
CG_SYSCALL_FIELD_RW_ACCESS(connect, ret, ret);

Listing 4.8: Switch statement case for the convert_ctx_access() function for the connect ()
system call hook.

int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)

{

struct sockaddr_storage address;

__BPF_CGROUP_RUN_PROG_SYSCALL (CONNECT, connect, &fd, &address, &addrlen)

32

return __sys_connect_file(fd_file(f), &address, addrlen, 0);

Listing 4.9: We invoke the eBPF program for the connect attach type, passing pointers to the
system call arguments.

33

Chapter 5

Lightweight Alternative to Network
Namespaces

This chapter describes the design and implementation of a lightweight alternative to network
namespaces that relies on the eBPF system call argument rewriting hooks introduced in chapter 4.
We show how these hooks can be used to provide network isolation for containers whilst allowing
them to remain in the host network namespace. This design removes the need to move virtual
ethernet devices between network namespaces, which the authors of Particle [16] found to be the
most significant bottleneck in container launch time. Furthermore, we show how our hooks can
be used to create an eBPF fast-path for pod-to-pod overlay style communication that achieves
throughputs and latencies comparable to processes communicating directly through the main
host network interface.

5.1 Design

We propose a design that places all containers in the host network namespace and use our
eBPF system call hooks to control which network interfaces each container can see and use.
By intercepting and rewriting socket system call arguments, we can force containers to use a
specific virtual ethernet device and block access to other network interfaces. Furthermore, we
can control the view of the network state that each container sees by using our hooks to intercept
netlink messages and filesystem accesses. We also propose a communication fast-path that allows
containers restricted access to the host network interface, potentially substantially improving the
throughput and latency of pod-to-pod communication.

5.1.1 Overview

Network namespaces can be considered to be an “ownership” based approach to network isolation
because they place the restriction that network interfaces must belong to only one network
namespace at a time. Our design is closer to a “policy” based approach because all processes
reside in the host network namespace, and we use our eBPF system call hooks to control which
network interfaces each process can see and use. To ensure that the containers only use the
virtual ethernet devices assigned to them (i.e red-in and blue-in in Figure 5.1), we intercept
and rewrite the arguments to the bind () and connect () system calls. To prevent the containers
from seeing or modifying the host network state (including host network interfaces and routing
rules), we intercept the creation of all netlink sockets with the socket () system call hook and
redirect all communication to an user-space netlink server. We hide network state revealed by the
file system in locations such as /sys/class/net by intercepting system calls related to filesystem
access, such as open() and read(). We also take advantage of the containers residing in the

34

host network namespace by using our eBPF system call hooks to allow the containers to safely
access the host network interface directly. This avoids the overhead of the VXLAN overlay.

VM1 VM2 VM1 VM2

Red Blue Red Blue

| red-in:10.0.0.1 | | blue-in:10.002 | red-in:10.0.0.1 | | blue-in:10.0.02 |

I | | |

red-out blue-out red-out blue-out

‘ br-red ‘ ‘ br-blue ‘ ‘ br-red ‘ | br-blue ‘
vxlan-red vxlan-blue vxlan-red vxlan-blue

| eth0:1111 | eth0:1112 | | eth0:1.111 | | eth0:1112 |

Figure 5.1: Red and blue are containers, residing on VM1 and VM2 respectively. The dotted
orange box shows the network namespace of the container. On the left, the container has its own
separate network namespace. On the right, the container resides in the host network namespace
which means it is able to see, use and modify all network interfaces.

5.1.2 Restricted Network Access

The containers in Figure 5.1 should only be able to use the network interfaces that have been
allocated to them (i.e. red-in and blue-in). They should not be able to bind a socket to ethO,
or any other network interface in the host network namespace. We enforce this with the following
two eBPF system call hooks:

e bind(): if a container tries to bind to the allocated network interface (e.g. red-in), we
allow the bind system call to proceed as normal. If it tries to bind to INADDR_ANY, we
rewrite the IP address to the IP address allocated to the container. Any other IP address
results in an EADDRNOTAVAIL error being returned.

e connect(): we use the bpf_bind () helper function to force the client socket to first bind
to the allocated network interface, which prevents the kernel from falling back to the main
host network interface whenever a container attempts to connect to a remote host outside
the overlay network.

These two hooks allow us to provide containers with the ability to use TCP sockets to
communicate over the overlay network. This design can be extended to support other protocols
by intercepting system calls such as sendto() and recvmsg(). A further consideration is how to
allow multiple containers to use the same IP address. Traditionally, each container has a virtual
ethernet device inside its network namespace. This virtual ethernet device can be assigned any
IP address, unless there is already a device with that IP address in the same network namespace.
Since we are placing all container network interfaces in the host network namespace, we need to
deal with the case where two containers request the same IP address.

Our eBPF hooks provide the flexibility to handle this. In an eBPF map, we can store an
entry for each container that contains the IP address that the container wants to use, as well
as a potentially different underlying IP address which is the one actually assigned to the virtual
ethernet device. This requires a slight modification to the existing bind() and connect () eBPF
programs, as well as the introduction of hooks for getsockname() and getpeername(). We
should intercept these two system calls to overwrite the IP address returned to the container
so that it matches the IP address that the container requested, rather than the underlying IP
address assigned to the virtual ethernet device.

35

5.1.3 Userspace Netlink Server

Netlink is the mechanism through which user-space processes can communicate with the kernel
to query and modify the network state. We need to be able to intercept netlink messages so
that we can filter out information about the host network state (e.g. to hide the host network
interfaces from the container) and block certain netlink operations such as those to delete network
interfaces or change IP routing rules.

Userspace Netlink Server

Host Process Container Process (nL_pid: 9999)

| |]

ket(AF_NETLINK, ..,)
Socket(AF_| sendto(nL_pid: 0) recvmsg(nl_pid: 0)

s"CkE’t(AF'N)ETL'NK‘ sendto(nl_pid: 0) recvmsg(nl_pid: 0)

socket(AF_NETLINK, .., . -
NETLINK USERSOCK) Sendtolnlpid: 9999) recvmsg(nl_pid: 9999)

b

Kernel

Figure 5.2: By intercepting the socket (), sendto() and recvmsg() system calls, we can redi-
rect netlink communication to a userspace netlink server over the NETLINK_USERSOCK protocol,
bypassing the kernel.

Using our generic eBPF system call hooks, we can intercept the socket () system call and
overwrite the protocol of all netlink sockets to NETLINK_USERSOCK. This is a protocol that is
reserved for the communication of two user-space applications (using the netlink API) rather
than communication between the kernel and user-space. This is incredibly powerful because
it means that we can redirect all netlink communication to a trusted user-space netlink server
that runs on the host, and completely bypass the kernel to ensure that no information about
the host network state could be leaked to the container. By also intercepting the sendto() and
recvmsg() system calls, we can update the nl_pid field in the netlink header such that the
message is sent to the user-space netlink server and such that the application is tricked into
thinking the message came from the kernel, rather than another user-space process (nl_pid of
zero represents the kernel).

Figure 5.2 provides an overview of how this works: processes inside the container with the
eBPF hooks attached will have their netlink communication redirected to the user-space netlink
server, whereas non-container processes will continue to communicate directly to the kernel. Since
the user-space netlink server runs on the host, it has the ability to send netlink messages to the
kernel and therefore perform actions on behalf of the container (if deemed appropriate). The
user-space netlink server can also entirely spoof responses to container processes. As an example,
this allows us to prevent commands like ip 1ink from exposing the host network interfaces, and
instead we can return a fake list of network interfaces that gives the container an isolated view
of the network state.

5.1.4 Communication Fast Path

Our eBPF hooks allow for containers to completely avoid the overhead of communicating over
the VXLAN overlay network by allowing them restricted access to the host network interface.
When a container tries to bind a socket to a network interface, we first check that the requested
IP address matches the one that it has been allocated. Then, we rewrite the arguments to
bind the socket directly to the host network interface (i.e. ethO in Figure 5.3), which includes

36

assigning any free port (not necessarily the one that the container requested). We distribute this
mapping to all nodes in the cluster using a distributed key-value store such as etcd (as shown in
Figure 5.3). When a client attempts to connect to this socket, we can rewrite the arguments of
the connect system call using this distributed mapping.

VM1 VM2
Red Distributed Mappings Blue
" Preallocated Host Ports N
‘ red-in:10.0.0.1 ‘ Container IP_|_Container Port | HostIP_| HostPort | Protocol ‘ blue-in : 10.0.0.2
I 10.0.0.2 * 1112 50000 TCP !
10002 * 1112 50001 TP
red-out 100.0.1 8000 1111 22334 Tcp blue-out
‘ br-red ‘ Host Bound Sockets ‘ br-blue ‘
vxlan-red Container IP | Container Port | HostIP | HostPort | Protocol vxlan-blue
10001 8000 1111 32114 Tcp
| eth0:1.1.11 | eth0:1.1.12 |

Figure 5.3: We can allow the containers to bind to and connect from the host interfaces to allow
a fast path. This requires distributing mappings for bound sockets, as well as a preallocated set
of hosts ports for each container to connect from.

Server containers need a way of identifying which client container is attempting to connect
to them. By pre-allocating a range of host ports to each container, the server container can
determine which client container is making the connection request by looking at the source port
of the incoming connection. This allows eBPF programs to write the correct container IP address
in system call hooks such as accept() and getpeername(). One limitation with this approach
is that it limits the number of concurrent connections that can be made to a single server socket
from a single client container. This can be overcome by supporting falling back to the standard
VXLAN overlay network when all preallocated ports are in use.

5.1.5 Filesystem Network State

Information about the network state is accessible through various locations in the filesystem.
For example, the /sys/class/net directory contains a subdirectory for each network interface
on the host. This subdirectory contains information about the network interface, such as its
name, MAC address, and IP address. To provide robust network isolation to containers, we
must ensure that they are unable to arbitrarily access this information. Our eBPF system call
hooks offer a powerful mechanism to enforce this: we can intercept filesystem system calls such
as open(), read(), and readdir() and either block them entirely or modify the data returned
to the container so that they can only see the network interfaces that they are allowed to use.

5.1.6 Defence in Depth

Our eBPF system call hooks provide a mechanism for system call filtering based on deep in-
spection of system call arguments. To provide further protection against malicious containers,
we can take advantage of the BPF LSM (Linux Security Module) hooks to enforce additional
security policies. For example, a policy can be enforced that prevents containers from creating
sockets with a particular family or protocol, or that prevents them from binding to certain IP
addresses. By combining our eBPF system call hooks with BPF LSM, we can create an extra
layer of security that ensures that rewriting of the system call arguments by the eBPF programs
does not violate any isolation policies.

37

5.2 Implementation

We implement our lightweight alternative to network namespaces in a Kubernetes cluster running
on top of a custom Linux kernel that has support for our eBPF system call hooks. We use
a Kubernetes DaemonSet that runs a go application that we call the BPF agent. This go
application uses the ebpf-go library [39] to load and attach our eBPF programs to the cgroup of
each pod in response to Kubernetes API events. In this section, we first describe the architecture
of the BPF agent and how it is used to manage network isolation for pods. Then, we give a
detailed overview of the implementation of our eBPF programs. Finally, we briefly outline the
implementation of our user-space netlink server and the communication fast path.

Orchestration Layer (k3s)

A

eBPF Management Layer

K8s API Event Listener
|

Agent Daemon l

Netlink Server BPF Attacher

3

Kernel
v
Container Container Container
! { !
v
BPF Program BPF Program BPF Program
3 i 3

v

veth: 10.0.0.1/24, 10.0.0.2/24, 10.0.0.3/24

veth-peer

brO
vxlanO

‘ lo J' ethO

Figure 5.4: The Kubernetes API event listener sits in the eBPF management layer, and listens
to events from the orchestration layer so that it can attach the eBPF programs to the pods
whenever they are created.

38

5.2.1 Architecture

To understand how the BPF agent fits into our design, we separate the architecture into three
layers: the orchestration layer (Kubernetes), the eBPF management layer and the kernel layer
(as shown in Figure 5.4). The BPF agent sits in the eBPF management layer and has two main
responsibilities. Firstly, it listens to Kubernetes API events and attaches eBPF programs to the
cgroup of each pod as they are created. An IP address for the pod is also assigned to the shared
virtual ethernet device. The second responsibility is to start a user-space netlink server that acts
as a man-in-the-middle for all netlink requests made by processes running inside the pods.

The BPF agent is implemented as a Kubernetes DaemonSet, which means that it runs on
every node in the cluster. The user-space netlink server is responsible for handling netlink
requests from all pods running on the node, rather than having a separate netlink server for each
pod. Each container has its own set of eBPF programs attached, rather than having a single
set of eBPF programs that must disambiguate between different pods. Rather than loading and
verifying the eBPF programs on each pod creation, the BPF agent loads and verifies the eBPF
programs into the kernel when it starts up and attaches those programs to the cgroup of pods
as they are created. The overhead of attaching eBPF programs to a pod’s cgroup is minimal.

5.2.2 eBPF Programs

eBPF programs are attached to the cgroup of each Kubernetes pod to ensure that the pods have
an isolated view of the network state. These hooks perform system cal argument rewriting to hide
the underlying host network state from the pod and masquerade the pod’s network interface as if
it were in its own network namespace. Inspired by Particle [16], we use a single virtual ethernet
device combined with a VXLAN interface to provide pod-to-pod communication. We use our
eBPF programs to intercept networking related system calls and rewrite their arguments so that
they bind to the correct virtual ethernet device using their allocated IP address. We implement
the following system call hooks:

e bind(): if a process tries to bind a socket to the INADDR_ANY address, we rewrite the address
to the underlying IP address on the virtual ethernet device associated with the pod. Since
the pod IP address is not necessarily the same as the one assigned to the virtual ethernet
device, we also perform this rewriting if the process attempts to bind specifically to its IP
address.

e connect(): when a process tries to connect to a remote pod, we rewrite the destination
address to match the IP address assigned to the virtual ethernet device associated with the
remote pod. We also force the socket to bind to its virtual ethernet device so that it uses
the correct IP address when sending packets and so that the kernel does not automatically
fall back to using the host network interface (e.g. if the pod tries to connect to an IP
address outside the cluster). We apply a similar rewriting to the sendto() and recvmsg()
system calls.

e getsockname (): we rewrite the IP address and port numbers returned by this system call
to match the IP address of the pod (rather than the IP address assigned to the virtual
ethernet device). We also do this for the getpeername () and accept () system calls.

With these eBPF programs, we can provide a minimal set of networking functionality to the
pods whilst giving them the illusion of network isolation. As mentioned in subsection 5.1.5, for
complete network isolation we also require eBPF programs to intercept the open(), openat ()
and read () system calls to ensure that network state cannot be leaked through the file system.

The Kubernetes hostNetwork: true configuration also places the pod in the host UTS names-
pace which means, for example, that the pod shares the host’s hostname and domain name. To

39

give the pod its own hostname and domain name, we implement an eBPF hook for the uname ()
system call. This hook rewrites the struct utsname returned by the system call. Similarly, we
can hook into the gethostname () and sethostname() system calls.

5.2.3 Userspace Netlink Server

We implement support for a small subset of netlink messages in a user-space netlink server that
runs as part of the BPF agent. The user-space netlink server first creates a NETLINK_USERSOCK
socket and binds it to n1_pid 9999. This is a special netlink protocol that allows for user-space
processes to communicate with one another. The netlink server then uses the recvmsg() system
call to continuously listen for incoming netlink requests from processes running inside the pods.
The server supports two netlink message types: RTM_GETLINK and RTM_GETADDR. These message
types are used to query the network interfaces and IP addresses associated with the pod. Using
the n1_pid inside the netlink message header, the server can determine which pod the request is
coming from and can access the pod metadata eBPF map to construct an appropriate response.
This completely bypasses the kernel, which means that no host network information can be
leaked to the pod through netlink. To redirect netlink requests sent by processes running inside
the pods to the user-space netlink server, we implement eBPF programs using our system call
hooks that:

e Overwrite the protocol of all netlink sockets created with the socket() system call to
NETLINK_USERSOCK so that it can communicate with the user-space netlink server.

e Rewrite the n1_pid header in sendto() system calls from 0 to 9999 so that the messages
are routed to the user-space netlink server.

e Rewrite the nl_pid header in recvmsg() system calls from 9999 to 0 so that user-space
processes inside the pods think that they are communicating with the kernel rather than
the user-space netlink server.

The design and implementation of the user-space netlink server is flexible enough to support
additional netlink message types. Furthermore, it can selectively forward requests to the kernel if
needed, for example if a pod wants to create and use its own virtual network interface. The user-
space netlink server could use standard netlink sockets to create this virtual network interface
and then update eBPF maps to allow the pod to use it.

5.2.4 Communication Fast Path

Rather than solely relying on a VXLAN based overlay network for pod-to-pod communication,
we take advantage of the fact that our pods reside in the host network namespace and the
fact that our eBPF programs can allow the pods safe and restricted access to the host network
interface. We do this by pre-allocating a set of ephemeral ports from the host network interface
to each pod. In an eBPF map, we store metadata about the placement of all pods in the cluster.
This allows us to find the underlying host IP address of any pod in the cluster. We also store
the ephemeral ports assigned to each pod in this map. We extend our eBPF programs to do the
following;:

e If a process tries to bind() a socket to a pre-specific port (e.g. 8000), we rewrite the
struct sockaddr to bind the socket to a preallocated ephemeral port on the host network
interface (e.g. 50000)

e When a process attempts to connect () to port 8000 on the server pod, we first bind the
client socket to a preallocated ephemeral port on the client pod’s host network interface (e.g.
60000). We then rewrite the struct sockaddr so that the destination address matches

40

the IP of the server pod’s host network interface and rewrite the port to be 50000. The
server knows which pod is connecting to it because it has the preallocated port mappings
(e.g. it knows which pod has been assigned port 60000).

e Similarly to before, we rewrite the returned values to the getsockname (), getpeername ()
and accept () system calls.

The advantage of this approach is that it allows pods to achieve host level network perfor-
mance and avoid the overheads of VXLAN overlay. Implementing such a design with our eBPF
hooks is straightforward in comparison to a similar design proposed by Slim [18|, which requires
an LD_PRELOAD library as well as a kernel module and doesn’t support connectionless protocols.

41

Chapter 6

Evaluation

We evaluate the performance of our lightweight alternative to network namespaces using a suite
of microbenchmarks and two real-world applications (nginx [25] and postgres [26]). Our testbed
consists of a two-node cluster, where each node runs as a QEMU virtual machine on the same
physical host. Each node has 12 CPU cores, 16 GB of RAM and runs our custom Linux kernel.
The nodes are connected via two TAP interfaces and a Linux bridge. We compare our system’s
performance against two baselines: a standard Linux VXLAN overlay network and processes
running directly on the host machine. Additionally, for container startup time, we compare our
system to Particle [16] and for throughput and latency, we compare to our system to ONCache
[19], which is a current state-of-the-art overlay network implementation.

6.1 Microbenchmarks

Before evaluating the performance of our lightweight alternative to network namespaces in real-
world applications, we first conduct a series of microbenchmarks to characterize the performance
of our eBPF-based network isolation mechanism. These microbenchmarks measure system call
interception overhead and container startup time, as well the throughput and latency within an
overlay network configuration.

6.1.1 Interception Overhead

The primary advantage of our eBPF system call interception mechanism is that it does not
require binary rewriting and is therefore suitable for use by cloud providers. However, since
eBPF programs are executed directly in the kernel, the performance overhead is likely to be fairly
low. To quantify this, we perform an experiment where we measure the time taken to execute a
system call and compare it to a baseline and existing user-space interception mechanisms.

Our experiment involves creating a socket and binding it to the loopback interface. We
measure the time taken to execute the bind() system call using CLOCK_MONOTONIC. We repeat
this experiment 1000000 times and record the average time. Our aim is to understand the
performance overhead introduced by invoking an eBPF program. Therefore, the eBPF program
does not perform any operations and returns immediately. As a baseline, we use an unmodified
Linux kernel (v6.15-rc1). To understand the performance in comparison to state-of-the-art
system call interception mechanisms, we run the same experiment with zpoline [7] and lazypoline
[6]. These are also configured to return immediately. We do not compare our performance to any
existing kernel-based system call interception mechanisms because they do not support argument
rewriting and solely focus on system call filtering, therefore being unsuitable for our use case.

Figure 6.1 shows the results of our experiments. The baseline, as expected, takes the least
amount of time. Our eBPF-based mechanism is 1.21x slower than the baseline, zpoline is
1.19x slower and lazypoline is 1.86x slower. However, zpoline is not a completely exhaustive

42

20.0

17.5 4

15.0 4

=
]
w

Execution Time {(ps)
=
e
(=]

7.5 4

5.0 4

2.5+

0.0 -

Baseline eBPF wfo Program eBPF zpoline lazypoline

Figure 6.1: Average execution time of the bind () system call under various system call intercep-
tion mechanisms.

interception mechanism and therefore cannot intercept all system calls [6]. In contrast, both
lazypoline and our eBPF-based mechanism are completely exhaustive. These results are inline
with the results found by lazypoline [6]. A significant limitation of our eBPF mechanism is
that a small overhead is incurred for every system call made by all processes on the machine,
regardless of whether the system call is being intercepted. This is because the kernel system
call handler must check if any eBPF programs are hooked to the attachment point. User-space
interception mechanisms do not incur this overhead, as the interception is performed at a per-
process granularity. This is the eBPF w/o Program in Figure 6.1. To quantify the impact of
this, we repeat our experiment without any eBPF programs attached. Our modified kernel is
only 1.02x slower than the baseline, which suggests that the overhead of checking for eBPF
programs is negligible compared to the overhead of executing the eBPF program itself. However,
our experiment does not account for the time taken to execute the system call itself. This varies
substantially depending on the particular system call, which means that the overhead could be
more pronounced (relative to the system call execution time) for system calls that take less time
to execute than bind ().

To summarize, our eBPF-based system call interception mechanism indeed incurs a small
overhead compared to the baseline. However, the overhead is substantially lower than the current
state-of-the-art fully exhaustive user-space interception mechanism. This can be attributed to
the fact that our eBPF programs are executed in the kernel. Whilst zpoline has a slightly lower
overhead, it is not exhaustive. Most crucially, our eBPF-based mechanism does not require any
binary rewriting which makes it suitable for use by cloud providers.

6.1.2 Container Startup Time

We evaluate the startup performance of our lightweight alternative to network namespaces by
measuring the time required to create a fully interconnected network of containers. We compare
this to an equivalent setup that uses traditional network namespaces, as well as to the Particle
[16] design, which represents the current state-of-the-art. Our experiments vary both the number
of tenants (M) and the number of containers per tenant (N), as shown in Figure 6.2.

43

Namespace 1-1

Namespace 2-1

Namespace N-1

| veth-1-1:10.0.0.1 |
|

| veth-2-1:10.002
I

[veth-n-1: 10.00N |
|

Namespace 1

| veth-1:10.0.0.1,10.00.2, .., 10.00N |
I

‘ veth-out-1-1

|
‘ veth-out-2-1

veth-out-n-1

br-1

veth-out-1
\ br-1 |

Namespace 1-2

Namespace 2-2

Namespace N-2

[veth-1-2:10001
I

[veth-2-2:10002
I

[veth-n-2:10.0.0N |
|

Namespace 2

[veth-2:100.0.1,1000.2,., 1000N |
|

veth:
10.0.1.1,10.0.1.2, .., 10.0.1.N,
10.0.2.1,10.0.2.2, .., 10.0.2.N,

|
‘ veth-out-1-2 ‘

[
|veth-out-2-2

veth-out-n-2

veth-out-2

br-2

\ br-2 |

10.0.M.1,10.0.M.2, .., 10.0.M.N,

br

Namespace 1-m

Namespace 2-m

Namespace N-m

[veth-1-m: 10.0.0.1 |
I

‘ veth-2-m: 10.0.0.2 ‘
I

‘ veth-n-m: 10.0.0.N ‘
|

Namespace m
| veth-m:10.00.1,10.00.2, .., 10.00N |
|

|
|veth-out-1-m

[
[veth-out-z-m

veth-out-n-m

veth-out-m

br-m

‘ br-m ‘

(a)

(b)

(c)

Figure 6.2: (a) Standard Linux Setup: each container is allocated its own network namespace
and virtual ethernet device, (b) Particle: network namespaces and virtual ethernet devices are
consolidated per tenant, with multiple IPs assigned to a single shared virtual ethernet device
for each tenant, (c) by attaching eBPF programs to the cgroup associated with each container,
we can create a single virtual ethernet device for all tenants and place all containers in the host
network namespace

(a) 1 tenant, 1 container/tenant

(b) 10 tenants, 1 container/tenant

Average Creation Time (ms)

Linux

(c) 10 tenants,

Particle eBPF

, 20 containers/tenant

600 -

500 -

400 A

300 A

200

Average Creation Time (ms)

100 -

Linux

8000 -

6000 1

4000 -

Average Creation Time (ms)

2000 A

Linux

Particle eBPF

(d) 200 tenants, 1 container/tenant

Particle eBPF

10000 -

8000 -

6000 -

4000 -

Average Creation Time (ms)

2000 A

Linux

Particle eBPF

Figure 6.3: Summary of launch times for a selection of tenant and container count configurations.

44

The results, shown in Figure 6.3, demonstrate that our eBPF-based network isolation mech-
anism achieves consistently lower launch times compared to both the traditional Linux network
namespaces and Particle. While a single container, single tenant setup shows a nearly 60% reduc-
tion in launch time with our eBPF-based mechanism, the benefits become even more pronounced
as the number of containers and number of tenants increase. Particle is able to mitigate the over-
head of creating a network namespace per container within a single tenant, but it still incurs a
substantial overhead in the multi-tenant case. In contrast, our eBPF-based approach maintains
consistently low launch times regardless of the number of tenants. For example, when launch-
ing one container across 200 tenants in parallel, our eBPF approach achieves a 92x reduction
in launch time compared to Particle. These results are expected, because our eBPF-based ap-
proach does not require moving any virtual ethernet devices across network namespaces, whereas
Particle still requires moving one virtual ethernet device per tenant.

6.1.3 Throughput and Latency

To understand the performance benefits of our lightweight alternative to network namespaces,
we measure the throughput and latency between two containers residing on two different nodes
and connected via an overlay network. We compare these measurements to those achieved by a
standard Linux VXLAN overlay network. Additionally, we compare the throughput and latency
of our communication fast path to that of two processes running directly on the hosts and to
that of ONCache [19] which represents the current state-of-the-art in overlay networks.

To measure throughput, we use iperf3 [40]. The client and server are pinned to a single
CPU core using taskset [41]. The client uses a 1400B MSS, the cubic TCP algorithm and
runs for 65 seconds (with the first 5 seconds being omitted from the results). We report the
average, minimum and maximum results over ten repeats. To measure latency, we use ping [42]
and report the average, minimum and maximum round-trip times (RTTs) over 100 repeats. The
results for throughput are presented in Table 6.1 and for latency in Table 6.2. We also summarize
the results in a bar chart in Figure 6.4.

Throughput (Gbits/sec)
Linux VXLAN eBPF Host eBPF Fast-path ONCache

Min 2.20 221 2840 28.40 27.20
Avg 2.30 233 29.58 29.17 27.83
Max 2.38 242 30.30 30.00 28.90

Table 6.1: Throughput measurements (in Gbits/sec) for different overlay network implementa-
tions. Our eBPF implementation is comparable to the standard Linux VXLAN, and our eBPF
fast-path is comparable to host-to-host communication as well as ONCache.

RTT (ms)
Linux VXLAN eBPF Host eBPF Fast-path ONCache
Min 1.064 1.018 0.972 0.782 0.891
Avg 1.277 1.348 1.092 1.121 1.161
Max 1.411 2.097 1.265 1.267 1.513

Table 6.2: Latency measurements (in ms) for different overlay network implementations. Our
eBPF implementation achieves latency comparable to the standard Linux VXLAN, and our
eBPF fast-path is comparable to host-to-host communication as well as ONCache.

The results suggest that the overhead of our eBPF system call interception programs is neg-

ligible: both the throughput and latency achieved by our (unoptimized) eBPF network isolation
mechanism is comparable to that of a standard Linux VXLAN overlay network that uses network

45

1.50 1
204

1254

151

Latency (ms)

1.00 1

Throughput (Gbps)

10 4

1 . o4
Linux VXLAN eBPF Host eBPF Fast-path ONCache-t-r Linux VXLAN Host eBPF Fast-path ONCache-t-r

Figure 6.4: Summary of throughput and latency measurements for different overlay network
implementations. Our eBPF implementation achieves throughput and latency comparable to the
standard Linux VXLAN, suggesting that the overhead of our system call interception programs
is negligible. Furthermore, our eBPF fast-path is able to achieve performance akin to that of
processes communicating directly over the main host network interface, slightly outperforming
the ONCache implementation.

namespaces. Furthermore, the eBPF fast-path achieves throughput and latency comparable to
that of the host and slightly outperforms ONCache. Such an optimization is only possible due to
the containers residing in the host network namespace, as the containers are able to have direct
access to the host network interface. In contrast, ONCache places tc eBPF programs on the
virtual ethernet devices which results in a per packet processing overhead, explaining the slightly
lower throughput and higher latency compared to our eBPF fast-path.

A caveat to the results presented in Table 6.1 and Table 6.2 is that the Linux VXLAN
measurement is significantly affected by the fact that our test bed involves two QEMU virtual
machines [43]. In reality, the performance overhead of VXLAN has been found cause a 48%
reduction in throughput and an 85% increase in latency [18].

6.2 Real-world Applications

To further evaluate our eBPF fast-path, we deploy two real-world applications: nginx [25] and
postgres [26]. This gives us an understanding of the performance characteristics under two
different real-world workloads, rather than just microbenchmarks.

6.2.1 nginx

We run an nginx [25| container on one node and the wrk [44| web server benchmarking tool on
another container running on another node. The benchmarking tool is configured to spawn 12
threads and create 100 connections to the nginx server. The test runs for 60 seconds. The web
server serves the default nginx welcome page, which is 612 bytes. We run this benchmarking tool
for our eBPF fast-path and the standard Linux VXLAN overlay network, as well as directly on
the host. The benchmarking tool gives us the latency and throughput (in requests per second)
achieved. The results are presented in Table 6.3 and summarized in Figure 6.5.

These results are consistent with the results of our microbenchmarks: our eBPF fast-path is
able to achieve throughput and latency comparable to that of the host, while the standard Linux
VXLAN overlay network incurs a significant performance overhead. The reduction in latency and

46

Host eBPF Fast-path Linux VXLAN
Latency (us) 675.41 (4+0.00%) 664.21 (-1.66%) 923.33 (+36.71%)
Requests/sec 161,606.12 (+0.00%) 162,368.76 (+0.47%) 106,149.57 (-34.32%)

Table 6.3: Comparison of throughput and latency achieved by wrk against an nginx web server.

160000

800 4 140000 -

120000

600

100000

80000 -
400 4

Latency (ps)
Requests/Second

60000

40000
200 4

20000 4

0- 0-
Host eBPF Fast-path Linux VXLAN Host eBPF Fast-path Linux VXLAN

Figure 6.5: Comparison of throughput (right) and latency (left) achieved by wrk.

increase in throughput of our eBPF fast-path compared to the host is likely due to random noise
and indicative of the negligible overhead of our eBPF system call interception programs. This
is a substantial improvement over the standard Linux VXLAN overlay network, which incurs a
36.71% increase in latency and a 34.32% decrease in throughput compared to the host.

6.2.2 postgres

To understand the performance characteristics under a different workload, we deploy a postgres
database on one node and benchmark it using pgbench [45] on another node. We benchmark
the database with ten threads and 100 connections, and run the benchmark for 60 seconds. As
before, we compare the performance of our eBPF fast-path to that of a standard Linux VXLAN
overlay network and postgres running on the host. Figure 6.6 show the average latency across
three repeats as well as the total number of transaction executed during the benchmark.

12000

u
w
°

8
n

11500

4
o

2
&
= 11000

Average Latency (ms)
o
@
&

u
2
°

10500

g

50.0 10000
Host €eBPF Linux VXLAN Host.

Figure 6.6: Comparison of latency (left) and number of transaction (right) when benchmarking
a postgres database with pgbench. Note that the vertical axis do not start at zero.

The performance benefit of both our eBPF fast-path and the host is much less pronounced

47

than in the case of nginx and the microbenchmarks, but still exists. The eBPF fast-path
achieves only a 3.87% decrease in latency and a 4.05% increase in throughput compared to the
Linux VXLAN overlay. This could be due to the fact that postgres typically uses smaller
packet payloads in comparison to web servers, which means that the 50 byte overhead of the
VXLAN header is less likely to cause any packet fragmentation. Additionally, postgres performs
heavier user-space processing than nginx since it needs to parse, plan and execute SQL queries.
The much higher average latencies in the case of postgres (= 50000ms) compared to nginx
(=~ 700ms) further support this analysis.

48

Chapter 7

Conclusion

7.1 Summary

In this thesis, we presented our design and implementation for a kernel space system call argu-
ment rewriting mechanism that uses eBPF. The primary advantage of this mechanism is that it
does not require rewriting binaries to perform system call interception. This makes it suitable for
use by cloud providers, who are unwilling to modify the binaries of their customers. We demon-
strate the utility of these eBPF hooks by implementing a lightweight alternative to network
namespaces. We use this to provide network isolation for Kubernetes pods placed in the host
network namespace. This approach results in a 92x reduction when launching 200 containers in
parallel and a 60% reduction in the launch time of a single container. Additionally, we achieve a
35% increase in throughput and a 33% reduction in latency for pod-to-pod communication when
compared to the standard Linux VXLAN overlay implementation.

7.2 Limitations

The most significant limitation of this work is the fact that the eBPF programs are attached to
the Kubernetes pod cgroup after the pod is created, rather than immediately after the cgroup
is created and before any applications run inside the container. This is due to the fact that the
BPF agent runs as a DaemonSet and listens for Kubernetes API events. The standard way to
overcome this limitation is to instead create a custom container network interface (CNI) plugin
that sets up pod networking and attaches the eBPF programs at cgroup creation time.

Another limitation is that the eBPF fast-path can only be used for a limited number of
connections, since it uses the host network IP address. There are various ways to overcome this
limitation, but each has its own trade-offs and solutions must be carefully chosen to match the
use case. For example, cloud providers could attach multiple IPv6 addresses to the host network
interface. This way, the range of ports that can be allocated to a single pod could significantly
be increased. At the extreme, a single IPv6 address could be assigned per pod.

Finally, the eBPF system call interception mechanism currently only supports a limited set
of system calls. Specifically, we implemented the system calls required for our use case of a
lightweight alternative to network namespaces. However, extending the mechanism to support
additional system calls is straightforward and involves applying the simple pattern established
in chapter 4.

7.3 Future Work

While this thesis focused on network namespaces and overlay networks, system call interception
with eBPF could potentially be used to implement other sandboxing mechanisms. Doing so may
have further performance benefits. To further extend the power of our eBPF hooks, we could

49

introduce a set of e BPF KFuncs. Currently, the eBPF programs aren’t able to perform arbitrary
operations such as invoking any other system call. User-space interposition mechanisms do not
have this limitation. By exposing a set of KFuncs, we could allow eBPF programs to perform
powerful kernel operations.

Since the kernel modifications required for the eBPF system call hooks are relatively small
and well separated from the rest of the kernel, maintaining a kernel fork and applying a patch
including the eBPF hooks is a viable option. However, it would be preferable to have the
eBPF hooks included in the mainline kernel. This may prove to be challenging since the kernel
community is generally rather sceptical of open-ended eBPF hooks.

50

Bibliography

1]
2]

3]
4]

[5]

(6]

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

Katran. https://github.com/facebookincubator/katran, 2025. Accessed: 04-06-2025.

Noisy Neighbour Detection. https://netflixtechblog.com/
noisy-neighbor-detection-with-ebpf-64b1f4b3bbdd, 2025. Accessed: 04-06-2025.

Firecracker. https://firecracker-microvm.github.io/, 2025. Accessed: 07-06-2025.

Unimog. https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/,
2025. Accessed: 04-06-2025.

L4 Drop. https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/,
2025. Accessed: 04-06-2025.

Adriaan Jacobs, Merve Giilmez, Alicia Andries, Stijn Volckaert, and Alexios Voulimeneas.
System call interposition without compromise. In 54th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 183-194, 2024.

Kenichi Yasukata, Hajime Tazaki, Pierre-Louis Aublin, and Kenta Ishiguro. zpoline: a sys-
tem call hook mechanism based on binary rewriting. In 2028 USENIX Annual Technical
Conference (USENIX ATC 23), pages 293-300, Boston, MA, July 2023. USENIX Associa-
tion.

Amazon Web Services. Shared Responsibility Model. https://aws.amazon.com/
compliance/shared-responsibility-model/, 2025. Accessed: 10-06-2025.

Yougang Song and Brett Fleisch. Utilizing binary rewriting for improving end-host security.
Parallel and Distributed Systems, IEEE Transactions on, 18:1687-1699, 01 2008.

Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina Delimitrou, Rob-
bert Van Renesse, and Hakim Weatherspoon. X-containers: Breaking down barriers to
improve performance and isolation of cloud-native containers. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 121-135, New York, NY, USA, 2019. Association for
Computing Machinery.

Seccomp. https://kubernetes.io/docs/tutorials/security/seccomp/, 2025. Accessed:
07-06-2025.

Jim Keniston. Kernel Probes. https://docs.kernel.org/trace/kprobes.html, 2025.
Accessed: 10-06-2025.

Matthieu Desnoyers. Kernel Tracepoints. https://docs.kernel.org/trace/tracepoints.
html, 2025. Accessed: 10-06-2025.

Wine. https://www.winehq.org/, 2025. Accessed: 10-06-2025.

o1

https://github.com/facebookincubator/katran
https://netflixtechblog.com/noisy-neighbor-detection-with-ebpf-64b1f4b3bbdd
https://netflixtechblog.com/noisy-neighbor-detection-with-ebpf-64b1f4b3bbdd
https://firecracker-microvm.github.io/
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://kubernetes.io/docs/tutorials/security/seccomp/
https://docs.kernel.org/trace/kprobes.html
https://docs.kernel.org/trace/tracepoints.html
https://docs.kernel.org/trace/tracepoints.html
https://www.winehq.org/

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

23]

[24]

[25]
[26]
[27]
28]

[29]
[30]

[31]

[32]

[33]

Jeff Dike. User-mode linux. In Proceedings of the 5th Annual Linuz Showcase € Conference
- Volume 5, ALS 01, page 2, USA, 2001. USENIX Association.

Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter. Particle: ephemeral
endpoints for serverless networking. In Proceedings of the 11th ACM Symposium on Cloud
Computing, SoCC 20, page 16-29, New York, NY, USA, 2020. Association for Computing
Machinery.

Kun Suo, Yong Zhao, Wei Chen, and Jia Rao. An analysis and empirical study of container
networks. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications,
page 189-197. IEEE Press, 2018.

Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, Hongqiang Harry Liu, Matthew Rockett, Arvind
Krishnamurthy, and Thomas Anderson. Slim: OS kernel support for a Low-Overhead con-
tainer overlay network. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 331-344, Boston, MA, February 2019. USENIX Associa-

tion.

Shengkai Lin, Shizhen Zhao, Peirui Cao, Xinchi Han, Quan Tian, Wenfeng Liu, Qi Wu,
Donghai Han, and Xinbing Wang. ONCache: A Cache-Based Low-Overhead container

overlay network. In 22nd USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 25), pages 979-998, Philadelphia, PA, April 2025. USENIX Association.

eBPF Documentation. https://docs.ebpf.io/, 2025. Accessed: 04-06-2025.
Cilium. https://cilium.io/, 2025. Accessed: 04-06-2025.

eBPF Socket System Call Hooks. https://docs.ebpf.io/linux/program-type/BPF_
PROG_TYPE_CGROUP_SOCK_ADDR/, 2025. Accessed: 05-06-2025.

eBPF Bind Hook. https://github.com/torvalds/linux/commit/
4fbac77d2d092b475dda9eeab6da674369665427, 2025. Accessed: 11-06-2025.

Cncf, annual survey 2023. https://www.cncf.io/reports/cncf-annual-survey-2023/,
2023. Accessed: 02-06-2025.

Nginx. https://nginx.org/, 2025. Accessed: 02-06-2025.
Postgresql. https://www.postgresql.org/, 2025. Accessed: 02-06-2025.
Redis. https://redis.io/, 2025. Accessed: 02-06-2025.

Kubernetes overview. https://kubernetes.io/docs/concepts/overview/, 2025. Ac-
cessed: 02-06-2025.

AWS Lambda. https://aws.amazon.com/lambda/, 2025. Accessed: 02-06-2025.

Namespaces, Linux Manual. https://man7.org/linux/man-pages/man7/namespaces.7.
html, 2025. Accessed: 02-06-2025.

PID Namespaces, Linux Manual. https://man7.org/linux/man-pages/man7/pid_
namespaces.7.html, 2025. Accessed: 02-06-2025.

Control Groups, Linux Manual. https://man7.org/linux/man-pages/man7/cgroups.7.
html, 2025. Accessed: 02-06-2025.

Network Namespaces, Linux Manual. https://man7.org/linux/man-pages/man’7/
network_namespaces.7.html, 2025. Accessed: 02-06-2025.

92

https://docs.ebpf.io/
https://cilium.io/
https://docs.ebpf.io/linux/program-type/BPF_PROG_TYPE_CGROUP_SOCK_ADDR/
https://docs.ebpf.io/linux/program-type/BPF_PROG_TYPE_CGROUP_SOCK_ADDR/
https://github.com/torvalds/linux/commit/4fbac77d2d092b475dda9eea66da674369665427
https://github.com/torvalds/linux/commit/4fbac77d2d092b475dda9eea66da674369665427
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://nginx.org/
https://www.postgresql.org/
https://redis.io/
https://kubernetes.io/docs/concepts/overview/
https://aws.amazon.com/lambda/
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/pid_namespaces.7.html
https://man7.org/linux/man-pages/man7/pid_namespaces.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html

[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]

[42]

[43]

[44]
[45]

Virtual Ethernet Devices, Linux Manual. https://man7.org/linux/man-pages/mané/
veth.4.html, 2025. Accessed: 02-06-2025.

Virtual Bridges, Linux Manual. https://man7.org/linux/man-pages/man8/bridge.8.
html, 2025. Accessed: 02-06-2025.

Gourav Shah. Docker Documentation. https://docker-tutorial.schoolofdevops.com/
swarm-networking-deepdive/, 2017. Accessed: 2025-01-19.

et al Mahalingam. VXLAN. https://datatracker.ietf.org/doc/html/rfc7348, 2014.
Accessed: 2025-01-19.

Netlink, Linux Manual. https://man7.org/linux/man-pages/man7/netlink.7.html,
2025. Accessed: 03-06-2025.

eBPF Go Library. https://ebpf-go.dev/, 2025. Accessed: 05-06-2025.
iperf3. https://github.com/esnet/iperf, 2025. Accessed: 10-06-2025.

Taskset, Linux Manual. https://www.man7.org/linux/man-pages/manl/taskset.1.
html, 2025. Accessed: 10-06-2025.

iproute2. https://github.com/iproute2/iproute2, 2025. Accessed: 10-06-2025.

Understanding VXLAN-+OVS Bandwidth Issues. https://www.stackhpc.com/
vxlan-ovs-bandwidth.html#: ™~ :text=A%20very%20simple’20testi20case, single},
20TCP%20stream’%20between’20them. Accessed: 08-06-2024.

wrk. https://github.com/wg/wrk, 2025. Accessed: 10-06-2025.

pgbench. https://www.postgresql.org/docs/current/pgbench.html, 2025. Accessed:
11-06-2025.

93

https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man8/bridge.8.html
https://man7.org/linux/man-pages/man8/bridge.8.html
https://docker-tutorial.schoolofdevops.com/swarm-networking-deepdive/
https://docker-tutorial.schoolofdevops.com/swarm-networking-deepdive/
https://datatracker.ietf.org/doc/html/rfc7348
https://man7.org/linux/man-pages/man7/netlink.7.html
https://ebpf-go.dev/
https://github.com/esnet/iperf
https://www.man7.org/linux/man-pages/man1/taskset.1.html
https://www.man7.org/linux/man-pages/man1/taskset.1.html
https://github.com/iproute2/iproute2
https://www.stackhpc.com/vxlan-ovs-bandwidth.html#:~:text=A%20very%20simple%20test%20case,single%20TCP%20stream%20between%20them
https://www.stackhpc.com/vxlan-ovs-bandwidth.html#:~:text=A%20very%20simple%20test%20case,single%20TCP%20stream%20between%20them
https://www.stackhpc.com/vxlan-ovs-bandwidth.html#:~:text=A%20very%20simple%20test%20case,single%20TCP%20stream%20between%20them
https://github.com/wg/wrk
https://www.postgresql.org/docs/current/pgbench.html

Chapter 8

Declarations

8.1 Use of Generative Al

Generative Al tools have been used as companions throughput this project, including ChatGPT
and Claude. These tools have assisted in answering questions about the Linux kernel source code
and the current landscape of container networking. Furthermore, they have been used to discuss
ideas for the design and implementation of both the eBPF system call hooks and the lightweight
alternative to network namespaces.

8.2 Ethical Considerations

There are no ethical considerations related to this project.

8.3 Sustainability

There are no sustainability considerations related to this project.

8.4 Availability of Data and Materials

All code is available on GitHub: https://github.com/lucasbn/ebpf-overlay

o4

https://github.com/lucasbn/ebpf-overlay

	Introduction
	Motivation
	Contributions
	Outline

	Background
	eBPF
	Program and Attach Types
	Maps
	Helper Functions
	KFuncs
	Verifier

	System Call Interception
	Loading a Shared Library
	Binary Rewriting
	eBPF Socket Address Hooks

	Containers
	Historical Context
	Implementation Overview

	Network Namespaces
	Virtual Network Devices
	Kernel Implementation
	Overhead

	Container Networking
	Intra-host
	Inter-host
	Virtual Extensible Local Area Network

	Netlink

	Related Work
	Slim
	Quantifying VXLAN Overhead
	Design and Implementation
	Limitations

	ONCache
	Design and Implementation
	Limitations

	Particle
	Quantifying Network Namespace Setup Overhead
	Design and Implementation
	Limitations

	Summary

	eBPF System Call Interception
	Design
	Interface
	Program Context
	Kernel Hooking Points
	Program Behaviour

	Implementation
	Program Type Definition
	Context Safety and TOCTTOU Mitigations
	Verifier Enforcement of Context Accesses
	Symbolic Context Access Resolution
	Attach Point Integration

	Lightweight Alternative to Network Namespaces
	Design
	Overview
	Restricted Network Access
	Userspace Netlink Server
	Communication Fast Path
	Filesystem Network State
	Defence in Depth

	Implementation
	Architecture
	eBPF Programs
	Userspace Netlink Server
	Communication Fast Path

	Evaluation
	Microbenchmarks
	Interception Overhead
	Container Startup Time
	Throughput and Latency

	Real-world Applications
	nginx
	postgres

	Conclusion
	Summary
	Limitations
	Future Work

	Declarations
	Use of Generative AI
	Ethical Considerations
	Sustainability
	Availability of Data and Materials

