BibTex format
@article{Cheng:2025:10.1103/lzf5-x6hc,
author = {Cheng, MH and Chen, Y-C and Wang, Q and Bartsch, V and Medina, AC and Kim, MS and Hu, A and Hsieh, M-H},
doi = {10.1103/lzf5-x6hc},
journal = {Physical Review Research},
title = {Optimal number-conserved linear encoding for practical fermionic simulation},
url = {http://dx.doi.org/10.1103/lzf5-x6hc},
volume = {7},
year = {2025}
}
RIS format (EndNote, RefMan)
TY - JOUR
AB - Number-conserved subspace encoding reduces resources needed for quantum simulations, but scalable com plexity trade-off bounds for M modes and N particles with O(N log M) qubits have remained unknown. We studyqubit-gate-measurement trade-offs through the lens of classical/quantum error correction complexity and developa framework of fermionic gate and measurement complexity based on classical encoder/decoder appearing inthe error correction framework. We demonstrate optimal encoding with random classical parity check code andpropose the Fermionic Expectation Decoder for scalable probability decoding in O(M4 ) bases. The protocol istested with variational quantum eigensolver on LiH in the STO-3G and 6-31G bases, and H2 potential energycurve in the 6-311G basis.
AU - Cheng,MH
AU - Chen,Y-C
AU - Wang,Q
AU - Bartsch,V
AU - Medina,AC
AU - Kim,MS
AU - Hu,A
AU - Hsieh,M-H
DO - 10.1103/lzf5-x6hc
PY - 2025///
SN - 2643-1564
TI - Optimal number-conserved linear encoding for practical fermionic simulation
T2 - Physical Review Research
UR - http://dx.doi.org/10.1103/lzf5-x6hc
UR - https://journals.aps.org/prresearch/abstract/10.1103/lzf5-x6hc
VL - 7
ER -